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Abstract
Extensions of Girard’s linear logic by least and greatest fixed point operators (µMALL) have been
an active field of research for almost two decades. Various proof systems are known viz. finitary
and non-wellfounded, based on explicit and implicit (co)induction respectively. In this paper, we
compare the relative expressivity, at the level of provability, of two complementary infinitary proof
systems: finitely branching non-wellfounded proofs (µMALL∞) vs. infinitely branching well-founded
proofs (µMALLω,∞). Our main result is that µMALL∞ is strictly contained in µMALLω,∞.

For inclusion, we devise a novel technique involving infinitary rewriting of non-wellfounded proofs
that yields a wellfounded proof in the limit. For strictness of the inclusion, we improve previously
known lower bounds on µMALL∞ provability from Π0

1-hard to Σ1
1-hard, by encoding a sort of Büchi

condition for Minsky machines.
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1 Introduction

Fixed point logics have garnered significant interest from computational logicians over the
years. In particular the extension of languages by least and fixed point operators, µ and ν

respectively, has been comprehensively explored in modal logic [23, 38], arithmetic [22, 31],
first-order logic [32, 14, 1], and linear logic [36, 7].

In terms of reasoning, least fixed points allow for inductive proof, while greatest fixed
points, being dual to least fixed points, allow for coinductive proof. Naturally, the corres-
ponding (co)induction proof rules must incorporate an arbitrary (co)invariant, a fundamental
barrier to both proof theoretic investigations and (automated) proof search. To this end
various alternative proof methods have been proposed, incorporating “infinitary behaviour”
at the level of proofs:

Infinitary branching (but wellfounded) systems have origins in the proof theory of arith-
metic [10] and have been applied to numerous areas, including the modal µ-calculus [24, 37]
and extensions of Kleene algebra [34, 27].
More recently, non-wellfounded (but finitely branching) and cyclic proofs have been
proposed for (co)inductive reasoning, originating in the modal µ-calculus [33, 2] and
applied to theories of arithmetic [8, 9], type systems [26, 12, 11], and linear logic [36, 19, 6].
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40:2 Comparing Infinitary Systems for Linear Logic with Fixed Points

A natural question to ask is whether all these approaches prove the same theorems or not.
In this work, we examine this question in the setting of linear logic, µMALL. In particular,
we compare the non-wellfounded system µMALL∞ from [6] with a wellfounded infinitary
branching system µMALLω,∞ inspired by [16]. This builds on previous work [13] that focused
on comparing the various finitary systems for µMALL. Our main result is that µMALLω,∞
proves strictly more theorems than µMALL∞:

▶ Theorem 1. µMALL∞ ⊊ µMALLω,∞

Organisation and contributions. In Section 2, we recall the language of µMALL and present
its various systems, in particular µMALL∞ and µMALLω,∞. In Section 3 we prove the
inclusion part of Theorem 1. Namely, we give a coinductive translation from µMALL∞ to
µMALLω,∞, and then exploit the correctness condition of µMALL∞ to deduce that the image
of this translation is wellfounded, Theorem 14. In Section 4 we reduce a “Büchi condition”
for Minsky machines to µMALL∞ provability, Proposition 32, implying the latter is Σ1

1-hard
by [3], Theorem 33, yielding the strictness part of Theorem 1. Finally in Section 5 we give
a Π1

2 upper bound for µMALL∞, Theorem 35, by appealing to analytic determinacy of its
“proof search game”. We present conclusions in Section 6. Our results are summarised in
Figure 1.

Notation. For a formula φ we write φn(x) for
n︷ ︸︸ ︷

φ(φ(· · · (φ(x)) · · · ). We shall also frequently
suppress or explicitly indicate variables as convenient, e.g. we often identify φ and φ(x),
using the latter when we want to distinguish (some occurrences of) the variable x. When
working with binders, e.g. µ and ν, we shall employ a standard convention of using dots, e.g.
µx.φ or νx.ψ to signify that the µ or ν binds as far as possible to the right.

A note on (effective) descriptive set theory. In this work, we shall assume some familiarity
with notions from (effective) descriptive set theory, namely the classes of the analytical
hierarchy, Π1

1, Σ1
1, Π1

2 etc. All necessary notions can be found in well-known textbooks like
[29, 35] and via online resources.

2 Background

Linear logic, introduced by Girard [20], refines usual disjunction and conjunction into two
orthogonal pairs of connectives: the multiplicatives O,⊗ and the additives ⊕,N. Together
with their units ⊥, 1,0,⊤ respectively, the resulting logic MALL (“multiplicative additive
linear logic”) is given in Figure 2 (colours may be ignored for now). Note here that the rules
operate on sequents, which are finite multisets of formulas: commas denote multiset union,
and set braces are omitted. Sequents are “one-sided”, i.e. Γ should be read as ⊢ Γ.

MALL is distinguished from usual logics by its notable absence of structural rules for the
multiplicatives: φOφ ⊢ φ and 0 ⊢ φ are not always satisfied. This is why sequents must
be multisets (or lists), not sets. In a sense linear logic can be seen as a “symmetrisation”
of intuitionistic logic, which only controls structural rules on one side of an implication,
resulting in a sort of constructive logic that nonetheless enjoys a form of De Morgan duality,
hence admitting the one-sided presentation herein.

This lack of structural behaviour is crucially what leads to the high complexity of
provability in the presence of “exponentials” in usual linear logic or, in this work, in the
presence of fixed points. See [13, Sect. 2] for some further discussion on the peculiarities of
linear logic with fixed points compared to other similar logics.
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µMALLind µMALL⟳ µMALL∞

µMALLω,∞

µMALLω,ω

Σ0
1-complete [13] Σ1

1-hard Theorem 33

Π1
1Π1

2 Theorem 35

\
[16]

Observation 13

Theorem 14

\Corollary 34

? \[13]

Figure 1 Relationships between systems in this work. Solid arrows → denote inclusion, dashed
arrows denote conservative extensions, negated arrows ̸→ denote non-inclusion.

In the remainder of this section, we shall introduce the language of (multiplicative additive)
linear logic with fixed points, and present the systems investigated in this work.

2.1 µMALL preliminaries
Let us fix two disjoint countable sets of propositional constants A = {a, b, . . . } and variables
V = {x, y, . . . }.

▶ Definition 2 ((Pre)-formulas). µMALL pre-formulas are given by the following grammar.

φ,ψ ::= 0 | ⊤ | ⊥ | 1 | a | a⊥ | x | φOψ | φ⊗ ψ | φ⊕ ψ | φNψ | µxφ | νxφ

where a ∈ A, x ∈ V, and µ, ν bind the variable x in φ. Free and bound variables, and
capture-avoiding substitution are defined as usual. The subformula ordering is denoted ≤.
When a pre-formula is closed (i.e. has no free variable), we simply call it a formula.

µxφ and νxφ are intended to denote the least and greatest fixed points of the operator
λxφ in an appropriate semantics (cf., e.g., [16]). a⊥ is intended to be the negation of a. Note
that, since variables have no negated instances, positivity of fixed point operators is implicit
and no further condition is required.

Thanks to De Morgan duality in linear logic we may extend negation to all (pre-)formulas
as a meta-operation, in the same way as for classical logic:

▶ Definition 3. Negation of a pre-formula φ, denoted φ⊥, is the unique involution that
satisfies the following.

(0)⊥ = ⊤; (⊥)⊥ = 1; a⊥⊥ = a; x⊥ = x;

(φOψ)⊥ = φ⊥ ⊗ ψ⊥; (φ⊕ ψ)⊥ = φ⊥Nψ⊥; (µxφ)⊥ = νxφ⊥.

As expected, µ and ν are dual to each other; note also that fixed point variables are simply
invariant under negation.

The first systems for µMALL, here called µMALLind, incorporate explicit (co)induction
rules for the fixed points, inspired by similar developments in other fixed point logics like
the µ-calculus [23, 39]. In our one-sided setting, µMALLind is formally the extension of the
system MALL in Figure 2 by:

Γ, φ(µxφ)
(µ)

Γ, µxφ
ψ⊥, φ(ψ) Γ, ψ

(coind)
Γ, νxφ

(1)

FSTTCS 2023
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Structural rules
(id)

φ, φ⊥
Γ1, φ Γ2, φ⊥

(cut)
Γ1, Γ2

Logical rules
Γ, φ1, φ2

(O)
Γ, φ1Oφ2

Γ1, φ1 Γ2, φ2
(⊗)

Γ1, Γ2, φ1 ⊗ φ2

Γ, φi
(⊕i)

Γ, φ1 ⊕ φ2

Γ, φ1 Γ, φ2
(N)

Γ, φ1Nφ2

Logical rules (units)
(1)

1
Γ

(⊥)
Γ, ⊥

(⊤)
Γ, ⊤ No rule for 0

Figure 2 Inference rules for MALL, where i ∈ {1, 2}. Purple formulas in premiss(es) and conclusion
are called auxiliary and principal respectively.

These rules are inspired by the second-order encoding of fixed points: νxφ = ∃x((x⊸ φ)⊗φ).
Proofs of µMALLind are defined as usual, but the system plays little role in this work; we
present it only for context. At the level of their rules, the other systems considered in
this work will only differ from µMALLind in their ν-rules, using alternatives for (coind). All
systems we consider will have the (µ) rule above (differing from the development in [16]).

2.2 Non-wellfounded system µMALL∞

The standard “non-wellfounded” system for µMALL, here called µMALL∞, was introduced
in [6], building on earlier work for the fragment without multiplicatives [36, 19]. It is an
adaptation of systems for the modal µ-calculus from [33, 37] to the setting of linear logic.

▶ Definition 4 (µMALL∞ pre-proofs). The rules of µMALL∞ extend MALL by:

Γ, φ(µxφ)
(µ)

Γ, µxφ
Γ, φ(νxφ)

(ν)
Γ, νxφ

(2)

A pre-proof of µMALL∞, denoted P, P ′, . . . , is a possibly non-wellfounded tree generated
from the inference rules of µMALL∞.

Arbitrary non-wellfounded derivations may be fallacious, hence the affectation “pre-”
above. Thus bona fide “proofs” must further satisfy a standard correctness criterion from
non-wellfounded proof theory. At the same time the progressing criterion distinguishes the
two fixed points, which have the same rules in Equation (2).

▶ Definition 5 (Ancestry). A formula occurrence φ in the conclusion of a rule instance is
a immediate ancestor of an occurrence ψ in a premiss if they have the same colour, as
typeset in Figure 2 and Equation (2). If φ and ψ are in a context Γ,Γ1,Γ2, we furthermore
require that they are the same occurrences in the premiss and the conclusion.

▶ Remark 6 (On occurrences in multisets). Note that, in the definition above, we are implicitly
assuming that the data structure of a sequent allows us to distinguish different occurrences
of the same formula. This is a standard convention in structural proof theory that avoids
low-level peculiarities of working with lists (necessitating additional exchange/permutation
rules). To be clear, “sequents-as-multisets” should be construed as a sets of occurences of
formulas, e.g. by assigning a name to each occurrence. This is often made explicit in, e.g.,
type systems with explicit term annotations, but we gloss over this formality in favour of
lightening the exposition.

▶ Definition 7 (Threads and proof). Given a branch B through a pre-proof, a thread is a
maximal path in the graph of immediate ancestry of B. A thread is progressing if it has
a minimal infinitely often principal formula, called progress points, (under ≤) that is a
ν-formula. A pre-proof is a proof if each of its infinite branches has a progressing thread.
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...
(µ)

µx.x
(µ)

µx.x

...
(ν)

νx.x, Γ
(ν)

νx.x, Γ
(cut)

Γ
(a) A pre-proof of arbitrary Γ.

...•,ψ (µ)
φ, ψ

(O)
φO ψ

(ν)
ψ = νy.(µx.νz.xOz)Oy

• (µ)
φ = µx.νy.xOy

(b) ν-fairness ⇏ progress.

...• (ν)
νx.x, µy.νz.y

(ν)
νx.x, νz.µy.νz.y

(µ)
νx.x, µy.νz.y

• (ν)
νx.x, µy.νz.y

(c) A µMALL∞ proof.

Figure 3 Some µMALL∞ pre-proofs. We use identifiers like “•” to describe infinite proofs in a
finite manner. Progressing, non-progressing, and “stable” threads are indicated in green, red, and
yellow respectively.

▶ Example 8. In Figure 3 we give several examples of (pre-)proofs. Figure 3a is a pre-proof
of an arbitrary sequent Γ, exemplifying the inconsistency of arbitrary pre-proofs. It is not
a proof because the left infinite branch has no progressing thread. Figure 3b is also not a
proof, despite its only infinite branch having infinitely many (ν)-steps. This is because the
thread indicated in red has the µ-formula φ as its minimal infinitely often principal formula,
not the ν-formula ψ. Note that every other thread is eventually stable on ψ (and hence not
progressing). Finally Figure 3c is indeed a µMALL∞ proof, as its only infinite branch has a
progressing thread on νxx. (It also happens to have a non-progressing red thread on µyνzy.)

In this work we shall make crucial use of a (nontrivial) cut-elimination result for µMALL∞:

▶ Theorem 9 ([6, 5]). Every provable µMALL∞ sequent has a proof without the (cut) rule.

Finally, we briefly describe an important subsystem of µMALL∞ where the underlying
proof trees are regular.

▶ Definition 10. A µMALL∞ pre-proof is cyclic (a.k.a. regular) if it has finitely many
distinct sub-pre-proofs. µMALL⟳ is the class of formulas with cyclic µMALL∞.

For instance the pre-proofs Figure 3a and Figure 3c are indeed regular whereas Figure 3b
is not since at each iteration of the bullet the sequent has an extra occurrence of ψ (which
is thenceforth non-principal). Like µMALLind, the circular system µMALL⟳ will not play a
significant role in this work.

▶ Remark 11 (On exponentials). For the reader familiar with the exponentials of
linear logic, it would be reasonable to ask about the expressivity of extensions of
µMALLind, µMALL⟳, µMALL∞ by the exponentials !, ?. It turns out that the resulting system
is fully conservative over µMALLind, µMALL⟳, µMALL∞ respectively, thanks to the fact that
exponentials can be “coded” by fixed point formulas, as noticed by Baelde in [4]. On the
other hand, our previous work [13] showed the systems µMALLind and µMALL⟳ are already
Σ0

1-complete, matching the complexity of full linear logic with exponentials [28].

2.3 A well-founded system µMALLω,∞

One of the main points of this work is to compare the non-wellfounded system µMALL∞ with
an orthogonal notion of infinite proof: well-founded but infinitely branching. Such systems
are common in proof theory and mathematical logic [10, 30] and have been compared to
non-wellfounded systems in other settings [37]. To this end, we consider an “ω-rule” for ν,
motivated by continuous models, e.g. the phase semantics of [16].

FSTTCS 2023



40:6 Comparing Infinitary Systems for Linear Logic with Fixed Points

▶ Definition 12. µMALLω,∞ is the extension of MALL by the rules:

Γ, φ(µxφ)
(µ)

Γ, µxφ
Γ,⊤ Γ, φ(⊤) Γ, φ(φ(⊤)) . . .

(ω)
Γ, νxφ (3)

Proofs of µMALLω,∞ are defined as usual: they are well-founded (possibly infinite) trees
generated by the rules of µMALLω,∞.

The (ω) rule is inspired by the inflationary construction of fixed points, νxφ =⋂
α∈Ord

φα(⊤). It is implicit in µMALLω,∞ that the ν operator is in a sense continuous,

closing at ordinal ω, like in the models of phase semantics of [16]. In that work, a sim-
ilar ω-branching system µMALLω,ω has been proposed for µMALL but it further restricts
µ-rules to:

Γ, φn(0)
(µn)

Γ, µxφ

[16] shows that µMALLω,ω is actually quite weak and does not even contain µMALLind.
Retaining the usual (µ) rule in µMALLω,∞ is rather inspired by the signatures (a.k.a.
markings or assignments) from [33, 11, 17]. In this work, we shall see that µMALLω,∞ in
fact contains all the systems we have presented. In particular, note that, since there is no
rule for 0 in MALL, we immediately have:

▶ Observation 13. µMALLω,ω ⊆ µMALLω,∞

3 Inclusion of µMALL∞ in µMALLω,∞

In this section, we show one of our main results:

▶ Theorem 14 (Simulating infinite height by infinite width). µMALL∞ ⊆ µMALLω,∞.

Note in particular the stark contrast with the system µMALLω,ω from [16], which does not
even contain µMALLind, cf. Figure 1. To prove this result, throughout this section we work
only with cut-free µMALL∞ proofs, without loss of generality by Theorem 9. Furthermore,
to prevent issues with productivity along a coinductive definition, we will employ a standard
technique (e.g.[30]) of “bootstrapping” our µMALL systems with an explicit repetition rule
Γ

(=)
Γ

.1 While this does affect the notion of pre-proof it does not affect the notion of proof

in µMALL∞: the progressing condition implies that no infinite branch can have a tail of
repetitions, and so (=) steps can be contracted while preserving closedness (each sequent
still concludes a step).

3.1 Projections
In order to prove Theorem 14 we first need to define notion of “proof projection” that allows
us to extract from a µMALL∞ proof its “finite approximations”. Throughout this section
we will consider sequents Γ = Γ(ψ1, . . . , ψk) where some occurrences of ψ1, . . . , ψk in Γ are
distinguished. Note that the distinguished occurrences of, say ψi, may include some, none,

1 Note that this addition could be avoided by using “explicit” approximants à la [37, 16].
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or all of the occurrences of ψi in Γ. This notation allows for distinguished ψi occurrences to
be subformulas of formulas in Γ, and also for some ψi and ψj to be the same formula when
i ̸= j. For ψ⃗ = (νx1φ1, . . . , νxkφk), an assignment is simply a list n⃗ = (n1, . . . , nk) ∈ ωk.
We will write ψ⃗n⃗ := (φn1

1 (⊤), . . . , φnk

k (⊤)), the list obtained by assigning each ni to each ψi.

▶ Definition 15 (Projections). For a pre-proof P of Γ(ψ⃗), where ψ⃗ = (νx1φ1, . . . , νxkφk),
and an assignment n⃗ = (n1, . . . , nk) ∈ ωk, we define the projection P (n⃗) a pre-proof of
Γ(ψ⃗n⃗) by coinduction on P as follows:
1. If P ends with a step ρ for which no distinguished formula occurrence is principal,

P1

Γ1(ψ⃗) · · ·

Pm

Γm(ψ⃗)
(ρ)

Γ(ψ⃗)

, then P (n⃗) :=
P1(n⃗)

Γ1(ψ⃗n⃗) · · ·

Pm(n⃗)

Γm(ψ⃗n⃗)
(ρ)

Γ(ψ⃗n⃗)

.

2. If P ends with a step for which some distinguished formula occurrence is principal,

P ′

φ(νxφ),Γ(νxφ, ψ⃗)
(ν)

νxφ,Γ(νxφ, ψ⃗)

, then

P (0, n⃗) := (⊤)
⊤,Γ(⊤, ψ⃗n⃗)

P (n+ 1, n⃗) :=
P ′(n,n+1,n⃗)

φ(φn(⊤)),Γ(νxφ, ψ⃗)
(=)

φn+1(⊤),Γ(φn+1(⊤), ψ⃗n⃗)

.

Note that, in the final case of the definition above, the length of the assignment may
increase if νxφ distinguishes multiple occurrences in the sequent. This is why, even though
we shall only ever use projections on a single formula later, we must make the definition
above more general. This is also a barrier towards any arguments by explicit induction on
assignments; e.g. Lemma 16 later is demonstrated rather by an argument by infinite descent,
a now standard leitmotif of non-wellfounded proof theory.

3.2 Properties of branches along projections
For µMALL∞ pre-proofs P we associate to each of its (maximal) branches B its induced
branch B(n⃗) in P (n⃗) in the expected way. Formally B(n⃗) is defined by coinduction on B,
following the cases of Definition 15:

1.

 Bi
Γi(ψ⃗)

(ρ)
Γ(ψ⃗)

 (n⃗) :=
Bi(n⃗)
Γi(ψ⃗n⃗)

(ρ)
Γ(ψ⃗n⃗)

2.

 B′

φ(νxφ),Γ(νxφ, ψ⃗)
(ν)

νxφ,Γ(νxφ, ψ⃗)

 (0, n⃗) := (⊤)
⊤,Γ(⊤, ψ⃗n⃗) B′

φ(νxφ),Γ(νxφ, ψ⃗)
(ν)

νxφ,Γ(νxφ, ψ⃗)

 (n+ 1, n⃗) :=
B′(n, n+ 1, n⃗)

φ(φn(⊤)),Γ(φn+1(⊤), ψ⃗n⃗)
(=)

φn+1(⊤),Γ(φn+1(⊤), ψ⃗n⃗)

Clearly the map B 7→ B(n⃗) from branches of P to branches of P (n⃗) is surjective. It is
also clear that if B is finite then so is B(n⃗). The remainder of this section is devoted to
establishing a stronger property: as long as B is finite or progressing, so is B(n⃗). To this
end we need the following important properties of the action of projections on threads:

FSTTCS 2023



40:8 Comparing Infinitary Systems for Linear Logic with Fixed Points

▶ Lemma 16 (Projections on progressing threads terminate). For a µMALL∞ pre-proof P of
Γ(νxφ, ψ⃗), a branch B of P along which νxφ extends to a progressing thread, and n ∈ ω,
the branch B(n, n⃗) is finite.

Proof sketch. Suppose otherwise and take the (maximal) sequence (ni)i<α≤ω of numbers
assigned to the progressing thread νxφ in the construction of B(n, n⃗) above. By local
inspection notice that (ni)i<α is monotone non-increasing, and furthermore strictly decreases
whenever νxφ is principal. Thus α must be finite and bounds the length of B(n, n⃗). ◀

We also have that projections “lower threads” disjoint from their distinguished formulas,
by inspection of the description of B(n⃗) above:

▶ Lemma 17 (Projections preserve disjoint threads). Let P be a pre-proof of Γ(ψ⃗) and B a
branch of P with B(n⃗) infinite. If B is progressing then so is B(n⃗). Moreover, if (φi)i<ω is
a progressing thread2 along B disjoint from all ψ⃗ with progress points (φij )j<ω, then (φi)i<ω
is also progressing in B(n⃗) with progress points (φij )j<ω.

Note that B(n⃗) may still be finite when B is infinite in case there is another progressing
thread along B on a distinguished formula, cf. Lemma 16. Recalling that the map B 7→ B(n⃗)
from branches of P to branches of P (n⃗) is surjective, we have immediately from Lemma 17:

▶ Proposition 18 (Projections on proofs are proofs). If P is a µMALL∞ proof, so is P (n⃗).

3.3 The ω-translation
W e need to give a translation from µMALL∞ proofs to µMALLω,∞ ones. We break this up
into two steps: first we give the translation, and then prove that the image of this translation
is wellfounded. To this end we shall refer to “pre-proofs” of µMALLω,∞ too, which may be
both infinitely wide and infinitely deep.

▶ Definition 19 (ω-translation). For µMALL∞ pre-proofs P , we define the µMALLω,∞ pre-
proof Pω by coinduction on P as follows:

1. if P =
P1

Γ1 · · ·
Pk

Γk
(ρ)

Γ

with ρ ̸= ν, then Pω :=
Pω

1

Γ1 · · ·
Pω

k

Γk
(ρ)

Γ
(i.e. ·ω commutes with ρ when ρ ̸= ν).

2. Otherwise, if P =
P ′

Γ, φ(νxφ)
(ν)

Γ, νxφ

then Pω := (⊤)
Γ,⊤

P ′(0)ω

Γ, φ(⊤)

P ′(1)ω

Γ, φ(φ(⊤)) · · ·
(ω)

Γ, νxφ

.

Note that, whichever rule P ends with, the translation above is productive (it prints a
rule for each coinductive case) and so Pω is indeed well-defined by coinduction (just like
projections and induced branches before). Note also that the translation is defined for
arbitrary pre-proofs, not only proofs. Indeed a pre-proof P may be sent to a non-wellfounded
pre-proof Pω by the translation, e.g. if P has no (ν) step, then already Pω = P . In particular,
simply having infinitely many (ν) steps along every infinite branch of P does not suffice to
imply wellfoundedness of Pω. Let us see some examples to illustrate this:

2 Recall that P is cut-free, so we may assume the thread starts at the root.
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▶ Example 20 (ν-fairness ⇏ wellfoundedness of ·ω). Consider the µMALL∞ pre-proof in Fig-
ure 3b. Recall that this pre-proof is not regular. This irregularity manifests in each branch
of its image under the ω translation:

(⊤)
⊤

...
•,⊤ (µ)

φ,⊤
(O)

φO⊤

...
•,φO⊤ (µ)

φ,φO⊤
(O)

φO(φO⊤) · · ·
(ω)

ψ
• (µ)
φ

▶ Example 21. Consider the µMALL∞ proof in Figure 3c. To compute its ω-translation let
us first note that:

When φ(x) = x we have that φn(⊤) = ⊤ for all n < ω.
When φ(z) = µy.νz.y we have φn(⊤) = µy.νz.y for all n < ω.

From here we can readily compute the ω-translation of Figure 3c as:

(⊤)
⊤, µy.νz.y

{
(⊤)

⊤, µy.νz.y

}ω
(ω)

⊤, νz.µy.νz.y
(µ)

⊤, µy.νz.y



{
(⊤)

⊤, µy.νz.y

}ω
(ω)

⊤, νz.µy.νz.y
(µ)

⊤, µy.νz.y



ω

(ω)
⊤, νz.µy.νz.y

(µ)
⊤, µy.νz.y · · ·

(ω)
νx.x, µy.νz.y

3.4 Finiteness of branches in the image of the ω-translation
The above examples notwithstanding, we will indeed show that, as long as P is progressing,
Pω is actually wellfounded, and so is a µMALLω,∞ proof after all. First we shall classify
branches in the image of the ω-translation, just like we did for projections. Note that every
branch of Pω is induced from a branch of P by choosing, at each ν-step, a corresponding
projection given by some n ∈ ω. Thus, we may specify an arbitrary (possibly non-maximal)
branch of Pω by the notation Bn⃗, where B is a branch of P and n⃗ ∈ ω≤ω is some unique
(possibly infinite) list of natural numbers, indexing the premisses of ω-steps followed by the
branch. Formally Bn⃗ is defined by coinduction on B, following Definition 19, with a case
analysis on the head of n⃗ in the case of a (ν) step:

 Bi
Γi

(ρ)
Γ


n⃗

:=
Bn⃗i
Γi

(ρ)
Γ

(4)

 B′

Γ, φ(νxφ)
(ν)

Γ, νxφ


ε

:= Γ, νxφ

 B′

Γ, φ(νxφ)
(ν)

Γ, νxφ


0n⃗

:=
(⊤)

Γ,⊤
(ω)

Γ, νxφ B′

Γ, φ(νxφ)
(ν)

Γ, νxφ


(n+1)n⃗

:=
B′(n)n⃗

Γ, φn+1(⊤)
(ω)

Γ, νxφ

(5)
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▶ Observation 22. If B is finite, then so is Bn⃗.

This follows by induction on the length of B. From here we are able to show:

▶ Lemma 23. For P a pre-proof, Bn⃗ a branch of Pω: if B is progressing then Bn⃗ is finite.

Formally this follows by induction on the height of the first progress point of a progressing
thread along B, following the definition of branches Bn⃗. During the argument we must often
appeal to the properties of branches along projections from Section 3.2. Of course from here
our main result immediately follows:

Proof of Theorem 14. Let P be a µMALL∞ proof. By Lemma 23 above, all branches of its
ω-translation Pω are finite. Thus Pω is indeed wellfounded and so a proof of µMALLω,∞. ◀

4 µMALL∞ is Σ1
1-hard

A natural question to ask now is if µMALLω,∞ can be embedded in µMALL∞. [37] shows
that the ω-branching calculus of the modal µ-calculus can be embedded in its corresponding
non-wellfounded calculus. The argument crucially depends on the fact that any proof of a
formula φ has finitely many distinct sequents (modulo identifying approximations); however,
such a condition does not hold in µMALL due to the absence of structural rules. In fact, we
prove that the inclusion result of the previous section, Theorem 14, is strict.

In order to do so we will give a Σ1
1 lower bound for µMALL∞ that is incompatible with

the natural Π1
1 upper bound for µMALLω,∞. To this end, we encode a Büchi’ condition for

Minsky machines in terms of µMALL∞ provability. This significantly improves a Π0
1 lower

bound from previous work [13], which was proved by reduction from non-halting of Minsky
machines.

Throughout this section we shall write an for
n︷ ︸︸ ︷

aO . . .Oa (which is equivalent to an(⊥)).

▶ Definition 24. A Minsky machine M is a tuple (Q, r1, r2, I) where Q is a finite set
of states, r1, r2 are two registers and I is a set of instructions of the form INC(p, ri, q) or
JZDEC(p, ri, q0, q1), for p, q, q0, q1 ∈ Q and i ∈ {1, 2}, that manipulate the current state and
the contents of the registers.

The operational semantics of M is given by its configuration graph, whose vertices are
configurations, of form ⟨q, a, b⟩ ∈ Q× N × N, and whose edges are induced from I by:

⟨p, a, b⟩ INC(p,r1,q)−−−−−−−→ ⟨q, a+ 1, b⟩ ⟨p, a, b⟩ INC(p,r2,q)−−−−−−−→ ⟨q, a, b+ 1⟩

⟨p, 0, b⟩ JZDEC(p,r1,q0,q1)−−−−−−−−−−−→ ⟨q0, 0, b⟩ ⟨p, a, 0⟩ JZDEC(p,r2,q0,q1)−−−−−−−−−−−→ ⟨q0, a, 0⟩

⟨p, a+ 1, b⟩ JZDEC(p,r1,q0,q1)−−−−−−−−−−−→ ⟨q1, a, b⟩ ⟨p, a, b+ 1⟩ JZDEC(p,r2,q0,q1)−−−−−−−−−−−→ ⟨q1, a, b⟩

A run is a maximal path in the configuration graph.

▶ Theorem 25 ([3]). Given a Minsky machine M and a state q0, checking whether there
exists an infinite run starting from ⟨q0, 0, 0⟩ that visits q0 infinitely often is Σ1

1-hard.

For the rest of the section, let us fix a Minsky machine M = (Q, r1, r2, I). Construe
{a, b, za, zb} ∪ Q as a set of propositional constants (assuming {a, b, za, zb} ∩ Q = ∅) and
{x, y} as a set of variables. We use a and za (respectively, b and zb) to represent the contents
of the register r1 (respectively, r2). Define parity : Q → {x, y} by parity(q) = x if q = q0 and
parity(q) = y otherwise. Define the following:
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[INC(p, r1, q)] := p⊥ ⊗ (qOaOparity(q))
[INC(p, r2, q)] := p⊥ ⊗ (qObOparity(q))

[JZDEC(p, r1, q, q
′)] := p⊥ ⊗ (((parity(q)Oq)Nza) ⊕ (a⊥ ⊗ (parity(q′)Oq′)))

[JZDEC(p, r2, q, q
′)] := p⊥ ⊗ (((parity(q)Oq)Nzb) ⊕ (b⊥ ⊗ (parity(q′)Oq′)))

ψ := µy.

(⊕
ins∈I

[ins]
)

φ := ψ(νx.ψ)

Finally, define Inv := ((b⊥)∗ ⊗ z⊥
a ) ⊕ ((a⊥)∗ ⊗ z⊥

b ) where we write φ∗ = µx.(1 ⊕ (φ⊗ x)).

▶ Proposition 26. For any n ∈ N, the sequents bn, za, Inv and an, zb, Inv are provable.

Define CP : Q → {νx.ψ, φ} such that CP(q) = νx.ψ if q = q0 and CP(q) = φ otherwise.

▶ Lemma 27 (One step simulation). Let ⟨p,m, n⟩ be a configuration such that ⟨p,m, n⟩ ins−→
⟨q,m′, n′⟩, for ins ∈ I. The following “move” gadget has a finite µMALL∞ derivation:

CP(q), q, am
′
, bn

′
, Inv

(mvins )
CP(p), p, am, bn, Inv

Moreover, if p = q0 then (mvins) has a (ν) step (for which νxψ is principal, necessarily).

▶ Lemma 28. If there exists a run of M from q0 such that q0 is visited infinitely often, the
sequent νx.ψ, q0, Inv has a µMALL∞ proof.

Proof sketch. Let R(p0) = (⟨pi,mi, ni⟩)0≤i<ω be an infinite run of M from q0 (so p0 = q0).
We construct a pre-proof P (p0) of νx.ψ, q0, Inv by coinduction on R(q0), simply by simulating
each step of the run by the one-step “move” gadgets from Lemma 27 (see Figure 4 for a
visualisation). We now argue that P (p0) is progressing, and so is indeed a µMALL∞ proof.

First, observe that P (p0) has exactly one infinite branch that has infinitely many oc-
currences of “move” gadgets (mvins). Furthermore, every time there is a move rule with a
conclusion of the form CP(q0), q0, a

m, bn, Inv, there is a (ν) step, necessarily on CP(q0) = νxψ,
by Lemma 27. So, since q0 occurs infinitely often in the run, and by cut-freeness, there is an
infinite thread τ along the formulas CP(pi) which is infinitely often principal for CP(q0) = νxψ

(the indicated green thread in Figure 4). Finally, by inspection of the formulas CP(pi) and
the rules of µMALL∞, every formula occurring in τ must have νxψ as a subformula. Thus τ
is indeed progressing, and so P (p0) is a µMALL∞ proof as required. ◀

4.1 Background on focusing
In order to prove the converse of Lemma 28 above, we have to account for all possible proofs.
In order to tame the space of possibilities we shall appeal to “focusing”, a standard technique
in proof search. Informally, focused proofs are a family of proofs that have more structure
than usual sequent calculus proofs.

We first classify the connectives of µMALL by two polarities: positive and negative.
Inferences for negative connectives are invertible, i.e. they preserve provability bottom-up,
but the positive inferences do not in general. The negative (respectively, positive) connectives
of µMALL∞ are N,O,⊥,⊤, ν (respectively, ⊗,⊕, 1, 0, µ).3

3 Observe that both the µ and ν rules are invertible. See [6] for an explanation of the choice.
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...

⟨pi(= q0),mi, ni⟩

⟨p2,m2, n2⟩

⟨p1,m1, n1⟩

⟨p0(= q0),m0, n0⟩
ins0

ins1

····
CP(pi(= q0)), pi, ami , bni , Inv

(mvinsi−1 )
...

(mvins2 )
CP(p2), p2, a

m2 , bn2 , Inv
(mvins1 )

CP(p1), p1, a
m1 , bn1 , Inv

(mvins0 )
CP(p0(= q0)), p0, a

m0 , bn0 , Inv

Lemma 30

Figure 4 Simulation of an infinite run by a µMALL∞ proof.

By assigning arbitrary polarities to atomic variables one can extend the notion to formulas
in such a way that each formula is either positive or negative, depending on its top-level
connective. A sequent is positive if it contains only positive or atomic formulas, otherwise it
is negative. A focused proof , briefly, is one where bottom-up:

only negative rules are applied on negative sequents; and,
only positive rules are applied on positive sequents;
any positive auxiliary formula of a positive rule must be principal for the next step;

Note that the focusing discipline described above ensure that, when reaching a positive
sequent, bottom-up, positive rules are “hereditarily applied” on a particular positive formula,
called the focus, until one reaches a negative sequent again. Importantly we have:

▶ Theorem 29 ([6]). If Γ has a cut-free µMALL∞ proof, it also has one that is focused.4

4.2 Provability implies run existence
In this subsection we prove the converse of Lemma 28 above:

▶ Lemma 30. If the sequent νx.ψ, q0, Inv is provable in µMALL∞, then there exists a run of
M from the configuration ⟨q0, 0, 0⟩ such that q0 is visited infinitely often.

We shall henceforth assume that all µMALL∞ proofs are cut-free, under Theorem 9,
and focused, under Theorem 29. More specifically we assign atomic polarities as follows:
a, b, za, zb and q are negative for any state q ∈ Q. We first make a simple observation that
will aid our proof.

▷ Claim 31. Inv is not principal in the lowest rule of any focused proof of ψ, p, am, bn, Inv.

Proof. The sequent ψ, p, am, bn, Inv is positive so if Inv is active, then it is the focus. Without
loss of generality, assume that the first rule is (⊕1) with principal formula Inv. Then,
the auxiliary formula is (b⊥)∗ ⊗ za. Since the outermost connective is positive, we must
immediately apply the (⊗) rule. One of the premisses is of the form ∆, z⊥

a with z⊥
a as focus

and we cannot apply any inference rule. Because ∆ cannot be za, the identity rule is ruled
out and no other rules are possible since za is an atom. ◁

We can now prove the main result of this subsection:

4 The focusing result in [6] is for a logic without atoms but the proof technique can be straightforwardly
extended to account for atoms.
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Proof. The proof has two parts. We first show that one can carve out an infinite run R of
M from ⟨q0, 0, 0⟩ from a focussed proof of νx.ψ, q0, Inv. Then, we show that q0 is visited
infinitely often along R.

Let P be a focussed proof of νx.ψ, q0, Inv. We claim that P can be factored as follows
where p0 = q0, m0 = 0, and n0 = 0.

This factorisation yields the required infinite run (⟨pi,mi, ni⟩)i∈ω where for all i,

⟨pi,mi, ni⟩
insi−−→ ⟨pi+1,mi+1, ni+1⟩.

Furthermore, if P is a proof, then there are infinitely many occurrences of νx.ψ along this
branch but, since CP(pi) = νx.ψ only when pi = q0 we obtain that q0 occurs infinitely often
in the run. Therefore, we are left to prove that P can be factored as described.

We will give a proof-search argument to show that every pre-proof of CP(p), p, am, bn, Inv
goes through CP(q), q, am′

, bn
′
, Inv such that ⟨p,m, n⟩ ins−→ ⟨p′,m′, n′⟩ for some instruction

ins. If p = q0 and CP(p) = νx.ψ then the unique rule that can be applied is (ν) to obtain
the sequent φ, p, am, bn, Inv (otherwise CP(p) is anyway φ). From Claim 31, we get that
Inv cannot be the focus. Therefore, φ is the focus and the next rules are necessarily (µ)
and ⊕ respectively whence we have the sequent [ins], p, am, bn, Inv for some instruction
ins. If ins is not an instruction that can be fired at p, proof-search immediately fails . If
ins is an increment, it is trivial to obtain the result. If ins is a decrement of the form
p⊥ ⊗ (((CP(q)Oq)Nza) ⊕ (a⊥ ⊗ (CP(q′)Oq′))), we need to make sure that the control goes to
the appropriate state depending on whether r1 is zero or not. We will show that an erroneous
choice fails proof-search. We have two cases:
Case 1. Suppose we have a⊥ ⊗ (CP(q′)Oq′), bn, Inv. Here a⊥ ⊗ (CP(q′)Oq′) is the focus
since in the earlier step ((CP(q)Oq)Nza) ⊕ (a⊥ ⊗ (CP(q′)Oq′)) was the focus. Therefore we
have sequent of the form ⊢ ∆, a⊥ where a⊥ is the focus and ∆ cannot be {a}.
Case 2. Suppose we have (CP(q)Oq)Nza, am, bn, Inv. This is a negative sequent, so the
next rule is necessarily (N) and we have a premiss of the form za, a

m, bn, Inv where Inv is the
focus. It is easy to check that for choices (⊕1) and (⊕2), proof-search fails. ◀

Putting Lemmas 28 and 30 together we have:

▶ Proposition 32 (Reduction). M has an infinite run from q0 visiting q0 infinitely often if
and only if there is a µMALL∞ proof of νx.ψ, q0, Inv.

By Theorem 25 we thus have:

▶ Theorem 33. µMALL∞ is Σ1
1-hard.

From here, we can conclude strictness of the inclusion from Theorem 14:

▶ Corollary 34. µMALL∞ and µMALLω,∞ prove different sets of theorems.

Proof. Clearly µMALLω,∞ ∈ Π1
1: µMALLω,∞ proves Γ just if:

“every set of sequents closed under µMALLω,∞ rules contains Γ”

Note here that closure of a set X of sequents under µMALLω,∞ is indeed arithmetical; in
particular closure under the (ω)-rule is Π0

2: “for every sequent Γ, νxφ not in X there exists
n ∈ ω such that Γ, φn(⊤) is not in X.”

On the other hand, if µMALL∞ = µMALLω,∞ then µMALLω,∞ would be Σ1
1-hard, by

Theorem 33, contradicting its Π1
1 membership as Σ1

1 ̸⊆ Π1
1. ◀

Finally Corollary 34 and Theorem 14 together imply Theorem 1, our main result.
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5 A Π1
2 upper bound on µMALL∞

Our Σ1
1-hardness result, Theorem 33, places µMALL∞ definitively in the analytical hierarchy.

Previously the best known lower bound was Π0
1 from [13]. In terms of upper bounds, a naïve

Σ1
3 upper bound is readily obtained by the description of µMALL∞-provability:

“there exists a preproof s.t., for all infinite branches, there exists a progressing thread.”

Note here that checking whether a given thread is progressing is indeed arithmetical: “there
exists some n ∈ N and a formula νxφ that is infinitely often principal, and such that every
formula in the thread after position n has νxφ as a subformula”. In fact we can improve this
upper bound considerably, comprising the main result of this section:

▶ Theorem 35 (∃0#). µMALL∞ ∈ Π1
2.

Note that this result, strictly speaking, depends on the existence of 0# (as indicated), a
principle independent of ZFC, but over which it is equivalent to lightface analytic determinacy
[21]. To demonstrate this result we employ ideas from proof search, namely game theoretic
formulations therein inspired by previous work [25, 18].

▶ Definition 36 (Proof search game, for µMALL∞). The proof search game for µMALL∞ is a
two-player game played between Prover (P), whose positions are inference steps of µMALL∞,
and Denier (D), whose positions are sequents of µMALL∞. A play of the game starts from
a particular sequent: at each turn, P chooses an inference step with the current sequent as
conclusion, and D chooses a premiss of that step; the process repeats from this sequent and
the two players continue taking turns as long as possible.

P wins an infinite play of the game if the branch constructed has a progressing thread.5

It is not hard to see that winning strategies for P correspond to non-wellfounded proofs:

▶ Observation 37. P has a winning strategy from Γ iff there is a µMALL∞ proof of Γ.

When the state space is finite, e.g. for the µ-calculus, the corresponding proof search game is
finite-memory determined, yielding regular completeness of the proof system [33]. We do
not have this property here, but the characterisation above nonetheless allows us to view D
strategies as a form of “semantics” for µMALL∞ under determinacy:

▶ Proposition 38 (∃0#). The proof search game for µMALL∞ is determined.

This is a consequence of (lightface) analytic determinacy, as the winning condition is indeed
Σ1

1: “there exists a progressing thread”. From here we readily obtain our upper bound:

Proof of Theorem 35. There is a µMALL∞ proof of a sequent Γ if and only if P has a
winning strategy from Γ by Observation 37, if and only if there is no winning strategy for D
from Γ, by Proposition 38. The latter is clearly a Π1

2 property:

“for every D-strategy there exists a play for which there exists a progressing thread” ◀

5 In the case of deadlock, the player with no valid move loses.
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6 Conclusion

In this work, we compared the expressivity of the infinitary systems µMALL∞ and µMALLω,∞
for linear logic with fixed points, and improved bounds on their complexity, cf. Figure 1. We
conclude this paper with some remarks on potential future directions of research.

It would be pertinent to extend our comparison to systems with wider branching, indexed
by some ordinal α, say µMALLα,∞. Similar systems were considered in [16, 15]. Such
systems become weaker (i.e. have fewer theorems) as α increases, as more cases must
be proved to derive a ν formula. In this sense it would be particularly interesting if we
could show that µMALL∞ coincides with some µMALLα,∞, calibrating the strength of
µMALL∞ according to some ordinal measure. Let us point out that such an ordinal must
be sufficiently large to evade a Π1

1 upper bound, as for µMALLω,∞, due to Σ1
1-hardness of

µMALL∞; at the same time the systems µMALLα,∞ must reach a limit by α = ω1, for
cardinality reasons, giving a naïve upper bound.
It would also be interesting to prove bona fide metalogical properties, such as cut-
elimination and focusing, for µMALLω,∞ (and friends), just like for µMALL∞ in [6] and
for several other infinitely branching systems in related areas [30, 24, 34]. Let us point
out that the embedding of µMALL∞ in µMALLω,∞ of Section 3 does not introduce cuts,
arguably evidence that µMALLω,∞ might enjoy a well-behaved proof theory. We expect
such a result to be easier to establish than the analogous results for µMALL∞, thanks to
the underlying wellfoundedness of µMALLω,∞.
What is the exact complexity of µMALL∞? This question remains open after this work,
but we have significantly narrowed the gap to the range between Σ1

1 and Π1
2. It would also

be pertinent to investigate the complexity of the infinitary wellfounded system µMALLω,∞
(and µMALLω,ω and friends). Let us point out also that the (weaker) Π0

1 lower bound
for µMALL∞ from [13] applied already to the alternation-free fragment of µMALL∞.6
Our Σ1

1 lower bound crucially uses a single alternation to mimic the Büchi condition on
Minsky machines. It would be interesting to further investigate the effect of alternation
on the complexity of systems we have investigated.
Can the assumption of lightface analytic determinacy be dropped from Theorem 35?
Attempting to do so has been beyond the scope of this work.
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