
HAL Id: hal-04799635
https://hal.science/hal-04799635v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Nonlinear Tuning from Coupled Critical Oscillators in a
Travelling-Wave Model of The Cochlea

Henri Ver Hulst, Carles Blanch-Mercader, Pascal Martin

To cite this version:
Henri Ver Hulst, Carles Blanch-Mercader, Pascal Martin. Nonlinear Tuning from Coupled Critical
Oscillators in a Travelling-Wave Model of The Cochlea. Mechanics of Hearing Workshop 2024, Jun
2024, Ann Harbor - Michigan, United States. �10.5281/zenodo.13342228�. �hal-04799635�

https://hal.science/hal-04799635v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


 
 

Nonlinear Tuning from Coupled Critical Oscillators in a 
Travelling-Wave Model of The Cochlea 

Henri Ver Hulst1, 2, b), Carles Blanch-Mercader1, 2  and Pascal Martin1, 2, a) 

1 Physics of Cells and Cancer, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.  
2 Sorbonne Université, Paris, France 

 
a)Corresponding author: pascal.martin@curie.fr 

b)henri.ver-hulst@curie.fr 

Abstract. The nonlinear mechanical properties of the cochlea have been recognized as signatures of active amplification 
by critical oscillators—active dynamical systems that each operate at a Hopf bifurcation. A critical oscillator, however, 
evinces a maximal sensitivity that is inversely proportional to the bandwidth of its frequency tuning, resulting in a constant 
“gain-bandwidth” product. The cochlea does not work by this rule: the gain-bandwidth product increases with decreasing 
sound-pressure levels, so that sensitivity to low sound levels is high but tuning is relatively broad. The cochlea thus appears 
to violate a fundamental requirement for a principle of cochlear amplification based on critical oscillators. Here, we tackle 
this challenge by integrating tonopically distributed critical oscillators in a traveling-wave model of the cochlea. Our 
nonlinear model accounts for two-dimensional hydrodynamics, longitudinal coupling between oscillators and energy 
pumping by the oscillators into the wave. The model produces, with a single set of parameters, a family of cochlear tuning 
curves over a broad range of input levels. We found that the gain-bandwidth product decreased at increasing levels, while 
preserving, but not precisely, the generic power-law behavior of critical oscillators. Marrying the physics of critical 
oscillators with traveling waves can thus account for the compressive nonlinearity underlying cochlear amplification, while 
ensuring that the bandwidth of the tuning curves remain relatively broad and varies little with sound level. 

INTRODUCTION 

The high sensitivity and sharp frequency selectivity of mammalian hearing are associated with a compressive 
nonlinearity in cochlear mechanics, which represents six orders of magnitude of sound-pressure levels in only two-to-
three orders of magnitudes of basilar-membrane vibration [1]. At intermediate levels of the input, this level function 
has been described by a power law of exponent +1/3 [2–4]. Such power-law behavior is generic of active amplification 
by “critical oscillators”—active dynamical systems operating at the onset of an oscillatory instability called a Hopf 
bifurcation [5,6]. In return, criticality has been proposed as a fundamental principle to encapsulate in one concept the 
wide dynamical range of hearing, its sharp frequency selectivity, as well as oto-acoustic emissions. Within this 
framework, the different frequencies of sound are mechanically amplified by critical oscillators tuned to different 
frequencies and spatially distributed along the longitudinal axis of the cochlea according to its tonotopic map. 

Two quantitative experimental observations, however, challenge the concept of critical oscillation as the physical 
basis of cochlear amplification. First, the “gain-bandwidth product”, i.e. the product of the maximal sensitivity and 
the bandwidth in a cochlear tuning curve, decreases with increasing sound-pressure levels. Sensitivity to low sound 
levels is high but tuning remains relatively broad. This behavior contrasts with that of a single critical oscillator. A 
critical oscillator driven at its natural frequency indeed shows an inverse relation between peak sensitivity (∝ P−2/3) 
and bandwidth (∝ P2/3) as a function of stimulus level (noted P here), so that the product of the two must remain 
constant. In other words, the cochlea appears to violate a fundamental requirement of sound detection by a critical 
oscillator. Second, a careful examination of the compressive nonlinearity across experimental datasets from the 
literature reveals that the exponent of a power-law fit to the data can deviate significantly from that expected for a 
critical oscillator. For instance, over an ensemble of mouse cochleae [7], a power-law fit of the compressive non-



 
 

linearity in experiments yields a power-law exponent 0.25 ± 0.06 (n = 15), thus below the 1/3 value expected from a 
critical oscillator and with some variability across datasets (range: 0.15-0.43). Other published datasets in the gerbil 
[8] and the mouse [9] can show exponents very close to 1/3, but one may still argue that the evidence for a universal 
power-law behavior in cochlear mechanics is debatable. 

We show here that these two observations can be reconciled with the hypothesis of criticality as a fundamental 
principle for cochlear amplification. Our work is based on a pioneering model of the cochlea based on tonotopically 
distributed critical oscillators [4,10], which we developed in three directions to take 2D hydrodynamics into account, 
add mechanical coupling between oscillators, and consider active energy pumping by the oscillators into the traveling 
wave. 

METHODS 

We developed a box-model of the cochlea, in which the organ of Corti is represented by a string of tonotopically-
tuned critical oscillators. The dynamic behavior of each oscillator is described by a generic equation of a complex 
variable, 𝑧𝑧 = ℎ + 𝑖𝑖 𝑢𝑢, called the normal form: 

𝜕𝜕𝑡𝑡𝑧𝑧 ≃ −�𝜀𝜀 − 𝑖𝑖𝜔𝜔𝑅𝑅(𝑥𝑥)� 𝑧𝑧 − 𝛽𝛽|𝑧𝑧|2𝑧𝑧+ 𝜅𝜅𝜕𝜕𝑥𝑥2𝑧𝑧 + 𝑒𝑒−𝑖𝑖𝑖𝑖

𝛼𝛼
 𝑝𝑝𝑑𝑑 .   (1) 

Here the control parameter 𝜀𝜀 = 0 ensures that all the oscillators are critical, the variable ℎ = 𝑅𝑅𝑅𝑅(𝑧𝑧) describes the 
basilar-membrane displacement, the natural frequency of the oscillator 𝑓𝑓𝑅𝑅(𝑥𝑥) = 𝜔𝜔𝑅𝑅(𝑥𝑥)/(2𝜋𝜋) = 𝑓𝑓0 exp(−𝑥𝑥/𝑑𝑑) varies 
with position, 𝑥𝑥, along the longitudinal axis of the modeled cochlea according to an exponential tonotopic map of 
parameters 𝑓𝑓0 = 30 𝑘𝑘𝑘𝑘𝑧𝑧 and 𝑑𝑑 = 2.9 𝑚𝑚𝑚𝑚, the coefficient 𝛽𝛽 sets the strength of the oscillator’s nonlinearity, the 
coefficient 𝛼𝛼 is real and controls the response magnitude at low frequencies (i.e. stiffness), 𝑝𝑝𝑑𝑑 is the driving pressure 
at position 𝑥𝑥, and the parameter 𝜙𝜙 is a phase shift that arises from the change of variable to bring the system’s dynamics 
into normal form. The third term on the right-hand side of Equation 1 was added to the normal form to account for 
longitudinal coupling between neighboring oscillators, with a coupling strength set by 𝜅𝜅. In practice, 𝜅𝜅 was real, 
corresponding to dissipative coupling. Note that the real part, 𝐴𝐴′, of the complex linear impedance 𝐴𝐴(𝜔𝜔) = 𝑝𝑝�𝑑𝑑/(𝑖𝑖𝜔𝜔ℎ�) 
obeys 

𝐴𝐴′ ∝ −(𝜔𝜔𝑅𝑅2 − 𝜔𝜔2) cos(𝜙𝜙) .     (2) 
With our choice for the Fourier transform, �̃�𝑧(𝜔𝜔) = ∫𝑧𝑧(𝑡𝑡) exp(−𝑖𝑖𝜔𝜔𝑡𝑡) 𝑑𝑑𝑡𝑡, we see that a critical oscillator pumps energy 
into the environment, i.e. friction is negative, when driven below its characteristic frequency (𝜔𝜔 < 𝜔𝜔𝑅𝑅) but dissipates 
energy above. For the singular choice 𝜙𝜙 = 𝜋𝜋/2, the oscillator neither pumps nor dissipates energy in the linear regime. 
The specific values of parameters 𝛼𝛼, 𝛽𝛽, 𝜅𝜅, and 𝜙𝜙 are given in the figure legends. 

We assumed that the oscillators are immersed in an incompressible and inviscid fluid. The string of oscillators 
divides the box, of length 𝐿𝐿 = 19 𝑚𝑚𝑚𝑚, into two identical compartments, each of height 𝑘𝑘 = 1 𝑚𝑚𝑚𝑚. Because of fluid 
incompressibility, the pressure difference, 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑡𝑡), between the two compartments obeys Laplace equation, 
Δ𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 0, at any point within the domain corresponding to 𝐿𝐿 ≥ 𝑥𝑥 ≥ 0 and 𝑘𝑘 ≥ 𝑦𝑦 ≥ 0. The Laplace equation 
was solved using the Green-function formalism [11] to obtain a relation between 𝑝𝑝𝑑𝑑 and ℎ with the following four 
boundary conditions: 𝑝𝑝(0, 𝑦𝑦, 𝑡𝑡) = 𝐺𝐺𝑀𝑀𝑀𝑀  𝑃𝑃𝑀𝑀𝐸𝐸(𝑡𝑡), where 𝐺𝐺𝑀𝑀𝑀𝑀 = 10 and 𝑃𝑃𝑀𝑀𝐸𝐸  is the sound pressure in the ear canal, 
𝑝𝑝(𝐿𝐿, 𝑦𝑦, 𝑡𝑡) = 0, 𝜕𝜕𝑦𝑦𝑝𝑝(𝑥𝑥,𝑘𝑘, 𝑡𝑡) = 0, and 𝜕𝜕𝑦𝑦𝑝𝑝(𝑥𝑥, 0, 𝑡𝑡) = −2𝜌𝜌 𝜕𝜕𝑡𝑡2ℎ. When we applied the simplifying assumption that the 
pressure field is one-dimensional (Fig. 1), corresponding to 𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑝𝑝(𝑥𝑥, 𝑡𝑡), we instead solved (2𝜌𝜌/𝑘𝑘) 𝜕𝜕𝑡𝑡2ℎ =
𝜕𝜕𝑥𝑥2𝑝𝑝, in which the driving pressure 𝑝𝑝𝑑𝑑(𝑥𝑥, 𝑡𝑡) equates the bulk pressure 𝑝𝑝(𝑥𝑥, 𝑡𝑡), with two boundary conditions: 𝑝𝑝(0, 𝑡𝑡) =
𝐺𝐺𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀𝐸𝐸(𝑡𝑡), and 𝑝𝑝(𝐿𝐿, 𝑡𝑡) = 0. Together with Equation 1, using in addition 𝜕𝜕𝑥𝑥𝑧𝑧(0) = 𝜕𝜕𝑥𝑥2𝑧𝑧(0) = 𝜕𝜕𝑥𝑥𝑧𝑧(𝐿𝐿) = 𝜕𝜕𝑥𝑥2𝑧𝑧(𝐿𝐿) = 0 
if 𝜅𝜅 ≠ 0, we could then compute numerically 𝑝𝑝𝑑𝑑(𝑥𝑥, 𝑡𝑡) and 𝑧𝑧(𝑥𝑥, 𝑡𝑡) in response to a single tone, 𝑃𝑃𝑀𝑀𝐸𝐸(𝑡𝑡) = 𝑃𝑃0  sin (2𝜋𝜋𝑓𝑓𝑡𝑡), 
of amplitude 𝑃𝑃0 and frequency 𝑓𝑓 = 1 𝑘𝑘𝑘𝑘𝑧𝑧. We discretized space by considering a string of 1000 oscillators and time 
by using 500 time points per cycle of the stimulus. Equation 1 was integrated in time using the second-order Adams-
Bashforth method.  

To simplify notations in the following, we call ℎ(𝑥𝑥) the phase-locked amplitude of the time-dependent vibration 
ℎ(𝑥𝑥, 𝑡𝑡) as a function of position and at a fixed stimulus frequency. Experimental data instead correspond to 
measurements of basilar-membrane vibration at a fixed position and varying sound frequencies. To allow for 
comparison between simulations and experimental data, the modeled response ℎ(𝑥𝑥) to a single tone is plotted as 
ℎ(𝑓𝑓𝑅𝑅(𝑥𝑥𝐸𝐸𝐶𝐶)/𝑓𝑓𝑅𝑅(𝑥𝑥)), in which 𝑥𝑥𝐸𝐸𝐶𝐶(𝑓𝑓) is the position of maximal vibration at frequency 𝑓𝑓 for a low-level stimulus, 
typically 10 dB. Because local scaling invariance applies near the peak of ℎ(𝑥𝑥), we have ℎ(𝑓𝑓𝑅𝑅(𝑥𝑥𝐸𝐸𝐶𝐶)/𝑓𝑓𝑅𝑅(𝑥𝑥)) ≃
ℎ(𝑓𝑓/𝐶𝐶𝐶𝐶(𝑥𝑥)), in which 𝐶𝐶𝐶𝐶(𝑥𝑥) is the characteristic frequency at which the response ℎ is maximal at position 𝑥𝑥. 



 
 

RESULTS 

1D Model with No Coupling and No Energy Pumping 

We start with the simplest implementation of a cochlear model based on tonotopically distributed critical 
oscillators [4]. The model considers a singular implementation of a critical oscillator, corresponding to parameter 𝜙𝜙 =
𝜋𝜋/2, for which the oscillators cannot provide net energy pumping into the traveling wave (Eq. 2). In addition, the 
model ignores longitudinal mechanical coupling and, importantly, is solved by assuming 1D hydrodynamics. In this 
case, the tuning curves display properties that match the generic behavior of a critical oscillator (Fig. 1a): the 
characteristic frequency (noted CF below) matches the natural frequency, 𝑓𝑓𝑅𝑅 , of the local oscillator, the sensitivity at 
CF evinces a power-law behavior of exponent -2/3 (Fig. 1b) and the bandwidth is inversely related to the sensitivity 
(Fig. 1c), corresponding to a gain-bandwidth product that does not depend on stimulus level (Fig. 1d). As a 
consequence, the model can describe the nonlinear level function relating sensitivity at CF to the sound-pressure level 
as observed in cochlear mechanics, but the tuning curves are then way too sharp at low sound-pressure levels. The 
model also fails to produce a linear regime of responsiveness at low levels. 

FIGURE 1. Behavior of the 1D cochlear 
model with no mechanical coupling and no 
energy pumping (black).   (a) Sensitivity, 
ℎ/𝑃𝑃0, as a function of the sound frequency, 
𝑓𝑓/𝐶𝐶𝐶𝐶, normalized by the characteristic 
frequency (CF; dashed line) at sound-pressure 
levels, 𝑃𝑃0, that increase from 10 dB (highest 
sensitivity) to 80 dB (lowest sensitivity) in 10-
dB increments. Here, 𝐶𝐶𝐶𝐶 = 𝑓𝑓𝑅𝑅, the natural 
frequency of the local oscillator at the position 
of measurement.  (b) Sensitivity, ℎ/𝑃𝑃0, as a 
function of 𝑃𝑃0 at CF. (c) Normalized 
bandwidth, 𝛥𝛥𝑓𝑓/𝐶𝐶𝐶𝐶, of the tuning curves 
shown in (a) as a function of 𝑃𝑃0.   (d) Gain-
bandwidth product, 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 ⋅ 𝛥𝛥𝑓𝑓/𝐶𝐶𝐶𝐶, as a 
function of 𝑃𝑃0, in which 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥  is the maximal 
sensitivity at a given value of 𝑃𝑃0. In (a-d), we 
show experimental data (cyan) adapted from 
[12]: the basilar-membrane vibrations at the 
10-kHz position of the chinchilla cochlea are 
used for a qualitative comparison to the model 
at the 1-kHz position. Parameters: 𝛼𝛼 =
1.7 𝑘𝑘𝑃𝑃𝑘𝑘 𝑠𝑠 𝑚𝑚−1, 𝛽𝛽 = 2 ⋅ 1018 𝑚𝑚−2 𝑠𝑠−1, 𝜅𝜅 =
0, and 𝜙𝜙 = 𝜋𝜋/2. 

2D Model with No Coupling and No Energy Pumping 

Because the wavevector, 𝑞𝑞, of the traveling wave diverges at vanishing stimulation levels, there must be a transition 
between 1D-hydrodynamics when 𝑞𝑞𝑘𝑘 ≪ 1, for which the pressure 𝑝𝑝(𝑥𝑥, 𝑦𝑦) ≃ 𝑝𝑝(𝑥𝑥) in the fluid is uniform in the 
transverse direction (𝑦𝑦 axis), to 2D hydrodynamics when 𝑞𝑞𝑘𝑘 ≫ 1, for which 𝑝𝑝(𝑥𝑥,𝑦𝑦) ≃ 𝑝𝑝𝑑𝑑(𝑥𝑥) 𝑅𝑅−𝑞𝑞𝑦𝑦. This transition 
affected qualitatively how the pressure, 𝑝𝑝𝑑𝑑(𝑥𝑥) = 𝑝𝑝(𝑥𝑥, 𝑦𝑦 = 0), driving the oscillators (Eq. 1) varies with position. At 
low sound-pressure levels, the driving pressure decreased monotonically toward zero in 1D but remained nearly 
constant in 2D (Fig. 2a). In addition, the driving-pressure profile varied more dramatically with sound level in 2D than 
in 1D. Remarkably, the peak sensitivity at low-to-intermediate stimulus levels was nearly the same in 1D and 2D 
(Fig. 2b), but tuning was broader, and the bandwidth was less sensitive to stimulus levels in 2D (Fig. 2d). This results 
in a gain-bandwidth product that decreased with level (Fig. 2e). This finding already demonstrates that cochlear 
models based on critical oscillators are not doomed to obey the constraint imposed on single oscillators: tuning in the 
cochlea can be “tall and broad” even if that of its functional units—the critical oscillators—is “tall and thin”. 



 
 

 
FIGURE 2. Behavior of the 2D cochlear model with no mechanical coupling and no energy pumping.   (a) Normalized driving-
pressure profiles, 𝑝𝑝𝑑𝑑/𝑝𝑝𝑑𝑑(𝑥𝑥 = 0) at increasing sound-pressure levels, 𝑃𝑃0 (blue to magenta; 10 dB increments) for 1D (top) and 2D 
(bottom) hydrodynamics. The position, 𝑥𝑥𝑅𝑅, at which the local oscillator is driven at resonance is indicated by dashed lines.  (b) 
Sensitivity, ℎ/𝑃𝑃0, as a function of the normalized sound frequency, 𝑓𝑓/𝐶𝐶𝐶𝐶, at sound-pressure levels, 𝑃𝑃0, that increase from 10 dB 
(highest sensitivity) to 80 dB (lowest sensitivity) in 10-dB increments. Here, 𝑓𝑓𝑅𝑅/𝐶𝐶𝐶𝐶 = 1.05.  (c) Sensitivity, ℎ/𝑃𝑃0, as a function of 
𝑃𝑃0 at CF (closed circles) and following the peak sensitivity (open circles).   (d) Normalized bandwidth, 𝛥𝛥𝑓𝑓/𝐶𝐶𝐶𝐶, of the tuning curves 
shown in (b) as a function of 𝑃𝑃0.   (e) Gain-bandwidth product, 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 ⋅ 𝛥𝛥𝑓𝑓/𝐶𝐶𝐶𝐶, as a function of 𝑃𝑃0, in which 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥  is the maximal 
sensitivity at a given value of 𝑃𝑃0. In (b-e), the gray curves replicate the results of the 1D model shown in Fig. 1, allowing for a 
direct comparison with the 2D model (black). Same parameter values as in Fig. 1. 

 
Going from 1D to 2D, however, also resulted in a large increase in the high-frequency slopes of the tuning curves 

(Fig. 2b). As a consequence, the -2/3 power law observed in 1D at CF was lost in 2D: the sensitivity plummets to low 
values beyond 30 dB (Fig. 2c, closed disks). Remarkably, the power-law behavior that is generic of the underlying 
critical oscillators could be retrieved (open disks in Fig. 2c) by following the leftward shift in frequency of the 
sensitivity peak at increasing stimulus levels (Fig. 2a).  

2D Model with Dissipative Coupling but No Energy Pumping 

We reasoned that mechanical coupling between the oscillators could help shaping the drop in sensitivity beyond 
the characteristic frequency. We focused on the effects of pure dissipative coupling, i.e. parameter 𝜅𝜅 was real (Eq. 1 
in Methods). Introducing coupling resulted in a linear regime of responsiveness at low sound-pressure levels, and in 
turn in a drop of sensitivity (Fig. 3a and b). This makes sense because dissipative coupling effectively generates a non-
zero value of the control parameter 𝜀𝜀 = 𝜀𝜀𝑀𝑀𝐶𝐶𝐶𝐶  ~ − 𝜅𝜅𝑟𝑟𝑞𝑞2 (𝑞𝑞 is the local wavevector) in the normal form (Eq. 1) and thus 
detunes the oscillators from criticality. We note that a linear regime of responsiveness is also generally observed in 
experiments (e.g see Fig. 1b, cyan). In addition, coupling yielded tuning curves with a larger apical extent from the 
position of peak sensitivity than without coupling (Fig.  3a). Correspondingly, coupling resulted in a decrease of the 
characteristic frequency at position 𝑥𝑥, which then became noticeably lower than the natural frequency, 𝑓𝑓𝑅𝑅(𝑥𝑥), of the 
local critical oscillator (Fig. 3a, dashed lines). In addition, coupling also led to broader tuning at low stimulus levels 
(Fig. 3c). However, due to the linearization of the mechanics at low stimulus levels, the maximal sensitivity computed 
in response to weak stimuli was now significantly lower (Fig. 3b). 



 
 

FIGURE 3. Behavior of the 2D cochlear 
model with dissipative coupling but still no 
energy pumping.   (a) Sensitivity, ℎ/𝑃𝑃0 , as a 
function of the normalized sound frequency, 
𝑓𝑓/𝐶𝐶𝐶𝐶, at sound-pressure levels, 𝑃𝑃0, that 
increase from 10 dB (highest sensitivity) to 
80 dB (lowest sensitivity) in 10-dB increments. 
Here, 𝑓𝑓𝑅𝑅/𝐶𝐶𝐶𝐶 = 1.32.  (b) Sensitivity, ℎ/𝑃𝑃0, as 
a function of sound-pressure level at CF 
(closed circles) and following the peak 
sensitivity (open circles).   (c) Normalized 
bandwidth, 𝛥𝛥𝑓𝑓/𝐶𝐶𝐶𝐶, of the tuning curves shown 
in (a) as a function of 𝑃𝑃0.   (d) Gain-bandwidth 
product, 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 ⋅ 𝛥𝛥𝑓𝑓/𝐶𝐶𝐶𝐶, as a function of 𝑃𝑃0, in 
which 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥  is the maximal sensitivity at a 
given value of 𝑃𝑃0. In the linear regime (𝑃𝑃0 ≤
50 𝑑𝑑𝑑𝑑), the gain-bandwidth product is 
constant. In (b-e), the gray curves replicate the 
results of the 2D model with no coupling 
shown in Fig. 2, allowing for a direct 
comparison with the 2D model with coupling 
(black). Same parameter values as in Fig. 1, but 
for 𝜅𝜅 = 8 ⋅ 10−7 𝑚𝑚2 𝑠𝑠−1. 

2D Model with Dissipative Coupling and Energy Pumping 

We now recall that, because of our singular choice of parameter 𝜙𝜙 = 𝜋𝜋/2 (Eq. 1), we have so far considered critical 
oscillators that cannot pump energy into the travelling wave. Here we consider the case where 0 < 𝜙𝜙 < 𝜋𝜋/2, for 
which the oscillators automatically pump energy into the wave (Eq. 2) as it travels from the base toward the apex. 
This is because, at each position 𝑥𝑥, the driving frequency 𝑓𝑓 is smaller than the natural frequency 𝑓𝑓𝑅𝑅(𝑥𝑥) of the local 
oscillator [2,13]. Energy pumping results in the spatial accumulation of energy gain during wave propagation, evoking 
broader tuning curves at given maximal sensitivity than in the singular case 𝜙𝜙 = 𝜋𝜋/2 (Fig. 4a and c). In contrast to 
1D or 2D models with no energy pumping (𝜙𝜙 = 𝜋𝜋/2; Fig. 4b), energy gain produced prominent peaks in the driving 
pressure profiles at low sound-pressure levels (Fig. 4d).  

FIGURE 4. 2D model with dissipative coupling, 
without (𝜙𝜙 = 0; a-b) or with (𝜙𝜙 = 𝜋𝜋/2− 0.3; c-
d) energy pumping by the critical oscillators into 
the traveling wave. The displacement profile 
ℎ(𝑥𝑥) ((a) and (c)), and the normalized driving 
pressure profile 𝑝𝑝𝑑𝑑(𝑥𝑥)/𝑝𝑝𝑑𝑑(0) ((b) and (d)) are 
plotted at various sound-pressure levels, from 
30 dB (blue) to 80 dB (red). With energy 
pumping, the driving-pressure profiles show 
striking peaks as the wave approaches the 
characteristic place, 𝑥𝑥𝑅𝑅, where the local oscillator 
is driven at resonance. Parameters: 𝛼𝛼 =
3 𝑘𝑘𝑃𝑃𝑘𝑘 𝑠𝑠 𝑚𝑚−1, 𝛽𝛽 = 6 ⋅ 1018 𝑚𝑚−2 𝑠𝑠−1 and 𝜅𝜅 =
𝜅𝜅0 exp(−𝑥𝑥/𝑑𝑑), with 𝜅𝜅0 = 10−5 𝑚𝑚2 𝑠𝑠−1. 
 

By boosting the driving pressure, energy pumping increased the peak sensitivities to weak stimuli (Figs. 4a and c, 
blue). The way the shape of the tuning curves varied with the sound-pressure level (Fig. 5a), as well as the weak 
dependence of the phase profiles on level (Fig. 5b), compared favorably with experiments. This led to level functions 
of sensitivity (Fig. 5c), bandwidth (Fig. 5e), and gain-bandwidth product (Fig. 5f) with similar functional dependences 
on 𝑃𝑃0  as in experiments. We note that the level functions at CF displayed a compressive behavior that was too strong 
compared to experiments (Fig. 5c and d, closed circles). Again, as in Figures. 2 and 3, the generic power-law behavior 
of critical oscillators revealed itself by following the peak sensitivity (Fig. 5c and d, open circles) at intermediate 
sound-pressure levels. Note that the response of the model was tested at a stimulus frequency of 1 kHz, whereas 



 
 

basilar-membrane vibrations were measured at the 10-kHz position along the tonotopic axis of the cochlea. Although 
we can still confront functional dependencies, i.e. the shape of the curves, in the model to those observed in 
experiments, we refrain here from comparing absolute values of the observables.  

 
FIGURE 5. Behavior of the 2D cochlear model with dissipative coupling and energy pumping (black).   (a) Sensitivity, ℎ/𝑃𝑃0, as a 
function of the normalized sound frequency, 𝑓𝑓/𝐶𝐶𝐶𝐶, at sound-pressure levels, 𝑃𝑃0 , that increase from 10 dB (highest sensitivity) to 
80 dB (lowest sensitivity) in 10-dB increments. Here, fR/CF = 1.10.  (b) Phase of the displacement relative to that at position 𝑥𝑥 =
0 as a function of the normalized frequency, at varying values of 𝑃𝑃0.   (c) Sensitivity, ℎ/𝑃𝑃0, as a function of 𝑃𝑃0 at CF (closed circles) 
and following the peak sensitivity (open circles).   (d) Displacement, ℎ, as a function of 𝑃𝑃0 at CF (closed circles) and following the 
peak sensitivity (open circles).   (e) Normalized bandwidth, 𝛥𝛥𝑓𝑓/𝐶𝐶𝐶𝐶, of the tuning curves shown in (a) as a function of 𝑃𝑃0.   (d) 
Gain-bandwidth product, 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 ⋅ 𝛥𝛥𝑓𝑓/𝐶𝐶𝐶𝐶, as a function of 𝑃𝑃0, in which 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥  is the maximal sensitivity at a given value of 𝑃𝑃0. In (a-
f), we show experimental data (cyan) adapted from [12]: the basilar-membrane vibrations at the 10-kHz position of the chinchilla 
cochlea are used for a qualitative comparison to the model at the 1-kHz position. Parameters: 𝛼𝛼 = 3 𝑘𝑘𝑃𝑃𝑘𝑘 𝑠𝑠 𝑚𝑚−1, 𝛽𝛽 = 6 ⋅
1018 𝑚𝑚−2 𝑠𝑠−1, 𝜅𝜅 = 𝜅𝜅0 exp(−𝑥𝑥/𝑑𝑑), with 𝜅𝜅0 = 10−5 𝑚𝑚2 𝑠𝑠, and 𝜙𝜙 = 𝜋𝜋/2− 0.2. 

CONCLUSION 

Our work demonstrates that the interplay between critical oscillators and the traveling wave can produce high 
sensitivity with relatively broad and level-independent tuning, i.e. “tall and broad” tuning curves (Fig. 5). This finding 
alleviates a major criticism addressed to criticality as the fundamental basis of cochlear amplification (see e.g. [14,15]). 
In addition, a power-law fit to the level function that relates the magnitude of the response displacement to the sound-
pressure level leads to exponents that are consistently smaller than 1/3—the generic value expected from a single 
critical oscillator driven at its natural frequency, as often observed in experiments. The 1/3 power law instead betrayed 
itself when following the peak of sensitivity, not at the characteristic frequency.  

Overall, our analysis emphasizes the importance of 2D hydrodynamics, longitudinal coupling between the 
oscillators and active energy pumping into the wave to shape tuning curves, as recognized earlier. Importantly, the 
hypothesis of critical oscillation heavily constrains the nonlinear local response of the system, for it is dictated by the 
normal form (Eq. 1) from first principles. With a small number of adjustable parameters, the model produces, all at 
once, a set of tuning curves that qualitatively matched key characteristics of cochlear tuning curves and level functions 
over a broad range of sound-pressure levels.  
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COMMENTS & QUESTIONS 
 

[Online Forum] 
 
Renata Sisto: I read your interesting paper. I found very similar results: the tall and broad activity pattern of the 
cochlea is explained by an active mechanism and a short wave fluid effect that I named "fluid focusing". The 
hydrodynamics contribution to the gain produces this decoupling between the gain and the tuning, this last remaining 
quite unchanged with the stimulus level. In my work (see for example Sisto R, et al. JASA (2021) and Sisto R, et al. 
JASA (2023)) I studied the competition between the viscous dissipation and the active power injected in the system. 
This competition makes the cochlear admittance quite flat in the peak region, as it is observed in the Olson's data.  

(1) In your paper the stabilizing force, proportional, in your model, to the wavevector squared comes from the 
longitudinal coupling between the nonlinear oscillators. Did you have any chance of studying instead the 
effect of viscous forces in the fluid? These forces could be a proxy of the viscous damping coming from the 
interaction with structures of the OcO with a visco-elastic behavior. 

(2) Did you solve your model in time or frequency domain? In principle, you should have solved your nonlinear 
equations in time domain but you cite the wavenumber. How did you estimate the wavenumber? 

(3) Did you calculate the pressure as in Allen 1977, as the integral over the longitudinal direction of the 
acceleration multiplied by the 2D pressure Green function? 

 
Authors: We are well aware of your work and we take this opportunity to acknowledge the discussion we had on this 
topic at MoH2022. It prompted us to take 2D hydrodynamics into account. 



 
 

(1) The response of our model is stable even in the absence of mechanical coupling between the oscillators. In 
this case, stability is ensured by the cubic nonlinear term in the normal form (Re(𝛽𝛽) > 0), for it provides 
level-dependent dissipation that controls the response magnitude at all sound-pressure levels. Dissipative 
coupling introduces a linear regime of responsiveness at low levels, where the response magnitude is then 
indeed limited by this stabilizing term. We have not yet studied the effects of fluid viscosity. 

(2) Yes, we solved the model in the time domain. We cite the wavevector, noted 𝑞𝑞, to provide some intuition 
about (i) the validity of the 1D approximation and (ii) the effect of dissipative coupling on the behavior of 
the oscillators. For the latter, the argument is that critical oscillators with dissipative coupling are equivalent 
to uncoupled, but non-critical, oscillators. This is because coupling is expected to effectively produce a 
negative control parameter proportional to the square of the local wavevector, moving the oscillators away 
from criticality. This is a handwaving argument based on the WKB approximation.  

(3) Yes, we calculated the pressure using the Green-function formalism as described in Allen, J. JASA (1977). 
 
Bastian Epp: Thanks for the nice manuscript - which I really enjoyed reading! It nicely ties a number of things 
together that are partially mentioned in the literature. I have hardly any specific comments on the manuscript but 
would like to bring up some suggestion and questions that might be interesting to think about/put into context. 

(1) I very much enjoyed the statement that you are looking into a "fundamental requirement for a principle of 
cochlear amplification based on...". This is very nice frame for your arguments. It might be an idea to 
differentiate your contribution a bit more - having active and nonlinear oscillators in a tonotopic arrangement 
is not novel (as you are aware of). And maybe some models were (accidentally?) implementing critical 
oscillators in a less accessible and precise form as you do (normal form). All this might be relevant to also 
come to the conclusions that "Assuming that critical oscillators are....then ...". It is not impossible that other 
solutions exist. 

(2) You write in the introduction that compressive growth/power-law is an intrinsic property of such oscillators. 
Yes - and this is tempting! But it might actually coincidence. And as you state later in the study - things 
change when going into a system of oscillators rather than single oscillators. 

(3) It might be worth considering that the experimental observations relative to the "gain-bandwidth product" 
are all derived from individual oscillators. I know that you are regularly facing this argument - but why not 
be explicit here? Same for "....requirement of sound detection by a critical oscillator". The latter is not really 
relevant as it seems hard to imagine that the cochlea is modeled by a (single) oscillator. 

(4) "Our work is based on a pioneering..." - it might be worth laying out in which respect Florian’s model [10] 
actually was "pioneering". It had some shortcomings and arbitrary choices as well, and other models (more 
empirically derived) can account for the same (and more). 

(5) Relative to coupling, I am curious if you have any idea what would happen if you change the coupling 
coefficient to be complex-valued? The work by Vilfan/Duke, Hero Wit, ... show that coupling changes 
clustering behaviour (and we looked into this as well - see our MS). Will this critically change the overall 
findings? 

(6) In the Results, you mention that there exists a "linear regime" in BM I/O measures. Any thoughts if that 
"really" exists or if it is a consequence of noise?  

 
Authors: Thank you very much for your positive and constructive comments. We respond below point by point. 

(1) You are raising an important point, which can help clarifying the nature of our contribution. We are indeed 
aware that there are other models based on a tonotopic arrangement of nonlinear oscillators, including in your 
own work. In our physical description of the cochlea, we start with a principle: all the oscillators are “critical”, 
i.e. operate precisely at a point of an oscillatory instability—a Hopf bifurcation. This premise heavily 
constrains the nonlinear behavior of the model. This is because any critical oscillator must evince a nonlinear 
dynamical behavior that is dictated by an effective equation of motion given by the normal form, irrespective 
of the detailed mechanisms that brings the oscillator at the critical point. Importantly, the dominant 
nonlinearity is cubic (no quadratic term) and phase invariant. Unlike a passive system, the nonlinearity 
manifests itself at very low stimulation levels because of cancellation of the linear term near the natural 
frequency: the system is nonlinear at stimulation levels where a passive system would be linear. There is no 
need to introduce any phenomenological “knob” to vary the value of some parameter, e.g. damping, as a 
function of level to fit the nonlinear behavior of the cochlea. The nonlinearity emerges as a mathematical 



 
 

consequence of criticality; we have no choice. We can in turn evaluate the GENERIC consequences of our 
principle by integrating the critical oscillators in an otherwise standard traveling-wave model of the cochlea. 
Because these properties are generic, observing them does not provide support for a particular 
implementation of criticality; different models will evince the same properties as long as the underlying 
oscillators are critical. Conversely, it is tempting to conjecture, as you suggest, that any detailed or 
phenomenological model that successfully describes the cochlear nonlinearity might have found a way to 
ensure that the underlying oscillators operate near a Hopf bifurcation, even if it is not apparent at the onset. 

(2) As you indicate, and as we know, the cochlea is not a single oscillator and the response at any given position 
must be shaped by the traveling wave riding on multiple, tonotopically organized oscillators before reaching 
the characteristic place. This feature is common to all cochlear models: the local response is shaped by 
nonlocal effects. This is clarified even further by our work. It is precisely the interplay between critical 
oscillators and the traveling wave that produces “tall and broad” tuning curves and tuning bandwidth that 
increases only weakly with level. This effect alleviates a fundamental impediment of single critical 
oscillators, known as “critical slowdown”, for which the weaker the stimulus, the sharper the tuning, and thus 
the slower the response. In addition, although the local oscillators are here all critical, the compressive 
nonlinearity that emerges at CF in the model is more compressive than the 1/3 power law expected from a 
single critical oscillator driven in isolation. The exact value of the exponent of a power-law fit at CF appears 
to depend on details is thus not generic. There is thus no a priori reason that the compressive nonlinearity in 
the cochlea be precisely a 1/3 power law, even if the underlying oscillators individually show such a power 
law. So, coincidence? It is still remarkable that the cochlea shows a compressive nonlinearity so close to a 
1/3 power law, even if it is not precisely with an exponent of 1/3 and that the exponent shows some variability 
between samples. The principle of criticality offers an economical way to account for the nonlinear behavior 
of the cochlea. 

(3) Contrasting the response of the cochlea at a fixed position to the expected behavior of a single oscillator helps 
conveying this message: the cochlea cannot be modeled by a single oscillator. Its nonlinear behavior is 
nevertheless strongly shaped by the properties of the underlying oscillators. From the perspective of physics, 
it is also striking that the cochlea works as a detector that manages to show both high sensitivity and relatively 
broad tuning, resulting in relatively fast responsiveness. A single resonator, and a critical oscillator is no 
exception, does not do that. 

(4) We refer here to models based on a tonotopic organization of critical oscillators using a normal form to 
describe their dynamic behavior, instead of using specific phenomenological equations of motion (e.g. van 
der Pol or the oscillator equation inferred by Zweig) or detailed descriptions of the impedance of the organ 
of Corti (e.g. Meaud and Grosh). Yes, other models can account for the same, but then we would argue that 
they must contain or mimic the nonlinear behavior afforded by criticality to reproduce the nonlinear behavior 
of the cochlea. Our contribution, and that of the “pioneers”, is precisely to reveal what is generic of any 
model operating locally near a Hopf bifurcation. This allows to better distinguish what is generic from what 
is specific of a given model’s assumptions. Note also that these approaches are not in opposition; they 
complement each other. 

(5) We have performed simulations using a complex value of the coupling parameter, with nearly equal real and 
imaginary parts. It does not change our general conclusions but affects slightly the shape of the peak in tuning 
curves (thus the exponent of a power-law fit to the response function at CF). Elastic coupling also allows 
vibrations to extend beyond the position where the local oscillator is driven at resonance.  

(6) This is an interesting question. Noise added to the normal form indeed results in a linear regime of 
responsiveness, effectively moving away the oscillators from criticality. We would argue that both noise and 
mechanical coupling contribute to the linear regime observed in experiments. There could also be an intrinsic 
linear regime if the oscillators are not precisely critical. This is OK because the signatures of criticality will 
remain as long as the control parameter (noted epsilon) remain much smaller than the natural frequency of 
the oscillator (noted 𝜔𝜔𝑅𝑅). 

 
Alessandro Altoè: The model you are proposing looks not too dissimilar to existing theories that do not rely on critical 
oscillator: you have 2D hydrodynamic coupling and power injection into the traveling wave basal the peak, which 
have been considered the strictly necessary ingredients to explain the data for a long time (see  Kolston 2000 Hear 
Res in addition to the suggestions of Bastian). And you also have a cubic nonlinearity to explain compression.  I 
wonder where the "criticality" of the oscillators comes into play and to what extent helps explaining the data. In 
particular, when you add dissipative coupling the oscillators are "critical" only in their mathematical definition, but 



 
 

perhaps not in practice as they are effectively damped ("detuned from criticality" as you stated).  Could you comment 
on this aspect? 
 
Authors: Thank you for your comments. The specificity of the model, compared to other models, lies in the normal 
form for the equation of motion of the oscillators. The normal form is NOT a model but the mathematical consequence 
of a principle: criticality, i.e. operation of the oscillators precisely at a Hopf bifurcation. Its properties are remarkable: 
the linear term goes to zero when the oscillator is driven at its natural frequency, i.e. the linear response diverges, so 
that the dominant nonlinearity takes control. We have no choice for the dominant nonlinear term: it is cubic (no 
quadratic term) and phase invariant. This allows, from first principles, to generate a set of tuning curves all at once, 
i.e. without having to turn a knob to adjust the value of some parameter of the model with level. 

The signature of criticality is the frequency dependent compressive nonlinearity. Criticality explains how to get a 
compressive nonlinearity over a large range of stimulus magnitudes: by canceling both the elastic and frictional 
components of the linear response, the nonlinear response extends to low levels of stimulation, i.e. the response is 
nonlinear at levels where a passive system would linear. 

We find that mechanical coupling effectively detunes the oscillators. However, this effect is weak enough that the 
signature of criticality—the compressive nonlinearity—still manifests itself over a broad range of levels. Note that the 
local experimental response of the organ of Corti does not only reflect the impedance of the local oscillator but also 
how its driving pressure has been shaped by the traveling wave. Our work allows to discuss this interplay and see 
what properties emerge from it. We find that, even if the emerging nonlinearity at CF deviates slightly from the generic 
nonlinearity of a critical oscillator driven in isolation, it is still dominated by the generic nonlinear behaviors of the 
critical oscillators. 

Finally, we agree that 2D hydrodynamics, mechanical coupling and energy pumping have already been identified 
as key features to obtain “tall and broad” tuning curves. As also stated in response to Bastian Epp’s comments, a 
model based on criticality as underlying principle for the behavior of the local oscillators (in isolation) does not say 
anything about its detailed implementation, for the oscillators’ nonlinear properties are generic. There are many ways 
to bring an active dynamical system to a Hopf bifurcation. In return, we conjecture that any detailed or 
phenomenological model that successfully describes the cochlear nonlinearity might have found a way to ensure that 
the underlying oscillators operate near a Hopf bifurcation, even if it is not apparent in the formulation of the model. 
 
[Post-Talk Q&A] 
 
Paul Kolston: You showed a clear difference between the 1D and the 2D models, but it is actually 3D because the 
wavelength contracts radially as well, and the basilar membrane does not span the full width of cochlear compartments. 
Did you look at what effects having a 3D fluid dynamics finite element model would have on your response? 
 
Author (Henri Ver Hulst): We did not, but that would be an interesting way to extend the model. 
  
Renata Sisto: Things are not very different in 3D. 2D hydrodynamics is sufficient to capture the fluid focusing effect, 
so the main features of the short wave effect can be captured in 2D. 
 
Paul Kolston: But in 2D, you are assuming that the basilar membrane spans the full width and moves up and down. 
 
Renata Sisto: There are also other modes, and there are higher modes. 
 
Paul Kolston: All right, thank you. 
 
Julien Meaud: Very nice work. I have a question about how critical it is to be critical. When taking the full model 
with coupling, what happens if you are on the stable side of the bifurcation? Do you recover the same properties or is 
it fundamentally different? 
 
Author (Henri Ver Hulst): If we are on the stable side of the bifurcation, it means that we need a threshold sound-
pressure level to see the compressive nonlinearity that is characteristic of criticality (the system is linear below). At 
some point, it will kick in, but if you stimulate it with small stimulation, it won’t. So, there will be a threshold 
stimulation at which you will be starting to see the compressive nonlinearity. Offline addition: the system is said to 



 
 

remain “critical” if the power-law behavior extends over a broad range of stimulus magnitudes. There is no need to 
operate precisely at the critical point to generate this signature of criticality. 
 
Julien Meaud: Isn’t it what you see in the full model anyway? You have a linear growth initially, right? 
 
Author (Henri Ver Hulst): Yes. It means that it can be a bit detuned from criticality. The signature of criticality is 
really in the 1/3 power law exponent that is seen over a broad range of sound-pressure levels. In any real system, 
criticality cannot be observed at all stimulus levels, as it should be in the model, so there are cutoffs. For example 
here, mechanical coupling produces a low-level cutoff where the critical power law is lost. 
 
Dáibhid Ó Maoiléidigh: At some point, you followed the peak of the response to calculate the compression, but that 
is not what is done experimentally. So, are you suggesting that somehow in experiments, they accidentally followed 
the peak? It was not clear to me why you were comparing that to experiments. 
 
Author (Henri Ver Hulst): Thank you for asking the question. Actually, your question is related to the variability of 
the power law exponent in experiments, and the fact that it is usually lower than 1/3 if the response is measured at a 
fixed position. Because the position at which the sensitivity peaks shifts basally with sound level, we expect—this is 
what I showed at the end of my talk with this very compressive behavior of the displacement curve in our model—
that the power law relation will generally change, but that the signature of criticality should remain by following the 
peak sensitivity. Offline addition: In experiments, we would argue that the power-law exponent remains close to 1/3 
power law because the shift of the peaks is small. 
 
Alessandro Altoè: Very nice talk, I have one question. I don’t understand why your model is fundamentally different 
from models that are not based on Hopf bifurcation because you have a traveling wave, power injection before the 
peak, and 2D hydrodynamics, which are considered to be the essential ingredients to fit the data. What does the Hopf 
add to it? 
  
Author (Henri Ver Hulst): That’s what I think is really amazing about the Hopf, it’s not different. We believe that the 
wide diversity of nonlinear models that actually work in the time domain work precisely because they work near a 
Hopf bifurcation. The fact that you can have a diversity of models that all work is for us a signature that they all work 
near a Hopf bifurcation, and therefore they obtain similar level functions as the one that we observe. Offline addition: 
We bring a fundamental understanding to the nature of the cochlear nonlinearity, which emerges from the principle 
of criticality. See a more precise and detailed answer in response to a similar question above (Forum discussion). 
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