
HAL Id: hal-04799401
https://hal.science/hal-04799401v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Playing Guess Who with your kids: Code-word strategy
against adversaries
Ami Paz, Liat Peterfreund

To cite this version:
Ami Paz, Liat Peterfreund. Playing Guess Who with your kids: Code-word strategy against ad-
versaries. Theoretical Computer Science, 2024, 1016, pp.114766. �10.1016/j.tcs.2024.114766�. �hal-
04799401�

https://hal.science/hal-04799401v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Playing Guess Who with Your Kids
Ami Paz #

LISN, CNRS & Paris Saclay University, France

Liat Peterfreund #

LIGM, CNRS & Gustav Eiffel University, Champs-sur-Marne, France

Abstract
Guess who is a two-player search game in which each player chooses a character from a deck of 24
cards, and has to infer the other player’s character by asking yes-no questions. A simple binary
search strategy allows the starting player find the opponent’s character by asking 5 questions only,
when the opponent is honest.

Real-life observations show that in more realistic scenarios, the game is played against adversaries
that do not strictly follow the rules, e.g., kids. Such players might decide to answer all questions
at once, answer only part of the questions as they do not know the answers to all, and even lie
occasionally. We devise strategies for such scenarios using techniques from error-correcting and
erasure codes. This connects to a recent line of work on search problems on graphs and trees with
unreliable auxiliary information, and could be of independent interest.

2012 ACM Subject Classification Theory of computation → Representations of games and their
complexity; Theory of computation → Sorting and searching; Theory of computation → Theory
and algorithms for application domains

Keywords and phrases Guess Who?, Binary Search, Error Correcting Codes, Erasure Codes

Digital Object Identifier 10.4230/LIPIcs.FUN.2022.23

Acknowledgements The authors are grateful to Yonatan, Yuval and Ari for inspiring this work, and
to Ben Lee Volk for discussions on error correcting codes.

1 Introduction

Guess Who? is a two-player board game where the goal of each player is to guess the
identity of its opponent chosen character. Each player has a board that includes cartoon
images of 24 characters. At the beginning of the game, each player chooses one of the
characters, and the goal of the other player is to guess this character. The objective of the
game is to be the first player to determine which character was selected by the opponent.
Players alternately ask their opponents various yes-no questions on their selected card, such
as “Does your character wear glasses?”, “Is your character a woman?” etc. The player
then eliminates candidates based on the opponent’s response by flipping the appropriate
characters down. The game ends as soon as there is a player with a single character left on
their board.

Nica [18] performed a very interesting game-theoretical analysis of the game. By analyzing
it as a zero-sum stochastic game, he was able to show that at each round, a player with
more cards left should take a “bold move”, and ask a question that has the potential of
eliminating many characters, while the leading player (with less characters left) should stick
to a traditional binary search strategy.

In this work, we take an algorithmic perspective. We hence ignore the game-theoretic
competitive considerations that paved the way in Nica’s work, and instead, focus only on
the underlying algorithmic search problem. To this end, we analyze a version of the game
where one player is the chooser, which chooses a character answers questions on it, while the

© Ami Paz and Liat Peterfreund;
licensed under Creative Commons License CC-BY 4.0

11th International Conference on Fun with Algorithms (FUN 2022).
Editors: Pierre Fraigniaud and Yushi Uno; Article No. 23; pp. 23:1–23:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ami.paz@lisn.fr
mailto:liat.peterfreund@u-pem.fr
https://doi.org/10.4230/LIPIcs.FUN.2022.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Playing Guess Who with Your Kids

other player is the guesser, who has to ask questions in order to correctly guess the chosen
character. Thus, the focus of this paper is on strategies for the guesser. Doing so, we follow
the footsteps of Knuth [15], who applied a similar approach studying the Mastermind game.

Naturally, against a well-behaved chooser, the optimal strategy will be a binary search.
However, in real-world applications, such as playing Guess Who with young kids, a guesser
may need to devise a strategy that yields a correct guess despite a chooser that deviates
from the game protocol. Inspired by real-life experience, we consider several ways in which a
chooser might deviate from the protocol.

A Not-At-Time-ANswering (NATAN) adversary is an impatient chooser, which refuses to
answer one question at a time, and instead, gives the guesser a single opportunity to present
all their questions, and answers them altogether. In terms of theoretical computer science,
we can think of this as an asynchronous adversary, or alternatively, we can say that the
guesser is non-adaptive. In Section 3, we show that there is a simple strategy that allows to
perform a binary search even against this adversary, thus guessing in an optimal number of
⌈log n⌉ questions.

An Answers Relatively Insecure (ARI) adversary is a chooser that is having hard time
determining if a character has some property, and thus, might answer “I do not know” and
not only “Yes” or “No”. This adversary, in addition to modeling a young kid, is also relevant
in the context of communication in a noisy channel. Thus, it may not come as a surprise to
the reader that in Section 4, we show how to overcome the indecisiveness of the adversary by
using erasure codes.

Finally, a Valid At Large (VAL) player is a chooser that has a flexible view of the truth.
Hence, this chooser might answer incorrectly to some fraction of the questions. In a game,
we give this player the benefit of the doubt that they are merely mistaken, but in theoretical
computer science, we would say we are dealing with a malicious player, or with a Byzantine
agent. Section 5 shows that this behavior can be overcome using error correcting codes, with
an overhead of a few questions.

The applicability of our approach in real-world scenarios is still to be proven, and an
experimental follow-up work is now being considered. Regardless of this aspect, we believe
that our work presents simple applications of basic theoretical computer science concepts
such as binary search, erasure codes and error correcting codes, and as such can be used for
introductory examples for a wide audience.

Related Work

As mentioned, Nica [18] was the first to conduct a rigorous analysis of the Guess Who game.
His work stayed in the framework of the game, and used a stochastic analysis for determining
when a player should make a “bold guess”, that in a small probability will result in the
elimination of many characters. We note that such an analysis is useless, e.g., against the
NATAN adversary, as it crucially relies on the round-based nature of the game.

The ARI adversary resembles scenarios in which some of the information is missing.
Handling incomplete or missing information is one of the longstanding topics in database
research [16, 14, 19, 4]. In particular, the study of certain answers (answers that are true
regardless of how one completes the missing entries of the queried database) has attracted
lots of attention in the database community [22, 7].

The VAL adversary presents a setting of a search with partially incorrect information,
that is of high research interest in recent years. This is the case, e.g., when studying search
and navigation problems in graphs, where the information regarding the target’s location
might be unreliable [3, 12, 13, 8]. A question even more similar to ours is that of playing
twenty questions game with a liar [6], which has tight connections to learning theory.

A. Paz and L. Peterfreund 23:3

(a) Characters.1

glasses

no
glasses

hat

blond

back
hair

brow
n

hair

w
hite

hair

glasses
and

bald

Bill 0 1 0 0 0 0 0 0
Charles 0 1 0 1 0 0 0 0
Claire 1 0 1 0 0 0 0 0
Joe 1 0 0 1 0 0 0 0
Maria 0 1 1 0 0 1 0 0
Max 0 1 0 0 1 0 0 0
Sam 1 0 0 0 0 0 1 1
Susan 0 1 0 0 0 0 1 0
Tom 1 0 0 0 1 0 0 1

(b) A corresponding T9×8 matrix.

Figure 1 Running Example.

Guess Who was invented as a simple version of the Bulls and Cows game (whose com-
mercial version is known under the name “Mastermind”), another search game where the
questions and answers are more involved than the binary questions applied here. In Mas-
termind, players have to guess their opponent’s 4-peg colorful pattern, while the opponent
replying to each guess by specifying the number of correct pegs used in place, and those that
are correct but misplaced. A word-based variant of Mastermind is the trendy Wordle game.
While the scientific literature on Wordle is rather limited (though numerous analyses, discus-
sions and strategies can be found online), Mastermind was studied in several occasions. In
1977, Knuth [15] devised an optimal strategy for Mastermind, in only 5 guesses. Interestingly,
he analyzed the game as a game with a single guesser and ignored game-theoretic aspects
yielding from the fact that the game has two players, as we do here. In recent decades,
several variants [21, 1] and approaches to Mastermind were studied, most notably is the
evolutionary approach [9, 5, 11, 10, 2].

2 Formal Framework

In this section, we set the formal settings based on our algorithmic perspective.

2.1 Characters and Traits
We denote the number of characters by n, and refer to each character by a unique identifier
in the set [n] := {1, . . . , n}. We denote possible (physical) traits (of the characters) by [m]. A
trait can be being brunette, not wearing a hat, having a big nose and being blond etc. Since
players can only ask yes-no questions, we assume that all possible questions are of the form

q(j) := Does your character possess trait j?

where 1 ≤ j ≤ m.

1 Image taken from iSLCOLLECTIVE.com

FUN 2022

iSLCOLLECTIVE.com

23:4 Playing Guess Who with Your Kids

The information on the different characters and their traits can be represented as a binary
matrix whose rows correspond with characters’ identifiers, and columns with traits. Formally,
the traits’ matrix, is a binary n × m matrix T, where Mi,j = 1 if character i possess trait j,
and Mi,j = 0 if character i does not possess trait j. In this way, every row of the matrix
describes a character.

▶ Example 1. Figure 1a presents a subset of characters of the original game and Figure 1b
a corresponding matrix with traits listed as its columns.

2.2 Distinguishability
We assume that each two different characters are distinguishable, that is, have at least one
different trait. Formally, for each i ̸= i′ ∈ [n] there is j ∈ [m] such that T[i][j] ̸= T[i′][j].
This ensures that no matter which character was chosen by the chooser, the guesser can ask
questions on its traits until revealing its identity.

In fact, similarly to [18], we assume even a stronger assumption – not only do every two
characters are distinguishable, but also any subset of characters is distinguishable from the
rest. We formalize this as follows:

▶ Assumption 1. For any subset A ⊆ [n] of characters, there is a trait jA such that
A = {i ∈ [n] | T[i][jA] = 1}.

We call jA the trait that separates A.

▶ Example 2. The trait that separates the subset consisting of Sam and Tom from the rest is
“having glasses and being bald.” For Sam, Tom, Joe and Claire, it is simply “having glasses”.

From this point on, we only consider games for which Assumption 1 holds.

2.3 Games, Runs, and Classical Strategies
We view an n-character game, or, simply, a game, as a process in which a player, namely the
guesser, needs to search in the n-characters’ space the character chosen by the other player,
namely the chooser. Classically, this search is done by eliminating elements from [n] until
reaching a single one. For simplicity, we assume that a player does not need to explicitly
guess the other player’s character after narrowing down the list of possible characters to one;
on the other hand, a player cannot guess a character if its list is larger than one. Formally,
we define a run ρ as a sequence:

q1, a1, I1, . . . , qk, ak, Ik

where for every 1 ≤ i ≤ k it holds that Ii ⊆ [n], qi and ai are, respectively, the question and
answer of round i of the game, and the following hold for every 1 ≤ ℓ ≤ k:

if qℓ = q(j) and aℓ = yes then Iℓ = {i ∈ Iℓ−1 | T[i][j] = 1};
if qℓ = q(j) and aℓ = no then Iℓ = {i ∈ Iℓ−1 | T[i][j] = 0},

where we set I0 := [n].
We say that q1, . . . , qk defines ρ. In addition, we say that ρ is successful if Ik is a singleton.

If ρ is successful, we say that q1, . . . , qk defines a successful run.

▶ Example 3. Consider the run q1, a1, I1, q2, a2, I3 where I0 consists of all characters that
appear in Figure 1a, q1 = q(hat), a1 = yes, I1 = {Claire, Maria}, q2 = q(brown hair),
a2 = yes, and I3 = {Maria}.

A. Paz and L. Peterfreund 23:5

A classical strategy is a procedure that, given a run q1, a1, I1, . . . , qi, ai, Ii, either chooses
the next question qi+1, or terminates if the run is successful. If, for every chosen character,
the procedure terminates after choosing at most k questions, we say it is a k-question strategy.

2.4 Our Gallery of Adversaries
In this paper we consider several adversaries who deviate from the standard game protocol.
In order to play with each of them, we have to adjust the notion of a strategy.

Impatient NATAN. The first adversary we consider is the impatient adversary denoted
NATAN, which answers all the questions at once. A run against such an adversary is a
normal run, but the strategy is non-adaptive. Formally, a k-question predetermined-strategy
is a set {q1, . . . , qk} of questions where qℓ := q(jℓ), such that the following set is a singleton:

{i | ∀ℓ : ((aℓ = yes) implies T[i][jℓ] = 1 and (aℓ = no) implies T[i][jℓ] = 0)}

where aℓ is a correct answer to qℓ for every ℓ. That is, there is always a single character
determined by answers to these questions. Alternatively, using our previous definitions, we
can define k-question predetermined-strategy as a set {q1, . . . , qk} of questions, such that each
sequence obtained by a permutation of its elements defines a successful run.

Clueless ARI. The second type of adversaries we consider is clueless adversaries that might
occasionally say they do not know the answer. ARI is such an adversary that might answer
“don’t know” at most once. To deal with clueless adversaries, we slightly extend the definition
of runs by allowing aℓ = don’t know, and setting Iℓ = Iℓ−1 in this case. A strategy against a
clueless adversary is defined similarly to a classical strategy, while considering the extended
notion of run. It is said to be a k-question strategy if it terminates after at most k questions
for any chosen character.

In fact, our strategy for the clueless adversary is even more elaborate, and holds against
an adversary that is both impatient and clueless. As the reader may expect, this adversary
answers all the questions at once, and might answer “don’t know” on some fraction of them.
We define the notion of k-question predetermined strategy similarly to before. Note that the
alternative definition based on successful runs is valid also here by considering the extended
notion of run.

Liar VAL. Finally, we consider liar adversaries. VAL, for example, is such an adversary
that can lie at most once in a game.

A k-question predetermined strategy for an impatient liar that lies at most d times is a
set {q(j1), . . . , q(jk)} of questions such that for there is a unique i ∈ [n] for which

dHAM((b1, . . . , bk), vi) ≤ d

where dHAM stands for the Hamming distance (that is, the number of entries in which two vec-

tors differ), vi := (T[i][j1], . . . , T[i][jk]), aℓ is the answer to q(jℓ), and bℓ :=
{

1 aℓ = yes
0 aℓ = no .

Intuitively, since the adversary lies, the guesser can only “approximate” the chosen character,
i.e., find a vector that differs from that of the chosen character by at most d bits. The
uniqueness of i ensures that the guesser can determine who is the chosen character based on
the approximate vector she gets.

FUN 2022

23:6 Playing Guess Who with Your Kids

3 Playing with Honest (but Sometimes Lazy) Players

We start by considering settings in which the chooser is honest, i.e., always answers correctly.
The following result is based on the very basic strategy of binary search.

▶ Theorem 4. For every n-character game, there is a ⌈log n⌉-question strategy. In addition,
there is no k-question strategy with k < ⌈log n⌉.

Proof. The theorem is achieved by a simple binary search algorithm, defined recursively.
Given a set Iℓ with |Iℓ| > 1, we choose A ⊆ Iℓ with |A| = ⌊|Iℓ|/2⌋, and use Assumption 1 to
find a trait j with A = {i | T[i][j] = 1}. We ask qℓ+1 = q(j) to get an answer aℓ+1, and set
Iℓ+1 = {i | T[i][j] = aℓ+1}.

It is immediate to see that the algorithm defines a successful run q1, a1, I1, . . . , qk, ak, Ik

with |Ik| = 1. Indeed, using the inequality |Iℓ+1| ≤ ⌈|Iℓ|/2⌉ ≤ (|Iℓ| + 1)/2, a simple induction,
and the fact that |I0| = n, we get |Ik| ≤ n+2k−1

2k . For k = ⌈log n⌉ ≥ log n, this implies
|Ik| ≤ 2 − 1/n and the integrality of |Ik| guarantees |Ik| = 1 as claimed.

For the second part of the theorem, let us assume that there is a k-question strategy with
questions q1, . . . , qk. Each successful run that is consistent with this strategy is of the form
I0, q1, a1, I1, . . . , qk, ak, Ik where for every ℓ, aℓ ∈ {yes, no} and Iℓ+1 ⊆ Iℓ. Note that Iℓ+1 is
uniquely determined by a1, . . . , ak and thus the number of possible Iks is bounded by the
number of possible vectors a1, . . . , ak. Hence, there are at most 2k successful runs that are
consistent with this strategy. If k < ⌈log n⌉ then 2k < n which implies that q1, . . . , qk cannot
be a k-question strategy (since there are n characters). ◀

Notice that this strategy is adaptive, that is, at each round the guesser chooses the next
question based on the outcome of the previous one. Is it possible to find a strategy that
is not adaptive, that is, a strategy against an impatient adversary? We answer this in the
affirmative.

▶ Theorem 5. For every n-character game, there is a ⌈log n⌉-question predetermined-strategy.

Proof. For 1 ≤ ℓ ≤ ⌈log n⌉, let Aℓ = {i ∈ [n] | i[ℓ] = 1}, where i[ℓ] is the bit in location ℓ of
the binary expansion of i (whose first bit is i[1]). For each ℓ in the range, we set qℓ to be the
trait separating Aℓ. (It exists due to Assumption 1.)

To prove this strategy always assures termination in ⌈log n⌉ questions, we consider the run
q1, a1, I1, . . . , q⌈log n⌉, a⌈log n⌉, I⌈log n⌉ induced by the aforementioned questions. The choice of
questions guarantees Iℓ = {i | i[1] = a1, . . . , i[ℓ] = aℓ}. Therefore, I⌈log n⌉ contains solely the
element i with binary encoding a⌈log n⌉ a⌈log n⌉−1 · · · a2 a1. ◀

This “static” approach can be useful when playing with a Not-At-Time-ANswering
(NATAN) player that answers the questions altogether. Therefore, we can conclude the
following.

▶ Corollary 6. The classical Guess Who game has a 5-question predetermined-strategy, i.e.,
a strategy that works even against NATAN.

4 Playing with Clueless Players

In this section, we consider clueless players, that do not always know the answer to a question.
A clueless player might answer, in addition to “yes” and “no”, the answer “I do not know”
(“don’t know”, for brevity). One way to circumvent this answer is, whenever the player
answers “don’t know” on some trait, to ask a question on a different trait that has exactly

A. Paz and L. Peterfreund 23:7

the same answers on all characters. However, this requires the assumption that such a trait
always exists, and in addition, it does not work against an adversary that is both clueless
and impatient. Instead, we suggest a different solution, using erasure codes.

▶ Definition 7 ([20]). An erasure code that can handle d erasures is a collection of binary
vectors, namely code-words, such that there is a recovery algorithm that gets as an input
each of these vectors with at most d locations replaced by “?”, and returns the original vector.

We restrict our attention to codes where all the code-words have equal length. A simple
erasure code with d = 1 can be achieved, for example, by adding a parity bit – the recovery
algorithm in this case will replace the “?” with a value complementing the number of 1-s in
the vector to be even. A code that can handle more erasures can be achieved, e.g., by taking
a collection of low-degree polynomials, and producing a code-word from each polynomial p

by setting the i-th place of the code-word to p(i).
Before presenting the result, let us set its formal setup.

▶ Theorem 8. If there is an erasure code composed of at least n binary vectors of length k, that
can handle d erasures, then for every n-character game there is a k-question predetermined-
strategy against an adversary that answers “don’t know” at most d times.

Proof. Assign each character i with a unique vector vi from the code. For 1 ≤ ℓ ≤ k, let
Aℓ = {i | vi[ℓ] = 1} be all the characters with the ℓ-th entry of their vector equal to 1. Let jℓ

be the trait that separates Aℓ from Āℓ.
We use the question sequence q1 := q(j1), . . . , qk := q(jk), which defines a run

q1, a1, I1, . . . , qk, ak, Ik. From the sequence (a1, . . . , ak) of answers, which contains at most
d answers of “?”, we find the unique way to complement the vector into a code-word
v′ = (a′

1, . . . , a′
k). The character i with vi = v′ is then the desired character.

For correctness, consider the true character i∗ chosen, and the sequence (a∗
1, . . . , a∗

k) of
the true answers to the questions, where a∗

ℓ is the answer on q(jℓ). Note that the choice
of questions guarantees that the following are equivalent: a∗

ℓ = 1; i∗ ∈ Aℓ; and vi∗ [ℓ] = 1.
This concludes in vi∗ [ℓ] = a∗

ℓ , from which we have vi∗ = (a∗
1, . . . , a∗

k). By the assumption
of at most d answers are missing in the answer vector (a1, . . . , ak), and the properties of
the erasure code ensure that the completion of this vector is unique, and is vi∗ . Hence, the
algorithm returns i∗, as desired. ◀

One application of the above theorem is when the adversary may answer “don’t know” at
most once. For this, we use simple parity check bit. That is, by concatenating a parity bit
to every ⌈log n⌉-bit binary vector, we get the following code.

▶ Lemma 9. For any positive integer n, there is an erasure code of n vectors of length
⌈log n⌉ + 1 allowing to overcome a single deletion.

Recall that ARI is a player that might answer “don’t know” at most once. By choosing
n = 24 in the lemma and applying Theorem 8, we get the following corollary.

▶ Corollary 10. The classical game of Guess Who has a 6-question predetermined-strategy
against ARI.

5 Playing with Liars

While in the previous section, the clueless player was honest (i.e., provided only correct
answers), we now turn our attention to a player that might give incorrect answers. These
are sometimes called Byzantine or malicious players, but we will give the kids the benefit of
the doubt and say they are merely “mistaken”.

A key tool in this section will be error correcting codes.

FUN 2022

23:8 Playing Guess Who with Your Kids

▶ Definition 11. An error correcting code of distance d is a collection of equal-length binary
vectors, such that the Hamming distance between every two is at least d.

We will refer to such a code a “distance-d code”. Note that, given such a code and a vector v,
if there exists a code word c with Hamming distance at most ⌊ d−1

2 ⌋ from v, then c is the
unique code-word with this property. The common use of these codes is thus by “correcting”
each such vector v to the unique nearest code-word c; hence, we say that a distance-d code
can fix at most ⌊ d−1

2 ⌋ errors.

▶ Theorem 12. If there is a distance-d error correcting code composed of at least n binary
vectors of length k, then for every n-character game there is a k-question predetermined-
strategy against an adversary that performs at most ⌊ d−1

2 ⌋ mistakes.

Proof. Assign each character i with a unique vector vi from the code. For 1 ≤ ℓ ≤ k, let
Aℓ = {i | vi[ℓ] = 1} be all the characters with the ℓ-th entry of their vector equal to 1. Let jℓ

be the trait that separates Aℓ.
We use the question sequence q1 = q(j1), . . . , qk = q(jk), which defines a run

I0, q1, a1, I1, . . . , qk, ak, Ik. From the sequence (a1, . . . , ak) of answers, we find the unique
closest code-word v′ = (a′

1, . . . , a′
k), which differs from the sequence of answers by at most

⌊ d−1
2 ⌋ answers. The character i with vi = v′ is then the desired character.
For correctness, consider the true character i∗ chosen, and the sequence (a∗

1, . . . , a∗
k) of

the true answers to the questions, where a∗
ℓ is the answer on q(jℓ). Note that the choice of

questions guarantees that the following are equivalent: a∗
ℓ = 1; i∗ ∈ Aℓ; and vi∗ [ℓ] = 1. This

concludes in vi∗ [ℓ] = a∗
ℓ , from which we have vi∗ = (a∗

1, . . . , a∗
k). By the assumption of at

most ⌊ d−1
2 ⌋ wrong answers, we know that the answer vector (a1, . . . , ak) differs from vi∗ in

at most ⌊ d−1
2 ⌋ positions, which implies that the unique vector closest to the answer vector is

indeed vi∗ , and the algorithm returns i∗ as desired. ◀

One application of the above theorem is for the VAL player, that might make at most a
single mistake. For this, we use a code guaranteed to exist by the Gilbert–Varshamov bound
(see, e.g. [17]).

▶ Lemma 13. For positive integers k, N satisfying 2N < 2k

k , there is a distance-3 code
composed of at least 2N binary vectors of length k.

By choosing k = 9, N = 5 above, we get a code that implies, using Theorem 12, the following
corollary.

▶ Corollary 14. The classical game of Guess Who has a 9-question predetermined strategy
against VAL.

6 Concluding Remarks

As mentioned, Guess Who was invented as a simple version of the color-guessing Mastermind
game. In Mastermind, the questions and answers are more involved than the binary questions
asked in Guess Who, and thus, playing it with players that do not strictly follow the game
protocol is an interesting direction we leave for future research.

Similar question holds for the trendy Wordle game, where the goal is not to guess a
character but a word. Among the gallery of variations of Wordle that can be found online,
one can consider a variant that does not always correctly mark the guessed letters, or where
the user does not get feedback for the guesses until the end. These will probably not be the
most fun-to-play version of the game, but poses interesting theoretical questions, such as
error correction in natural language.

A. Paz and L. Peterfreund 23:9

The commercial version of Guess Who was a target for criticism for its gallery of characters,
where most characters are white males, and the exceptions (usually 5 out of 24) are women or
people of color. One can consider a more inclusive version of the game, not only by splitting
the traits more equally, but also by allowing non-binary answers to some questions. This
could be done, e.g., by allowing questions such as “what is the color of the character’s hair”.
A trinary version of the game (three hair colors, no-glasses/monocle/glasses, etc.) is yet to
be presented, and the corresponding algorithmic questions are yet to be studied.

References
1 Aaron Berger, Christopher Chute, and Matthew Stone. Query complexity of mastermind

variants. Discret. Math., 341(3):665–671, 2018.
2 Lotte Berghman, Dries R. Goossens, and Roel Leus. Efficient solutions for mastermind using

genetic algorithms. Comput. Oper. Res., 36:1880–1885, 2009.
3 Lucas Boczkowski, Uriel Feige, Amos Korman, and Yoav Rodeh. Navigating in trees with

permanently noisy advice. ACM Trans. Algorithms, 17(2):15:1–15:27, 2021.
4 Marco Console, Paolo Guagliardo, and Leonid Libkin. On querying incomplete information in

databases under bag semantics. In IJCAI, volume 17, pages 993–999, 2017.
5 Carlos Cotta, Juan Julián Merelo Guervós, Antonio Mora García, and Thomas Philip Run-

arsson. Entropy-driven evolutionary approaches to the mastermind problem. In PPSN,
2010.

6 Yuval Dagan, Yuval Filmus, Daniel Kane, and Shay Moran. The entropy of lies: Playing
twenty questions with a liar. In ITCS, volume 185 of LIPIcs, pages 1:1–1:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021.

7 Claire David, Leonid Libkin, and Filip Murlak. Certain answers for xml queries. In Proceedings
of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 191–202, 2010.

8 Dariusz Dereniowski, Daniel Graf, Stefan Tiegel, and Przemyslaw Uzna’nski. A framework for
searching in graphs in the presence of errors. In SOSA, 2019.

9 Julien Gagneur, Markus C. Elze, and Achim Tresch. Selective phenotyping, entropy reduction,
and the mastermind game. BMC Bioinformatics, 12:406–406, 2011.

10 Juan Julián Merelo Guervós, Pedro A. Castillo, Antonio Mora García, and Anna I. Esparcia-
Alcázar. Improving evolutionary solutions to the game of mastermind using an entropy-based
scoring method. In GECCO ’13, 2013.

11 Juan Julián Merelo Guervós, Antonio Mora García, Pedro A. Castillo, Carlos Cotta, and
Mario García Valdez. A search for scalable evolutionary solutions to the game of mastermind.
2013 IEEE Congress on Evolutionary Computation, pages 2298–2305, 2013.

12 Nicolas Hanusse, David Ilcinkas, Adrian Kosowski, and Nicolas Nisse. Locating a target with
an agent guided by unreliable local advice: how to beat the random walk when you have a
clock? Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed
computing, 2010.

13 Nicolas Hanusse, Evangelos Kranakis, and Danny Krizanc. Searching with mobile agents in
networks with liars. In Euro-Par, 2000.

14 Tomasz Imieliński and Witold Lipski Jr. Incomplete information in relational databases. In
Readings in Artificial Intelligence and Databases, pages 342–360. Elsevier, 1989.

15 Donald Ervin Knuth. The computer as master mind. Journal of Recreational Mathematics,
9:1–6, 1977.

16 Witold Lipski Jr. On databases with incomplete information. Journal of the ACM, 28(1):41–70,
1981.

17 Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error correcting
codes, volume 16. Elsevier, 1977.

FUN 2022

23:10 Playing Guess Who with Your Kids

18 Mihai Nica. Optimal strategy in “guess who?”: Beyond binary search. Probability in the En-
gineering and Informational Sciences, 30(4):576–592, 2016. doi:10.1017/S026996481600022X.

19 Riccardo Rosati. On the decidability and finite controllability of query processing in databases
with incomplete information. In Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 356–365, 2006.

20 Ron Roth. Introduction to Coding Theory. Cambridge University Press, 2006. doi:10.1017/
CBO9780511808968.

21 Geoffroy Ville. An optimal mastermind (4,7) strategy and more results in the expected case.
ArXiv, abs/1305.1010, 2013.

22 Jef Wijsen. On the first-order expressibility of computing certain answers to conjunctive queries
over uncertain databases. In Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 179–190, 2010.

https://doi.org/10.1017/S026996481600022X
https://doi.org/10.1017/CBO9780511808968
https://doi.org/10.1017/CBO9780511808968

	1 Introduction
	2 Formal Framework
	2.1 Characters and Traits
	2.2 Distinguishability
	2.3 Games, Runs, and Classical Strategies
	2.4 Our Gallery of Adversaries

	3 Playing with Honest (but Sometimes Lazy) Players
	4 Playing with Clueless Players
	5 Playing with Liars
	6 Concluding Remarks

