
HAL Id: hal-04799395
https://hal.science/hal-04799395v1

Submitted on 22 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Brief Announcement: Agreement Tasks in Fault-Prone
Synchronous Networks of Arbitrary Structures

Pierre Fraigniaud, Minh Hang Nguyen, Ami Paz

To cite this version:
Pierre Fraigniaud, Minh Hang Nguyen, Ami Paz. Brief Announcement: Agreement Tasks in
Fault-Prone Synchronous Networks of Arbitrary Structures. DISC 2024, 2024, Madrid, Spain.
�10.4230/LIPIcs.DISC.2024.47�. �hal-04799395�

https://hal.science/hal-04799395v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Agreement Tasks in Fault-Prone Synchronous
Networks of Arbitrary Structure
Pierre Fraigniaud #Ñ �

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS and Université Paris Cité, France

Minh Hang Nguyen #Ñ �

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS and Université Paris Cité, France

Ami Paz # Ñ �

Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)
CNRS and Université Paris-Saclay, France

Abstract
Consensus is arguably the most studied problem in distributed computing as a whole, and particularly
in the distributed message-passing setting. In this latter framework, research on consensus has
considered various hypotheses regarding the failure types, the memory constraints, the algorithmic
performances (e.g., early stopping and obliviousness), etc. Surprisingly, almost all of this work
assumes that messages are passed in a complete network, i.e., each process has a direct link to
every other process. Set-agreement, a relaxed variant of consensus, has also been heavily studied
in the message-passing setting, yet research on it has also been limited to complete networks. A
noticeable exception is the recent work of Castañeda et al. (Inf. Comput. 2023) who designed a
generic oblivious algorithm for consensus running in radius(G, t) rounds in every graph G, when
up to t nodes can crash by irrevocably stopping, where t is smaller than the node-connectivity κ

of G. Here, radius(G, t) denotes a graph parameter called the radius of G whenever up to t nodes
can crash. For t = 0, this parameter coincides with radius(G), the standard radius of a graph, and,
for G = Kn, the running time radius(Kn, t) = t + 1 of the algorithm exactly matches the known
round-complexity of consensus in the clique Kn.

Our main result is a proof that radius(G, t) rounds are necessary for oblivious algorithms solving
consensus in G when up to t nodes can crash, thus validating a conjecture of Castañeda et al., and
demonstrating that their consensus algorithm is optimal for any graph G. Finally, we extend the
study of consensus in the t-resilient model in arbitrary graphs to the case where the number t of
failures is not necessarily smaller than the connectivity κ of the considered graph.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Consensus, set-agreement, fault tolerance, crash failures.

Digital Object Identifier 10.4230/LIPIcs...

Funding Pierre Fraigniaud: Additional support from ANR projects DUCAT (ANR-20-CE48-0006)
and QuDATA (ANR-18-CE47-0010).
Minh Hang Nguyen: Additional support from ANR projects DUCAT (ANR-20-CE48-0006), TEM-
PORAL (ANR-22-CE48-0001), and the European Union’s Horizon 2020 program H2020-MSCA
-COFUND-2019 Grant agreement n° 945332.

Acknowledgements The authors thank Stephan Felber, Mikaël Rabie, Hugo Rincon Galeana and
Ulrich Schmid for fruitful discussions on this paper.

© P. Fraigniaud, M. H. Nguyen, and A. Paz;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

41
0.

21
53

8v
1

 [
cs

.D
C

]
 2

8
O

ct
 2

02
4

mailto:pierre.fraigniaud@irif.fr
https://www.irif.fr/~pierref
https://orcid.org/0000-0003-4534-4803
mailto:mhnguyen@irif.fr
https://www.irif.fr/~mhnguyen/
https://orcid.org/0009-0008-2391-029X
mailto:ami.paz@lisn.fr
https://orcid.org/0000-0002-6629-8335
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:1

1 Introduction

For t ≥ 0, the standard synchronous t-resilient message-passing model assumes n ≥ 2 nodes
labeled from 1 to n, and connected as a clique, i.e., as a complete graph Kn. Computation
proceeds as a sequence of synchronous rounds, during which every node can send a message
to each other node, receive the message sent by each other node, and perform some local
computation. Up to t nodes may crash during the execution of an algorithm. When a node v
crashes at some round r ≥ 1, it stops functioning after round r and never recovers. Moreover,
some (possibly all) of the messages sent by v at round r may be lost, that is, when v crashes,
messages sent by v at round r may reach some neighbors, while other neighbors of v may
not hear from v at round r. This model has been extensively studied in the literature (see,
e.g., [2, 18, 22, 26]). In particular, it is known that consensus can be solved in t+ 1 rounds
in the t-resilient model [14], and this is optimal for every t < n− 1 as far as the worst-case
complexity is concerned [1, 14]. Similarly, k-set agreement, in which the cardinality of the set
of output values decided by the (correct) nodes must not exceed k, is known to be solvable
in ⌊t/k⌋ + 1 rounds [8], and this worst-case complexity is also optimal [9].

It is only very recently that the synchronous t-resilient message-passing model has been
extended to the setting in which the complete communication graph Kn is replaced by an
arbitrary communication graph G (see [4, 10]). Specifically, the graph G is fixed, but arbitrary,
and the concern is to design algorithms for G. It was proved in [4] that if the number of
failures is smaller than the connectivity of the graph, i.e., if t < κ(G), then consensus in G

can be solved in radius(G, t) rounds in the t-resilient model, where radius(G, t) generalizes
the standard notion of graph radius to the scenarios in which up to t nodes may fail by
crashing. For t = 0, radius(G, 0) is the standard radius of the graph G, and, for the complete
graph Kn, radius(Kn, t) = t+ 1 for every 0 ≤ t < n− 1, and radius(Kn, n− 1) = n− 1. The
radius(G, t) upper bound from [4] for consensus in G in the t-resilient model thus generalizes
the seminal upper bound t+ 1 for consensus in Kn in the same model.

To get an intuition of radius(G, t), let us consider the case of the n-node cycle Cn, for n ≥ 3.
We have κ(Cn) = 2, so we assume t ≤ 1. The radius of Cn is ⌊ n

2 ⌋, i.e., radius(Cn, 0) = ⌊ n
2 ⌋.

For t = 1, let v be the node that crashes. We have radius(Cn, 1) ≥ n − 2, which is the
distance between the two neighbors of v in Cn is v crashes at the first round, preventing them
to communicate directly through v. However, we actually have radius(Cn, 1) = n− 1. Indeed,
v may crash at the first round, yet be capable to send a message to one of its neighbor,
and this message needs n− 2 additional rounds to reach the other neighbor of v. That is,
computing radius(G, t) requires to take into account not only which nodes crash, but when
and how they are crashing — by “how”, it is meant that, for a node v crashing at some
round r, to which neighbors they still succeed to communicate at this round, and to which
they fail to communicate.

Importantly, the algorithm of [4] is oblivious, that is, the output of a node after radius(G, t)
rounds is solely based on the set of pairs (node-identifier, input-value) collected by that node
during radius(G, t) rounds (and not, e.g., from whom, when, and how many times it received
each of these pairs). There are many reasons why to restrict the study to oblivious algorithms.
Among them, oblivious algorithms are simple by design, which is desirable for their potential
implementation. Moreover, they are known to be efficient, as illustrated by the case of the
complete graphs in which optimal solutions can be obtained thanks to oblivious algorithms.
As far as this paper is concerned (and maybe also as far as [4] is concerned) obliviousness
is highly desirable for the design of generic solutions, that is “meta-algorithms” that apply
to each and every graph G. In such algorithms, every node forwards pairs (node-identifier,

XX:2 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

input-value) during a prescribed number of rounds (e.g., during radius(G, t) rounds in the
generic algorithm from [4]), and then decides on an output value according to a simple
function of the set of input values received during these rounds, without having to track of
the sequence of rounds at which each pair was received, and from which neighbor(s). Last
but not least, intermediate nodes do not need to send complex information about the history
of each piece of information transmitted during the execution, hence reducing the bandwidth
requirement of the algorithms.

1.1 Objective
The question of the optimality of the consensus algorithm performing in radius(G, t) rounds
in any fixed graph G for every number t ≤ κ(G) of failures was however left open in [4]. It
was conjectured in [4] that, for every graph G, and for every 0 ≤ t < κ(G), no oblivious
algorithms can solve consensus in G in less than radius(G, t) rounds, but this was only
proved for the specific case of symmetric (a.k.a. vertex-transitive) graphs1. Although the
class of symmetric graphs includes, e.g., the complete graphs Kn, the cycles Cn, and the
d-dimensional hypercubes Qd, a lower bound radius(G, t) for every graph G in this class does
not come entirely as a surprise since all nodes of a symmetric graph have the same eccentricity
(i.e., maximum distance to any other node, generalized to include crash failures). The fact
that all nodes have the same eccentricity implies that they can merely be ordered according
to their identifiers for selecting the output value from the received pairs (node-identifier,
input-value). Instead, if the graph is not symmetric, a node that received a pair (node-
identifier, input-value) after radius(G, t) rounds does not necessarily know whether all the
nodes have received this pair, and thus the choice of the output value from the set of received
pairs is more subtle. Not only the design of an upper bound is made harder, but it also
makes the determination of a strong lower bound more involved. The first question addressed
in this paper is therefore the following: For every graph G, and every non-negative integer
t < κ(G), is there an oblivious algorithm solving consensus in G in less than radius(G, t)
rounds under the t-resilient model (i.e., when up to t nodes may fail by crashing)?

Last but not least, the study in [4] assumed that the number t of failures is smaller that
the connectivity κ(G) of the graph G at hand. We question what can be said about the case
where the number of failures may be larger, that is when t ≥ κ(G), for consensus?

1.2 Our Results
We extend the investigation of the t-resilient model in arbitrary graphs, in various comple-
mentary directions.

Lower Bounds for Consensus. We affirmatively prove the conjecture from [4] that their
consensus algorithm is indeed optimal (among oblivious algorithms) for every graph G, and
not only for symmetric graphs. That is, we show that, for every graph G, no oblivious
algorithms can solve consensus in G in less than radius(G, t) rounds under the t-resilient
model.

This result is achieved by revisiting the notion of information flow graph defined in [4] for
fixing some inaccuracies in the original definition. We present a more robust (an accurate)
definition of information flow graph, and we provide a characterization of the number of

1 A graph G = (V, E) is vertex-transitive if, for every two nodes u ̸= v, there exists an automorphism f
of G (i.e., a permutation f : V → V preserving the edges and the non-edges of G) such that f(u) = v.

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:3

rounds required to solve consensus as a function of some structural property of that graph.
With this characterization at hand, we establish the optimality of the algorithm in [4] by
showing that radius(G, t) rounds are necessary for the information flow graph to satisfy the
desired property required for consensus solvability.

Beyond the Connectivity Threshold. Finally, inspired by [10], we extend the study of
consensus and set agreement in the t-resilient model in arbitrary graphs to the case where
the number t of crash failures is arbitrary, i.e., not necessarily lower than the connectivity
κ(G) of the considered graph G. We show that all our algorithms can be extended to this
framework, at the mere cost of relaxing consensus and k-set agreement to impose agreement
to hold within each connected component of the graph resulting from removing the faulty
nodes from G. Under this somehow unavoidable relaxation, we present extension of the
consensus algorithm from [4] in particular, and of our k-set agreement algorithm in general,
to t-resilient models for t ≥ κ(G), and express the round complexities of these algorithms in
term of a non-trivial extension of the radius notion to disconnected graphs.

1.3 Related Work
Distributed computing in synchronous networks has a long tradition, including the early
studies of the message complexity and round complexity of various tasks such as leader
election, spanning tree constructions, BFS and DFS traversals, etc. (see, e.g., [2, 22]). The
topic has then flourished in the 2000s under the umbrella of the so-called LOCAL and
CONGEST models [19, 24], with the study of numerous graph problems such as coloring,
maximal independent set, minimum-weight spanning tree, etc.

Distributed computing in synchronous fault-prone networks has also a long history, but it
remained for a long time mostly confined to the special case of the message-passing model in
the complete networks. That is, n nodes subject to crash or malicious (a.k.a. Byzantine)
failures are connected as a complete graph Kn in which every pair of nodes has a private
reliable link allowing them to exchange messages. In this setting, a significant amount of
effort has been dedicated to narrowing down the complexity of solving agreement tasks such
as consensus and, more generally, k-set agreement for k ≥ 1. This includes in particular
the issue of early stopping algorithms whose performances depend on the actual number of
failures f experienced during the execution of the algorithm, and not on the upper bound t

on the number of failures. We refer to a sequence of surveys on the matter [5, 25, 27].
Up to our knowledge, it is only recently that this approach has been extended to arbitrary

networks, beyond the case of the complete graph Kn, but solely for crash failures [4, 10].
Our paper is carrying on the preliminary investigations in [4], by extending them from
consensus to k-set agreement, establishing various lower bounds including one demonstrating
the optimality of the consensus algorithm in [4], and extending the analysis to the case where
the number of crashes may exceed the connectivity threshold. The original work in [4] has
been extended to solving consensus when links are subject to crash failures [10]. Several
consensus algorithms were proposed in [10], but their round complexities are expressed
as a function of the so-called stretch, defined as the number of connected components of
the graph after removing the faulty links, plus the sum of the diameters of the connected
components. Instead, the round-complexity of the algorithm in [4] is expressed in term of
the radius, which is a more refined measure. Indeed, we show that the upper bound in [4] is
tight (no multiplicative constants, nor even additive constants). The consensus algorithms
in [10] however extend to the case where failures may disconnect the graph, and the task is
then referred to as “disconnected agreement”. Again, the complexities of the algorithms are

XX:4 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

expressed in term of the stretch, while we shall express the complexity of our local consensus
algorithm as a function of the more refined radius parameter. We actually conjecture that our
local consensus algorithm is optimal (with no multiplicative nor additive constants) for all t,
no matter whether t < κ(G) or t ≥ κ(G). On the other hand, some consensus algorithms
proposed in [10] are early stopping, but the one with round-complexity close to the stretch of
the actual failure pattern is not oblivious, and it uses messages with size significantly larger
than the size of the messages in oblivious algorithms.

The case of omission failures has also attracted a lot of attention. In this context, nodes
are reliable but messages may be lost. This is modeled as a sequence S = (Gi)i≥1 of directed
graphs, where Gi captures the connections that are functioning at round i. The oblivious
message adversary model allows an adversary to choose each communication graph Gi from
a set G and independently of its choices for the other graphs. The nodes know the set G
a priori, but not the actual graph picked by the adversary at each round). We refer to
[11, 23, 28] for recent advances in this domain, including solving consensus. We also refer
to the heard-of model [6, 7], which bears similarities with the oblivious message adversary
model.

The case of transient failures is addressed in the context of self-stabilizing algorithms [15].
As opposed to most distributed algorithms for networks, which start from a given specific
initial configuration, self-stabilizing algorithms must be able to start from any initial configu-
ration (which may result from a corruption of the internal variables of the nodes). Under the
synchronous scheduler, a self-stabilizing algorithm performs in a sequence of synchronous
rounds, just that it must be able to cope with an arbitrary initial state of the system.

Last but not least, we underline the recent trend related to modeling communication
between nodes (under the full-information paradigm) as a topological deformation of the
input simplicial complex, and the computation (i.e., the decision of each node regarding its
output value) as a simplicial map from the deformed input complex to the output simplicial
complex [18]. The KNOW-ALL model [3] has been designed as a first attempt to understand
the LOCAL model through the lens of algebraic topology. In particular, it was shown that
k-set agreement in a graph G known to all the nodes a priori requires r rounds, where r is the
smallest integer such that there exists a k-node dominating set in the r-th transitive closure
of G. A follow-up work [17] minimized the involved simplicial complexes, and extended the
framework to handle graph problems such as finding a proper coloring.

The study of anonymous networks, in which nodes may not be provided with distinct
identifiers, and of asynchronous communication and computing, is beyond the scope of this
paper, and we merely refer the reader to [12, 13, 16, 20, 21] for recent advances in these
domains, as far as computing in (non-necessarily complete) networks is concerned.

2 Model and definitions

In this section, we recall the definition of the (synchronous) t-resilient model for networks,
and the graph theoretical notions related to this model, all taken from [4], as well as the
consensus algorithm presented there.

2.1 The t-resilient model
Let G = (V,E) be an n-node undirected graph, which is also connected and simple (i.e., no
multiple edges, nor self-loops). Each node v ∈ V is a computing entity modeled as an infinite
state machine. The nodes of G have distinct identifiers, which are positive integers. For the
sake of simplifying the notations, we shall not distinguish a node v from its identifier; for

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:5

instance, by “the smallest node” we mean “the node with the smallest identifier”. Initially,
every node knows the graph G, that is, it knows the identifiers of all nodes, and how the
nodes are connected. The uncertainty is thus not related to the initial structure of the
connections, but is only due to the presence of potential failures, in addition to the fact that,
of course, every node is not a priori aware of the inputs of the other nodes.

Computation in G proceeds as a sequence of synchronous rounds. All nodes start
simultaneously, at round 1. At each round, each node sends a message to each of its neighbors
in G, receives the messages sent by its neighbors, and performs some local computation.
Each node may however fail by crashing — when a node crashes, it stops functioning and
never recover. However, if a node v crashes at round r, it may still send a message to a
non-empty subset of its set N(v) of neighbors during round r. For every positive integer
t ≥ 0, the t-resilient model assumes that at most t nodes may crash. A failure pattern is
defined as a set

φ = {(v, Fv, fv) | v ∈ F}

where F ⊂ V is the set of faulty nodes in φ, with 0 ≤ |F | ≤ t, and, for each node v ∈ F , we
use fv to specify the round at which v crashes, and Fv ⊆ N(v) to specify the non-empty set
of neighbors to which v fails to send messages at round fv.

A node v ∈ F such that Fv = N(v) is said to crash cleanly in φ (at round fv). All the
nodes in V ∖ F are the correct nodes in φ. The failure pattern in which no nodes fail is
denoted by φ∅. The set of all failure patterns in which at most t nodes fail is denoted by Φ(t)

all .
In any execution of an algorithm in graph G under the t-resilient model, the nodes know t

and G, but they do not know in advance to which failure pattern they may be exposed. This
absence of knowledge is the source of uncertainty in the t-resilient model.

2.2 Eccentricity, connectivity, and radius
The eccentricity of a node v in G with respect to a failure pattern φ, denoted by ecc(v, φ), is
defined as the minimum number of rounds required for broadcasting a message from v to
all correct nodes in φ. The broadcast protocol is by flooding, i.e., when a node receives a
message at round r, it forwards it to all its neighbors at round r + 1. That is ecc(v, φ) is
the maximum, taken over all correct nodes v′, of the length of a shortest causal path from v

to v′, where a causal path with respect to a failure pattern φ from a node v to a node v′

is a sequence of nodes u1, . . . , uq with u1 = v, uq = v′, and, for every i ∈ {1, . . . , q − 1},
ui+1 ∈ N(ui), ui has not crashed in φ during rounds 1, . . . , i− 1, and if ui crashes in φ at
round i, i.e., if (ui, Fi, i) ∈ φ for some non-empty set Fi ⊆ N(ui), then ui+1 /∈ Fi.

Note that ecc(v, φ) might be infinite, in case v cannot broadcast to all correct nodes in G
under φ. A typical example is when v crashes cleanly at the first round in φ, before sending
any message to any of its neighbors. A more elaborate failure pattern φ in which v fails to
broadcast is φ = {(v,N(v) ∖ {w}, 1), (w,N(w), 2)} where v crashes at round 1, and sends
the message only to its neighbor w, which crashes cleanly at round 2.

The node-connectivity of G, denoted κ(G), is the smallest integer q such that removing q
nodes disconnects the graph G (or reduces it to a single node whenever G is the complete
graph Kn). The following was established in [4].

▶ Proposition 1 (Lemma 1 in [4]). For every graph G, every t < κ(G), every node v, and
every failure pattern φ in the t-resilient model, ecc(v, φ) < ∞ if and only if there exists at
least one correct node that becomes aware of the message broadcast from v.

XX:6 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

Note that, in particular, thanks to proposition 1, if v is correct then ecc(v, φ) < ∞. Let

Φ⋆
v = {φ ∈ Φ(t)

all | ecc(v, φ) < ∞}

denote the set of failure patterns in the t-resilient model in which v eventually manages to
broadcast to all correct nodes. The t-resilient radius is a key parameter defined in [4]:

▶ Definition 2. The t-resilient radius of G is

radius(G, t) = min
v∈V

max
φ∈Φ⋆

v

ecc(v, φ).

2.3 Consensus, oblivious algorithms, and the information flow graph
This section defines consensus, and survey the results in [4] regarding the round-complexity
of oblivious consensus algorithms, which uses the notion of information flow graph. Note
that this latter notion will be revisited, further in the paper.

2.3.1 Oblivious consensus algorithms
In the consensus problem, every node v ∈ V receives an input value xv from a set I of
cardinality at least 2, and every correct node must decide on an output value yv ∈ I such
that (1) yu = yv for every pair {u, v} of correct nodes, and (2) for every correct node v ∈ V ,
there exists u ∈ V (not necessarily correct) such that yv = xu.

Assuming that every node u ∈ V starts broadcasting the pair (u, xu) at round 1, we let
view(v, φ, r) be the view of node v after r ≥ 0 rounds in failure pattern φ, that is, the set
of pairs (u, xu) received by v after r rounds. An algorithm solving consensus is said to be
oblivious if the output yv of every correct node v depends only on the set of values received
by v during the execution of the algorithm. That is, in an r-round oblivious algorithm
executed under failure pattern φ, every node v outputs a value based solely on the set of
pairs (u, xu) ∈ view(v, φ, r) (and not, say, on when each value was first received, or from
which neighbor it was received). The following result was proved in [4].

▶ Proposition 3 (Theorem 2 in [4]). For every graph G and every t < κ(G), consensus in G

can be solved by an oblivious algorithm running in radius(G, t) rounds under the t-resilient
model.

That is, consensus can be solved in the minimal time it takes for a fixed node to broadcast
in all failure patterns (in which it manages to broadcast). Different failure patterns, however,
might have different nodes which are the fastest to broadcast. The consensus algorithm
in [4] works as follows. It selects an ordered set of t+ 1 nodes s1, . . . , st+1 according to the
following rules. Node s1 is a node with smallest eccentricity, i.e., a node that broadcasts the
fastest among all nodes. However, there are failure patterns for which s1 fails to broadcast
(e.g., if s1 crashes cleanly at round 1). Node s2 is a node that broadcasts the fastest for all
failure patterns in which s1 fails to broadcast, that is node s2 is a node that broadcasts the
fastest for all failure patterns in Φ(t)

all ∖ Φ⋆
s1

. Similarly, node s3 is a node that broadcasts the
fastest for all failure patterns in which s1 and s2 fail to broadcast, that is node s3 is a node
that broadcasts the fastest for all failure patterns in Φ(t)

all ∖ (Φ⋆
s1

∪ Φ⋆
s2

). And so on, for every
1 < i ≤ t+ 1, si is a node that broadcasts the fastest for all failure patterns in

Φ(t)
all ∖ ∪j=1,...,i−1Φ⋆

sj
.

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:7

A key property of the sequence s1, . . . , st+1 defined as above is that, for all 1 < i ≤ t+ 1, the
worst-case broadcast time of si over all failure patterns in

Φ(t)
all ∖ ∪j=1,...,i−1Φ⋆

sj

is at most the worst-case broadcast time of si−1 over all failure patterns in

Φ(t)
all ∖ ∪j=1,...,i−2Φ⋆

sj
.

As a consequence, for every i ∈ {1, . . . , t+ 1}, the worst-case broadcast time of si over all
failure patterns in Φ(t)

all ∖ ∪j=1,...,i−1Φ⋆
sj

is at most radius(G, t) rounds.
The algorithm in [4] merely consists of letting all nodes s1, . . . , st+1 broadcast the pairs

(si, xsi
) by flooding during radius(G, t) rounds. Every node u then selects as output the

input xsi
of the node si with smallest index i such that the pair (si, xsi

) was received by
node u. It was shown that this choice guarantees agreement.

2.4 Information flow graph

The lower bound from [4] on the number of rounds for achieving consensus in vertex-
transitive graphs used the core notion of information flow digraph. The (directed) graph
IF(G, r) captures the state of mutual knowledge of the nodes at the end of round r ≥ 1,
assuming every node u broadcasts the pair (u, xu) by flooding throughout the graph G,
starting at round 1.

The vertices of IF(G, r) are all pairs (v, view(v, r, φ)) for v ∈ V and φ ∈ Φ(t)
all in which

v does not crash in φ during the first r rounds. Note that a same vertex of IF(G, r)
can represent both (v, view(v, r, φ)) and (v, view(v, r, ψ)) if v has the same view after r
rounds in φ and ψ.
There is an arc from (u, view(u, r, φ)) to (v, view(v, r, φ)) whenever (u, xu) ∈ view(v, r, φ),
where xv is the input of v.

The connected components of IF(G, r) play an important role, where by connected
component we actually refer to the vertices of a connected component of the undirected
graph resulting from IF(G, r) by ignoring the directions of the arcs. A node v ∈ V of the
communication graph G = (V,E) is said to dominate a connected component C of IF(G, r) if,
for every vertex (u, view(u, r, φ)) ∈ C with u ̸= v there is a vertex (v, view(v, r, φ)) ∈ C with
an arc from (v, view(v, r, φ)) to (u, view(u, r, φ)) in IF(G, r). The following result characterizes
the round-complexity of consensus in G.

▶ Proposition 4 (Theorem 3 in [4]). For every graph G = (V,E) and every t < κ(G),
consensus in G can be solved by an oblivious algorithm running in r rounds under the t-
resilient model if and only if every connected component of IF(G, r) has a dominating node
in V .

It was proved in [4] that, if G is a symmetric graph then no node in V dominates
IF(G, radius(G, t) − 1). Property 4 immediately implies that consensus in G cannot be solved
by an oblivious algorithm running in less than radius(G, t) rounds under the t-resilient model.
Their proof, however, holds only for symmetric graphs, and does not extend to general
graphs.

XX:8 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

000..0 100..0 110..0 . . . 1..100 1..110 1..111
I0 I1 I2 In−2 In−1 In

w1 w2 wn−1 wn

Figure 1 Input configurations I0, . . . , In of a graph G = (V, E), where V = {v1, . . . , vn}.

Remark. The definition of the information flow digraph in [4] actually suffers from incon-
sistencies, and Theorem 3 there is formally incorrect. Roughly, it overlooks the possibility
of deciding on an input of a process that already stopped. The “spirit” of the definition
and the theorem is nevertheless plausible, and the specific consequences mentioned there are
correct. For establishing our lower bound, we had to fix the inaccuracy in the definition of
the information flow digraph, and the bugs in the proof of Theorem 3 of [4]. Concretely, we
introduce a new information flow graph instead of the digraph of [4], and establish a correct
version of Theorem 3 using that definition (cf. Theorem 9). See Section 4 for more details.

3 Detailed description of our results

In this section, we survey our results in detail.

3.1 Lower bounds for consensus
We show that the consensus algorithm in [4] is optimal for every graph G, and not only for
symmetric graphs. Specifically, we establish the following in Section 4.

▶ Theorem 5. For every graph G and every t < κ(G), consensus in G cannot be solved in
less than radius(G, t) rounds by an oblivious algorithm in the t-resilient model.

This result was conjectured in [4], but only proved to be true for symmetric graphs.
The class of symmetric graphs includes cliques, cycles and hypercubes, but remains limited.
Moreover, in symmetric graphs, for every two nodes u and v,

ecc(u,Φ(t)
all) = ecc(v,Φ(t)

all) = radius(G, t),

which implies that a naive algorithm for consensus in which every node outputs the input
received from the node with smallest identifier performs in radius(G, t) rounds. The fact
that radius(G, t) is a tight upper bound for consensus is thus not surprising for the family of
symmetric graphs because, essentially, the choice of the t+ 1 nodes s1, . . . , st+1 defined in
Section 2.3.1 does not matter.

Instead, for an arbitrary graph G, two different nodes may have different eccentricities,
which may differ by a multiplicative factor 2 at least. As a consequence, the choice of the
source nodes s1, . . . , st+1 whose input can be adopted as output by the other nodes matters,
as well as the ordering of these nodes (in case a node receives the input of two different
source nodes).

3.1.1 A naive lower bound
A naive lower bound for the round-complexity of consensus is the maximum, over all failure
patterns, of the time it takes some node to broadcast in the given pattern, obtained by
switching the min and max operator in the definition of radius(G, t), i.e.,

max
φ∈Φ(t)

all

min
v∈V

ecc(v, φ). (1)

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:9

Indeed, for every failure pattern φ, even binary consensus under failure pattern φ cannot be
solved in less than R(φ) = minv∈V ecc(v, φ) rounds. The proof of this claim is by a standard
indistinguishability argument. Specifically, let us assume, for the purpose of contradiction,
that there is an algorithm ALG solving consensus in G = (V,E) under failure pattern φ in
R(φ) − 1 rounds. Let us order the nodes of G as v1, . . . , vn arbitrarily. Let us consider the
input configuration I0 in which all nodes have input 0. For every i = 1, . . . , n, we gradually
change the input configuration as follows (see Figure 1). Since ecc(vi, φ) > R(φ), there exists
a node wi that does not receive the input of vi in ALG. Let us then switch the input of vi

from 0 to 1, and denote by Ii the resulting input configuration. Note that In is the input
configuration in which all nodes have input 1. Note also that, for every i ∈ {1, . . . , n}, node
wi does not distinguish Ii−1 from Ii, and therefore ALG must output the same at wi in both
input configurations. Since, for every i ∈ {1, . . . , n}, all nodes must output the same value
for input configuration Ii, we get that the consensus value returned by ALG for I0 is the
same as for In, which contradicts the validity condition.

It was conjectured in [4] that, in the t-resilient model, consensus needs longer time than
max

φ∈Φ(t)
all

minv∈V ecc(v, φ), and cannot be solved by an oblivious algorithm in less than
radius(G, t) rounds, i.e., the time it takes a fixed node to broadcast. As said before, this
conjecture was however proved only for vertex-transitive graphs.

3.1.2 Sketch of proof of our lower bound

To show that the consensus algorithm in [4] is optimal, i.e., to establish Theorem 5, we use
the characterization of Proposition 4. In fact, we first fix the aforementioned bugs in [4] by
defining the information flow graph, and then establish Proposition 4, a correct version of
their theorem, using this new definition. With this new definition and new proposition at
hand, we show that for every graph G = (V,E) and every t < κ(G), there exists a connected
component of IF(G, radius(G, t) − 1) that has no dominating node in V . To achieve this fact,
we show that for every node v ∈ V there exists a failure pattern φv such that

ecc(v, φv) ≥ radius(G, t),

with some additional desirable properties. Then, we define a notion of successor of any
failure pattern satisfying these desirable properties, which satisfies two key features.

First, a failure pattern and its successor are in the same connected component of
IF(G, radius(G, t) − 1). Here we abuse terminology since the vertices of the informa-
tion flow graph are not failure patterns, but pairs (node, view). What we formally mean
is that the two subgraphs of IF(G, radius(G, t) − 1) induced by all the views in the two
failures patterns are both in the same connected component of IF(G, radius(G, t) − 1).
Second, for every node v ∈ V , there exists a sequence of failure patterns φ0, φ1, . . . , φℓ

such that φ0 = φv, φℓ = φ∅ (the failure pattern in which no failures occur), and for every
i ∈ {0, . . . , ℓ− 1}, φi+1 is the successor of φi.

It follows from these two features that, for every node v ∈ V , φv and φ∅ are in the
same connected component of IF(G, radius(G, t) − 1), namely the connected component of
IF(G, radius(G, t) − 1) containing φ∅. Let C be this connected component. For every node
v ∈ V , since ecc(v, φv) ≥ radius(G, t), we have that v does not dominate C. Therefore, no
nodes dominate C, and our new Proposition 4 thus implies that no oblivious algorithm can
solve consensus in less than radius(G, t) rounds.

XX:10 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

3.2 Beyond the connectivity threshold
The upper bound results for the t-resilient model mentioned above for consensus as in [4]
is under the assumption that t < κ(G) in graph G, that is, the number of failing nodes is
(strictly) smaller than the connectivity of the graph. This assumption is motivated by the
mere observation that a set of κ(G) nodes that, e.g., fails cleanly at the very first round,
might disconnect the graph G, preventing tasks such as consensus to be solved. We show
that, by slightly relaxing consensus, one can still consider the case where t ≥ κ(G), in a
meaningful way, in the sense that if the t failing nodes do not disconnect the graph, then the
standard consensus task is solved.

3.2.1 Local consensus
For any given failure pattern φ, let comp(G,φ) be the set of connected components of G
resulting by removing from G all nodes that fail in φ. If t ≥ κ(G), then the nodes in a
connected component C ∈ comp(G,φ) of G may never hear from the nodes in a connected
component C ′ ̸= C, and vice versa, regardless of the number of rounds. To study consensus
for t ≥ κ(G), we merely relax the agreement condition: Agreement must hold component-wise,
i.e., for each connected component separately, in the spirit of [10].

In other words, under φ, for any connected components C and C ′ of comp(G,φ) all nodes
in C must agree (on a single value for consensus), and all nodes in C ′ must agree, but no
conditions are imposed the two sets of agreement values corresponding to C and C ′. In
particular, for consensus, the nodes in C may agree on x, but the nodes in C ′ may agree
on x′ ̸= x.

The validity condition remains unchanged, that is, every output value must be the input
value of some node. Note however that a node can return an output value which was the
input value of a node from a different connected component.

We refer to this variant of consensus as local, because agreement must hold “locally”, i.e.,
inside each connected component.

Remark. When t < κ(G), consensus and local consensus are the same tasks. More generally,
for every graph G, and for every failure pattern φ ∈ Φ(t)

all , if the nodes failing in φ do not
disconnect G, and an algorithm solving local consensus does solve standard consensus.

3.2.2 Consensus beyond the connectivity threshold
We design a local consensus algorithm for an arbitrary graph G in the t-resilient model, for
every given t, which does not need to be less than the connectivity κ(G) of G. This algorithm
satisfied the following property (see Section 5).

▶ Theorem 6. For every connected graph G = (V,E), and every t ≥ 0, local consensus in G

can be solved by an oblivious algorithm running in radius(G, t) rounds under the t-resilient
model.

In the statement above, radius(G, t) denotes an extension of the notion of t-resilient
radius to the case where t ≥ κ(G), which coincide to the aforementioned notion of radius
whenever t < κ(G). For the purpose of extending the notion of radius beyond the connectivity
threshold, we revisit the notion of eccentricity entirely. Indeed, given a failure pattern φ,
a node v may succeed to broadcast in some connected components but not in all of them.
The control of the way information flow through the graph G with respect to the connected

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:11

components is complex, as the connected components for one failure pattern are typically
different from the connected components for another failure pattern.

Despite these difficulties, we are able to design and analyse an oblivious (and hence
generic) local consensus algorithm. Given a graph G = (V,E), our algorithm performs in
radius(G, t) = minv∈V ecc(v,Φ⋆

v) rounds, where the notion of eccentricity has been redefined
and extended for allowing an arbitrary number t of failures. Again, for t < κ(G), the extended
notion of eccentricity coincides with the notion of eccentricity defined for consensus in [4],
which itself coincide with the graph-theoretical notions of eccentricity for t = 0. We also note
that our extended notion of radius, for all t ≥ 0, provides a fine grain analysis of our local
consensus algorithm, more refined than the notion of stretch defined in [10].

4 Lower bound for consensus

This section is entirely devoted to establishing the following result.

▶ Theorem 5. For every graph G and every t < κ(G), consensus in G cannot be solved in
less than radius(G, t) rounds by an oblivious algorithm in the t-resilient model.

For this purpose, we first establish a consistent notion of information flow graph, which
can then be used to characterize consensus solvability, and we fix the bugs in the proof of
Theorem 3 in [4] (see Proposition 4) resulting from inconsistencies in the original definition of
the information flow digraph. Using our new characterization, we establish our lower bound.

4.1 Information flow graph revisited
The main issue with the notion of information flow digraph IF(G, r) as defined in [4] comes
from the fact that this directed graph includes only vertices (v, view(v, r, φ)) where v has not
crashed in φ during rounds 1, . . . , r. The main issue is related to the concept of domination,
as defined in [4]. A vertex v dominates a connected component C of IF(G, r) if the set
{(v, view(v, r, φ)) | φ ∈ Φ(t)

all } dominates C. This is too restrictive, as the correct nodes may
agree on the input value of a node v that has already crashed. It follows that, for some
failure pattern φ, the vertex (v, view(v, r, φ)) may not be present in IF(G, r) (and therefore
cannot dominate any other vertices of IF(G, r)), whereas the nodes that are correct in φ may
agree on the input value of v. The characterization of Theorem 3 in [4] is therefore incorrect,
even if the “spirit” of the characterization remains conceptually valid, as we shall show in
this section.

To provide an illustration of the problems resulting from the original definition of
information flow digraph in [4], let us clarify that this definition was aiming for capturing
any subset Φ ⊆ Φ(t)

all of failure patterns (for instance the subset Φ of failure patterns in which
nodes crash cleanly), in which case only the failure patterns φ ∈ Φ are considered. Let us
then consider the scenario displayed on Fig. 2. The graph G is a 6-node path plus a universal
node v. The set Φ = {φ} contains a single failure pattern φ in which v crashes cleanly at
the second round.

Fig. 2 displays IF(G, 1, {φ}) and IF(G, 2, {φ}) as defined in [4] (the direction of the arcs
are omitted, each edge corresponding to two symmetric arcs). A vertex (v, view(v, r, φ))
is present in the former but not in the latter, and thus, as opposed to what one might
expect since nodes acquire more and more information as time passes, IF(G, 2, {φ}) is not a
denser super graph of IF(G, 1, {φ}) nor it includes more vertices (with larger views), as some
vertices present in IF(G, 1, {φ}) may disappear in IF(G, 2, {φ}). In fact, node v dominates
IF(G, 1, {φ}), but it does not dominate IF(G, 2, {φ}). Therefore, when analyzing G with the

XX:12 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

v

u1 u3u2 u4 u6u5

G = (V, E)

(v, {u1, …, u6})

(u1, {v, u1, u2})

(u3, {v, u2, u3, u4})
(u2, {v, u1, u2, u3})

(u4, {v, u3, u4, u5})
(u5, {v, u4, u5, u6})

(u6, {v, u5, u6})

𝖨𝖥(G,1,{φ})

(u3, {v, u1, u2, u3, u4, u5}) (u6, {v, u4, u5, u6})

𝖨𝖥(G,2,{φ})

Figure 2 The information flow graph IF(G, r, {φ}) as defined in [4] for r = 1 and r = 2, where φ is
the failure pattern in which v crashes cleanly at the second round. No node dominates IF(G, 2, {φ})
(right), even though consensus is solvable in G under φ in 2 rounds.

set {φ} of failure patterns using the characterization theorem in [4], consensus should be
solvable in 1 round but not in 2 rounds!

We propose below a more robust notion of information flow graph (which is not directed
anymore). The reader familiar with the algebraic topology interpretation of distributed
computing [18] will recognize the mere 1-skeleton of the protocol complex after r rounds. For
the purpose of fixing the issues in [4], we introduce IF(G, r,Φ) for an arbitrary set of failure
patterns Φ ⊆ Φ(t)

all .

▶ Definition 7. The information flow graph of a communication graph G = (V,E) after
r ≥ 0 rounds for a set Φ ⊆ Φ(t)

all , t ≥ 0, of failure patterns is the graph IF(G, r,Φ) defined as
follows.

The vertices of IF(G, r,Φ) are all pairs (v, view(v, r, φ)) for v ∈ V and φ ∈ Φ, where v is
correct in φ.
There is an edge between (v1, w1) and (v2, w2) in IF(G, r,Φ) whenever there exists φ ∈ Φ
such that w1 = view(v1, r, φ) and w2 = view(v2, r, φ)

Remark. Unlike the definition of [4], this new notion of information-flow graph is not limit
limited to t ≤ κ(G).

Note that a same vertex (v, ω) of IF(G,Φ, r) can represent both (v, view(v, r, φ)) and
(v, view(v, r, ψ)) if v has the same view after r rounds in φ ∈ Φ and ψ ∈ Φ. Note also that,
for every φ ∈ Φ, the set

config(G, r, φ) = {(v, view(v, r, φ)) ∈ IF(G, r,Φ) | v ∈ V }

is a clique in IF(G, r,Φ). The connected components of IF(G, r,Φ) play an important role,
w.r.t. the following concept of domination.

▶ Definition 8. A node v ∈ V of the communication graph G = (V,E) is said to dominate a
connected component C of IF(G, r,Φ) if, for every φ ∈ Φ and every u ∈ V ,

(u, view(u, r, φ)) ∈ C =⇒ (v, xv) ∈ view(u, r, φ).

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:13

Note that only correct nodes need to be dominated, as

(u, view(u, r, φ)) ∈ C ⊆ IF(G, r,Φ)

implies that u is correct at round r. On the other hand, any node may be dominating.
The following result characterizes the round-complexity of consensus in G by fixing the
aforementioned inaccuracies in the definition of the information flow graph in [4], with impact
on the proof of their characterization theorem (Theorem 3 in [4]).

▶ Theorem 9. For every graph G = (V,E), every t ≥ 0, and every set of failure patterns
Φ ⊆ Φ(t)

all , consensus in G can be solved by an oblivious algorithm running in r rounds under
the t-resilient model with failure patterns in Φ if and only if every connected component of
IF(G, r,Φ) has a dominating node in V .

Proof. Let us first show that if every connected component of IF(G, r,Φ) has a dominating
node in V then consensus in G can be solved by an oblivious algorithm running in r rounds.
For every connected component C of IF(G, r,Φ), let vC ∈ V be a node of G that dominates C.
The algorithm proceeds as follows. Every node vC broadcasts by flooding during r rounds.
After r rounds, every correct node u considers its view, denoted by view(u). A crucial point
is that view(u) may not be sufficient for u to determine what is the actual failure pattern
φ ∈ Φ experienced during the execution, merely because one may have

view(u) = view(u, r, φ) = view(u, r, ψ)

for two different failure patterns φ,ψ in Φ. However, view(u) is sufficient to determine the
connected component C of IF(G, r,Φ) to which (u, view(u)) belongs. Node u outputs the
input xvC

of node vC .
To establish correctness of this algorithm, observe first that (vC , xvC

) belongs to the
view of node u. To see why, let φ ∈ Φ, and let us consider the execution of the algorithm
under φ. Let C be the connected component of (u, view(u, r, φ)). Since vC dominates C,
the mere definition of domination implies that (vC , xvC

) ∈ view(u, r, φ). As a consequence,
the algorithm is well defined. To show agreement, let u′ ̸= u be another correct node in φ.
By definition of the information flow graph, there is an edge between (u, view(u, r, φ)) and
(u′, view(u′, r, φ)), and thus these two vertices belong to the same connected component C,
and both output the same value xvC

.

For the other direction, we show the contrapositive. That is, we let C be a connected
component of IF(G, r,Φ) that is not dominated, and we aim at showing that there are no
oblivious consensus algorithms in G running in r rounds. Let us assume, for the purpose
of contradiction, that there exists an oblivious consensus algorithm ALG in G running in r

rounds.

▷ Claim 10. Let (u, view(u, r, φ)) and (u′, view(u′, r, φ′)) be two vertices of C, where u and
u′ need not be different, nor do φ and φ′. For the same input configuration, node u outputs
the same value in ALG under φ as node u′ under φ′.

To see why this claim holds, observe that, since (u, view(u, r, φ)) and (u′, view(u′, r, φ′))
belong to the same connected component C, there is a sequence

(v0, view(v0, r, ψ0)), . . . , (vk, view(vk, r, ψk))

of vertices of C such that

(v0, view(v0, r, ψ0)) = (u, view(u, r, φ)), (vk, view(vk, r, ψk)) = (u′, view(u′, r, φ′)),

XX:14 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

and, for every i ∈ {0, . . . , k− 1}, there is an edge between the two vertices (vi, view(vi, r, ψi))
and (vi+1, view(vi+1, r, ψi+1)) in IF(G, r,Φ). Note that, for every i ∈ {0, . . . , k}, node vi is
correct in ψi since (vi, view(vi, r, ψi)) belongs to the information flow graph. For every i ∈
{0, . . . , k−1}, the presence of an edge between (vi, view(vi, r, ψi)) and (vi+1, view(vi+1, r, ψi+1))
implies that there exists χ ∈ Φ such that

(vi, view(vi, r, ψi)) = (vi, view(vi, r, χ)),

and

(vi+1, view(vi+1, r, ψi+1)) = (vi+1, view(vi+1, r, χ)).

As a consequence, since ALG is a consensus algorithm, ALG outputs the same value at vi+1
under ψi+1 as it outputs at vi under ψi, which is the value outputted by ALG under χ. Since
this holds for every i ∈ {0, . . . , k − 1}, we get that, in particular, u outputs the same value
in φ as u′ in φ′, as claimed.

For establishing a contradiction, let us enumerate the n nodes of G as u0, . . . , un−1 in
arbitrary order. Since C is not dominated, for every node ui, i ∈ {0, . . . , n− 1}, there exists
a vertex (vi, view(vi, r, φi)) of C such that (ui, xui

) /∈ view(vi, r, φi), where vi is correct in
φi. For i ∈ {0, . . . , n}, let us denote by Ii the input configuration in which the n− i nodes
u0, . . . , un−(i+1) have input 0, and all the other nodes have input 1. Thus, in particular, I0
is the configuration in which all nodes have input 0, and In is the configuration in which
all nodes have input 1. Since, for every i ∈ {0, . . . , n− 1}, (ui, xui

) /∈ view(vi, r, φi), node ui

does not distinguish Ii from Ii+1 under φi, and thus ALG must output the same at ui for
both configurations.

Since consensus imposes that all (correct) nodes output the same value, this means that,
for every i ∈ {0, . . . , n− 1}, all nodes output the same in ALG for Ii and Ii+1 under φi. By
Claim 10, all nodes output the same for Ii under φi as they do for Ii+1 under φi+1. It follows
that all nodes output the same for I0 under φ0 as for In under φn. This is a contradiction
as all nodes must output 0 for I0, whereas all nodes must output 1 for In. ◀

Notation. For a fixed upper bound t on the number of failures, for every graph G, and for
every integer r ≥ 0, we denote by IF(G, r) the information flow graph for the set of all failure
patterns in the t-resilient model, that is,

IF(G, r) = IF(G, r,Φ(t)
all).

4.2 Proof of Theorem 5
To prove Theorem 5, we define the notion of successor of a failure pattern. Given φ ∈ Φ(t)

all ,
we say that a node u is crashing last in φ if there exists a triple (u, Fu, fu) ∈ φ (i.e., u crashes
in φ), and, for every (v, Fv, fv) ∈ φ, fu ≥ fv.

▶ Definition 11. Let φ ∈ Φ(t)
all , let (u, Fu, fu) ∈ φ, and assume that u is crashing last in φ.

A successor of φ with respect to u is a failure pattern

succ(φ, u) =
(
φ∖ {(u, Fu, fu)}

)
∪ {(u, F ′

u, f
′
u)}

where F ′
u and f ′

u are defined as follows (see Fig. 3):

1. If Fu contains only faulty nodes in φ, then f ′
u = fu + 1, and F ′

u = N(u) ∖ {w} for some
arbitrary correct neighbor w of u.

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:15

φ

φ′

Case 1: f ′
u = fu + 1

w

u

Fu

w

u

F ′
u

Case 2: f ′
u = fu + 1

w
u

Fu

w
u

F ′
u

Case 3: f ′
u = fu

w
u

Fu

w
u

F ′
u

Figure 3 A successor φ′ of a failure pattern φ with respect to node u. Red nodes are faulty in φ

and white nodes are correct in it.

2. If Fu contains exactly one correct node w in φ, then f ′
u = fu + 1, and F ′

u = N(u).
3. If Fu contains at least two correct nodes in φ, then f ′

u = fu, and F ′
u = Fu ∖ {w} for some

arbitrary correct node w ∈ Fu.

Note that the correct node w in Definition 11 is well defined as the number of failures
satisfies t < κ(G) ≤ δ(G) ≤ deg(u), where δ(G) is the minimum degree of the nodes in G.
Intuitively, succ(φ, u) is identical to φ, except that u fails at round fu + 1, or it still fails at
round fu but sends its message to one more correct neighbor before crashing.

Note also that a failure pattern may have different successors, which depends on the
choice of the node u that crashes last, and on the choice of the correct neighbor w of u in
the first and third cases of Definition 11. A correct neighbor w of u in Definition 11 is called
a witness of the pair (φ,φ′).

Still using the notations of Definition 11, let us set f ′′
u = f ′

u in case 1, and f ′′
u = fu in

cases 2 and 3. At the end of round f ′′
u , there is at most one correct node with different views

in φ and succ(φ, u). The only correct node may have different views in φ and φ′ = succ(φ, u)
at the end of round f ′′

u is the witness of the pair (φ,φ′). Before applying the notion of
successor to derive our lower bound, let us observe the following.

▶ Lemma 12. For every node v, there exists a failure pattern φ ∈ Φ⋆
v such that no node

u ̸= v fails at round 1 in φ, and ecc(v, φ) ≥ radius(G, t).

Proof. By definition of the radius, for every v ∈ V , there exists ψ ∈ Φ⋆
v such that ecc(v, ψ) ≥

XX:16 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

radius(G, t). The failure pattern φ is identical to ψ, except that, for every node u ̸= v that
crashes at round 1 in ψ, u crashes cleanly at round 2 in φ. We have ecc(v, φ) = ecc(v, ψ)
because every node that crashes later in φ than in ψ does not send any message to their
neighbors after round 1 which may contain information received from v. Thus ecc(v, φ) ≥
radius(G, t). ◀

The premises of the following lemma are justified by Lemma 12.

▶ Lemma 13. Let φ ∈ Φ(t)
all such that (1) at most one node crashes at round 1, and (2) if

there exists a node v that crashes at round 1 in φ, then φ ∈ Φ⋆
v (i.e., v broadcasts despite the

fact that it crashes at round 1). For every successor φ′ of φ, the following holds:

at most one node crashes at round 1 in φ′;
if there is a node v that crashes at round 1 in φ′, then v crashes at round 1 in φ as well;
there exists a correct node with the same view in φ and φ′ at the end of round radius(G, t) − 1.

Proof. Let φ′ be a successor of φ, such that the entry (u, Fu, fu) of φ is replaced by the
entry (u, F ′

u, f
′
u) in φ′. Let w be a witness for the pair (φ,φ′) with respect to u. Using the

notations from Definition 11, let f ′′
u = f ′

u in Case 1, and f ′′
u = fu in Cases 2 and 3.

After f ′′
u rounds, the only correct node that may have different views in φ and φ′ is w.

Since u is a node crashing last in φ, we get that, after round f ′′
u , w needs the same number

of rounds in φ and φ′ for broadcasting to all correct nodes. Indeed, all nodes that have not
crashed in φ nor in φ′ up to round f ′′

u included satisfy: (1) they are correct nodes in both φ
and φ′, (2) they have the same view in both φ and φ′, and (3) the subgraph of G induced by
the correct nodes in φ is identical to the subgraph of G induced by the correct nodes in φ′.

Let R = radius(G, t). We consider two cases, depending on whether w broadcasts or not.
Let us first consider the case where, assuming that w starts broadcasting at round f ′′

u + 1,
w cannot broadcast to all correct nodes during rounds f ′′

u + 1, . . . , R− 1 under the failure
patterns φ′ and φ. That is, under φ′, some node s does not receive view(w, f ′′

u , φ
′) during

rounds f ′′
u + 1, . . . , R − 1. As a consequence, this node s does not detect any difference

between view(w, f ′′
u , φ) and view(w, f ′′

u , φ
′). It follows that s has the same view in φ and φ′

at the end of R− 1 rounds.
Consider now the case where, assuming that w starts broadcasting at round f ′′

u + 1,
w does succeed to broadcast to all correct nodes during rounds f ′′

u + 1, . . . , R− 1 under the
failure patterns φ′ and φ. Since no node fails after round f ′′

u in both φ and φ′, a causal path
from w to a node s in rounds f ′′

u + 1, . . . , R− 1 is also a causal path from s to w in rounds
f ′′

u + 1, . . . , R − 1. At the end of round R − 1, every correct node can thus send to w its
view at the end of round f ′′

u . Since no node s ̸= v fails at round 1, every node s ̸= v does
send its input to some correct neighbor during round 1. Therefore, s ∈ view(w,R − 1, φ)
and s ∈ view(w,R − 1, φ′). Since φ ∈ Φ⋆

v, we get that, at the end of round f ′′
u , there

exists a correct node x that heard from v, i.e., such that v ∈ view(x, f ′′
u , φ). At the end of

round R− 1, this node x will send view(x, f ′′
u , φ) to w, so v ∈ view(w,R− 1, φ). Similarly,

v ∈ view(w,R− 1, φ′). As a consequence, view(w,R− 1, φ) = view(w,R− 1, φ′), and w has
a same view in both failure patterns after R− 1 rounds, as claimed.

Furthermore, at most one node v crashes at round 1 in φ′, and φ′ ∈ Φ⋆
v, as desired. ◀

Using the characterization of Theorem 9 of consensus solvability based on the information-
flow graph, it is sufficient to prove the following result for establishing our lower bound.

▶ Lemma 14. The information-flow graph IF(G, radius(G, t) − 1) has a connected component
that is not dominated by any node of V .

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:17

Proof. Let R = radius(G, t). For every node v ∈ V , we denote by φv a failure pattern in
Φ⋆

v such that φv contains no node u ̸= v that fails at round 1, and ecc(v, φv) ≥ R. The
existence of φv is guaranteed by Lemma 12. Borrowing the notation from [4], for every
failure pattern φ, and every r ≥ 1, let

config(φ, r) = {(v, view(v, φ, r)) ∈ V (IF(G, r)) | v ∈ V is active in φ at round r},

where by v is active in φ at round r, we mean that v has not crashed in φ during rounds
1, . . . , r. It was proved in [4] (see Lemma 4 in there) that, for every failure pattern φ, and
every r ≥ 1, the subgraph of IF(G, r) induced by the vertices of config(φ, r) is connected.

We now show that, for every v ∈ V , config(φv, R− 1) and config(φ∅, R− 1) are contained
in the same connected component of IF(G,R− 1). Roughly, we shall construct a sequence
of intermediate failure patterns from φv to φ∅ such that, for every two consecutive failure
patterns ψ and ψ′ in the sequence, there is a correct node with the same view in ψ and ψ′.
Note that the existence of this node implies that the subgraph of IF(G,R− 1) induced by
config(ψ,R− 1), and the subgraph of IF(G,R− 1) induced by config(ψ′, R− 1) are included
in the same connected component of IF(G,R− 1).

Let us order the crashing nodes in φv in a decreasing order of the rounds at which they
crash where ties are broken arbitrarily, and let

u1, . . . , utv

be the resulting sequence. We have tv ≤ t and, for every i ∈ {1, . . . , tv − 1}, fui
≥ fui+1 . Let

us construct a sequence

S = ψ0, . . . , ψℓ

of failure patterns, where ψ0 = φv, and ψℓ = φ∅. This sequence is itself the concatenation of
sub-sequences Si for i = 1, . . . , tv such that

S1 = ψ0, . . . , ψℓ1 ,

and, for every i ∈ {2, . . . , tv},

Si = ψℓi−1+1, . . . , ψℓi

with 0 ≤ ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓtv
= ℓ. For every sub-sequence Si, i ∈ {1, . . . , tv}, and for every

j ∈ {ℓi−1 + 1, . . . , ℓi − 1}, we set

ψj+1 = succ(ψj , ui).

Moreover, the first failure pattern ψℓi−1+1 in the sequence Si is obtained from φv by removing
the crashing nodes u1, . . . , ui−1, i.e., these nodes are correct in ψℓi−1+1. The last failure
pattern ψℓi of the sequence Si is when the node ui that crashes last in ψℓi fails at round R.

▷ Claim 15. For any two consecutive failure patterns ψj and ψj+1 in S, there exists a
correct node wj with the same view in both patterns after R− 1 rounds, that is,

view(wj , ψj , R− 1) = view(wj , ψj+1, R− 1).

To see why the claim holds, let us first assume that ψj and ψj+1 belong to a same sub-
sequence Si. In this case, the claim directly follows from Lemma 13. If ψj and ψj+1 do not
belong to a same sub-sequence Si, then ψj is the last element of a sub-sequence Si, and ψj+1
is the first element of sub-sequence Si+1, then the claim follows from the fact that the sets
of nodes crashing in ψj and ψj+1 during round r are the same, for every r ∈ {1, . . . , R− 1}.
This completes the proof of Claim 15.

XX:18 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

u c v

(u, {u}) (u, {u, c})

(v, {v}) (v, {v, c})

(c, {c, v})(c, {c, u}) (c, {c, u, v})

G = (V, E)

𝖨𝖥(G,1,Φ(1)
all)

(u, {u}) (u, {u, c})

(v, {v}) (v, {v, c})

(c, {c, v})(c, {c, u}) (c, {c, u, v})

 for 𝖨𝖥(G, r, Φ(1)
all) r ≥ 2

(v, {c, u, v})

(u, {c, u, v})

Figure 4 The information flow graphs of a 3-path, after one round and r ≥ 2 rounds, where t = 1
node may fail, potentially disconnecting the graph since κ(G) = 1.

From Claim 15, for any two consecutive failure patterns ψj and ψj+1 in S, config(ψj) and
config(ψj+1) belong to the same connected component of IF(G,R− 1). To wrap up, we have
shown that, for every v ∈ V , there exists a connected component of IF(G,R− 1) containing
both config(φ∅) and config(φv). Recall that φv is a failure pattern in Φ⋆

v satisfying that it
contains no node different from v that fails at round 1, and ecc(v, φv) ≥ R. At the end of
round R− 1, no node dominates the component that contains config(φ∅) because, for every
node v ∈ V , v cannot dominates config(φv, R− 1). ◀

Theorem 5 directly follows from Lemma 14 by application of Theorem 9.

5 Consensus with arbitrary number of failures

In this section, we extend the consensus algorithm of [4] by considering the case where the
number t of failures is unbounded. In particular, t might be larger than the connectivity
κ(G) of the graph G. The subgraph of G induced by the set of correct nodes may thus
be disconnected, and be split into several connected components. As an example, consider
the 3-node path G = (V,E) displayed in Fig. 4, and t failures. The information flow graph
IF(G, r,Φ(t)

all) is connected for every r ≥ 1, but is not dominated. Our characterisation
theorem, Theorem 9, applies even for t ≥ κ(G). It follows that consensus in G cannot be
solved under Φ(t)

all even for t = 1. The same holds for any graph whenever the failure pattern
may disconnect the graph. We therefore consider a weaker variant of consensus, called local
consensus, adapted to possibly disconnected graphs.

5.1 Local consensus
For every failure pattern φ, we define the connected components of φ as the connected
components of the subgraph of G obtained by removing from G all nodes that crash in φ.
The set of connected components of φ is denoted by comp(G,φ).

▶ Definition 16 (Local Consensus). Local consensus in a graph G = (V,E) is the problem in
which every node v ∈ V starts with an input value xv, and every correct node v ∈ V must
decide an output value yv such that, (1) for every failure pattern φ, for every connected
component C ∈ comp(G,φ), and for every two correct nodes u and v in C, yu = yv, and
(2) for every correct node v ∈ V , there exists u ∈ V such that yv = xu.

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:19

In other words, local consensus weakens the agreement condition by requiring agreement
in each connected components, instead of globally among all correct nodes. However, the
validity condition remains the same: every output value of any node v must be equal to the
input value of some node u, which may or may not be in the same connected component of
the actual failure pattern. In particular, for a failure pattern in which t > κ(G) nodes fail
but do not disconnect the graph, the definition local consensus coincides with the standard
definition of consensus.

▶ Lemma 17. For every n-node graph G, and every non-negative integer t, local consensus
is solvable in G under the t-resilient model.

Proof. A simple algorithm proceeds in n− 1 rounds, during which every node v broadcasts
the pair (v, xv). That is, at the first round, every node v sends (v, xv) to all its neighbors,
and, at each subsequent round, every node v forwards to its neighbors all the pairs (u, xu)
received during the previous round. After round n− 1, every node v outputs yv = xu where
u is the smallest node (i.e., the node with smallest identifier) received during the execution
of the algorithm. The validity condition is satisfied by construction, and we just need to
check the agreement condition. For this purpose, let us assume that the execution of the
algorithm is subject to failure pattern φ. Let C ∈ comp(G,φ), let v, v′ be two distinct nodes
in C, and let (u, xu) be some pair received by v. We claim that v′ has also received the same
pair (u, xu).

To see why, recall that a causal path in φ from a node w to a node w′ is a sequence
of nodes a1, . . . , ak with a1 = w, ak = w′, and, for every i ∈ {1, . . . , k − 1}, ai+1 ∈ N(ai),
ai has not crashed in φ during rounds 1, . . . , i − 1, and if ai crashes in φ at round i, i.e.,
if (ai, Fi, i) ∈ φ for some non-empty Fi ⊆ N(ai), then ai+1 /∈ Fi. The straightforward but
crucial observation is that, for every two nodes w,w′, if there is a causal path in φ from w

to w′, then this path has length at most n− 1 (i.e., contains at most n nodes).
If v has received the pair (u, xu), then there is a causal path in φ from u to v. Since C is

connected and contains only correct nodes in φ, it follows that there is also a causal path
from u to v′. Therefore, v′ has also received the pair (u, xu). In other words, the sets of
pairs (u, xu) received by the two nodes v and v′ are identical. Therefore, yv = yv′ , and the
agreement condition is thus satisfied, which completes the proof. ◀

To describe a faster algorithm solving local consensus in any fixed n-node graph G under
the t-resilient model (for any fixed t ≤ n− 1), we need to adapt the notion of eccentricity to
failure patterns disconnecting the graph.

5.2 Eccentricity revisited

Given a failure pattern φ ∈ Φ(t)
all , and a connected component C ∈ comp(G,φ), the eccentricity

of v ∈ V in C under φ, denoted by ecc(v, φ,C), is the number of rounds required to broadcast
from v to all nodes in C under φ. If some nodes in C cannot receive a message broadcast from
v under φ, then ecc(v, φ, C) = ∞. The following result is a straightforward generalization of
Proposition 1 to the setting in which the graph may be disconnected.

▶ Lemma 18. For every node v, every failure pattern φ, and every connected component
C ∈ comp(G,φ), ecc(v, φ,C) < ∞ if and only if there exists at least one node w ∈ C that
can receive a message broadcast from v under φ. In other words, either all nodes of C can
receive a message broadcast from v under φ, or none can.

XX:20 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

Proof. Let v ∈ V , φ ∈ Φ(t)
all , and C ∈ comp(G,φ) such that some node w ∈ C can receive

the message broadcast from v under φ. Let w′ ∈ C be any node. By definition, there is a
path P from w to w′ in C. Moreover, all nodes in C are correct in φ. Therefore, w′ will
eventually receive the message broadcast from v, via w, along the path P . ◀

We can then define

ecc(v, φ) = max{ecc(v, φ, C) | C ∈ comp(G,φ) and ecc(v, φ, C) < ∞},

and, for a set Φ ⊆ Φ(t)
all of failure patterns,

ecc(v,Φ) = max{ecc(v, φ) | φ ∈ Φ and ecc(v, φ) < ∞}.

However, we want to refine the notion of eccentricity to include the connected components
instead of just focusing on the failure patterns. For this purpose, let

Ω(t)
all = {(φ,C) | φ ∈ Φ(t)

all and C ∈ comp(G,φ)}.

For any Ω ⊆ Ω(t)
all , we then define

ecc(v,Ω) = max{ecc(v, φ, C) | (φ,C) ∈ Ω and ecc(v, φ,C) < ∞}}

Finally, the radius of G in the t-resilient model is then defined from the eccentricity as for
the case t < κ(G), that is,

radius(G, t) = min
v∈V

ecc(v,Ω(t)
all).

5.3 The local consensus algorithm
Similarly to the consensus algorithm in [4] under the assumption t < κ(G), our algorithm for
local consensus in the case t ≥ κ(G) constructs an ordered sequence of t+ 1 nodes as follows.
For every node v ∈ V , let

Ω∞
v = {(φ,C) ∈ Ω(t)

all | ecc(v, φ,C) = ∞}, and Ω⋆
v = Ω(t)

all ∖ Ω∞
v .

▶ Lemma 19.
⋂

v∈V Ω∞
v = ∅.

Proof. Let us assume for the purpose of contradiction that there exists (φ,C) ∈
⋂

v∈V Ω∞
v .

C is a connected component in comp(G,φ), thus C ̸= ∅. Let u ∈ C. Since C is connected
and contains only correct nodes in φ, we have ecc(u, φ,C) < ∞, a contradiction. ◀

We now have all ingredients to define our algorithm. Let us construct a sequence of nodes
s1, s2, . . . iteratively as follows. Let

s1 = argmin
v∈V

ecc(v,Ω⋆
v).

In other words, we have ecc(s1,Ω⋆
s1

) = ecc(s1,Ω(t)
all) = radius(G, t). Now, for i ≥ 2, we set

si+1 = argmin
v∈V ∖{s1,...,si−1}

ecc(v,Ω∞
s1

∩ · · · ∩ Ω∞
si

∩ Ω⋆
v),

until one get sr such that Ω∞
s1

∩ . . . ∩ Ω∞
sr

= ∅. Note that r is well defined as, thanks to
Lemma 19, ∩v∈V Ω∞

v = ∅. Our algorithm then performs as follows:

1. Every node u broadcasts (u, xu) during radius(G, t) = ecc(s1,Ω(t)
all) = ecc(s1,Ω∗

s1
) rounds.

2. Every node v outputs yv = xsi where si is the node in the core sequence with smallest
index i for which (si, xsi

) ∈ view(v, radius(G, t)).

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:21

5.4 Proof of correctness
We establish Theorem 6 by proving the correctness of our local consensus algorithm.

▶ Theorem 6. For every connected graph G = (V,E), and every t ≥ 0, local consensus in G

can be solved by an oblivious algorithm running in radius(G, t) rounds under the t-resilient
model.

Proof. The main argument demonstrating the correctness of the core-based algorithm is the
fact that, for every i ∈ {1, . . . , r},

ecc(si,Ω∞
s1

∩ . . . ∩ Ω∞
si−1

∩ Ω⋆
si

) ≤ ecc(s1,Ω(t)
all), (2)

where Ω∞
s1

∩ . . . ∩ Ω∞
si−1

= ∅ for i = 1. Indeed, let us first assume that Eq. (2) holds. Then,
since the sequence s1, . . . , sr that defines our algorithm satisfies

Ω∞
s1

∩ . . . ∩ Ω∞
sr

= ∅,

we have that every correct node hears from at least one node si, 1 ≤ i ≤ r, and thus
termination is guaranteed. The validity condition holds by construction. For the agreement
condition, let us assume that the algorithm performs under failure pattern φ, and let
C ∈ comp(G,φ). There exists i ∈ {1, . . . , r} such that

C ∈ Ω∞
s1

∩ . . . ∩ Ω∞
si−1

∩ Ω⋆
si
,

and thus si broadcasts in C under (G,φ). By lemma 18, no node in C hear from any node
in s1, . . . , si−1. Moreover, since

ecc(si, φ, C) ≤ ecc(si,Ω∞
s1

∩ . . . ∩ Ω∞
si−1

∩ Ω⋆
si

) ≤ radius(G, t),

we get that all nodes in C hear from si. Therefore, all nodes in C output xsi .
It remains to prove Eq. (2). The proof goes by induction on i = 1, . . . , r. The base case

i = 1 is a tautology. For the induction case, let 1 ≤ i < r, and let us assume that, for all
1 ≤ j ≤ i,

ecc(sj ,Ω∞
s1

∩ . . . ∩ Ω∞
sj−1

∩ Ω⋆
sj

) ≤ ecc(s1,Ω(t)
all).

We aim at proving that ecc(si+1,Ω∞
s1

∩ . . .∩ Ω∞
si

∩ Ω⋆
si+1

) < ecc(s1,Ω(t)
all . Since i < r, we have

V ∖ {s1, . . . , si} ≠ ∅. Let w ∈ V ∖ {s1, . . . , si} at minimum distance to the set {s1, . . . , si}
such that Ω∞

s1
∩ . . . ∩ Ω∞

si
∩ Ω⋆

w ̸= ∅. There exists φ ∈ Φ(t)
all , C ∈ comp(G,φ), and w′ ∈ C

such that

ecc(w,Ω∞
s1

∩ . . . ∩ Ω∞
si

∩ Ω⋆
w) = dist(w,w′, φ)

where dist(w,w′, φ) denotes the smallest number of rounds required such that w′ hear from
w in φ. It is sufficient to prove that ecc(w,Ω∞

s1
∩ . . . ∩ Ω∞

si
∩ Ω⋆

w) ≤ ecc(s1,Ω(t)
all). For this

purpose, let P be a shortest (causal) path from w to w′ in φ. There exists a neighbor z of w
such that

Ω∞
s1

∩ . . . ∩ Ω∞
si

∩ Ω⋆
z = ∅.

For every u ∈ V , let fu be the rounds at which node u fails in φ. So, let us consider another
failure pattern φ′ that is identical to φ except that (1) z sends message to w at the first
round in φ′, and (2) for every node u in P that receives messages from w at round fu − 1

XX:22 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

s1, . . . , si z w

w’

C

u’ u P

P’
P’

P" P"

Figure 5 Illustration of the proof of Theorem 6.

in φ, u fails one round later in φ′ compared to φ. In φ′, the information can flow from z

to w, and then follow path P for reaching w′. Note that comp(G,φ′) = comp(G,φ). Also,
observe that, under φ′, z can broadcast in component C, so there exist at least one node
in {s1, . . . , si} that can broadcast in C because Ω∞

s1
∩ . . . ∩ Ω∞

si
∩ Ω⋆

z = ∅. Let sj be such a
node, say the one with smallest index j. By this choice, we have ecc(sj , C) < ∞.

Let us now prove that

ecc(sj , w
′, φ′) ≥ dist(z, w′, φ′). (3)

Let P ′ be a shortest causal path from sj to w′ in φ′. Since sj cannot broadcast in C under φ,
there exists at least one node u belonging to both P and P ′ that fails in φ′ later than in φ,
and u receives messages from sj at round fu under φ′. Since u fails one round later in φ′

compared to φ, u receives messages from w at round fu − 1 in φ. So, u receives messages
from z at the end of round fu in φ′. From node u, a message can follow the path P ′ to
reach w′. As a consequence, dist(sj , w

′, φ′) ≥ dist(z, w′, φ′), as claimed. Similarly, let us
prove that

dist(z, w′, φ′) > dist(w,w′, φ). (4)

Let P ′′ be a shortest causal path from z to w′ in φ′. Again, there must exist at least
one node u′ in both P and P ′′ that fails in φ′ later than in φ, and u′ receives messages
from z at round fu′ under φ′. Note that u′ receives message from w at round fu′ − 1 in φ.
Therefore, in φ, a message from w can follow the path P” from u′ for reaching w′. As a
consequence, the path P ′′ from u′ to w′ is at least as long as the path P from u′ to w′. In
addition, the path P ′′ from z to u′ is (strictly) longer than the path P from w to u′. Thus,
dist(z, w′, φ′) > dist(w,w′, φ).

Combining Eq. (3) and (4), we get dist(sj , w
′, φ′) > dist(w,w′, φ). By the definition of sj ,

we have C ∈ Ω∞
s1

∩ . . . ∩ Ω∞
sj−1

∩ Ω⋆
sj

. As a consequence,

ecc(sj ,Ω∞
s1

∩ . . . ∩ Ω∞
sj−1

∩ Ω⋆
sj

) ≥ ecc(sj , φ, C)

≥ dist(sj , w
′, φ′)

> dist(w,w′, φ)
= ecc(w,Ω∞

s1
∩ . . . ∩ Ω∞

si
∩ Ω⋆

w).

By the definition of si+1, and thanks to the induction hypothesis, we get that

ecc(s1,Ω(t)
all) ≥ ecc(si+1,Ω∞

s1
∩ . . . ∩ Ω∞

si
∩ Ω⋆

si+1
),

which completes the proof of the induction steps, and thus the proof of Theorem 6. ◀

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:23

6 Conclusion

In this paper, we have completed the picture for consensus in the t-resilient model for
arbitrary graphs. That is, we have proved that the consensus algorithm in [4] is optimal,
i.e., for every graph G and t < κ(G), consensus can be solved by an oblivious algorithm
performing in radius(G, t) rounds under the t-resilient model, and no oblivious algorithms
can solve consensus in G in less than radius(G, t) rounds under the t-resilient model.

Moreover, we have extended the study of consensus beyond the connectivity threshold.
Specifically, we defined the local consensus, generalizing consensus. We also designed and
analyzed the generic algorithm for this task, which we conjecture to be optimal among
oblivious algorithms. The technical difficulty of establishing optimality of our algorithm
for the local variant of consensus yields from the fact that we miss an analog of our
characterization theorem (cf. Theorem 9 in Section 4) even for local consensus.

Open Problem. Is there an oblivious algorithm solving local consensus in graph G in less
than radius(G, t) rounds under the t-resilient model for some graph G, for some t ≥ κ(G)?

Our results open a vast domain for further investigations. In particular, what could
be said for sets of failure patterns Φ distinct from Φ(t)

all ? The case Φclaen of clean failures,
for which there are no known generic consensus algorithms applying to arbitrary graphs,
is particularly intriguing. Another intriguing and potentially challenging area for further
research is exploring scenarios where no upper bounds on the number of failing nodes are
assumed, by concentrating solely on the set Φconnect of failure patterns that do not result in
disconnecting the graph. The main difficulties is that basic results such as Lemma 1 in [4]
(cf. Proposition 1) do not hold anymore in this framework. Indeed, some ill behaviors that
do not occur when the number of failures is bounded from above by the connectivity of the
graph, or when the problems are considered in each connected component separately, pop up
when the number of failures is arbitrarily large yet preserving connectivity.

Finally, the design of early-stopping algorithms in the t-resilient model for arbitrary
graphs is also highly desirable. The early-stopping algorithms in [10] are very promising, but
their analysis must be refined to a grain finer than the stretches of the failure patterns, by
focusing on, e.g., eccentricities and radii.

References
1 Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that t-resilient consensus

requires t+ 1 rounds. Information Processing Letters, 71(3-4):155–158, 1999.
2 Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and

advanced topics, volume 19. John Wiley & Sons, 2004.
3 Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and

Corentin Travers. A topological perspective on distributed network algorithms. Theoretical
Computer Science, 849:121–137, 2021.

4 Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and
Corentin Travers. Synchronous t-resilient consensus in arbitrary graphs. Inf. Comput.,
292:105035, 2023.

5 Armando Castañeda, Yoram Moses, Michel Raynal, and Matthieu Roy. Early decision and
stopping in synchronous consensus: A predicate-based guided tour. In 5th International
Conference on Networked Systems - (NETYS), volume 10299 of LNCS, pages 206–221, 2017.

6 Bernadette Charron-Bost and Stephan Merz. Formal verification of a consensus algorithm in
the heard-of model. Int. J. Softw. Informatics, 3(2-3):273–303, 2009.

XX:24 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

7 Bernadette Charron-Bost and André Schiper. The heard-of model: computing in distributed
systems with benign faults. Distributed Comput., 22(1):49–71, 2009.

8 Soma Chaudhuri. Towards a complexity hierarchy of wait-free concurrent objects. In Pro-
ceedings of the Third IEEE Symposium on Parallel and Distributed Processing, pages 730–737.
IEEE, 1991.

9 Soma Chaudhuri, Maurice Erlihy, Nancy A. Lynch, and Mark R. Tuttle. Tight bounds for
k-set agreement. J. ACM, 47(5):912–943, September 2000. doi:10.1145/355483.355489.

10 Bogdan S. Chlebus, Dariusz R. Kowalski, Jan Olkowski, and Jedrzej Olkowski. Disconnected
agreement in networks prone to link failures. In 25th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), volume 14310 of LNCS, pages 207–222.
Springer, 2023.

11 Étienne Coulouma and Emmanuel Godard. A characterization of dynamic networks where con-
sensus is solvable. In International Colloquium on Structural Information and Communication
Complexity, pages 24–35. Springer, 2013.

12 Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and Nayuta Yanagisawa. A
characterization of t-resilient colorless task anonymous solvability. In 25th International
Colloquium on Structural Information and Communication Complexity (SIROCCO), volume
11085 of LNCS, pages 178–192. Springer, 2018.

13 Carole Delporte-Gallet, Hugues Fauconnier, and Andreas Tielmann. Fault-tolerant consensus
in unknown and anonymous networks. In 29th IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 368–375, 2009.

14 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

15 Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
16 Pierre Fraigniaud, Patrick Lambein-Monette, and Mikaël Rabie. Fault tolerant coloring of

the asynchronous cycle. In 36th International Symposium on Distributed Computing (DISC),
volume 246 of LIPIcs, pages 23:1–23:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

17 Pierre Fraigniaud and Ami Paz. The topology of local computing in networks. In 47th
International Colloquium on Automata, Languages, and Programming (ICALP), volume 168
of LIPIcs, pages 128:1–128:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

18 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013.

19 Juho Hirvonen and Jukka Suomela. Distributed Algorithms. Aalto University, Finland, 2023.
20 Giuseppe Antonio Di Luna and Giovanni Viglietta. Computing in anonymous dynamic

networks is linear. In 63rd IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 1122–1133, 2022.

21 Giuseppe Antonio Di Luna and Giovanni Viglietta. Optimal computation in leaderless and
multi-leader disconnected anonymous dynamic networks. In 37th International Symposium on
Distributed Computing (DISC), volume 281 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

22 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
23 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. Topological characterization of consensus

under general message adversaries. In Proceedings of the 2019 ACM symposium on principles
of distributed computing, pages 218–227, 2019.

24 David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.
25 Michel Raynal. Consensus in synchronous systems: A concise guided tour. In 9th Pacific Rim

International Symposium on Dependable Computing (PRDC), pages 221–228. IEEE, 2002.
26 Michel Raynal. Fault-tolerant Agreement in Synchronous Message-passing Systems. Synthesis

Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2010.

https://doi.org/10.1145/355483.355489

P. Fraigniaud, M. H. Nguyen, and A. Paz XX:25

27 Michel Raynal and Corentin Travers. Synchronous set agreement: A concise guided tour. In
12th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC), pages
267–274, 2006.

28 Kyrill Winkler, Ami Paz, Hugo Rincon Galeana, Stefan Schmid, and Ulrich Schmid. The time
complexity of consensus under oblivious message adversaries. Algorithmica, pages 1–32, 2024.

	1 Introduction
	1.1 Objective
	1.2 Our Results
	1.3 Related Work

	2 Model and definitions
	2.1 The t-resilient model
	2.2 Eccentricity, connectivity, and radius
	2.3 Consensus, oblivious algorithms, and the information flow graph
	2.3.1 Oblivious consensus algorithms

	2.4 Information flow graph

	3 Detailed description of our results
	3.1 Lower bounds for consensus
	3.1.1 A naive lower bound
	3.1.2 Sketch of proof of our lower bound

	3.2 Beyond the connectivity threshold
	3.2.1 Local consensus
	3.2.2 Consensus beyond the connectivity threshold

	4 Lower bound for consensus
	4.1 Information flow graph revisited
	4.2 Proof of Theorem 5

	5 Consensus with arbitrary number of failures
	5.1 Local consensus
	5.2 Eccentricity revisited
	5.3 The local consensus algorithm
	5.4 Proof of correctness

	6 Conclusion

