
HAL Id: hal-04799384
https://hal.science/hal-04799384v1

Submitted on 22 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The topology of local computing in networks
Pierre Fraigniaud, Ami Paz

To cite this version:
Pierre Fraigniaud, Ami Paz. The topology of local computing in networks. Journal of Applied and
Computational Topology, 2024, 8 (4), pp.1069-1098. �10.1007/s41468-024-00185-6�. �hal-04799384�

https://hal.science/hal-04799384v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The Topology of Local Computing in Networks
Pierre Fraigniaud
Institut de Recherche en Informatique Fondamentale, CNRS and Université Paris Cité, France
pierre.fraigniaud@irif.fr

Ami Paz
Laboratoire Interdisciplinaire des Sciences du Numérique, CNRS and Université Paris-Saclay, France
ami.paz@lisn.fr

Abstract
For more than three decades, distributed systems have been described and analyzed using topological
tools, primarily using two techniques: protocol complexes and directed algebraic topology. In both
cases, the considered computational model generally assumes communication via shared objects
(typically a shared memory consisting of a collection of read-write registers) or message-passing
enabling direct communication between any pair of processes. This paper aims to examine the use
of protocol complexes in the study of network computing. In this case, processes are located at the
network nodes and communicate by exchanging messages only along the network’s edges (i.e., not
every pair of processes can directly communicate).

There are several reasons why applying the topological approach to network computing can
be challenging, and a prominent one is that node identifiers yield protocol complexes whose sizes
grow exponentially with the size of the underlying network. However, many of the problems studied
in this context are of local nature, and their definitions do not depend on the identifiers or the
network size. We leverage this independence to meet the above challenge and present local protocol
complexes, whose sizes do not depend on the network size. As an application of the “compacted”
protocol complexes, we reformulate the celebrated lower bound of Ω(log∗ n) rounds for 3-coloring
the n-node ring in the topological framework.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed computing, distributed graph algorithms, combinatorial topology

Related Version A preliminary version of this work was presented in ICALP 2020

Funding Pierre Fraigniaud: Supported by ANR Project DUCAT (ref. ANR-20-CE48-0006)

Acknowledgements We are grateful to the reviewers of the Journal of Applied and Computational
Topology for their valuable comments

ar
X

iv
:2

00
3.

03
25

5v
2

 [
cs

.D
C

]
 2

0
M

ar
 2

02
4

mailto:pierre.fraigniaud@irif.fr
mailto:ami.paz@lisn.fr

P. Fraigniaud and A. Paz 1

1 Context and Objective

Several techniques for formalizing distributed computing based on algebraic topology have
emerged in the last decades, including the study of complexes capturing all possible global
states of the systems at a given time [12], and the study of the (di)homotopy classes of
directed paths representing the execution traces of concurrent programs [8]. We refer to [11]
for a recent attempt to reconcile the two approaches. This paper is focusing on the first
approach, based on the study of complexes.

Protocol Complexes. A generic methodology for studying distributed computing through
the lens of topology has been set by Herlihy and Shavit [16]. This methodology has played
an important role in distributed computing, mostly for establishing impossibility results and
time lower bounds [6, 10,16,23], but also for establishing time upper bounds [1, 7, 17]. It is
based on viewing distributed computation as a topological deformation of an input space.
More specifically, recall that a simplicial complex K is a collection of non-empty subsets of a
finite set V , downward closed under inclusion, i.e., for every σ ∈ K, and every non-empty
σ′ ⊂ σ, it holds that σ′ ∈ K. Every σ ∈ K is called a simplex, and every v ∈ V is called a
vertex. For instance, an undirected graph G = (V,E) with E ⊆

(
V
2
)
, can be viewed as the

complex K = {{v} : v ∈ V } ∪E on the set V of vertices. A sub-complex of a complex K is a
subset of simplices of K forming a complex. The dimension of a simplex is one less than the
number of its elements. A facet of a complex K is a maximal simplex of K, that is, a simplex
not contained in any other simplex. E.g., the facets of a graph are its edges and its isolated
nodes (viewed as singleton sets). We note that a set of facets uniquely defines a complex.

The set of all possible input (resp., output) configurations of a distributed system can be
viewed as a simplicial complex, called input complex (resp., output complex), and denoted
by I (resp., O). A vertex of I (resp., O) is a pair (p, x) where p is a process name, and x is
an input (resp., output) value. For instance, the input complex of binary consensus in an
n-process system with process names p1, . . . , pn is:

I∥ =
{{

(pi, xi) : i ∈ I, xi ∈ {0, 1} for every i ∈ I
}

: I ⊆ [n], I ̸= ∅
}
,

with [n] = {1, . . . , n}, and the output complex is:

O∥ =
{{

(pi, y) : i ∈ I
}

: I ⊆ [n], I ̸= ∅, y ∈ {0, 1}
}
.

One can check that I∥ and O∥ are indeed collections of non-empty subsets of a finite set,
downward closed under inclusion. A distributed computing task is then specified as a carrier
map ∆ : I → 2O, i.e., a function ∆ that maps every input simplex σ ∈ I to a sub-complex
∆(σ) of the output complex, satisfying that, for every σ, σ′ ∈ I, if σ ⊆ σ′ then ∆(σ) is a
sub-complex of ∆(σ′). The carrier map ∆ is describing the output configurations that are
legal with respect to the input configuration σ. For instance, the specification of consensus
is, for every σ = {(pi, xi) : i ∈ I, xi ∈ {0, 1}} ∈ I∥,

∆∥(σ) =
{ {

{(pi, 0) : i ∈ I}, {(pi, 1) : i ∈ I}
}

if ∃ i, j ∈ I, xi ̸= xj ;{
{(pi, y) : i ∈ I}

}
if ∀ i ∈ I, xi = y.

Note that the specification of consensus given here is very general, i.e., ∆ is specified for
every simplex σ ∈ I∥. This enables, e.g., to handle crash failures. In absence of failures, the
specification of a task can be done just by specifying ∆ for the facets in the input complex.

2 The Topology of Local Computing in Networks

In the topological framework, computation is modeled by a protocol complex that evolves
with time, where the notion of “time” depends on the computational model at hand. The
protocol complex at time t, denoted by P(t), captures all possible states of the system at
time t. Typically, a vertex of P(t) is a pair (p, s) where p is a process name, and s is a
possible state of p at time t. A set {(pi, si) : i ∈ I} of such vertices, for ∅ ≠ I ⊆ [n], forms a
simplex of P(t) if the states si, i ∈ I, are mutually compatible, that is, if {si : i ∈ I} forms a
possible global state for the processes in the set {pi : i ∈ I} at time t.

A crucial point is that an algorithm that outputs in time t induces a mapping δ : P(t) → O.
Specifically, if the process pi with state si at time t outputs yi, then δ maps the vertex
(pi, si) ∈ P(t) to the vertex δ(pi, si) = (pi, yi) in O. For the task to be correctly solved, the
mapping δ must preserve the simplices of P(t), and must agree with the specification ∆ of the
task. That is, δ must map simplices to simplices, and if the configuration {(pi, si), i ∈ I} of a
distributed system is reachable at time t starting from the input configuration {(pi, xi), i ∈ I},
then it must be the case that

{δ(pi, si), i ∈ I} ∈ ∆({(pi, xi), i ∈ I}).

The set of configurations reachable in time t stating from an input configuration σ ∈ I is
denoted by Ξt(σ). In particular, Ξt : I → 2P(t) is a carrier map.

Fundamental Lemma. The framework defined by Herlihy and Shavit [16] enables to
characterize the power and limitation of distributed computing, thanks to the following
generic result, which can be viewed as the basis of distributed computing within the topological
framework. Let us consider some (deterministic) distributed computing model, assumed
to be full information, that is, every process communicates its entire history at each of its
communication steps. The following result connects solvability of a task by an algorithm in
a given model with the existence of a mapping of a specific form between the topological
complexes corresponding to this task and this model (see [5, 12,13,15,16] for instantiations
of this result for different computational models).

▶ Lemma 1. A task (I,O,∆) is solvable in time t if and only if there exists a simplicial
map δ : P(t) → O such that, for every σ ∈ I, δ(Ξt(σ)) ⊆ ∆(σ).

Again, beware that the notion of time in the above theorem depends on the computational
model. The topology of the protocol complex P(t), or, equivalently, the nature of the carrier
map Ξt, depends on the input complex I, and on the computing model at hand. For instance,
wait-free computing in asynchronous shared memory systems induces protocol complexes
by a deformation of the input complex, called chromatic subdivisions [12] and depicted in
Figure 1(a). Similarly, t-resilient computing may introduce holes in the protocol complex,
in addition to chromatic subdivisions, see Figure 1(b). More generally, the topological
deformation Ξt of the input complex caused by the execution of a full information protocol
in the considered computing model entirely determines the existence of a decision map δ :
P(t) → O, which makes the task (I,O,∆) solvable or not in that model.

Topological Invariants. The typical approach for determining whether a task (e.g., consen-
sus) is solvable in t rounds goes through identifying topological invariants, i.e., properties of
complexes that are preserved by simplicial maps. Specifically, the approach consists in:
1. Identifying a topological invariant, i.e., a property satisfied by the input complex I, and

preserved by Ξt;

P. Fraigniaud and A. Paz 3

p1

p3p2

{13}{2}{12
}{3

}

{23}{1}
{2}{3}{1}

{1}{3}{2}{1}
{2}

{3}

{1}{23}

{3}{12}{2}{13}

{123}

{3}{1}{2}{2}
{1}

{3}

{3}{2}{1}

{13}{2}{12
}{3

}

{23}{1}

{123}

(a) (b)

p1 p1

p1

p1

p1

p1

p2
p2

p2

p2
p2

p2

p3

p3

p3

p3

p3

p3

Figure 1 (a) A chromatic subdivision of a 3-process simplex; (b) Subdivision for 1-resiliency;
a triangle labeled, e.g., {i}{jk} corresponds to the case in which pi writes and reads the memory
without seeing pj and pk, while pj and pk saw pi when they read after they wrote, and they also
saw each other; all possible interleavings for one write-read instruction are displayed.

2. Checking whether this invariant, which must be satisfied by the sub-complex δ(P(t)) of
the output complex O, does not contradict the specification ∆ of the task.

For instance, in the case of binary consensus, the input complex I∥ is a sphere. One
basic property of spheres is being path-connected (i.e., there is a path in I∥ between any
two vertices). As mentioned earlier, shared-memory wait-free computing corresponds to
subdividing the input complex [12]. Therefore, independently from the length t of the
execution, the protocol complex P(t) is a chromatic subdivision of the sphere I∥, and thus it
remains path-connected. On the other hand, the output complex O∥ of binary consensus is
the disjoint union of two complexes O0 and O1, where Oy =

{
{(i, y) : i ∈ I}, I ⊆ [n], I ̸= ∅

}
for y ∈ {0, 1}. Since simplicial maps preserve connectivity, it follows that δ(P(t)) ⊆ O0 or
δ(P(t)) ⊆ O1. As a consequence, δ cannot agree with ∆∥, as the latter maps the simplex
{(i, 0), i ∈ [n]} to O0, and the simplex {(i, 1), i ∈ [n]} to O1. Therefore, consensus cannot be
achieved wait-free, regardless of the number t of rounds.

The fact that connectivity plays a significant role in the inability to solve consensus in
the presence of asynchrony and crash failures is known since the original proof of the FLP
theorem [9] in the early 1980s. However, the relation between k-set agreement and higher
dimensional forms of connectivity (i.e., the ability to contract high dimensional spheres)
was only established ten years later [16,23]. We refer to [12] for numerous applications of
Lemma 1 to various models of distributed computing, including asynchronous crash-prone
shared-memory or fully-connected message passing models. In particular, for tasks such as
renaming, identifying the minimal number t of rounds enabling a simplicial map δ to exist is
currently the only known technique for upper bounding their time complexities [1].

Network Computing. Recently, Castañeda et al. [5] applied Lemma 1 to synchronous
fault-free computing in networks, that is, to the framework in which processes are located
at the vertices of a simple (no multiple edges, no loops) n-node undirected graph G, and
can exchange messages only along the edges of that graph. They mostly focus on input-
output tasks such as consensus and set-agreement, in a simplified computing model, called
KNOW-ALL, specifying that every process is initially aware of the name and the location of

4 The Topology of Local Computing in Networks

all the other processes in the network. As observed in [5], synchronous fault-free computing
in the KNOW-ALL model preserves the facets of the input complex, and does not subdivide
them. However, scissor cuts may occur between adjacent facets during the course of the
computation, that is, the protocol complex P(t) is obtained from the input complex I by
partially separating facets that initially shared a simplex. Figure 2 illustrates two types of
scissor cuts applied to the sphere, corresponding to two different communication networks.
The positions of the cuts depend on the structure of the graph G in which the computation
takes place, and determining the precise impact of the structure of G on the topology of the
protocol complex is a nontrivial challenge, even in the KNOW-ALL model.

(a) (b) (c)

Figure 2 (a) The input complex of binary consensus for three processes; (b) The scissor cuts for
the consistently directed 3-process cycle C3 after one round; (c) The scissor cuts for the directed
3-process star S3, where edges are directed from the center to the leaves, after one round.

Instead, we aim at analyzing classical graph problems (e.g., coloring, independent set,
etc.) in the standard LOCAL model [22] of network computing, which is weaker than the
KNOW-ALL model, and thus allows for more complicated topological deformations. In the
LOCAL model, every node is initially aware of solely its identifier (which is unique in the
network), and its input (e.g., for minimum weight vertex cover or for list-coloring), all nodes
wake up synchronously, and compute in locksteps. The LOCAL model is an ideal model for
studying locality in the context of network computing [22].

In addition to the fact that the topological deformations of the protocol complexes
strongly depend on the structure of the network, another obstacle that makes applying the
topological approach to the LOCAL model even more challenging is the presence of process
identifiers. Indeed, the model typically assumes that the node IDs are taken from a range
[N] where N = poly(n). As a consequence, independently from the potential presence of
other input values, the size of the complexes (i.e., their number of vertices) may become
as large as

(
N
n

)
n!, since there are

(
N
n

)
ways of choosing n IDs, and n! ways of assigning the

n chosen IDs to the n nodes of G (unless G presents symmetries). For instance, Figure 2
assumes the KNOW-ALL model, hence fixed IDs. Redrawing these complexes assuming that
the three processes can pick arbitrary distinct IDs as in the LOCAL model, even in the small
domain {1, 2, 3, 4}, would yield a cumbersome figure with 24 nodes. Note that the presence
of IDs also results in input complexes that may be topologically more complicated than
pseudospheres, even for tasks such as consensus.

Importantly, the fact that the IDs are not fixed a priori, and may even be taken from a
range exceeding [n], is inherent to distributed network computing. Indeed, this framework
aims at understanding the power and limitation of computing in large networks, from LANs
to the whole Internet, where the processing nodes are assigned arbitrary IDs taken from a
range of values which may significantly exceed the number of nodes in the network.

Objective. To sum up, while the study of protocol complexes has found numerous ap-
plications in the context of fault-tolerant message-passing or shared-memory computing,
extending this theory to network computing faces a difficulty caused by the presence of

P. Fraigniaud and A. Paz 5

arbitrary IDs, which are often the only inputs to the processes [22]. The objective of this
paper is to show how the combinatorial blowup caused by the presence of IDs in network
computing can be avoided, at least as far as local computing is concerned.

2 Our Results

We show how to bypass the aforementioned exponential blowup in the size of the complexes,
that would result from a straightforward application of Lemma 1 for analyzing the com-
plexity of tasks in networks. Our result holds for a variety of problems, including classical
graph problems such as vertex and edge-coloring, maximal independent set (MIS), maximal
matching, etc. More specifically, it holds for the large class of locally checkable labeling (LCL)
tasks [21] on bounded-degree graphs. These are tasks for which it is possible to locally
verify the correctness of a solution, and thus they are sometimes viewed as the analog of
NP in the context of computing in networks. An LCL task is described by a finite set of
labels, and a local description of how these labels can be legally assigned to the nodes of a
network. Our local characterization theorem is strongly based on a seminal result by Naor
and Stockmeyer [21] who showed that the values of the IDs do not actually matter much for
solving LCL tasks in networks, but only their relative order does.

We prove an analog of Lemma 1, but where the size of the complexes involved in the
statement is independent of the size of the networks. Specifically, the size of the complexes in
our characterization theorem depends solely on the maximum degree d (number of neighbors)
in the network, the number of labels used for the description of the task, and the number of
rounds (time) of the considered algorithm for solving that task. In particular, the identifiers
are taken from a bounded-size set, even if the theorem applies to tasks defined on networks
with arbitrarily large number n of nodes, and for identifiers taken from an arbitrarily large
range [N]. We denote by Kd,[R] the fact that the facets of K have dimension d, and that
the IDs in it are taken from the set [R] = {1, . . . , R}, and we let Kd = Kd,∅. In addition,
π : Kd,[R] → Kd denotes the mapping that removes the IDs of the vertices. Every LCL task
in networks with maximum degree d can be expressed topologically as a task (Id,Od,∆)
where Id and Od are complexes of dimension d. Our main result is the following.

▶ Theorem 2 (A simplified version of Theorem 6). For every LCL task T = (Id,Od,∆) on
graphs of maximum degree d, and for every t ≥ 0, there exists R ∈ N such that the following
holds. The task T is solvable in t rounds in the LOCAL model if and only if there is a
simplicial map δ : P(t)

d,[R] → Od such that, for every facet σ ∈ Id,[R], δ(Ξt(σ)) ⊆ ∆(π(σ)).

Figure 3 provides a rough description of the commutative diagram corresponding to
the brute force application of Lemma 1 to LCL tasks, and of the commutative diagram
corresponding to Theorem 2. Note that Lemma 1, which corresponds to the left diagram
in Figure 3, involves global complexes with (n− 1)-dimensional facets, whose vertices are
labeled by IDs in an arbitrarily large set [N]. In contrast, the complexes corresponding
to Theorem 2, which correspond to the right diagram, are local complexes, with facets of
constant dimension, and vertices labeled with IDs in a finite set whose size is constant w.r.t.
the number of nodes n in the network.

As an application of Theorem 2, we reformulate the celebrated Ω(log∗ n) lower bound
rounds for 3-coloring the n-node ring-shaped network by Linial [20], in the algebraic topology
framework (see Corollary 7).

Reducing the size of the protocol complex (and the other simplicial complexes involved)
is standard in the highly studied case of colorless tasks [3, 14]. This is a class of tasks where

6 The Topology of Local Computing in Networks

In−1,[N] P(t)
n−1,[N]

On−1,[N]

Ξt

∆ δ

Id,[R] P(t)
d,[R]

Id Od

Ξt

∆

π δ

Figure 3 The commutative diagrams of Lemma 1 (left), and Theorem 2 (right).

processes can adopt each other’s input and output values, such as consensus, set agreement
and approximate agreement. However, we stress that in our context of network computing
and LCL tasks, almost all interesting tasks are not colorless, which requires the use of another
tool — local complexes.

3 Models and Definitions

We study networks modeled by simple, undirected n-node graphs, denoted G = (V,E). The
degree of a node is the number of its neighbors, and we are particularly interested in d-regular
graphs, where each node has degree d. A graph is connected if there is a path between every
two nodes in it. For d ≥ 2, we denote by Gd be the class of connected simple undirected
d-regular graphs. A star is a graph composed of a center node that is a neighbor of all other
nodes, and no additional edge; it can also be seen as a rooted tree of depth 1. Given an
n-node graph G, we study the collection of n stars defined by each node and its neighbors.

Our study cases involve graph problems, where each node must be assigned a label
satisfying specific conditions. A proper c-coloring of a graph is a function λ : V → {1, . . . , c}
such that for every pair of adjacent nodes u, v, it holds that λ(u) ̸= λ(v). In the distributed
setting, we want each node u to compute its color λ(u), so that the resulting coloring is
proper.

An independent set is a set S ⊆ V of node such that no two nodes in S are neighbors.
Such an independent set is maximal if no node outside of S can be added to it without
violating the independence condition. An independent set S can be represented by its
indicator function λ : V → {0, 1}, where λ(u) = 1 if and only if u ∈ S. In the distributed
setting, maximal independent set (MIS) is the task of assigning each node a Boolean value
such that the set of all nodes assigned 1 forms a maximal independent set.

3.1 The LOCAL model
The LOCAL model was introduced more than a quarter of a century ago (see, e.g., [20–22])
for studying which tasks can be solved locally in networks, that is, which tasks can be solved
when every node is bounded to collect information only from nodes in its vicinity. Specifically,
the LOCAL model states that the processors are located at the nodes of a connected simple
graph G = (V,E) modeling a network. All nodes are fault-free, they wake up simultaneously,
and they execute the same algorithm. Computation proceeds in synchronous rounds, where
a round consists of the following three steps performed by every node: (1) sending a message
to each neighbor in G, (2) receiving the messages sent by the neighbors, and (3) performing
local computation. There are no bounds on the size of the messages exchanged at every
round between neighbors, and there are no limits on the individual computational power or
memory of the nodes. These assumptions enable the design of unconditional lower bounds on
the number of rounds required for performing some task (e.g., for providing the nodes with a

P. Fraigniaud and A. Paz 7

proper coloring), while the vast majority of the algorithms solving these tasks do not abuse
of these assumptions [24], that is, they exchange small (i.e., polylogarithmic size) messages,
and perform efficient (i.e., poly-time) individual computations.

Every node in the network has an identifier (ID) which is supposed to be unique in
the network. In n-node networks, the IDs are supposed to be in a range 1, . . . , N where
N ≫ n typically holds (most often, N = poly(n)). The absence of limits on the amount of
communication and computation that can be performed at every round implies that the
LOCAL model enables full-information protocols, that is, protocols in which, at every round,
every node sends all the information it acquired during the previous rounds to its neighbors.
Therefore, for every t ≥ 0, and every graph G, a t-round algorithm allows every node in G

to acquire a local view of G, which is a ball of radius t in G centered at that node. A view
includes the inputs and the IDs of the nodes in the corresponding ball. It follows that a
t-round algorithm in the LOCAL model can be considered as a function from the set of views
of radius t to the set of output values.

3.2 Locally Checkable Labelings (LCL)
A locally checkable labeling (LCL) [21] is a graph problem on regular graphs that can be
defined using a set L of node-labels, and a set of labeled stars called good stars. For d ≥ 2,
an LCL for d-regular graphs involves labeling the nodes of a graph G = (V,E) ∈ Gd with a
labeling λ : V → L such that every star in G (defined by a node v ∈ V and its neighbors) is
assigned labels by λ in a way that forms a good star.

For example, a proper c-coloring in Gd can be described by the labels {1, . . . , c} and the
collection of good stars where the center node has a color different from the colors of the
leaves. Similarly, a maximal independent set (MIS) in Gd can be described by the label set
{0, 1} and the collection of degree-d stars where if the center node is labeled 1 then all the
leaves are labeled 0 (independence), and if the center node is labeled 0 then at least one leaf
is labeled 1 (maximality). Other tasks such as variants of coloring, or (2, 1)-ruling set1 can
be described similarly, by a finite number of properly labeled stars.

Formally, given a finite set L of labels, we denote by SL
d the set of all labeled stars

resulting from labeling each node of the (d+ 1)-node star by some label in L. An LCL is
then defined by a finite set L of labels, and a set S ⊆ SL

d of good stars; the stars in SL
d \ S

are called bad. The computational task defined by an LCL (L,S) consists, for every node of
every graph G ∈ Gd, of computing a label in L for each node in G such that each resulting
labeled star in G is isomorphic to a star in S. In other words, the objective of every node is
to compute a label in L such that every resulting labeled star in G is good. It is undecidable,
in general, whether a given LCL task has an algorithm performing in O(1) rounds in the
LOCAL model [21].

More generally, LCL tasks include tasks in which nodes have inputs, potentially of some
restricted format. For instance, this is the case of the task consisting of reducing c-coloring
to MIS in the n-node cycle Cn, studied in the next section. In this case, an LCL task is
described by a quadruple (Lin,Sin,Lout,Sout) where Lin and Lout are the input and output
labels, respectively. The set of stars Sin can often be simply viewed as a promise stating that
every star of the input graph G belongs to Sin, and the set Sout is the target set of good
stars.

1 Recall that an (α, β)-ruling set in a graph G = (V, E) is a set R ⊆ V such that, for any node v ∈ V
there is a node u ∈ R in distance at most β from v, and any two nodes in R are at distance at least α
from each other.

8 The Topology of Local Computing in Networks

In its full generality, the framework of LCL tasks can be extended by replacing stars
by balls of radius t > 1, for capturing more problems, like (α, β)-ruling set for large α’s or
β’s. They can also be extended to non-regular graphs with bounded maximum degree d.
However, up to extending the set of labels, all such tasks can be reformulated in the context
of stars and regular graphs [4]. To get the intuition of why this is true, consider the task
in which every node must compute a label in {T, F} such that every node labeled F has a
node labeled T at distance at most k, for some fixed k ≥ 1. To describe this task by stars,
let L = {T, F1, . . . , Fk}, where we interpret the index i of a label Fi as an upper bound on
the distance to a T -marked node. The good stars are defined as follows: a star whose center
is labeled T is always good, and, for i = 1, . . . , k, a star whose center is labeled Fi is good if
it has a leaf with label in {T, F1, . . . , Fi−1}.

In another, more general case of LCLs, the legality of an output star may depend on the
corresponding input star [21]. In this scenario, an LCL is defined by a quintuple (a 5-tuple),
consisting of input labels and stars, output labels and stars, and a relation between the
input and output stars. A typical example of such a setting is list-coloring, where the output
color of each node must be chosen from a list of colors provided as input to the node. To
simplify the presentation, we consider LCL tasks without an input-output relation and stick
to the quadruple representation. Nevertheless, handling LCLs with input-output relations is
a simple extension of our techniques, and we explain how to apply it after presenting the
topological definition of LCLs, as defined in Definition 4.

4 Warm Up: Coloring and MIS in the Ring

In this section, we exemplify our technique, in a way that resembles the proof of Theorem 2.
We consider an LCL task on a ring, where the good input stars define a proper 3-coloring,
and the good output stars define a maximal independent set (MIS). That is, we study the
time complexity of reducing a 3-coloring to a MIS on a ring. It is known [20] that there is a
2-round algorithm for the problem in the LOCAL model, and we show that this is optimal
using topological arguments. This toy example provides the basic concepts and arguments
that we use later, when considering general LCL tasks and proving Theorem 2.

4.1 Reduction from 3-coloring to MIS

Let us consider three consecutive nodes of the n-node ring Cn, denoted by p−1, p0, and p1,
as displayed on Figure 4. Note that the names p−1, p0 and p1 are arbitrary, and external to
the algorithm. Here and later, p0 will always denote the central node in the star we analyze.

p0 p1p-1

Figure 4 Three consecutive nodes in the n-node ring.

We now apply topological tools in order to analyze this task. By the independence
property, if p0 is in the MIS, then neither p−1 nor p1 can be in the MIS, and, by the
maximality property, if p0 is not in the MIS, then p−1 or p1, or both, must be in the MIS.
These constraints are captured by the complex M2 displayed on Figure 5, including six
vertices (pi, x), with i ∈ {−1, 0, 1}, and x ∈ {0, 1}, where x = 1 (resp., x = 0) indicates that
pi is in the MIS (resp., not in the MIS).

P. Fraigniaud and A. Paz 9

(p0,1)

(p1,0)(p-1,0)

(p-1,1)(p1,1)

(p0,0)

1

11

0 0
0

(a) (b)

p0 p1p-1

Figure 5 The local complex M2 of MIS in the ring. (a) the vertices are labeled with the index
of the processes and the values; (b) the indexes of the processes are replaced by colors.

The complex M2 of Figure 5 has four facets of dimension 2: they are triangles. Some
triangles intersect along an edge, while some others intersect only at a node. The complex
M2 is called the local complex of MIS in the ring (the index 2 refers to the fact that rings
have degree 2). Note that the sets {(p−1, 0), (p0, 0), (p1, 0)} and {(p−1, 1), (p0, 1), (p1, 1)}
do not form simplices of M2. We call these two sets monochromatic. In the objective of
reducing 3-coloring to MIS, M2 will be the output complex, corresponding to Od with d = 2
in Figure 3 and in Theorem 2.

Similarly, let us focus on 3-coloring, with the same three processes p−1, p0, and p1. The
neighborhood of p0 cannot include the same color as its own color, and thus there are twelve
possible colorings of the nodes in the star centered at p0. Each of these stars corresponds
to a 2-dimensional simplex, forming the facets of the local complex C2 of 3-coloring in the
ring, depicted in Figure 6. This complex contains nine vertices of the form (pi, c), with
i ∈ {−1, 0, 1}, and c ∈ {1, 2, 3}, and twelve facets. Note that the vertices (p−1, 3) and (p1, 3)
appear twice in the figure, since the leftmost and rightmost edges are identified, but in
opposite direction, forming a Möbius strip. C2 is a manifold (with boundary). When reducing
3-coloring to MIS, C2 will be the input complex, corresponding to Id with d = 2 in Figure 3.

1

1

1 2

2

2

3

3

3

3

3

p0 p1p-1

Figure 6 Local complex C2 of 3-coloring in the ring.

Remark. It is crucial to note that the complexes displayed in figures 5 and 6 are not the
ones used in the standard settings (e.g., [5, 12]), for which Lemma 1 would use vertices
of the form (p, x) for p ∈ [n], or even p ∈ [N] assuming IDs in a range of N values. As
a consequence, these complexes have 6 vertices instead of 2n!

(
N
n

)
for MIS, and 9 vertices

instead of 3n!
(

N
n

)
for coloring, where n can be arbitrarily large. Even if the IDs would have

been fixed, the approach of Lemma 1 would yield complexes with a number of vertices linear
in n, while the complexes of figs. 5 and 6 are of constant sizes.

10 The Topology of Local Computing in Networks

As it is well-know since the early work by Linial [20], a properly 3-colored ring can be
“recolored” into a MIS in just two rounds. First, the nodes colored 3 recolor themselves 1 if
they have no neighbors originally colored 1. Then, the nodes colored 2 do the same, i.e., they
recolor themselves 1 if they have no neighbors colored 1 (whether it be neighbors originally
colored 1, or nodes that recolored themselves 1 during the first round). The nodes colored 1
output 1, and the other nodes output 0. The set of nodes colored 1 forms a MIS. Note that
this algorithm is name-independent, i.e., it can run in an anonymous network.

Task specification. The specification of reducing 3-coloring to MIS can be given by the
trivial carrier map ∆ : C2 → 2M2 defined by ∆(F) = {F ′ : F ′ is a facet of M2} for every
facet F of C2. (As the LOCAL model is failure-free, it is enough to describe all maps at the
level of facets.) Note that the initial coloring of a facet in C2 does not induce constraints
on the facet of M2 to which it should be mapped. Figure 7 displays some of the various
commutative diagrams that will be considered in this section. In all of them, ∆ is the carrier
map specifying reduction from 3-coloring to MIS in the ring, and none of the simplicial maps
δ exist. Also recall that π is the map removing IDs.

C2,∅ C2,∅

C2 M2

Ξ0

∆

π δ

C2,∅ P(1)
2,∅

C2 M2

Ξ1

∆

π δ

C2,[24] C2,[24]

C2 M2

Ξ0

∆

π δ

C2,[R] P(1)
2,[R]

C2 M2

Ξ1

∆

π δ

Figure 7 Complexes corresponding to reduction from 3-coloring to MIS in the n-node ring. From
left to right: 0 rounds without IDs, 1-round without IDs, 0 rounds with ID, and 1-round with IDs.

4.2 Name-Independent Algorithms
We start by considering name-independent algorithms, i.e., algorithms where all nodes run the
same algorithms and do not use their IDs. These algorithms can also be used in anonymous
networks, where IDs do not exist.

4.2.1 Impossibility in Zero Rounds
Name-preserving maps. Let us consider an alleged name-independent algorithm alg which
reduces 3-coloring to MIS in zero rounds. Such an algorithm sees only the node’s color
c ∈ {1, 2, 3}, and must map it to some x ∈ {0, 1}. This induces a mapping δ, that maps every
pair (pi, c) with i ∈ {−1, 0, 1} and c ∈ {1, 2, 3}, to a pair δ(pi, c) = (pi, x) with x ∈ {0, 1}.
We say that such a mapping is name-preserving, i.e., the algorithm maps the vertices in
Figure 6 to the vertices in Figure 5(b) while preserving the names p−1, p0, p1 of these vertices.
Therefore, the algorithm induces a name-preserving simplicial map δ : C2 → M2. The term
name-preserving (sometimes refered to as chromatic) is the formal way to express the fact
that a vertex (p, x) is mapped to a vertex (p, y), that is, the name p is preserved.

As discussed above, we are interested in name-independent algorithms. In topological
terms, such algorithms translate to name-preserving name-independent simplicial maps (we
slightly abuse notation by using the terms name-preserving and name-independent both for
an algorithm and for a mapping). We are therefore questioning the existence of a name-
preserving name-independent simplicial map δ : C2 → M2. This is in correspondence with

P. Fraigniaud and A. Paz 11

Figure 3 and Theorem 2, in the degenerate case where t = 0 and [R] = ∅, for which C2 = I2,
and C2,∅ = I2,∅ = P(0)

2,∅ = C2 — see the leftmost diagram in Figure 7.
It is easy to see that there cannot exist a name-preserving name-independent simplicial

map δ from the manifold C2 to M2 (from Figure 6 to Figure 5(b)). Indeed, a simplicial map
δ : C2 → M2 can only map C2 entirely to the sub-complex of M2 induced by the simplex
σ00 = {(p−1, 0), (p0, 1), (p1, 0)}, or entirely to the sub-complex of M2 induced by all the
other simplices. To see why, assume the opposite. Then, w.l.o.g., we can assume that the
vertex (p0, 1) of C2 is mapped to (p0, 0) of M2, and that (p0, 3) of C2 is mapped to (p0, 1) of
M2. Let us consider the two simplices

{(p−1, 2), (p0, 1), (p1, 2)} and {(p−1, 2), (p0, 3), (p1, 2)}

of C2, which form a sub-complex of C2. In order to preserve the edges of this sub-complex,
(p−1, 2) and (p1, 2) must be respectively mapped to (p−1, 0) and (p1, 0). It follows that the
simplex {(p−1, 2), (p0, 3), (p1, 2)} of C2 is correctly mapped to a simplex of M2 (specifically, to
the simplex {(p−1, 0), (p0, 1), (p1, 0)}). However, the simplex {(p−1, 2), (p0, 1), (p1, 2)} of C2
is mapped to the monochromatic set {(p−1, 0), (p0, 0), (p1, 0)} which is not a simplex of M2
(it is a hole in this complex as depicted in Figure 5), contradiction. Thus, C2 must be entirely
mapped to the sub-complex of M2 induced by the simplex σ00 = {(p−1, 0), (p0, 1), (p1, 0)},
or entirely to the sub-complex of M2 induced by all the other simplices. This yields two
cases:
− In the former case, p0 outputs 1 independently from its input color, and therefore, by the
name independence, p−1 and p1 also output 1, which is not the case in σ00.
− In the latter case, p0 outputs 0 independently from its input color, and therefore, by the
name independence, p−1 and p1 also output 0, yielding a contradiction as no monochromatic
sets are simplices of M2.
Hence, there are no name-preserving name-independent simplicial maps δ : C2 → M2. The
absence of a name-preserving name-independent simplicial map δ : C2 → M2 is a witness of
the impossibility to construct a MIS from a 3-coloring of the ring in zero rounds, when using
a name-independent algorithm.

4.2.2 Impossibility in One Round

For analyzing 1-round algorithms, let us consider the local protocol complex P(1)
2,∅, including

the views of the three nodes p−1, p0, and p1 after one round. The vertices of P(1)
2,∅ are of

the form (pi, xyz) with i ∈ {−1, 0, 1}, and x, y, z ∈ {1, 2, 3}, x ̸= y, and y ̸= z. The vertex
(pi, xyz) is representing a process pi starting with color y, and receiving the input colors
x and z from its left and right neighbors, respectively. The facets of P(1)

2,∅ are of the form
{(p−1, x

′xy), (p0, xyz), (p1, yzz
′)}. Figure 8 displays that complex, which consists of three

connected components K1,K2, and K3 where, for y = 1, 2, 3, Ky includes the four vertices
(p0, xyz) for x, z ∈ {1, 2, 3} ∖ {y}, and all triangles that include these vertices. Each set
of four triangles sharing a vertex (p0, xyz) forms a cone (see Figure 9). These cones are
displayed twisted on Figure 8 to emphasis the “circular” structure of the three components.

Following the same reasoning as for 0-round algorithms, a 1-round algorithm alg induces
a name-preserving simplicial map δ : P(1)

2,∅ → M2, as in the second to left diagram in Figure 7.
Let us show that such a mapping cannot exist. Since the mapping is name-independent,

we consider similarly the mapping of a pair (pi, xyz) and the mapping of a process view
xyz. For every ordered triplet (x, y, z) of distinct values, P(1)

2,∅ contains the following three

12 The Topology of Local Computing in Networks

212

121

321

131

231

121

123

131

132

313

213 312

212

312

232

132

212

213

232

231

313

213

323

123

313

312

323

321

121

323

123 321

131

232

132 2311Ƙ 2Ƙ 3Ƙ

p0 p1p-1

Figure 8 Local protocol complex P(1)
2,∅ after 1 round starting from a 3-coloring of the ring.

212

121

321

121

123

212

121

123 321

121

(a) (b)

p0 p1p-1

Figure 9 (a) A cone composed of four triangles; (b) The same cone “twisted”.

triangles:

{(p−1, xyz), (p0, yzx), (p1, zxy)},
{(p−1, yzx), (p0, zxy), (p1, xyz)}, and
{(p−1, zxy), (p0, xyz), (p1, yzx)}.

Hence, for each such triplet (x, y, z), one and only one of the three views xyz, yzx, and zxy

is mapped to 1, while the other two are mapped to 0. Let us assume, w.l.o.g., that 123 is
mapped to 1, while 231 and 312 are mapped to 0. The triangle {(p−1, 212), (p0, 123), (p1, 232)}
enforces 212 and 232 to be mapped to 0. The triangle {(p−1, 232), (p0, 321), (p1, 212)} then
enforces 321 to be mapped to 1, and thus 213 and 132 are mapped to 0.

Now, for every pair (x, y) with 1 ≤ x < y ≤ 3, there are two triangles

{(p−1, xyx), (p0, yxy), (p1, xyx)}, and {(p−1, yxy), (p0, xyx), (p1, xyx)}.

This implies that, for each such pair (x, y), one and only one of the two views xyx and yxy

is mapped to 1, while the other is mapped to 0. Thus, in particular, only one of the two
views 313 and 131 is mapped to 1, while the other is mapped to 0. It follows that one of the
two triangles

{(p−1, 231), (p0, 313), (p1, 132)}, and {(p−1, 213), (p0, 131), (p1, 312)}

is mapped to {(p−1, 0), (p0, 0), (p1, 0)}, which is not a simplex of M2.

Remark. If the input 3-coloring of the ring would be such that the sequence 12321 does not
appear as the input colors of five consecutive nodes of Cn, then there would exist a mapping
from P(1)

2,∅ to M2, which in turn demonstrates the existence of a 1-round algorithm under
this assumption. More generally, if the sequence xyzyx is guaranteed not to exist in the

P. Fraigniaud and A. Paz 13

input 3-coloring for any distinct colors x, y, and z, then δ : P(1)
2,∅ → M2 defined as

δ(pi, abc) =
{

(pi, 1) if b = x, or abc = zyz;
(pi, 0) if b = z, or b = y with ac ̸= zz

(1)

is a simplicial map. This map induces the 1-round algorithm alg defined by

alg(abc) =
{

1 if b = x, or abc = zyz;
0 otherwise.

That is, nodes colored x systematically output 1, nodes colored z systematically output 0,
and nodes colored y output 0 unless they are adjacent to two nodes colored z, in which case
they output 1. In fact, only nodes colored y need to perform a round, the other nodes can
decide right away, in zero rounds, based solely on their colors.

Remark. We showed the impossibility of reducing 3-coloring to MIS in a unique round using
the impossibility of mapping the complex P(1)

2,∅ to the complex M2. If one considers merely
the graphs induced by these two complexes, i.e., their so-called 1-dimensional skeletons, then
mapping the 1-dimensional skeleton of P(1)

2,∅ to the 1-dimensional skeleton of M2 is possible
by the mapping δ of Eq. (1) even if the sequence xyzyx may appear. Indeed, this mapping
preserves edges. In particular, no edges {(p−1, abc), (p0, bcd)} (resp., {(p0, abc), (p1, bcd)}) of
P(1)

2,∅ are mapped by δ to the non-edge {(p−1, 1), (p0, 1)} (resp., the non-edge {(p0, 1), (p1, 1)})
of M2. This is to say that, as far as mappings are concerned, the impossibility follows from
a contradiction that appears in dimension 2 (i.e., when considering triangles), but not in
dimension 1 (i.e., when considering only edges).

4.2.3 The 2-Round Algorithm
The local protocol complex P(2)

2,∅ includes the views of the three nodes p−1, p0, and p1

after two rounds. The vertices of P(2)
2,∅ are of the form (pi, c1c2c3c4c5) with i ∈ {−1, 0, 1},

cj ∈ {1, 2, 3} for 1 ≤ j ≤ 5, and cj ≠ cj+1 for 1 ≤ j < 5. Figure 10(a) displays one of the
connected components of P(2)

2,∅, denoted K323, which includes the four vertices (p0, c1323c5),
c1, c5 ∈ {1, 2}. There are 12 disjoint isomorphic copies of this connected component in P(2)

2,∅,
one for each triplet c2, c3, c4 ∈ {1, 2, 3}, c2 ̸= c3, and c3 ̸= c4.

Interestingly, each connected component of P(2)
2,∅ is isomorphic to each connected compo-

nent of P(1)
2,∅, while there are more connected components in P(2)

2,∅ than in P(1)
2,∅. However, the

larger views of the processes provide more flexibility for the mapping from P(2)
2,∅ to M2 than

for the mapping from P(1)
2,∅ to M2. And indeed, the 2-round anonymous algorithm presented

at the end of Section 4.1 does induce a name-preserving simplicial map δ : P(2)
2,∅ → M2.

Specifically, the four sub-complexes Kx1y, as well as the simplex K232 are entirely mapped
to the simplex σ00 (see Figure 10(b) for the labeling of the four facets of M2). The two
sub-complexes K1x1 are entirely mapped to the simplex σ11. The two sub-complexes K321
and K231 are entirely mapped to the sub-complex σ01 ∪ σ11, and the two sub-complexes K123
and K132 are entirely mapped to the sub-complex σ10 ∪ σ11. The mapping of the remaining
sub-complex K323 is more sophisticated, and illustrates that the simple algorithm showing
reduction from 3-coloring to MIS in [20] is actually topologically non-trivial. Indeed, K323
is mapped by the algorithm so that it wraps around the hole in M2. This wraparound
phenomenon is visualized in Figure 10.

14 The Topology of Local Computing in Networks

1

11

0 0

0

σ00

σ01 σ10
σ11

(a) (b)

31323

21323

32323

12323

32313

32312

32323

32321

13231

23232

13
23
2 23231

p0 p1p-1

Figure 10 (a) The sub-complex K323 of the local protocol complex P(2)
2,∅. (b) The facets of M2.

4.3 General Case with IDs

So far, we have considered only name-independent algorithms — algorithms where the nodes
do not have IDs or do not use them. Recall that the name i ∈ {−1, 0, 1} of a process pi

is external to the system, and is used only for analyzing the ability to solve tasks. The
presence of IDs given to the nodes adds power to the distributed algorithms, as the output
of a process is not only a function of the observed colors in its neighborhood, but also of the
observed IDs. In particular, after one round, a process p is not only aware of a triplet of
colors (c1c2c3), but also of a triplet of distinct IDs (x1x2x3).

4.3.1 Impossibility in Zero Rounds with IDs

A local input complex C2,fix for 3-coloring with fixed IDs is displayed on Figure 11. Each
vertex is a pair (pi, (x, c)), where pi, i ∈ {−1, 0, 1}, is the name of a process, x ∈ {1, 2, 3} is
an ID, and c ∈ {1, 2, 3} is a color. In this figure, it is assumed that p−1 is systematically
given ID 1, p0 is systematically given ID 2, and p1 is systematically given ID 3. This complex
is only a small part of a complex describing a colored ring, where the number of IDs is larger
and any process can be given any ID.

(3,1)

(1,1)

(2,1) (2,2)

(1,2)

(3,2)

(2,3)

(1,3)

(3,3)

(3,3)

(1,3)

p0 p1p-1

Figure 11 Local input complex C2,fix of 3-coloring in the ring with fixed IDs in {1, 2, 3}.

P. Fraigniaud and A. Paz 15

Remark. The complex C2,fix is not the complex C2,[3] as specified on Figure 3, because C2,[3]
assumes that every process pi, i ∈ {−1, 0, 1}, can take every possible ID in [3] = {1, 2, 3}. In
fact, C2,fix can be appropriately mapped to the local complex M2. A trivial name-preserving
name-independent mapping is, for every i ∈ {−1, 0, 1},

δ(pi, (x, c)) =
{

(pi, 1) if x = 2
(pi, 0) otherwise. (2)

We stress that this does not imply the existence of an algorithm reducing 3-coloring to
MIS, as in reality the IDs are not fixed. To show impossibility of reducing 3-coloring to MIS
in zero rounds, a more sophisticated complex must be considered, in which IDs are not fixed
a priori.

First, let us consider the case where p−1, p0, and p1 take any assignment of unique
IDs in {1, 2, 3}, and not posses fixed IDs as above. The resulting input complex C2,[3] is
displayed on Figure 12. The vertices are arranged on a grid, and the figure wraps around in
a way similar to a torus. The four triangles forming cones centered at vertices (p0, (x, c))
with (x, c) ∈ {1, 2, 3}2 are “twisted”, and each of these latter vertices is appearing twice in
the figure, for allowing the figure to be displayed as a torus. (The specific ID assignment
that appeared in Figure 11 is the upmost part of Figure 12, twisted.) Despite its apparent
complexity, the complex C2,[3] can be appropriately mapped to M2, using again the simplicial
map of Eq. (2). This shows that more IDs must be considered to show impossibility.

(3,1)(3,2)(3,3)

(1,1)(1,2)(1,3) (1,3)

(3,3)

(2,1)(2,2)(2,3) (2,3)

(1,1)(1,2)(1,3) (1,3)

(3,1)(3,2)(3,3) (3,3)

(2,1)(2,2)(2,3) (2,3)

(2,1) (2,2) (2,3)

(1,1) (1,2) (1,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,3) (3,2)

(3,1) (3,3) (3,2)

(1,1)(1,2)(1,3) (1,3)

p0 p1p-1

Figure 12 Local input complex C2,[3] of 3-coloring in the ring with arbitrary IDs in {1, 2, 3}.

Since the simplicial maps δ induced by the potential algorithms are name-preserving, they

16 The Topology of Local Computing in Networks

actually act on pairs (x, c) where x is an ID and c is a color, i.e., δ(p, (x, c)) = (p, δ̂(x, c)) for
some δ̂. For brevity, we identify δ̂ with δ. Let us assume that the IDs are from {1, . . . , R}, for
some R ≥ 4. That is, we consider now C2,[R] for R ≥ 4. By the pigeon-hole principle, there
exists a set I1 ⊆ {1, . . . , R} with |I1| ≥ R/2 such that, for every x, x′ ∈ I1, δ(x, 1) = δ(x′, 1).
Therefore, again by the pigeon-hole principle, there exists a set I2 ⊆ I1 with |I2| ≥ |I1|/2
such that, for every x, x′ ∈ I2, δ(x, 2) = δ(x′, 2). Finally, there exists a set I3 ⊆ I2 with
|I3| ≥ |I2|/2 such that, for every x, x′ ∈ I3, δ(x, 3) = δ(x′, 3). Therefore, there exists
a set I ⊆ {1, . . . , R} with |I| ≥ R/8 such that, for every x, x′ ∈ I, δ(x, 1) = δ(x′, 1),
δ(x, 2) = δ(x′, 2), and δ(x, 3) = δ(x′, 3). Whenever R ≥ 24, the set I has size at least 3.
Consider the sub-complex C′

2,[R] of C2,[R] induced by the three smallest IDs in I — this
sub-complex is isomorphic to C2,∅ (Figure 6). More importantly, the mapping from C′

2,[R] to
M2 depends only on the colors and not on the IDs, by the choice of I. Hence, if there was a
mapping from C′

2,[R] to M2, then there would exist a mapping from C2,∅ to M2, which we
know does not exist.

It follows that there are no mappings from C2,[24] = P(0)
2,[24] to M2 — see the second to

right diagram in Figure 7. In other words, if the IDs are picked from a set of at least 24
values, then 3-coloring cannot be reduced to MIS in zero rounds.

Remark. We have presented the pigeon-hole argument in detail because it can be generalized
and give a good intuition for the general case. However, the impossibility of reducing 3-
coloring to MIS in zero rounds can actually be established by letting nodes taking IDs in a
much smaller set, namely in the set {1, 2, 3, 4}. Indeed, the resulting complex C2,[4] = P(0)

2,[4]
cannot be mapped to M2 by a name-preserving name-independent simplicial map. To see
why, let us assume for contradiction that such a mapping exists. For every ID x, C2,[4]
includes triangles in which no vertex has ID x. Similarly, for every color c, C2,[4] includes
triangles in which no vertices have color c. It follows that the pre-image of (p0, 1) must
include at least two vertices (p0, (x, cx)) and (p0, (x′, cx′)) with x ≠ x′ for some (possibly
identical) colors cx and cx′ , and at least two vertices (p0, (xc, c)) and (p0, (xc′ , c′)) with c ̸= c′

for some (possibly identical) IDs xc and xc′ . As a consequence, there are two distinct IDs
x and x′, and two distinct colors c and c′ such that (p0, (x, c)) and (p0, (x′, c′)) are both in
the pre-image of (p0, 1). This yields a contradiction as the simplex {(p0, (x, c)), (p1, (x′, c′))}
would then be mapped to {(p0, 1), (p1, 1)}, which is not a simplex in M2.

4.3.2 Impossibility in One Rounds with IDs

We reduce the case with IDs to the case without IDs in a way similar to the case of zero
rounds, by using Ramsey’s theorem instead of the basic pigeon-hole principle, following
the lines of [21]. Recall that Ramsey’s theorem states the following. Given a set X and a
non-negative integer s, let

(
X
s

)
denote the set of all subsets of X with exactly s elements. In

particular,
(

X
s

)
has cardinality

(|X|
s

)
.

▶ Theorem 3 (Ramsey’s Theorem [19]). For all r, s, t ∈ N, there exists R = R(r, s, t) such
that, for every set X, and for every partition of

(
X
s

)
into r classes, if |X| ≥ R, then one of

the classes contains all elements of
(

Y
s

)
, for some set Y ⊆ X with |Y | ≥ t.

We consider the 1-round protocol complex with IDs in a finite set X and at least 5 elements,
denoted by PX . That is, PX = P(1)

2,[k] with k = |X|. The vertices of this complex are of the
form (pi, (xyz, abc)) where i ∈ {−1, 0, 1}, {x, y, z} ∈

(
X
3
)
, and a, b, c ∈ {1, 2, 3} with a ̸= b

P. Fraigniaud and A. Paz 17

and b ̸= c. The facets of PX are of the form

Fx′xyzz′,a′abcc′ = {(p−1, (x′xy, a′ab)), (p0, (xyz, abc)), (p1, (yzz′, bcc′))},

with {x′, x, y, z, z′} ∈
(

X
5
)
, and a′, a, b, c, c′ ∈ {1, 2, 3} with a′ ̸= a ̸= b ̸= c ̸= c′.

A name-preserving name-independent simplicial map δ : PX → M2 induces a labeling of
the pairs (xyz, abc) with labels in {0, 1}, where xyz is an ordered triplet of distinct IDs, and
abc is an ordered triplet of colors in {1, 2, 3} with a ̸= b and b ̸= c. It follows that δ induces
a labeling of the ordered triplets xyz of distinct IDs by labels in {0, 1}12, by applying δ to
the 12 possible choices of color triplets. More specifically, let us lexicographically order the
12 different ordered triplets of colors, and let us denote by C1, . . . , C12 this lexicographic
ordering. We aim at labeling sets of IDs, not ordered triplets of IDs. Let S = {x, y, z} be a
set of distinct IDs, and assume that x < y < z. The set S is assigned the label equal to the
binary vector in {0, 1}12 whose i-th entry is equal to δ(p0, (xyz, Ci)).

Let r = 212, s = 3, and t = 5. By Ramsey’s Theorem, by taking the IDs in the set
X = {1, . . . , R} with R = R(r, s, t), there exists a set Y of t = 5 IDs such that, for every
two sets {x, y, z} and {x,′ y′, z′} of IDs in Y , with x < y < z and x′ < y′ < z′, and for every
ordered triplet abc of colors, we have

δ(p0, (xyz, abc)) = δ(p0, (x′y′z′, abc)).

More generally, by name-independence, for such IDs and colors, we actually have

δ(pi, (xyz, abc)) = δ(pj , (x′y′z′, abc))

for every i, j ∈ {−1, 0, 1}. Let PY be the sub-complex of the 1-round protocol complex PX

induced by the vertices with IDs in Y ordered in increasing order. That is, we keep in PY

solely the vertices of PX of the form (pi, (xyz, abc)) with {x, y, z} ⊂ Y and x < y < z. By
construction of Y , δ is name-independent on PY .

Now, recall the protocol complex P(1)
2,∅ displayed on Figure 8. Let us define the map

δ′ : P(1)
2,∅ → M2 by δ′(pi, abc) = δ(pi, (xyz, abc)) where {x, y, z} ⊂ Y and x < y < z. Note

that δ′ is well defined as δ is name-independent on Y . Moreover, assuming δ : PX → M2
is simplicial yields that δ′ : P(1)

2,∅ → M2 is simplicial as well. We have seen in Section 4.2.2
that such a simplicial mapping does not exist.

4.4 Wrap Up
This section provided an illustration of the fact that the complexity of LCL tasks can
be analyzed by considering finite simplicial complexes, even if the tasks were defined for
arbitrarily large networks, whose nodes are assigned IDs from an arbitrarily large range
of values. The next section provides a formalization of the examples in this section, and
generalize them to establish our main result.

5 Topology of LCL Tasks

We now show how to study a general LCL task in the LOCAL model by representing it in
topological terms. For this, we define the input and output complexes, the relation between
them, and the protocol complexes for LCL tasks in the LOCAL model. Let Sd be the star of
d+ 1 nodes, whose center node is named p0, and the leaves are named pi, for i = 1, . . . , d.
We consider algorithms for classes G ⊆ Gd of graphs, where Gd denotes the set of all d-regular
connected simple graphs.

18 The Topology of Local Computing in Networks

▶ Definition 4. Let T = (Lin,Sin,Lout,Sout) be an LCL task for G ⊆ Gd. The input
complex Id (resp., output complex Od) associated with T is the complex where {(pi, xi) :
i ∈ {0, . . . , d}} is a facet of Id (resp., a facet of Od) if xi ∈ Lin (resp., Lout) for every i ∈
{0, . . . , d}, and the labeled star resulting from assigning label xi to the node pi of Sd for every
i ∈ {0, . . . , d} is in Sin (resp., Sout). The carrier map ∆ : Id → 2Od is defined simply by
∆(F) = {all facets of Od} for every facet F of Id.

Note that with this definition at hand, we can write the same LCL task T both as T =
(Lin,Sin,Lout,Sout) and as T = (Id,Od,∆). The interpretation will be clear from the
context.

If the considered LCL task T imposes constraints on the correctness of the outputs as a
function of the inputs, as in list-coloring, then the carrier map ∆ : Id → 2Od is not as above,
and instead it specifies for each facet F ∈ Id the facets ∆(F) which are legal with respect
to F . For instance, in the case of list-coloring where each xi is a list of colors, for every
facets F = {(pi, xi) : i ∈ {0, . . . , d}} ∈ I and F ′ = {(pi, yi) : i ∈ {0, . . . , d}} ∈ Od we have

F ′ ∈ ∆(F) ⇐⇒ ∀i ∈ {0, . . . , d}, yi ∈ xi.

Note that we do not have to require yi ≠ y0 here, since global states where yi = y0 are not
simplices of Od, and so no simplex can be mapped to them.

Mutually compatible views. Let t ≥ 0, and let us fix a graph G = (V,E) in G ⊆ Gd. In
t rounds, every node in G acquires a view w, whose structure is isomorphic to a radius-t
ball in G centered at that node, including the input labels and the IDs of the nodes in the
ball. The number of nodes in a view after t rounds is at most N(d, t) where, for every t ≥ 0,
N(d, t) = 1 + d+ d(d− 1) + · · · + d(d− 1)t−1, that is,

N(d, t) =
{

1 + 2t if d = 2,
1 + d (d−1)t−1

d−2 otherwise.

This number of nodes is exactly N(d, t) if all graphs in G have girth at least 2t+ 1, (i.e., if
the graphs have no cycles of less than 2t+ 1 nodes), and every t-round view is a d-regular
tree. An ordered collection w0, . . . , wd of views at distance t forms a collection of mutually
compatible views for G if there exists a graph G ∈ G, an assignment of input labels and IDs
to the nodes of G, and a star S in G with center v0 and leaves v1, . . . , vd, such that wi is the
view of vi in G after t rounds, for i = 0, . . . , d.

▶ Definition 5. Let T be an LCL task for G ⊆ Gd, and let t ≥ 0. The t-round protocol
complex associated with T for a finite set X of IDs, is the complex P(t)

d,X where F = {(pi, wi) :
i ∈ {0, . . . , d}} is a facet of P(t)

d,X if w0, . . . , wd is an ordered collection of mutually compatible
views at distance t for G.

The special case t = 0 corresponds to P(0)
d,X = Id,X where Id,X in the input complex Id

extended with IDs in X. In this specific case, mutual compatibility requires the additional
condition that the processes p0, . . . , pd are given distinct IDs in X. Two mappings from Id,X

play a crucial role. The first is the simplicial map

π : Id,X → Id

defined by π(pi, (id, x)) = (pi, x) for every i = 0, . . . , d, every id ∈ X, and every x ∈ Lin. The
second is the carrier map

Ξt : Id,X → 2P(t)
d,X

P. Fraigniaud and A. Paz 19

that specifies, for each facet F ∈ Id,X , the set Ξt(F) of facets which may result from F after
t rounds of computation in graphs in G. Specifically, they are merely the facets of P(t)

d,X for
which the views w0, . . . , wd are compatible with the IDs of p0, . . . , pd in F . While formally
Ξt is defined on all simplices, note that defining Ξt on facets is sufficient, as it can easily be
extended to all other simplices.

Our main result is an analog of the generic lemma (see Lemma 1), but involving local
complexes, even for tasks defined on arbitrarily large networks, and for arbitrarily large sets
of IDs. Specifically, in the statement below, the range [R] = {1, . . . , R} of IDs depends only
on the number of rounds t of the algorithm, the maximum degree d of the network, and
the respective sizes |Lin| and |Lout| of the input and output labels. That is, the range [R]
is independent of the size of the network, as well as of the range of IDs. Theorem 6 is the
formal version our main result sketched in Theorem 2.

▶ Theorem 6. Let T = (Id,Od,∆) be an LCL task for G ⊆ Gd, and let t ≥ 0.
If there exists a distributed algorithm solving T in t rounds in the LOCAL model then,
for every R ≥ N(d, t+ 1), there is a name-preserving name-independent simplicial map
δ : P(t)

d,[R] → Od such that, for every facet F ∈ Id,[R], δ(Ξt(F)) ⊆ ∆(π(F)).
There exists R ≥ N(d, t+1) satisfying that, if there is a name-preserving name-independent
simplicial map δ : P(t)

d,[R] → Od such that, for every facet F ∈ Id,[R], δ(Ξt(F)) ⊆ ∆(π(F)),
then there is a distributed algorithm solving T in t rounds in the LOCAL model.

Proof. Let us fix an LCL task T = (Lin,Sin,Lout,Sout) = (Id,Od,∆) for G, and t ≥ 0. Let
alg be a t-round algorithm for T . For any finite set X of IDs with |X| ≥ N(d, t+ 1), let us
define δX : P(t)

d,X → Od by

δX(pi, wi) = (pi,alg(wi)),

for every i = 0, . . . , d. By construction, δX is name-preserving and name-independent. To
show that δX is simplicial, let

F ′ = {(pi, wi) : i ∈ {0, . . . , d}}

be a facet of P(t)
d,X . This facet is mapped to

δX(F ′) = {(pi,alg(wi)) : i ∈ {0, . . . , d}}.

Since alg solves T , every output alg(wi) is in Lout, and the labeled star resulting from
assigning label alg(wi) to the node pi of the star Sd, for every i ∈ {0, . . . , d}, is in Sout.
It follows that δX(F ′) is a facet of Od, and thus δX is simplicial. Moreover, if the facet
F ′ belongs to the image Ξt(F) of a facet F of Id,X , since alg solves T , it follows that
δX(F ′) ∈ ∆(π(F)) as desired.

So, the existence of an algorithm alg guarantees the existence of a simplicial map δX

satisfying the requirements of the theorem for every large enough set X of IDs. We now show
that, to guarantee the existence of an algorithm, it is sufficient to guarantee the existence of
a simplicial map δX just for one specific set X = [R].

In order to identify R, we follow the same lines as in the impossibility proof in Section 4.3.2,
using Ramsey’s theorem (cf. Theorem 3). Note that the number of possible balls of radius t
in graphs of G is finite, and depends only on t and d. Given such a ball B, there are finitely
many ways of assigning input labels to the vertices of B. The number of assignments depends
only on the structure of B, and on |Lin|. (It may also depend on Sin, but in the worst case,
all assignments are possible.) Let us enumerate all the labeled balls in G as

B(1), . . . , B(k).

20 The Topology of Local Computing in Networks

The number k of such labeled balls depends only on d, t, and |Lin|. (It may also depend on
G, but it is upper bounded by a function of d, t, and |Lin|.)

For every labeled ball B(i), i = 1, . . . , k, let νi = |B(i)|. Let us rank the vertices of B(i)

arbitrarily from 1 to νi, and let Σi be the set of all permutations of {1, . . . , νi}. To every
π ∈ Σi corresponds a labeled ball B(i)

π in which the rank of the vertices is determined by π.
Now, let X be a finite set of IDs with |X| ≥ N(d, t+1). We lower bound |X| by N(d, t+1)

and not N(d, t) because we want to consider the behavior of a simplex, i.e., balls of radius t
around a process p0 and around each of its neighbors p1, . . . , pd. We consider all possible
identity-assignments with IDs in X to the nodes of the labeled balls with ranked vertices,
B

(i)
π , i = 1, . . . , k, π ∈ Σi, as follows.

For every S ⊆ X with |S| = N(d, t), let us order the IDs in S in increasing order.
Given a ranked labeled ball B(i)

π , i.e., a labeled ball B(i) whose vertices are ranked by some
permutation π ∈ Σi, the IDs in S are assigned to the nodes of B(i)

π by assigning the jth
smallest ID in S to the node ranked π(j) in B

(i)
π , for j = 1, . . . , νi.

By picking all i = 1, . . . , k, all π ∈ Σi, and all S ⊆ X, we obtain all possible views
resulting from performing a t-round algorithm in G with IDs taken from X. Let us order
these views as

w(1), . . . , w(h),

where the views induced by B(1) are listed first, then the views induced by B(2), etc., until
the views induced by B(k). Moreover, for a given i ∈ {1, . . . , k}, the views corresponding
to the labeled ball B(i) are listed according to the lexicographic order of the permutations
in Σi. Note that the number h of views depends only on d, t, |Lin|, and |X|.

Each set S is then “colored” by

c(S) = (δX(p0, w
(1)), . . . , δX(p0, w

(h))) ∈ {1, . . . , |Lout|}h.

In this way, the set
(

X
N(d,t)

)
is partitioned into |Lout|h classes. Thanks to Ramsey’s Theorem

(see Theorem 3), by taking set

X = [R] with R = R(a, b, c) for a = |Lout|h, b = N(d, t), and c = N(d, t+ 1),

we are guaranteed that there exists a set Y of at least N(d, t+ 1) IDs such that every two
sets S and S′ of N(d, t) IDs in Y are given the same color c(S) = c(S′). In other words, for
any ball B of radius t in a graph from G, and for every valid assignment of input values to
the nodes of B, if one assigns the IDs in S and S′ in the same manner (i.e., the ith smallest
ID of S is assigned to the same node as the ith smallest ID of S′), then

δX(p0, w) = δX(p0, w
′),

where w and w′ are the views resulting from assigning IDs from S and S′ to the nodes,
respectively.

Now, let us define the following t-round algorithm alg for T ; in fact, this is precisely
the order-invariant algorithm constructed in [21]. To this end, we assume that the set Y is
pre-computed and hard-wired to the algorithm. Every node v collects the data available in
its centered ball B = BG(v, t) of radius t in the actual graph G ∈ G, where B contains both
IDs and input values. Node v reassigns the IDs to the nodes of B by using the |B| smallest
IDs in Y , and assigning these IDs to the nodes of B in the order respecting the order of the
actual IDs assigned to the nodes of B. Then, node v considers the view w after reassignment
of the IDs, and outputs

alg(w) = δX(p0, w).

P. Fraigniaud and A. Paz 21

Note that δX returns values in Lout, and thus alg is well defined.
To show correctness, let us consider a star v0, . . . , vd centered at v0 in some graph G ∈ G.

Performing alg in G, each of these d + 1 nodes acquires a view of radius t. These views
are mutually compatible. Let us reassign the IDs in the ball of radius t + 1 centered at
v0 in G, using the at most N(d, t + 1) smallest IDs in Y , and assigning these IDs to the
nodes of the ball B of radius t+ 1 centered at v0, in the order respecting the order of the
actual IDs assigned to the nodes of B. The resulting views w0, . . . , wd of the d + 1 nodes
v0, . . . , vd remain mutually compatible. It follows that if these d + 1 nodes would output
δX(p0, w0), . . . , δX(pd, wd), respectively, then the resulting star would be good. We claim
that this is exactly what occurs with alg.

Indeed, first, δX is name-independent, and thus δX(p0, w) = δX(pi, w) for every i =
1, . . . , d. Second, and more importantly, by the construction of Y , the actual values of the
IDs do not matter, but solely their relative order. The reassignment of IDs performed at each
of the nodes v0, . . . , vd is different from the reassignment of IDs in the ball B of radius t+ 1
around v0, but the relative order of these IDs is preserved as it is governed by the relative
order of the original IDs in B. As a consequence, the nodes of the star Sd consisting of p0
and its d neighbors correctly output δX(p0, w0), . . . , δX(pd, wd) in alg, as desired. ◀

6 Application to Coloring the Ring

In this section, we show a concrete application of Theorem 6, by reproving the celebrated
result by Linial [20] regarding 3-coloring the n-node ring. This results was later re-proven
in a simplified way [18], basically using the original arguments but providing a purely
combinatorial perspectives on them. Also, [2,4] recently introduced a general round-reduction
operational technique for deriving lower bounds in the LOCAL model. In this section, we
provide a topological perspective on lower bounds in the LOCAL model. Specifically, we prove
the following corollary of Theorem 6.

▶ Corollary 7. Let t ≥ 1, k ≥ 2, n ≥ 1, and N ≥ n. If there is a t-round algorithm for
k-coloring Cn = (v1, . . . , vn) when the IDs in [N] are assigned to consecutive nodes vi, vi+1,
i ∈ {1, . . . , n− 1}, in increasing order of their indices, then there is a (t− 1)-round algorithm
for 22k -coloring Cn under the same constraints on the ID assignment.

Proof. Observe first that the value of R in Theorem 6 is non-decreasing with t. Therefore,
we fix the R defined for t, and use the same R for t− 1. Also, since we solely focus on the
ring in the proof, we fix d = 2 and omit it from the notation of the relevant complexes.
By Theorem 6, since there is a t-round algorithm for k-coloring the ring, there is a name-
preserving name-independent simplicial map δ : P(t)

[R] → Ok with the property that, for every
facet F ∈ I[R], δ(Ξt(F)) ⊆ ∆(π(F)), where ∆ is the carrier map specifying k-coloring and
Ok is the output complex for k-coloring. Also, I[R] is the input complex with no inputs to
the vertices, apart from their IDs in [R]. More precisely, in I[R], since the IDs are assigned
in increasing order, we restrict our interest to nodes p0 which are neither v1 nor vn and to
facets F of the form

F =
{

(p−1, x), (p0, y), (p1, z)
}

with x, y, z ∈ [R], and x < y < z.

The same restriction on the IDs applies to the facets of P(t)
[R].

22 The Topology of Local Computing in Networks

Sketch of the arguments. Our aim is to find δ′ : P(t−1)
[R] → O22k where O22k is output

complex for 22k -coloring Cn. For this purpose, we follow the approach illustrated on
Figure 13. That is, first, we identify a functor Φ on a category corresponding to a subclass of
simplicial complexes. From the simplicial map δ : P(t)

[R] → Ok, we derive the simplicial map
Φ(δ) : Φ(P(t)

[R]) → ϕ(Ok). Then we show that Φ(Ok) ⊆ O22k as sub-complex, and therefore
Φ(δ) maps Φ(P(t)

[R]) to O22k . Finally, we identify a simplicial map f : P(t−1)
[R] → Φ(P(t)

[R]) that
allows us to conclude that

δ′ : P(t−1)
[R] → O22k

defined by

δ′ = Φ(δ) ◦ f

satisfies the hypotheses of Theorem 6, guaranteeing the existence of a (t− 1)-round algorithm
for 22k -coloring the ring.

P(t)
[R] Φ(P(t)

[R]) P(t−1)
[R]

Ok Φ(Ok) ⊆ O22k

Φ

Φ

δ

f

δ′
Φ(δ)

Figure 13 Commutative diagrams in the proof of Corollary 7.

Detailed arguments. Let us consider any complex K with vertices (pi, v) with i ∈ {−1, 0, 1},
and v ∈ V where V is a finite set of values. Note that both Ok and P(t)

[R] are of this form,
where the values are respecitively colors in Ok, and views at distance t in P(t)

[R]. We define the
functor Φ as follows. The complex Φ(K) is on the set of vertices (pi,S) where S = {S1, . . . , Sℓ}
for some ℓ ≥ 0, and Si ⊆ V for every i = 1, . . . , ℓ. A set {(p−1,S−1), (p0,S0), (p1,S1)} forms
a facet of Φ(K) if for every i ∈ {0, 1},

∃S ∈ Si−1 ∀S′ ∈ Si ∃v′ ∈ S′ ∀v ∈ S : {(pi−1, v), (pi, v
′)} ∈ K. (3)

Given a simplicial map ψ : A → B the map Φ(ψ) is defined as

Φ(ψ)(pi,S) =
(
pi,

{{
π2◦ψ(pi, v1,1), . . . , π2◦ψ(v1,s1)

}
, . . . ,

{
π2◦ψ(vℓ,1), . . . , π2◦ψ(vℓ,sℓ

)
}})

for every i = {−1, 0, 1}, and every S = {S1, . . . , Sℓ} with Sj = {vj,1, . . . , vj,sj
} and sj ≥ 0,

where π2 : B → V is the mere projection π2(pi, v) = v for every value v. By construction,
Φ(ψ) : Φ(A) → Φ(B) is simplicial. Note that if ψ is name-preserving and name-independent,
then so is Φ(ψ).

Next, we observe that Φ(Ok) is a sub-complex of O22k . To see why, note first that Φ
maps vertices of Ok to vertices of O22k . Moreover, a facet F = {(p−1,S−1), (p0,S0), (p1,S1)}
of Φ(Ok) is a facet of O22k . Indeed, Eq. (3) guarantees the existence of a set S in S−1 such
that for every set S′ in S0, there exists a color v′ in S′ that is different from all the colors
in S. It follows that S /∈ S0, and therefore S−1 ̸= S0. By the same argument, S0 ̸= S1, and
thus F is a facet of O22k , as claimed.

P. Fraigniaud and A. Paz 23

Finally, we define the simplicial map f : P(t−1)
[R] → Φ(P(t)

[R]) as follows. Let us consider a
vertex (pi, w) ∈ P(t−1)

[R] , with

w = (z−(t−1), . . . , z−1, z0, z1, . . . , zt−1) ∈ [R]2t−1 with z−(t−1) < · · · < zt−1.

For every b ∈ [R] with b > zt−1, let W b
i = {awb : a ∈ [R], a < z−(t−1)}, and let

Wi = {W b
i : b ∈ [R], b > zt−1}.

We set f(pi, w) = (pi,Wi). This mapping maps every vertex of P(t−1)
[R] to a vertex of Φ(P(t)

[R]).
Let us show that f is simplicial. For this purpose, let us consider a facet

F = {(p−1, x
′xw), (p0, xwy), (p1, wyy

′)}

of P(t−1)
[R] . Here w = (z−(t−2), . . . , z−1, z0, z1, . . . , zt−2) ∈ [R]2t−3 with x′ < x < z−(t−2) <

· · · < zt−2 < y < y′. We now show that the two sets W y
−1 ∈ W−1 and W y′

0 ∈ W0 witness
the validity of Eq. (3), from which we conclude that f(F) is a facet of Φ(P(t)

[R]). Consider
W y

−1 ∈ W−1, let W b
0 ∈ W0, and let x′xwyb ∈ W b

0 . The view ax′xwy for p−1 is compatible
with the view x′xwyb for p0, for every a < x′. Therefore, for every set W b

0 ∈ W0, there
exists a view x′xwyb ∈ W b

0 such that, for every view ax′xwy ∈ W y
−1,

{(p−1, ax
′xwy), (p0, x

′xwyb)} ∈ P(t)
[R].

Hence Eq. (3) is satisfied for p−1 and p0. By the same arguments, using W y′

0 instead of W y
−1,

Eq. (3) is satisfied for p−1 and p0, from which it follows that f(F) is a facet of Φ(P(t)
[R]). We

conclude that f is simplicial.
Since both f and Φ(δ) are simplicial, the map δ′ = Φ(δ) ◦ f is simplicial too, which

completes the proof by application of Theorem 6. ◀

By iterating Corollary 7, we obtain that if there exists a t-round algorithm for 3-
coloring Cn, then there is a zero-round algorithm for coloring Cn with a color pallet of
2t+22 colors, where h2 denotes the tower of exponentiels of height h, from which the lower
bound of 1

2 log∗ n− 1 rounds for 3-coloring Cn follows.

7 Conclusion and Further Work

This paper shows that the study of algorithms for solving LCL tasks in the LOCAL model can
be achieved by considering simplicial complexes whose sizes are independent of the number
of nodes, and independent of the number of possible IDs that could be assigned to these
nodes. We provide an application of our framework by providing a topological perspective of
the lower bound proof for 3-coloring the n-node ring. Two main directions for further work
can be identified.

A first direction is understanding topological properties of the carrier map Ξt : Id,X →
P(t)

d,X occurring in the LOCAL model. This map governs the topology of the t-round protocol
complexes P(t)

d,X . It is known from the preliminary study in [5] that this topology heavily
depends on the structure of the (class of) graph(s) G in which the algorithm is supposed
to be executed. However, still very little is known about how the elementary topological
properties of the protocol complexes evolves from one round to the next.

Another direction of research is understanding what governs the existence of the simplicial
map δ : P(t)

d,X → O in Theorem 6 (see also Figure 3). In the shared memory setting, it is

24 The Topology of Local Computing in Networks

known that the existence of such a map for consensus or k-set agreement tasks under the
wait-free model is governed by the level of connectivity of the protocol complexes (i.e., the
ability to contract high dimensional spheres). Would it be possible to provide similar types
of characterization in the LOCAL model, say for tasks such as coloring or MIS?

References

1 Hagit Attiya, Armando Castañeda, Maurice Herlihy, and Ami Paz. Bounds on the step
and namespace complexity of renaming. SIAM J. Comput., 48(1):1–32, 2019. doi:10.1137/
16M1081439.

2 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. In 60th
IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 481–497, 2019.
doi:10.1109/FOCS.2019.00037.

3 Elizabeth Borowsky, Eli Gafni, Nancy A. Lynch, and Sergio Rajsbaum. The BG distributed
simulation algorithm. Distributed Comput., 14(3):127–146, 2001. doi:10.1007/PL00008933.

4 Sebastian Brandt. An automatic speedup theorem for distributed problems. In ACM
Symposium on Principles of Distributed Computing (PODC), pages 379–388, 2019. doi:
10.1145/3293611.3331611.

5 Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and
Corentin Travers. A topological perspective on distributed network algorithms. Theor.
Comput. Sci., 849:121–137, 2021. doi:10.1016/j.tcs.2020.10.012.

6 Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for re-
naming: the lower bound. Distributed Computing, 22(5-6):287–301, 2010. doi:10.1007/
s00446-010-0108-2.

7 Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for renaming:
The upper bound. J. ACM, 59(1):3:1–3:49, 2012. doi:10.1145/2108242.2108245.

8 Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and Martin Raussen.
Directed Algebraic Topology and Concurrency. Springer, 2016.

9 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

10 Pierre Fraigniaud, Ami Paz, and Sergio Rajsbaum. A speedup theorem for asynchronous
computation with applications to consensus and approximate agreement. In PODC, pages
460–470. ACM, 2022. doi:10.1145/3519270.3538422.

11 Éric Goubault, Samuel Mimram, and Christine Tasson. Geometric and combinatorial views
on asynchronous computability. Distributed Computing, 31(4):289–316, 2018. doi:10.1007/
s00446-018-0328-4.

12 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013. URL: https://store.elsevier.com/
product.jsp?isbn=9780124045781.

13 Maurice Herlihy and Sergio Rajsbaum. The decidability of distributed decision tasks. In
STOC, pages 589–598. ACM, 1997. doi:10.1145/258533.258652.

14 Maurice Herlihy and Sergio Rajsbaum. Simulations and reductions for colorless tasks. In
PODC, pages 253–260. ACM, 2012. doi:10.1145/2332432.2332483.

15 Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. Unifying synchronous and asyn-
chronous message-passing models. In PODC, pages 133–142. ACM, 1998.

16 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.
ACM, 46(6):858–923, 1999. doi:10.1145/331524.331529.

17 Gunnar Hoest and Nir Shavit. Toward a topological characterization of asynchronous com-
plexity. SIAM J. Comput., 36(2):457–497, 2006. doi:10.1137/S0097539701397412.

https://doi.org/10.1137/16M1081439
https://doi.org/10.1137/16M1081439
https://doi.org/10.1109/FOCS.2019.00037
https://doi.org/10.1007/PL00008933
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1016/j.tcs.2020.10.012
https://doi.org/10.1007/s00446-010-0108-2
https://doi.org/10.1007/s00446-010-0108-2
https://doi.org/10.1145/2108242.2108245
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3519270.3538422
https://doi.org/10.1007/s00446-018-0328-4
https://doi.org/10.1007/s00446-018-0328-4
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://doi.org/10.1145/258533.258652
https://doi.org/10.1145/2332432.2332483
https://doi.org/10.1145/331524.331529
https://doi.org/10.1137/S0097539701397412

P. Fraigniaud and A. Paz 25

18 Juhana Laurinharju and Jukka Suomela. Brief announcement: Linial’s lower bound made
easy. In ACM Symposium on Principles of Distributed Computing (PODC), pages 377–378,
2014. doi:10.1145/2611462.2611505.

19 Ronald L.Graham, Bruce L. Rothschild, Joel H. Spencer, and József Solymosi. Ramsey Theory.
John Wiley and Sons, 2015.

20 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992. doi:10.1137/0221015.

21 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput.,
24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

22 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2001.
23 Michael E. Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The

topology of public knowledge. SIAM J. Comput., 29(5):1449–1483, 2000. doi:10.1137/
S0097539796307698.

24 Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1–24:40, 2013.
doi:10.1145/2431211.2431223.

https://doi.org/10.1145/2611462.2611505
https://doi.org/10.1137/0221015
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1137/S0097539796307698
https://doi.org/10.1137/S0097539796307698
https://doi.org/10.1145/2431211.2431223

	Context and Objective
	Our Results
	Models and Definitions
	The LOCAL model
	Locally Checkable Labelings (LCL)

	Warm Up: Coloring and MIS in the Ring
	Reduction from 3-coloring to MIS
	Name-Independent Algorithms
	Impossibility in Zero Rounds
	Impossibility in One Round
	The 2-Round Algorithm

	General Case with IDs
	Impossibility in Zero Rounds with IDs
	Impossibility in One Rounds with IDs

	Wrap Up

	Topology of LCL Tasks
	Application to Coloring the Ring
	Conclusion and Further Work

