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k-Center Clustering in Distributed Models

Leyla Biabani, Eindhoven University of Technology
Ami Paz, LISN — CNRS & Paris-Saclay University

Abstract
The k-center problem is a central optimization problem with numerous applications for ma-

chine learning, data mining, and communication networks. Despite extensive study in various
scenarios, it surprisingly has not been thoroughly explored in the traditional distributed setting,
where the communication graph of a network also defines the distance metric.

We initiate the study of the k-center problem in a setting where the underlying metric is
the graph’s shortest path metric in three canonical distributed settings: the local, congest,
and clique models. Our results encompass constant-factor approximation algorithms and lower
bounds in these models, as well as hardness results for the bi-criteria approximation setting.

keywords: k-Center clustering; Distributed graph algorithms; Shortest path metric

1 Introduction

1.1 Distributed k-Center

The k-center problem is a key optimization problem, seeks to locate a small set of points in space
(“centers”) that minimize the maximal distance from them to any other point. The problem was
extensively studied in the centralized setting, where the points are taken from a metric space, with or
without guarantees on the metric. Over the years, there was also some work on the k-center problem
in parallel and distributed models, looking to solve the problem faster using multiple computational
units. As in the centralized setting, the points and metric under consideration in these works are
taken from some metric space, and it is usually assumed that distances are given to the computational
units by an oracle.

A natural setting for the k-center problem is that of a network. We consider a graph representing
a communication network in a natural way, and the goal is to make k of the nodes into centers while
minimizing the maximal distance between these nodes and all others. Here, the metric space is
not arbitrary, but is the graph metric on the graph itself. This is significant, for example, when
determining server placement within a network to minimize the maximum delay, as seen in scenarios
like content distribution over the Internet.

Two related, yet different problems are the metric facility location problem, where the goal is
to minimize the average distance from the servers (or equivalently, the sum of distances), and the
online k-server problem, where the points and servers can move in space.

In this work, we initiate the study of k-center in the distributed setting, where an undirected
graph represents both the communication network and the problem’s metric. We address the problem
in the popular distributed models of local, congest, and clique, and derive upper and lower
bounds. While the problem was studied earlier in some of these distributed models, it is important
to note that all the prior work considered points in an arbitrary metric space, independent of the
communication graph. As far as we know, our work is the first to consider the natural setting
where the input graph represents both the network used for communication and the metric on which
k-center is solved.
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1.2 Our Results and Techniques

We present upper and lower bounds for the k-center problem in different distributed models. The
metric considered is the shortest-path metric, and the graphs are unweighted unless otherwise spec-
ified.

The local Model

A simple and natural model for communication networks is the local model [22], where the net-
work’s nodes communicate by synchronously exchanging messages of unbounded size. The local
computation time is neglected, and the complexity measure in this case is the number of commu-
nication rounds. In this model, any problem is solvable in D rounds, where D is the diameter of
the graph, i.e., the largest distance between two nodes in it. Hence, our upper bounds should be
read as the minimum of the given value and D, and the lower bounds only apply for graphs with a
diameter larger than the lower bound value.

We start Section 3 by giving a relatively simple algorithm that finds a (2k + ϵ)-approximate
solution to the k-center problem in O(k/ϵ) rounds of the local model. This result relies on the
assumption that the nodes have unique IDs in 1, . . . , n — if we assumed the range to be larger,
even ensuring a specific number of centers would require global communication. We then show that
reducing the approximation ratio to be below k− 1 requires Ω(n) time. We stress that D ≤ n, so in
Ω(n) time the nodes can aggregate the full structure of the network and find an exact solution.

Put differently, our results present two extremes. On the one hand, if a large approximation ratio
of at least 2k+ ϵ is allowed, the problem is simple—for ϵ, k constants, it is solvable in constant time.
On the other hand, if a lower approximation ratio is required, e.g., a constant that does not depend
on k, then the running time is so large that the nodes may as well compute an optimal solution.

The congest Model

The congest model is a restrictive variant of the local model, where the messages are limited
to O(log n) bits. Specifically, problems are no longer trivially solvable in O(D) time, and getting a
constant approximation is solvable in non-trivial time, but is challenging.

In Section 4 we present a 2-approximation congest algorithm for the k-center problem running
in O(kD) rounds. It constructs different BFS trees, sometimes from multiple sources simultaneously,
and simulates a centralized greedy approximation algorithm for the k-center problem. On the
other hand, in Section 5 we prove that improving the approximation ratio to below 4/3, and hence
also finding an exact solution, requires a much longer time: any algorithm for this problem, even
randomized, must take Ω̃(n/k) rounds, and this is true even for graphs of diameter as small as 12.

This lower-bound proof is rather involved: it uses a reduction to communication complexity with
a twist. Proving congest lower bounds by reducing them to communication complexity is common
in the literature [1, 10, 28], where usually the solution for the congest problem directly implies an
answer communication complexity problem. In our reduction, a new post-processing phase is added,
where the players must do extra computation and also communicate more after getting the solution
to the (approximate) k-center problem and before finding an answer to the communication problem.

The clique Model

Finally, in Section 6 we consider the more recent congested clique model, denoted clique. It
resembles the congest, but with an all-to-all communication—the communication graph is a clique,
and the input graph is a subgraph of it on the same set of nodes. One might think that the
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O(kD)-round congest algorithm will directly translate to an O(k)-round clique algorithm, as the
communication network has a diameter 1. However, this it not the case: the congest algorithm
builds BFS trees in O(D) time, and this step cannot be translated to an O(1)-round subroutine in
the clique model.

At a high level, we show that finding a 2-approximate solution for the k-center problem in this
model can be done deterministically in the same time as computing all-pairs-shortest paths, which
is O(n1/3) for weighted graphs, and O(n0.158) for unweighted graphs [5]. Interestingly, if ω, the
exponent of the (centralized) matrix multiplication problem, will be discovered to be 2, the time
for distributed matrix multiplication algorithms 2-approximation of k-center will also be improved,
to O(nϵ′) for any ϵ′ > 0, or even to be poly-logarithmic. Previous work implies that a (2 + ϵ)-
approximate solution for k-center can be found in only O(poly log n) rounds, even in weighted
graphs [2]. By allowing higher approximation ratios we can get even faster algorithms, such as
a (4 + ϵ)-approximation in O(poly log log n + k) rounds, and up to an O(log n)-approximation in
O(k) rounds.

En route, we prove a new result regarding approximate k-center. A simple greedy algorithm [15]
finds a 2-approximation of k-center, assuming the distance between every two nodes is known. We
extend this claim in Lemma 4, to show that if only a one-way, multiplicative α-approximation of the
distances is known, then a similar greedy algorithm gives a (2α)-approximate solution to the k-center
problem. Hence, by studying distributed k-center, we also provide new insights to the centralized
case, which could be of independent interest.

Unfortunately, current techniques cannot establish lower bounds in the clique model. Any non-
trivial lower bound in this model will imply circuit complexity lower bounds, solving a long-standing
and notoriously hard open problem [13].

2 Preliminaries

2.1 The k-Center Problem

Consider a graph G = (V,E) with nodes V and edges E where |V | = n. The edges in set E may
have weights or be unweighted, and we mainly focus on the former case, and state it explicitly
when this is not the case. The length of a path is determined by the number of edges in the path
when E is unweighted, and by the total weight of the edges in the path when E is weighted. The
diameter of the graph G, denoted D, is the maximum distance between any two nodes in V , i.e.,
D = maxu,v∈V d(u, v). For any node u ∈ V , the eccentricity is ecc(u) = maxv∈V d(u, v), so we also
have D = maxu∈V ecc(u).

Let k ∈ N be a given parameter. In the k-center problem, we aim to find a set S∗ ⊆ V with a
size of at most k that minimizes the maximum distance of any node of V to its nearest center in S.
More formally, we seek a set S∗ with |S∗| ≤ k that minimizes the value maxv∈V mins∈S∗ d(v, s). This
value is denoted as OPTk(G) or simply OPTk when the context is clear. For α ≥ 1, an algorithm is
considered α-approximation if it can compute a solution S such that the distance of any node v ∈ V
to its nearest node in S is at most α ·OPTk.

2.2 Computational Models

We consider three common computational models for studying distributed graph algorithms, namely
the local, congest and clique models. We model a communication network using its graph,
with nodes representing computational units and edges representing communication links. We use
n for the number of nodes (computational units) and assume they have unique ids in {1, . . . , n}
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(specifically, there is always a node with id 1). The computation proceeds in synchronous rounds,
where in each round each node sends messages to its neighbors, receives messages form them, and
updates its local state accordingly. The input is local, in the sense that each node initially knows
only its id, list of neighbors, and if there are inputs such as edge weights, then also the weights of
its incident edges. The outputs are similarly local, e.g., at the end of the algorithm’s execution each
node should know if it is a center or not.

In the local model [27], the message sizes are unbounded, and an r-round algorithm is equivalent
to having each node deciding by its distance-r neighborhood [22]. The congest model [10, 28] is
similarly defined, but each node is limited to sending O(log n)-bit messages to each of its neighbors
in each round, where messages to different neighbors might be different from one another. This
model allows each node to send, e.g., its id or the ids of some of its neighbors in a single round, but
not its full list of neighbors. A common primitive in this model is that of construction a BFS tree
from a node. This is sometimes extended to multiple BFS trees, or trees of bounded depth. See,
e.g., [17, 21].

Finally, we model a network with a congested all-to-all overly network by the clique model [13,
23]. In this model, the input is a network as before, but the communication is less limited: in each
round, each node can send O(log n)-bit messages to each other node in the graph, and not only to
its neighbors. This allows the nodes, e.g., to re-distribute the inputs in constant time [11, 20], and
compute all-pairs-shortest-paths in sub-linear time [5].

2.3 Communication Complexity

We prove lower bounds for the k-center problem in the congest model using a reduction to com-
munication complexity, a well-studied topic in theoretical computer science [19, 30].

In the two-party set disjointness (henceforth: disjointness) communication complexity problem,
two players referred to as Alice and Bob get two ℓ-bit strings x (Alice’s string) and y (Bob’s string),
and communicate by exchanging messages on a reliable asynchronous channel. Their goal is to
decide if the sets represented by the indicator vectors x and y are disjoint or not, i.e., if there is an
index i such that x[i] = y[i] = 1, in which case we say they are not disjoint and the players must
output 0, or otherwise, the sets are disjoint and they should output 1.

Alice and Bob follow some protocol indicating who should send messages at each step and what
message to send. The communication complexity of a protocol (as a function of ℓ is the maximal
number of bits they exchange when executing it, and the deterministic communication complexity
of a problem the the minimal communication complexity of a protocol solving the problem. The
randomized communication complexity is similarly defined, but the players may also use random
bits when executing the protocol, and the success probability is at least 2/3, when taken on the
choice of random bits.

For the disjointness problem, there is an Ω(ℓ) lower bound, which holds for deterministic and
randomized algorithms alike [19, Example 3.22].

2.4 Related Work

To our surprise, the k-center problem was not studied in traditional distributed computing models.
We survey below works in related computational models, and works on the related problem of metric
facility location in distributed settings.
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2.4.1 k-Center in Related Computational Models

Bandyapadhyay, Inamdar, Pai, and Pemmaraju [2] studied the k-center problem, along with the
related uncapacitated facility location and k-median problems. They consider the k-machine model
(the parameter k here need not be the same as in k-center) which is closely related to the clique
model. As mentioned, their work implies a randomized (2 + ϵ)-approximation O(poly log n)-time k-
center algorithm in the clique model. Chiplunkar, Kale, and Ramamoorthy [8] studied approximate
k-center in streaming models, and also in a parallel model where multiple processors perform local
computations and then send the results to a central processor. Surprisingly, these seem to be the
only works on the k-center problem in distributed settings. Cruciani, Forster, Goranci, Nazari, and
Skarlatos [9] recently studied the k-center problem in a centralized dynamic graphs setting.

2.4.2 Metric Facility Location

The metric facility location problem has attracted more attention in distributed settings than the
k-center problem. Works on this problem consider models that share similarities with the ones we
consider here, although typically the models are not precisely identical.

The congest Model In an unpublished manuscript, Briest, Degener, Kempkes, Kling, and
Pietrzyk [4] studied metric facility location in the congest model. They focused on a bipartite
graph, with one side representing facilities and the other representing clients. Some of their results
appeared in the thesis of Pietrzyk [29]. This work improved upon previous work that also consider
metric facility location in bipartite setting in the congest model [25, 26].

The clique Model Gehweiler, Lammersen, and Sohler [14] studied metric facility location in a
model resembling the clique. They present a 3-round randomized algorithm that gives a constant
approximation factor, based on the method of Mettu and Plaxton [24].

Distributed Large-Scale Computational Models Inamdar, Pai, and Pemmaraju [18] studied
metric facility location in the clique model, MPC and k-machine, and gave an O(1)-approximation
algorithm using a Mettu-Plaxton-style algorithm. When considering the clique model with what
they call “implicit metric”, their model coincides with ours. They also consider another input regime
(“explicit metric”), but not in the local and congest models, and not for the k-center problem.
Their work improves upon earlier works on metric facility location in the clique model [3, 16].

3 The k-Center Problem in the local Model

In this section, we consider the k-center problem in the local model. We start with a fast and
simple ((2 + ϵ)k)-approximation algorithm, Algorithm 1.

Lemma 1. For any ϵ > 0 there is a deterministic O(k/ϵ)-round algorithm in the local model that
gives a ((2 + ϵ)k)-approximate solution for the k-center problem.

Proof. Let t = 2 + 4
ϵ . The algorithm starts by having the node with id 1 (or any other arbitrary

node) initiating the construction of a BFS tree of depth tk. After tk rounds, the nodes report back
up the tree if the tree construction algorithm terminated in all its branches (i.e., reached all the
nodes) or not. If it terminated, we have D ≤ tk, and in another O(tk) rounds node 1 can aggregate
all the graph structure and find an optimal solution. Otherwise, node 1 becomes the only center.
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Algorithm 1 A ((2 + ϵ)k)-approximation in the local model
1: t← 2 + 4

ϵ
2: Perform a BFS from v1 for tk rounds
3: Report back on the tree if terminated on all branches under you
4: if All branches terminated then
5: Aggregate all the graph to v1
6: Locally compute an optimal solution
7: Disseminate the solution on the BFS tree
8: else Only v1 marks itself as a center

We claim that this simple algorithm gives a (2+ ϵ)k approximate solution; clearly, we only need
to prove it for the case D > tk. The eccentricity of node 1 is at most D, which gives an upper bound
on ALG, the quality of the solution given by the algorithm.

Recall that OPTk is the largest distance from a node to its center in an optimal solution. Let
π be the shortest path between two nodes of the largest distance, i.e., two nodes of distance D.
In an optimal solution, there are at least D + 1 − k non-center nodes in π. Therefore, there is a
center that covers at least (D + 1 − k)/k nodes of π. Hence, OPTk is at least (D + 1 − k)/(2k) =
D/2k + 1/2k − 1/2 ≥ D/2k − 1.

Note that D > tk implies D/(tk) > 1. The approximation ratio is thus

ALG
OPTk

≤ D

D/2k − 1
≤ D

D/2k −D/(tk)
=

2tk

t− 2
= (2 + ϵ)k

by the choice of t, as required.

This algorithm utilizes the fact that local computation is not limited in the local model, so
v1 can find an optimal solution. However, it is not strictly necessary to use all this computational
power: in case v1 has to locally solve k-center, it can instead compute a 2-approximation in a
greedy manner. The approximation ratio is still as required, and the local computation now takes
polynomial time.

Next, we move to the main result of the section: a lower bound for the k-center problem in
the local model. Our lower bound also works for bi-criteria algorithms, which return at most
βk centers instead of at most k centers, for some β ≥ 1; if the algorithm returns at most k centers,
we can simply set β = 1. Our lower bound states that any t-round algorithm cannot achieve an
approximation ratio better than k − k2+k(βk−1)(2t+1)

n+k . If k2 + k(βk − 1)(2t+ 1) < n+ k holds, then
our lower bound states that it is not possible to get an approximation ratio better than k − 1. The
typical case is the non-bi-criteria one, with k being a constant, and there our lower bound translates
to stating that getting an approximation ratio better than k − 1 requires linear time.

Theorem 1. Let t, k ∈ N, β ≥ 1. Any t-round bi-criteria deterministic local algorithm that solves
the k-center problem and reports at most βk centers as the solution, cannot have an approximation
ratio better than k − k2+k(βk−1)(2t+1)

n+k , where n > 2βkt is the size of the graph and β ≥ 1.

At a high-level, the proof considers a communication graph which is a cycle, an algorithm in the
local model that is faster than the lower bound, and the centers chosen by it. In t rounds, each node
(and specifically, each chosen center) can gather information only from a segment of 2t+1 nodes. We
thus create a new cycle by concatenating all the (2t+ 1)-node segments around the chosen centers.
By the choice of the parameters, this leaves some “leftover nodes” that are not in any segment, which
are concatenated after all the segments. When executing the same algorithm on the new cycle, the
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Figure 1: Illustration for the proof of Theorem 1. Left: cycle C. Right: cycle C ′

same nodes as before will become centers, as they gather exactly the same information. The “leftover
nodes” are now far from all the chosen centers, rendering a bad approximation ratio, as claimed.

Proof. Let A be an algorithm that finds an (approximate, bi-criteria) solution for the k-center
problem. Let k′ ≤ βk be the maximum number of centers that A reports for any cycle of length
n, and let C be such a cycle. For simplicity, we label the nodes of C with numbers 1, . . . , n in a
clockwise order. Assume that c1 < . . . < ck′ are the centers returned by A in clockwise order. Since
n > 2kt, there exists at least two consecutive centers such that the distance between them is more
than 2t. We introduce a new cycle C ′ by re-arranging the nodes and show that the solution that A
finds for C ′ has an approximation ratio of at least k − k2+k(βk−1)(2t+1)

n+k .
To build the cycle C ′, we first define segments S1, . . . , Sk′ of C as follows. Each segment Si is of

the form Si = [bi, ei], which refers to the nodes bi to ei in the clockwise order. Roughly speaking,
each Si is a segment of 2t+ 1 nodes centered around ci, but since such segments might overlap, the
exact definition is a bit more subtle.

We define ei := min(ci + t, ci+1 − 1) for any 1 ≤ i < k′ and ek′ := min(ck′ + t, n + c1 − 1). We
also define b1 := max(c1− t, n− ck′ +1) and bi := max(ci− t, ei−1+1) for any 1 < i ≤ k′. Note that
ek may be larger than n, in which case we consider Sk′ as the segment starting at bi and ending at
ek′ − n in the clockwise order, i.e. Sk′ = [bk′ , n] ∪ [1, ek′ − n]. Similarly, b1 might be smaller than 1,
in which case we consider nodes b1 + n to e1 in the clockwise order, i.e. S1 = [b1 + n, n] ∪ [1, e1].

Since we assumed n > 2βkt, then there is an i∗ such that the distance between ci∗ and ci∗+1

is more than 2t (we consider c1 as ci∗+1 if i∗ = k′). To build C ′, we concatenate the segments
Si∗+1, Si∗+2, . . . , Sk followed by S1, S2, . . . , Si∗ , and finally all the remaining nodes of C, in a clock-
wise order (see Figure 1).

Now, we claim that there is an execution of A on C ′ that reports c1, . . . , ck′ as the centers.
Since the distance between ci∗ and ci∗+1 is more than 2t, then the neighbourhood of length t for
the nodes ci∗ and ci∗+1 is disjoint. Along with the definition of the segments, we can conclude that
the distance-t neighborhood for any node ci is the same in both C and C ′. Hence, any node ci
receives the same information for both graphs C and C ′, and therefore, each node ci makes the
same decisions. Since c1, . . . , ck chose to be the centers in C, they also chose to be the centers in
C ′. Moreover, we assumed that k′ is the maximum number of centers that A reports for a cycle of
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length n, and hence, no other node chooses to be a center.
We next discuss the approximation ratio. According to the definition of Si, each Si is of size at

most 2t+1. Therefore, there are at most (k′−2)(2t+1) nodes in Si∗+2, Si∗+3 . . . , Sk, S1, S2, . . . , Si∗−1.
Then, in the clockwise path from ci∗+1 to ci∗ in C ′ there are at most (t+1)+(k′−2)(2t+1)+(t+1) =
(k′ − 2)(2t + 1) + 2t + 2 nodes. This means that the distance from ci∗+1 to ci∗ in C ′ in the anti-
clockwise order is at least n − ((k′ − 2)(2t + 1) + 2t + 2) + 1 = n − (k′ − 1)(2t + 1), and note that
there is no center in this path. Hence, there is a node in the anti-clockwise path from ci∗+1 to ci∗ in
C ′ such that its distance to the nearest center is at least (n− (k′ − 1)(2t+ 1))/2.

On the other hand, the optimal solution has OPTk ≤ ⌈(n− k)/(2k)⌉. To see this, we can choose
the k centers such that the distance between any two consecutive centers in the clockwise order is
⌈n/k⌉ or ⌊n/k⌋. Thus, OPTk ≤ ⌈(n − k)/(2k)⌉ holds and the approximation ratio of Algorithm A
is at least

(n− (k′ − 1)(2t+ 1))/2

⌈(n− k)/(2k)⌉
≥ (n− (k′ − 1)(2t+ 1))/2

(n− k)/(2k) + 1
= k

n− (k′ − 1)(2t+ 1)

n− k + 2k

= k − k2 + k(k′ − 1)(2t+ 1))

n+ k
≥ k − k2 + k(βk − 1)(2t+ 1)

n+ k
,

which finishes the proof.

4 A 2-Approximation in the congest Model

In this section, we show how to achieve a 2-approximate k-center clustering in the congest model in
O(kD) rounds, where D is the diameter of the underlying graph. Algorithm 2 presents an overview
of our technique. In the following, we explain each part of this algorithm in detail.

Algorithm 2 A 2-approximation in the congest model
1: Find the node vmin with minimum id
2: S ← {vmin}
3: for k − 1 times do
4: Perform a BFS from all the nodes in S
5: Let v∗ be the furthest node from S, breaking ties by id
6: S ← S ∪ {v∗}
7: Each node in S marks itself as a center

As opposed to the local algorithm, here we do not need to use the assumption that the nodes
ids are in {1, . . . , n}, and assuming they are taken from {1, . . . ,poly n} suffices. The first step of
Algorithm 2 is finding the node vmin with the minimum id, which can be done in O(D) rounds (and
can be skipped if the ids are in {1, . . . , n}). To do this, we start a BFS from all nodes. In each
round, each node may receive messages of BFS trees from multiple sources. If this happens, such a
node only continue the BFS from the source with the minimum id it has seen so far, and ignores the
BFS’s for all other sources. Therefore, the only source that its BFS is not paused after D rounds is
vmin. Each leaf of a BFS tree reports the termination of the construction up the tree, and back to
the tree’s parent. Hence, vmin becomes aware that it is the node with the lowest id in O(D) rounds.
In another O(D) time, vmin disseminates along its BFS tree the depth of this tree, and all nodes
learn this value, to which we refer as D′. Observe that D′ ≤ D < 2D′, and 2D′ will be used when
an upper bound on D is needed (e.g., for the time of each iteration described below).

We next set S = {vmin}, and preform k − 1 iterations. In each iteration, a BFS is performed,
where the sources are all nodes in S. Each node chooses to join the first BFS tree which reaches to
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it, breaking ties arbitrarily. After O(D) rounds, the BFS is done and each node knows its distance
to S. We next need to find the node with minimum id among the furthest nodes to S, which we
refer to it as v∗. This can be done in O(D) rounds. In each round, every node informs its neighbors
which node has the maximum distance among those it is currently aware of, and if it knows more
than one node with maximum distance, it only reports the one with the smallest id. After D′ such
rounds, node v∗ knows that it is the furthest node to S with minimum id. Finally, v∗ can be added
to S. At the end of the algorithm, the nodes in S mark themselves as centers.

The proof for the approximation ratio of our algorithm comes from the approximation ratio of
the known greedy approach by Gonzalez [15], which we applied in our algorithm. In Lemma 2 we
formally state this approximation.

Lemma 2 ([15]). Let G be a graph, and k ≥ 1 be an integer. Assume S1 = v1, where v1 ∈ G is an
arbitrary node. For each 1 < i ≤ k, we have Si = Si−1∪{vi}, where vi is a node of G with maximum
distance to Si−1. Then, Sk is a 2-approximate solution for k-center of G.

We can now summarize this section in Theorem 2.

Theorem 2. There exists a deterministic 2-approximation algorithm for the k-center problem in the
congest model that needs O(kD) communication rounds.

5 A Lower Bound in the congest Model

In this section, we show a lower bound on the number of communication rounds for any algorithm
for the k-center problem in the congest model with an approximation ratio better than 4/3. We
start with a lower bound for the 1-center problem and then extend it for the k-center problem for a
general k.

5.1 A Lower Bound for the 1-Center Problem

To prove the lower bound, we use a graph that was introduced by Abboud, Censor-Hillel, Khoury,
and Paz [1] in order to prove a lower bound for computing the radius of a graph. Let x and y be two
binary strings of length ℓ. The graph Gx,y is built as follows, on n = Θ(ℓ) nodes (see Fig. 2). On
a high level, the graph consists of two main sets of ℓ nodes each, A and B, and a path on 4 nodes:
cA, c̄A, cB, c̄B. The input strings x and y for a set-disjointness problem are used to set which edges
from A to c̄A exist (representing x), and which edges form B to c̄B exist (representing y). The rest
of the graph is built in order to guarantee that the optimal solution for the 1-center problem, OPT1

satisfies OPT1 = 4 if and only if x and y are disjoint. Hence, by simulating a 1-center algorithm
and finding the distance from the chosen center to all other nodes, Alice and Bob can decide if x
and y are disjoint. Finally, if the algorithm is too fast, Alice and Bob can simulate it with too little
communication, contradicting the communication-complexity lower bound for disjointness.

We now present the graph and the proof in detail. The graph Gx,y consists of node sets A, B, FA,
TA, FB, and TB, as well as nodes cA, c̄A, cB, and c̄B. The set A is the set of ℓ nodes a0, a1, . . . , aℓ−1

and the set B is the set of ℓ nodes b0, b1, . . . , bℓ−1. For S ∈ {A,B}, the set FS consists of ⌊log2 ℓ⌋
nodes f0

S , f
1
S , . . . , f

⌊log2 ℓ−1⌋
S . Similarly, the set TS contains node t0S , t

1
S , . . . , t

⌊log2 ℓ−1⌋
S . The edges of

the graph Gx,y are described in the following.

• Edges from A to FA and TA and edges from B to FB and TB. Let 0 ≤ i < ℓ and
0 ≤ h < ℓ, and let bini

h be the h-th bit in the binary representation of i. If bini
h = 0, we

connect ai to fh
A and we connect bi to fh

B. Otherwise, if bini
h = 1, we connect ai to thA and we
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a0

f 0
A

bℓ−1

t0
A f 0

B t0
B

A B

FA TA FB TB

cA c̄A cBc̄B

w0

w1

w2

Figure 2: Illustration of the graph Gx,y [1]. The dotted edges depend on the inputs for the disjointness
problem.

connect bi to thB. That is to say, we connect ai to the binary representation of i in the sets FA

and TA, where F and T represent “false” and “true”; bi is similarly connected.

• Edges from c̄A to A and edge from c̄B to B. For each 0 ≤ i < ℓ, we connect ai to c̄A if
and only if x[i] = 1, and we connect bi to c̄B if and only if y[i] = 1.

• Other edges from cA, c̄A, cB and c̄B. We connect cA to all nodes in A and we connect cB
to all nodes in B. We also connect c̄A to all nodes in FA and TA, and similarly, we connect c̄B
to all nodes in FB and TB.

• Edges between FA, TA, FB, and TB. For every 0 ≤ h < ℓ, we connect fh
A to thA and thB,

and we connect thA to fh
B.

• Edges from w0, w1 and w2. We connect w0 to all nodes in A, and also w0 to w1 and w1

to w2.

Distances in the graph Gx,y presented above have the following properties.

Claim 1 ([1, Claim 4]). Let Gx,y be the graph defined above, and V be the set of its nodes. Then,
the following holds

1. For every node u ∈ V \A, we have ecc(u) ≥ 4.

2. For every node ai ∈ A and every u ∈ V \ {bi, cB} we have d(ai, u) ≤ 3.

The first part of the claim holds since the distance of w2 to any node in V \ A ∪ {w0, w1, w2}
is at least 4, and the distance of cB to any node in {w0, w1, w2} is at least 4. To show the second
part of the claim, observe that the distance between ai and any node in V \ B ∪ {cB} is clearly at
most 3. Besides, if j ̸= i, there exist 0 ≤ h < ℓ such that bini

h ̸= binj
h, where bini

h and binj
h are the

h-th bit in the binary representation of i and j, respectively. If bini
h = 0 and binj

h = 1, the path
(ai, fh

A, t
h
B, b

j) exists. Otherwise, if bini
h = 1 and binj

h = 0, the path (ai, thA, t
h
B, b

j) exists. It means
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that d(ai, bj) ≤ 3, and therefore, the second part of the claim holds. The rigorous proof of this claim
can be found in [1, Claim 4].

Recall that x and y are not disjoint if there is a 0 ≤ i < ℓ such x[i] = y[i] = 1, and otherwise,
they are disjoint. In Lemma 3, we show that OPT1(Gx,y) = 4 if and only if x and y are disjoint.

Lemma 3. If the strings x and y are disjoint then OPT1(Gx,y) = 4. Otherwise, OPT1(Gx,y) = 3.

Proof. To prove the lemma, we first show that if OPT1 < 4, then an optimal center of Gx,y for the 1-
center problem is a node ai ∈ A, such that x[i] = y[i] = 1. Assume that OPT1 < 4. Then Claim 1(1)
implies that the optimal center is in A. Let ai ∈ A be an optimal center. Then, d(ai, bi) ≤ 3 should
holds since we assume OPT1 < 4. But d(ai, bi) ≤ 3 holds only if ai is connected to c̄A and bi is
connected to c̄B, which means x[i] = y[i] = 1.

We next consider the case that x and y are disjoint. In this case, we have OPT1 ≥ 4 since
otherwise, our claim implies that there exists 0 ≤ i < ℓ such that x[i] = y[i] = 1 and contradicts the
disjointness of x and y. Hence, OPT1 ≥ 4 holds. On the other hand, all nodes are within distance 4
of a0, and therefore, OPT1 = 4.

Now, we consider the case that x and y are not disjoint. This means that there exist 0 ≤ i < ℓ
such that x[i] = y[i] = 1. We show that ecc(ai) = 3 and then OPT1 = 3. Claim 1(2) states that
d(ai, u) ≤ 3 holds for any u ∈ V \ {bi, cB}. Besides, ai is connected to c̄A as x[i] = 1 and bi is
connected to c̄B since y[i] = 1. Thus, d(ai, bi) = d(ai, cB) = 3. Putting everything together we have
OPT1 = 3.

Theorem 3. Any congest algorithm that returns an α-approximation for the 1-center problem
with α < 4/3, even randomized, must take Ω(n/ log2 n) rounds to complete.

Proof. Assume for contradiction a congest algorithm faster than in the theorem’s statement. Let
x, y ∈ {0, 1}ℓ be two inputs of Alice and Bob for the disjointness problem. Alice and Bob simulate
the algorithm on the graph Gx,y described above.

To this end, we split the graph node by VA = A∪FA∪TA∪{cA, C̄a, w
0, w1, w2} and VB = V \VA

(the nodes on the left and right sides of Fig. 2, respectively). Alice is in charge of the nodes of VA

and Bob on VB. To simulate a round, they locally simulate the exchange of messages in each of their
node sets, and exchange bits to simulate the messages between nodes of VA and VB. Since there are
O(log n) edges between the sets, a simulation of a round requires O(log2 n) bits of communication.

If the output of the algorithm is a node not in A, Alice and Bob return 1 for the disjointness
problem. If it is some node ai ∈ A, the exchange the bits x[i] and y[i] (for the same index i) and
return 0 for the disjointness problem if and only if x[i] = y[i] = 1.

For correctness, first note that Alice and Bob return 0 for the disjointness problem only if they
find an index such that x[i] = y[i] = 1, so this answer must be correct. When they return 1, on
the other hand, it might be since the algorithm returned a center u /∈ A, or a center ai such that
x[i] = 0 or y[i] = 0 (or both).

If Alice and Bob return 1 because of a center u /∈ A, then Claim 1(1) guarantees that ecc(u) ≥ 4,
and by α < 4/3 we get that OPT1 > 3. Have the sets not been disjoint, Lemma 3 guarantees that
OPT1 = 3, a contradiction.

If Alice and Bob return 1 because of a center ai ∈ A, then we also know that x[i] = 0 or
y[i] = 0. Note that d(ai, bi) ≥ 4: the nodes of bin(ai) and bin(bi) are never neighbors, so any 3-path
connecting ai and bi must go through the edge (c̄A, c̄B); but since x[i] = 0 or y[i] = 0, no such path
can exists. Hence, ecc(ai) ≥ 4. As before, if the sets were not disjoint, Lemma 3 guarantees that
OPT1 = 3, and we would have got a contradiction.

For the complexity, let T be the number of rounds used by the algorithm. To simulate these
rounds, Alice and Bob exchange O(T log2 n) bits. As shown above, they solve the disjointness
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problem on ℓ bits, which requires them to communicate Ω(ℓ) bits, even when using a randomized
algorithm. As ℓ = Θ(n), we get T = Ω(n/ log2 n). In fact, Alice and Bob must also exchange the id
of the node chosen as the center, but these log n bits of communication do not affect the asymptotic
complexity.

Finally, note that Alice and Bob cannot solve disjointness solely by the output of the algorithm,
and need extra communication after it. Hence, we cannot utilize standard reductions such as [1,
Theorem 6] and use a non-standard one.

5.2 Extending the Lower Bound to the k-Center Problem

To generalize the lower bound for the 1-center problem to the k-center problem, we consider k copies
of the graph Gx,y introduced in Section 5.1, such that all copies share the node w2. We refer to this
graph as Gk

x,y.

Claim 2. In any α-approximate solution for k-center of Gk
x,y, α < 3/2, exactly one center is chosen

from each copy.

Proof. Note that Lemma 3 guarantees that in each copy we can choose a center and get a solution
with distance at most 4 from each node to a center, and OPTk ≤ 4. If some copy contains no center,
then b0 in this copy has distance at least 6 to w2, and the solution is at least (6/4)-approximation,
a contradiction.

Theorem 4. Any congest algorithm that returns an α-approximation for the k-center problem
with α < 4/3, even randomized, must take Ω(n/(k2 log2 n)) rounds to complete.

The proof extends the proof of Theorem 3 by using the graph Gk
x,y described above. Note that

all copies are for the same input pair (x, y).

Proof. Assume a faster algorithm than in the theorem statement. Alice and Bob simulate this
algorithm for ℓ input bits, where ℓ = Θ(n/k), and get an output at the form of k center nodes.
If none of the output nodes is of the form ai ∈ A for some copy, Alice and Bob answer 1 for the
disjointness problems. Otherwise, for every node ai ∈ A in the output (perhaps from different
copies), they exchange x[i], y[i], and answer 0 for the disjointness problem only if x[i] = y[i] = 1 for
at least one such i.

For correctness, recall first that Claim 2 guarantees that each copy contains exactly one center.
If Alice and Bob answer 0, this is because they found an index i of intersection and the algorithm

is correct. If they answer 1, the proof follows the same lines of the proof of Theorem 3: if the sets
are not disjoint then Lemma 3 guarantees each copy has a center ai with ecc(ai) ≤ 3, and we get
OPTk ≤ 3. On the other hand, the algorithm returns at each copy a node u /∈ A or a node ai with
x[i] = 0 or y[i] = 0, which has d(ai, bi) ≥ 4; in both cases, the solution is not an α-approximation
for α < 4/3.

For the complexity, assume the algorithm takes T rounds. Alice and Bob communicate, for each
copy and each round, O(log(n/k) log n) bits, which are O(log2 n) bits. At the end of the algorithm,
they may exchange the indices of at most k centers of the form ai and their inputs x[i] and y[i] in these
locations, with takes requires another O(k log n) bits. In total, they exchange O(Tk log2 n+ k log n)
bits, which is O(Tk log2 n).

On the other hand, they solve disjointness on ℓ = Θ(n/k) input bits, so they must communicate
Ω(n/k) bits. Hence,

Tk log2 n ≥ cn/k
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for some constant c, and we get

T = Ω

(
n

k2 log2 n

)
as claimed.

6 A 2-Approximation Algorithm in the clique Model

We now present Algorithm 3, which provides an approximate solution to the k-center clustering
problem in the clique model. It is applicable both when the distance between the nodes are
weighted and when they are unweighted.

The algorithm consists of two phases. The first phase is computing all-pairs shortest distances
or approximating them, using known algorithms.

The second phase is to greedily find the centers, which is done in additional k rounds. In this
phase, we first find vmin, the node with the minimum id. This is trivial when the ids are in {1, . . . , n},
but easy also without this assumption, by having each node send its id to all other nodes. We then
set S ← {vmin}. Next, we have k − 1 iteration, and in each iteration we find v∗, which is the
furthest node from S (if there is more than one furthest node, we define v∗ as the furthest node with
minimum id). To accomplish this, it is enough that each node sends its distance to S to all nodes.
Hence, all nodes can know who v∗ is in one communication round. At the end of each iteration, we
set S to S ∪ {v∗}, and report S as the set of centers at the end of the algorithm. This process is
formalized in the following algorithm.

Algorithm 3 Varying approximation ratios in the clique model
1: Compute all-pairs shortest paths
2: Let vmin be the node with minimum id
3: S ← {vmin}
4: for k − 1 times do
5: Let v∗ be the furthest node to S
6: S ← S ∪ {v∗}
7: Each node in S marks itself as a center

If we calculate the exact all-pairs shortest paths in the first phase of Algorithm 3, Lemma 2
indicates that the set S computed by the algorithm is a 2-approximate solution for k-center.

Approximate distance can be computed much faster than exact ones, and we next show that
Algorithm 3 can also work with approximate distances, in which case it computes an approximate k-
center solution. To prove this, we now prove Lemma 4, which extends Lemma 2 to the scenario where
only a multiplicative α-approximation with one-sided error of all-pairs shortest paths is computed
in the first phase.

Lemma 4. For any α ≥ 1, if an α-approximation of all-pairs shortest paths is computed in the first
phase of Algorithm 3, then the set S obtained by the algorithm is a (2α)-approximate solution for
the k-center problem.

Proof. If n ≤ k, the algorithm trivially returns all the nodes as the centers, so we assume n > k in
the following. Let S be the set returned by Algorithm 3, v̂ ∈ V \ S the furthest node from S, and r̂
its distance.

First, we claim that OPTk ≥ r̂/(2α). Since v̂ is not added to S, we can conclude that the
distance between any two nodes in S is at least r̂/α. Thus, the distance between any two nodes
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Table 1: Approximation times in the clique model, for constant 0 < ϵ < 1
Approx. ratio Time Weighted? Deter.? Ref.

2 O(n1/3 + k) No Yes [5] & Thm. 5
2 O(n0.158 + k) Yes Yes [5] & Thm. 5

2 + ϵ O(n0.158 + k) No Yes [5] & Thm. 5
2 + ϵ O(poly log n) Yes No [2]
4 + ϵ O(log4 log n+ k) No Yes [12] & Thm. 5
6 + ϵ O(log2 n+ k) Yes Yes [6] & Thm. 5

O(log n) O(k) Yes No [7] & Thm. 5

in S ∪ {v̂} is at least r̂/α as well. In addition, in any optimal solution there exist two nodes in
S ∪{v̂} that have the same nearest center in that optimal solution since |S ∪{v̂}| = k+1. Since the
distance between these two nodes is at least r̂/α, at least one of them has distance at least r̂/(2α)
from their common center, implying OPTk ≥ r̂/(2α). On the other hand, all nodes in V are within
distance r̂ from S by the definition of r̂. Hence, S is a solution with the approximation ratio of at
most r̂

r̂/(2α) = 2α.

All is left now is to plug fast clique distance computation algorithms [5, 6, 7, 12] in the lemma,
and we get fast algorithms for exact and approximate k-center. This yields the results detailed
in Theorem 5 and Table 1, showing that k-center can be approximated in the same times as all
pairs shortest paths computation, up to an additive O(k) time. Note that for the specific case of
(2 + ϵ)-approximation, a much faster (randomized) algorithm exists [2], running in O(poly log n)
rounds.

Theorem 5. There exists a deterministic clique algorithm for the k-center problem which gives a
2-approximation in O(n1/3 + k) rounds on weighted graphs and O(n0.158 + k) rounds on unweighted
graphs.

For every constant 0 < ϵ < 1, there exist deterministic algorithms that give a (2+ϵ)-approximation
in O(n0.158 + k) rounds on unweighted graphs, a (4 + ϵ)-approximation in O(log4 log n + k) rounds
on unweighted graphs, and a (6 + ϵ)-approximation in O(log2 n+ k) rounds on weighted graphs.

There exists a randomized algorithm which gives a O(log n)-approximation in O(k) rounds on
both weighted and unweighted graphs.
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