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Abstract
This paper is related to the issue of the density estimation of observations

with values in a Riemannian submanifold. In this context, Pelletier (2005)
proposed a kernel density estimator for independent data. We investigate here
the behavior of Pelletier’s estimator when the observations are generated from
a strictly stationary α−mixing process with values in this submanifold. Our
study encompasses both pointwise and uniform analyses of the weak and strong
consistency of the estimator. Specifically, we give the rate of convergence in
terms of mean square error, probability, and almost sure convergence (a.s.).
We also give a central-limit theorem and illustrate our proposal through some
simulations and a real data application.

1



Key words: Kernel density estimator, Riemannian manifolds, Mixing
condition, Weak and strong consistency, Central limit theorem.

1 Introduction

The problem of unknown density estimation from a kernel approach has been widely
treated when the variable of interest lies in an Euclidean space, either for independent
or dependent data. However, in many applications, such as biology (for example,
protein data as in Mardia et al. (2007) or Mardia et al. (2008)), spatial statistics (for
instance, in studies including information related to positions on the Earth), geology,
image analysis (see, for example, Pennec (2006) and references therein), medicine,
and so on (see also Dryden and Mardia (1998) for additional examples), the Euclidean
assumption about the underlying geometry of the observations fails. An alternative
is to treat the data as lying on a submanifold, M, which has an unknown structure
to be estimated (we refer, for example, Aamari and Levrard (2019) or Berenfeld and
Hoffmann (2021) or Khardani and Yao (2022) and references therein). However,
M can be a known shape such as a sphere, a torus, or a cylinder, where the data
can be distributed as directional data, as a Von-Mises or a Kent distribution (the
reader can see Mardia and Jupp (2000) and references therein for more information
on such distributions). Such intrinsically complex (high-dimensional) data structures
have led to new challenges in statistical analysis and inference, which require some
specific innovative methods and theories.
Actually, Several theoretical works exist on kernel density estimation for specific
Riemannian submanifolds such as (finite-dimensional) unit spheres (proposed, for
example, by Hall et al. (1987), Kim and Koo (2002), Kerkyacharian et al. (2011),
García-Portugués et al. (2020)) or on a torus Di Marzio et al. (2011) or directional
data (see Bai et al. (1988) or García-Portugués et al. (2013)), to name but a few.
We focus here on the more general Riemannian manifold framework. In fact, the
literature related to the theoretical behavior of the kernel density estimation in this
setting is very limited. The key reference is the work of Pelletier (2005). But, we can
also quote other references such as Kim and Park (2013), Henry et al. (2013), Berry
and Sauer (2017), Cleanthous et al. (2020) and Berenfeld and Hoffmann (2021),
Khardani and Yao (2022) and references therein.
All these references concern the case of independent identically distributed (i.i.d.)
observations. They have shown that the extension of the former Parzen kernel density
estimator to the setting of Riemannian manifolds is far from trivial. Furthermore, to
our knowledge, the case where the dataset consists of dependent observations has not
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been treated yet. This work aims to contribute to addressing this gap. Namely, we
study the behavior of Pelletier’s kernel density estimator (Pelletier (2005)) applied
to observations of a stationary Riemannian-valued stochastic process that satisfies a
strong mixing condition (see, for example, Bradley (2007) for more information on
practical applications of the α−mixing).
The rest of the paper is organized as follows. In Section 2, we present the theoretical
framework and outline the necessary conditions required to get the theoretical asymptotic
results. Section 3 is devoted to the asymptotic results. Namely, we study the
pointwise and uniform weak and strong consistency of the estimator. We also give
a Central Limit Theorem. We illustrate the behavior of the estimator in practice
through some simulations and a real data application in Section 4. In Section 5,
we give a brief discussion and some perspectives on this study. The proofs of the
theorems and propositions are given in Section 6.

2 General setting and notations

This work concerns any measurable stationary random process (Xt, t ∈ Z) defined
on a probability space (Ω,A,P) with values on the Riemannian submanifold (M, g)
of Rd (d ≥ 2). The Xt’s are dependent and distributed as a random variable X with
an unknown density f on M. We assume that (Xt) satisfies an α−mixing condition,
defined by

α(n) = sup
k

sup
A∈Fk

1 (X), B∈F∞
k+n(X)

{|P(A ∩B)− P(A)P(B)|} , for n ≥ 1,

where Fk
i (X) is the σ−field generated by {Xi, i ≤ j ≤ k} and α(n) tends to zero.

Beside the mixing conditions, our estimator runs under some conditions on the
submanifold (M, g).
For each point x ∈ M, we will set TxM the tangent space to M at x. We assume
that (M, g) is endowed with a measure, µg, and is geodesically complete and compact
without boundary. Consequently (by the Hopf Rinow Theorem, refer to Spiegel
(2016)), (M, dg) is a complete metric space, where dg is the metric induced by g.
In the rest of the paper, we will set d(·, ·) = dg(·, ·). This allows us to define the
exponential map at x, expx : TxM → M such that for any v ∈ TxM, expx(v) = γv(1)
where the function γv defined by γv(t) = expx(tv), t ∈ R is the unique geodesic with
γv(0) = x and γ̇v(0) = v. Its inverse, denoted by exp−1

x , is a map from the image,
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Im (expx) to TxM. For more information on these notions, the reader can refer to,
for example, Gallot et al. (2004) or Chavel (2006).

We will denote by 0x and µx, respectively, the null vector and Lebesgue measure in
TxM. For simplicity, we will write

∫
TxM J(v)dv =

∫
TxM J(v)dµx(v) for any integrable

function J defined on TxM. The inner product (related to g) in TxM will be
defined by ⟨u, v⟩ = g(u, v) for any u, v ∈ TxM, and the associated norm by ||.||.
The unit sphere on TxM will be referred as Sd−1

x = {v ∈ TxM, ∥v∥ = 1}, when
B (x, h) = {y, d(x, y) ≤ h} and B (h) := B (0x, h) = {u, ||u|| ≤ h} will denote the
balls of radius h centered at x and 0x, respectively.

We assume that the injectivity radius of M is such that, inj(M) > 0 and we consider
only regular balls in M. We recall that a regular (or convex) ball B (x, h) is defined
such that h < h∗, where h∗ = min{inj(M), π

2
√
κ
} and κ is the supremum of sectional

curvatures of M (see, for example, Gallot et al. (2004) for definition) such that if
this upper bound is positive, and κ = 0 otherwise. Then, B(x, h) = expxB (h).

The above properties naturally lead to the following assertion (which will be helpful
for the proofs): For any continuous function ψ : M → R with support on B(x, h)
where h < h∗, we have

µg (ψ) =

∫
M
ψ (y) dµ(y) =

∫
expx(B(h))

ψ (y) dµ(y) =

∫
B(h)

ψ (expx(v)) |gx(v)|
1/2 dv,

where |gx(v)|1/2 denotes the determinant of gx(v) with gx defined as gx(v) = (gij(v)),
gij(v) = g (∂xi, ∂xj) (or gx =

∑
i,j gijdx

idxj) is the local expression of g in the

coordinate system (x1, . . . , xd). We recall that |gx(v)|1/2 = dµg

dµx
(expx(v)) =

dµexp∗x g

dµx
(v)

is the density of µexp∗x g with respect to µx on Tx (M) (for more details, see Chavel
(2006), p.18 or Gallot et al. (2004) p. 165). We recall the another expression:
|gx(exp−1(y))|1/2 = θx(exp

−1(y)), where θx(.) is called the volume density function.
In the literature, θx(y) = θx(exp

−1
x (y)) by abuse of notation (see also le Brigant and

Puechmorel (2019)).

The transported density of exp−1
x (X) with respect to the Lebesgue measure in

Tx (M) is given by

fTx(v) = f(expx(v)) |gx(v)|
1/2 ∀ v ∈ TxM. (2.1)
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Note that fTx(0x) = f(x) |gx(0x)|1/2 = f(x) since |gx(0x)|1/2 = 1.
We have the following expansion for any u ∈ Tx (M)

|gx(u)|1/2 = 1− Ricx(u, u)

6
+O

(
∥u∥3

)
,

where Ricx is the Ricci tensor at x. This expansion can be found, for example, in
Karcher (1977), p.191 (or Chavel (1993), p.91).
In this work, we aim to study the asymptotic behavior of the kernel estimator of
Pelletier (2005):

f̂n(x) =
1

n

n∑
i=1

1

hdn

1

θx(Xi)
K

(
d(x,Xi)

hn

)
,

based on observations of the process (Xt, t ∈ Z), Xi, i = 1, ..., n.
In what follows, C (or sometimes c) will represent a positive constant that does not
affect the outcomes of our results.

Assumptions

We obtain some theoretical results under the following assumptions.
H1: K : Rd → R+ is a bounded and continuous map such that

1. K satisfies a Lipschitz condition.

2. supp K = [0; 1].

3.
∫
K(∥x∥)dx = 1.

4.
∫
xK(∥x∥)dx = 0 or at least the vector,

∫
xK (∥x∥) dx is orthogonal to span{gradf(x)}.

5.
∫
∥x∥2K(∥x∥)dx <∞.

H2: α(n) ≤ Cn−ν for some ν > 2.

H3: hn → 0, nhdn → ∞, nhd+4
n → ∞ and hn < h∗

2
as n→ ∞.

H4: f is bounded, twice continuously differentiable at any x ∈ M and
∥Hessf (x) ∥HS <∞, where ∥·∥HS is the Hilbert Schmidt norm (one can also consider
the uniform norm of Hessf (x)).
H5: ∀i, j, the joint density fi,j of (Xi, Xj) exists is such that

sup
i,j

sup
u,v∈M×M

|fi,j(u, v)− f(u)f(v)| < M, for some M > 0.
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Comments on these assumptions

Since this work is related to situations where the data are both with values in a
Riemannian manifold and dependent, the above assumptions appear to be a mix of
conditions in both cases to derive consistent results for kernel density estimators in
this setting. Namely,

1. Hypotheses H2 and H5 are classical conditions when dealing with the study
of the kernel density estimator for dependent data.

2. Assumption H3 is the Riemannian manifolds counterpart of the classical assumptions
on the bandwidth for dependent or independent data. Except that here, we
require the constraint hn < h∗

2
. Actually, because of dealing with Riemannian

manifolds, we mainly need the condition hn < h∗ (as recall in Section 2).
However, the constraint hn < h∗

2
ensures that x is locally a central point when

using the kernel estimator in practice (see, for example, Karcher (1977) and Le
(2001), or Pelletier (2005) for more details).

3. Assumptions H1 and H4 are classical regularity conditions on K and f, which
are helpful for controlling the bias terms (3.1) obtained using the Taylor expansion,
for all h > 0 and ∥v∥ ≤ 1, we have

f(expx(hv)) = f(x) + h < gradf(x), v > +
1

2
h2Hessf(x)(v, v) + o(h2), (2.2)

where grad and Hess denote the gradient and the Hessian operators, respectively.

3 Asymptotic results

In this section, we give some theoretical results on the asymptotic behavior of f̂n(x).
Namely, we study both the weak and strong consistency of f̂n(x) in terms of Mean
Squared Error (MSE), probability and almost sure convergence.

3.1 Weak and Strong Consistency

The bias term

The asymptotic behavior of the bias term has been studied in Pelletier (2005).
However, we give here an explicit expression

b(x) := Ef̂n(x)− f(x) =
h2n
2

∫
B(1)

K(∥v∥)Hessf (x) (v, v)dv + o(h2n). (3.1)
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See also Henry and Rodriguez (2009) or Kim and Park (2013) for some other expressions.
Unlike the bias, all the results below are specific theoretical contributions of this
paper.

Asymptotic behavior of the variance of the estimator

Proposition 3.1 Under the assumptions H1, H2 and H5, the variance of f̂n(x) is
given by

V
(
f̂n(x)

)
:= E

[(
f̂n(x)− Ef̂n(x)

)2]
=

1

nhdn

[
f(x)

∫
B(1)

K2(∥v∥)dv + o(1)

]
(3.2)

and then
nhdnV

(
f̂n(x)

)
−→
n→∞

f(x)

∫
B(1)

K2(∥v∥)dv.

The results (3.1) and (3.2) lead to the following results.

Rate of Convergence in Mean Squared Error

For each x ∈ M, we set MSE(x) := E
(
(f̂n(x)− f(x))2

)
= b2(x) + V

(
f̂n(x)

)
.

Theorem 3.1 Under the assumptions H1 to H5,

MSE(x) ≤ Cx,f ×
(
h4n +

1

nhdn

)
,

and since M is compact, and f and K are bounded (see H1 and H4), we have

sup
x∈M

MSE(x) ≤ C ×
(
h4n +

1

nhdn

)
.

An optimal rate in MSE meaning for f̂n(x) is deduced from Theorem 3.1 in the
next corollary.

Corollary 3.2 The bandwidth which minimizes the function x 7→ MSE(x), under
the assumption H1 is given by

hn,opt = C n
−1
d+4 ,
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and the corresponding MSE is given by

MSE(x) = Cx,f n
−4
4+d + o

(
n

−4
d+4

)
,

where Cx,f = C4C1+C
−dC2 with C =

(
dC2

4C1

) 1
4+d , C1 =

(∫
B(1)

Hessf(x)(v, v)K(∥v∥)dv
)2

and C2 = f(x)
∫
B(1)

K2(∥v∥)dv.

Convergence in probability

The Markov inequality leads to the following results.

Theorem 3.3 Under the assumptions H1 to H5, for a given x ∈ M

|f̂n(x)− f(x)| −→ 0 in probability,

and since M is compact by assumption, we have

sup
x∈M

|f̂n(x)− f(x)| −→ 0 in probability.

We now present some pointwise and uniform rates of convergence in probability, with
some additional conditions.

Theorem 3.4 Under the assumptions H1 to H5, if α(n) ≤ Cn−ν with ν > 2 (as

stated in H2) and if nh
d ν+1
ν−1

n

logn
→ ∞, then for a given x ∈ M

f̂n(x)− f(x) = Op

(
h2n +

√
log n

nhdn

)
. (3.3)

Moreover, since M is compact, if ν > d+ 1 and n−1(log n)h
−d ν+d+3

ν−d−1
n → 0, we have

sup
x∈M

|f̂n(x)− f(x)| = Op

(
h2n +

√
log n

nhdn

)
. (3.4)

Almost sure convergence

The following theorem is the Riemannian Manifold counterpart of Theorem 2.1 and
Theorem 2.2 of Boente and Fraiman (1988). Further insights can also be found in
Bosq (1998) and the references therein.
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Theorem 3.5 Under the assumptions H1 to H5, if nhd
n

logn
→ ∞ and α(n) ≤ Cn−ν

with ν > 1, n−1h
−d ν+1

ν−1
n (log n)

2ν
ν−1 g(n)

1
ν−1 → 0 where g(n) = log n (log log n)1+ε for

some small ε > 0, then for all given x ∈ M, we have

|f̂n(x)− f(x)| −→ 0 a.s. (3.5)

Additionally, since M is compact, we have

sup
x∈M

|f̂n(x)− f(x)| −→ 0 a.s. (3.6)

With some additional conditions, we get the following rates of convergence, almost
surely.

Theorem 3.6 Under the assumptions H1 to H5, if α(n) ≤ Cn−ν with ν > 3 and

nh
d(ν+1)
ν−3

n (log n)−
ν−1
ν−3 g(n)

−2
ν−3 → ∞ with hn < h∗

2
and g(n) = log n (log log n)1+ε for

some small ε > 0, then for each given x ∈ M, we have

f̂n(x)− f(x) = Oa.s.

(
h2n +

√
log n

nhdn

)
, (3.7)

and because M is compact, we have

sup
x∈M

|f̂n(x)− f(x)| = Oa.s.

(
h2n +

√
log n

nhdn

)
. (3.8)

3.2 Asymptotic normality

We now state a Central Limit Theorem (CLT) for each given x ∈ M.

Theorem 3.7 Under the assumptions H1 to H5, we have√
nhdn

(
f̂n(x)− f(x)

)
−→ N

(
0, σ2(x)

)
,

where σ2(x) = f(x)
∫
B(1)

K2 (∥x∥) dx.
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Corollary 3.8 Based on f̂n, we easily get a plug-in estimator σ̂2
n of σ2(x). Under

the assumptions of Theorem 3.7, we have a confidence interval (CI) for f(x) at a
given level 1− α [

f̂n(x)−
z1−α

2
σ̂n(x)√
nhdn

, f̂n(x) +
z1−α

2
σ̂n(x)√
nhdn

]
,

where z1−α
2

denotes the 1− α
2

quantile of N (0, 1).

4 Numerical experiments and real data illustration

Our aim here is to illustrate the behavior of our estimator through simulations and
a real data application. This topic can be explored in further studies. Actually, as
any kernel estimator, we face the well-known curse of dimensionality issue, which can
be more acute in the Riemannian manifold setting due to supplementary conditions
on the bandwidth (hn < h∗ or hn < h∗

2
). Our strategy is then to give here some

information that highlight the impact of these restrictions on the convergence of the
estimator. We precise this idea through the following remarks and discussions.

4.1 Preliminaries

Unlike the classical (Euclidean-based) counterpart of the kernel estimator, the additional
constraints imposed on hn can be detrimental in practice due to the well-known
curse of dimensionality. In fact, even if hdn should tend to 0 as usually with kernel
estimation, the main hypothesis governing f̂n is that nhdn → ∞. In the Euclidean
setting, to avoid the dimensionality issue, one commonly uses a trade-off by choosing
hn to be sometimes very far from zero if n is not large enough to ensure nhdn → ∞.
However, in our context, the condition hn < h∗

2
or at least hn < h∗ makes this

approach impractical. It is important to note that the hypothesis hn < h∗ is a
crucial geometric condition for any ball B(x, hn) (see Section 2 for more details).
Nonetheless, the condition hn < h∗

2
ensures that every x is a central point of the

distribution, such that for all y ∈ M:

fK,hn(y) =
1

hdnθx(y)
K

(
d(x, y)

hn

)
.

Thus, this condition appears in some way as a practical statistical condition to ensure
that locally, x is sufficiently surrounded by some xi’s (we refer to the Proposition 2.2
of Pelletier (2005) for more details).
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Clearly, these constraints do not allow for practical use of the classical trick for small
sample sizes, which consists in taking hdn far enough from 0 to balance the low values
of n and ensure that nhdn → ∞. Thus, the only lever here is to take n large enough or
take at least a hn that prevents nhdn from approaching zero, even if it means dealing
with h∗

2
< hn < h∗ (not that it is the same idea that leads to taking hn is sometimes

very big in practice in the Euclidean case).
This motivates our simulation study, where we investigate the impact of the theoretical
constraints hn on the performance of f̂n assessed through specific performance metrics.

Let Me denote a metric. We set

hopt,global = argmin
h>0

Me
(
f̂n

)
,

and
hopt = arg min

0<h<h∗
2

Me
(
f̂n

)
or hopt = arg min

0<h<h∗
Me

(
f̂n

)
.

As previously mentioned, the condition hn <
h∗

2
is (theoretically) less crucial than

hn < h∗ and nhdn → ∞. Therefore, we will prefer hn < h∗ if it is necessary to ensure
nhdn → ∞ (at least to avoid the stability drawbacks of the estimator when nhdn is
closed to zero), thus minimizing the curse of dimensionality issues.

Now, since we do not necessarily have hopt = hopt,global, depending on the situation,
we will have the following cases.

Case 1 hopt,global > h∗. This case is the worst one, which leads to a loss of performance
(compared with the classical bandwidth selection).

Case 2 hopt,global <
h∗

2
. This is the ideal situation, where hopt = hopt,global.

Case 3 hopt,global ∈ [h
∗

2
, h∗]. This case is a trade-off between Case 1 and Case 2

where only the less crucial condition (hn < h∗

2
) is not satisfied.

Comments

In Case 1, since we cannot have hopt = hopt,global, we are interested in understanding
the behavior of f̂n when hopt is set to either h∗

2
or h∗. These settings are considered

for the stability of the estimator mentioned previously. For this case, we will choose
hopt = h∗ − ε > 0, where ε > 0 is a very small positive number, to avoid boundary
issues.
In Case 2, we will naturally have hopt = hopt,global.
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In Case 3, the issue will be to choose between hopt = hopt,global and hopt =
h∗

2
. The

gap between the values of the metric at both points will guide our choice.

Metrics of performance

We deal with the following metrics of performance: both are used only for the
simulations, while the last one is used in the real data application part.

• The Mean Squared Error,MSE(f̂n) :=
1
n

∑n
i=1

(
f̂n(Xi)− f(Xi)

)2
, is a classical

metric.

• The Median Squared Error, MedSE(f̂n) := mediani=1,...,n

(
f̂n(Xi)− f(Xi)

)2
.

This metric serves as a first step to understanding the distribution of the error,
as illustrated in Henry et al. (2013).

• The Mean Integrate Squared Error, MISE(f̂n) = E∥f̂n − f∥22, is particularly
relevant since the function f is unknown in this setting. Furthermore, the
MISE can be expressed as

MISE = E(ISE),

where ISE (Integrate Squared Error) is such that

ISE =

∫
(f̂n(x)− f(x))2dµ(x).

Besides these metrics, the results of Theorem 3.7 and Corollary 3.8 allow us to give
a confidence interval, here of level 95 % of the estimation of f̂n,opt (with respect to
hopt)

[
f̂n,inf95%, f̂n,sup95%

]
.

In all the application part, we will deal with two Riemannian manifolds: the unit
sphere, S2, and a cylinder in R3 with radius one (and a given height). Each is
endowed with its respective metric: for the unit sphere, the metric is given by
d(x, y) = arccos

(
xTy

)
and for the cylinder, the metric is given by d(x1, x2) =√

(z1 − z2)2 + (θ1 − θ2)2 where xi = (zi, θi) for i = 1, 2 in cylindrical coordinates.
uT will denote the transpose of a vector u in Rp, p ∈ {2, 3}.
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We recall that h∗ = π if M is a cylinder, and h∗ = π/2 if M is a unit sphere.
Additionally, for any v in the tangent space,

gx(v)|1/2 =

{
1 for any cylinder

sin(||v||)
||v|| for the unit sphere

All the applications have been run using the Epanechnikov’s kernel: K(x) =
3
4
(1 − x2)1{|x|≤1}, which satisfies Assumption H1. This assumption states that K

should be a kernel in TxM, unlike directional kernels, which are densities in M.

4.2 Simulations study

In this part, as α−mixing processes, we consider first-order Autoregressive process
(AR(1)), (Xt, t ∈ Z) with values either on the unit sphere or a cylinder. Namely,
we are interested in the estimation of the marginal density of the Xt’s based on
n = 500 observations. We notice that we have run our procedure with various values
of n and get some results where, as expected, f̂n performs better for n > 500 and
underperforms for smaller values of n. In this sense, the behavior of f̂n versus n is
similar to the Euclidean counterpart. Then, we focus on the behavior of f̂n versus
hn while considering the constraints discussed in Section 4.1.

Two models on S2

We are interested here in two AR(1) models in S2 denoted by Model 1 and Model 2.
In both cases, we will deal with a process (Xt) such that for each t,

Xt = (sin(θt) cos(ϕt), sin(θt) sin(ϕt), cos(θt))
T , (4.1)

with
θt = ρθt−1 + εt, θ0 = ε0, (4.2)

and
ϕt = arctan(vy/vx),

V = (vx, vy, vz) is a given random variable, and (εt) is a white noise distributed as
arccos(vz), whose distribution will be specified below, depending on the model.
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Model 1: AR(1) based on a Von Mises-Fisher distribution on S2

We consider here a process of type (4.1) with (θt) verifying the equation (4.2) with
ρ = 0.1 and V distributed as a Von Mises-Fisher distribution VMF (µ, κ), with
density defined by

fµ,κ(X) =
(κ
2

)1/2
I1/2(κ) exp{κXTµ},

such that the parameter of concentration is κ = 2, the mean parameter is µT =
(0, 1, 0), and I1/2(κ) is the modified Bessel function defined by I1/2(κ) =

(
κπ
2

)
sinh(κ)

for κ ∈ R. For background on such distributions, we refer, for example, to Mardia and
Sutton (1978), Mardia and Jupp (2000), García-Portugués et al. (2020), Jammalamadaka
and Sengupta (2001). We have simulated some observations distributed according
to Model 1 using the r_vMF function from the rotasym package in the R software,
as proposed by García-Portugués et al. (2020) ( Figues 4.1, 4.2).

0.6 0.8 1.0 1.2 1.4 1.60.
00

0
0.

01
0

0.
02

0

MSE
MedSE

Figure 4.1: MSE and MedSE versus hn for Model 1. This figure shows that
hopt, global ∈

(
h∗

2
, h∗
)

for both MSE and MedSE, with hopt, global ≃ 1 and hopt, global ≃
1.13 for MSE and MedSE, respectively.
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Figure 4.2: Results on the behavior of f̂n,opt in Model 1 where hopt = π
4

and h∗ = π/2.
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Model 2: AR(1) based on a Uniform distribution on S2

In this case, we have simulated the data considering (4.2) with ρ = 0.1, θ0 distributed
uniformly in [0, π] (U(0, π)), and (ϕt) i.i.d observations from the uniform distribution
on [0, 2π] (U(0, 2π)). Here, h∗ = π/2. The results are given in Figure 4.4. Since
f = 1

4π
is a constant function, the 3D representation is not really interesting here.

Instead, we represent the distribution of the values of f̂n,opt and we compare it with
the true density, f = 1

4π
. Note that in Figure 4.3, unlike the MSE, the MedSE

presents a local minimum smaller than h∗

2
.
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00
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Figure 4.3: Values of MSE and MedSE for Model 2. This figure shows that
hopt,global ≃ 1.42 ∈]h∗

2
, h∗[.
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Figure 4.4: Results on the behavior of f̂n for Model 2: a. represents results concerning
the case where we choose hopt = h∗

2
= π

4
. b. represents results concerning the case

where we choose hopt = hopt,global.

Model 3: AR(1) based on a cylindrical Von-Mises distribution.

We deal here with a random process (Xt) such that

Xt = (cos(θt), sin(θt), zt) ,

where (θt) generated as in (4.2), with ρ = 0.1, θ0 = ε0, (εt)and (zt) are white
noises respectively distributed as arccos(vy/vx) respectively vz, where V = (vx, vy, vz)
follows a Von Mises distribution with density given by

fVM(θ, z) =
1

2πI0(κ)
eκcos(θ−µ0)

1√
2πσc

e
−
[
(z−µc)

2

2σ2
c

]
1{θ∈[0,2π[,z∈R},

where µ0 = 0, κ = 2, σc = σ2(1 − ||R||2), and µc = µ +
√
κσ2RTmθ,µ0 with mT

θ,µ0
=

(cos(θ)− cosµ0, sin(θ)− sinµ0), R = (0.5, 0.5) (which satisfies the constraint ||R|| ≤
1 as suggested in Mardia and Sutton (1978)), σ =

√
3 and µ = 1. I0 is the modified

Bessel function of the first kind and order 0 defined by I0(κ) = 1
2π

∫ 2π

0
eκcos(θ)dθ. We

refer, for example, to Mardia and Sutton (1978) for more details on such distribution.
We have simulated observations distributed according to Model 3 using the rvonmises
function from the Rfast package in the R software (Figures 4.5, 4.6).
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We have run our procedure on some observations simulated from the current model.
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Figure 4.5: Values of MSE and MedSE for Model 3. This figure shows that hopt =
hopt,global ≃ 1.08.
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Figure 4.6: Results for f̂n,opt with Model 3, where hopt = 1.08.

Based on the results shown in Figure 4.6, we conclude that the estimator performs
well.
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4.3 Real data application: the electricity demand at Djibouti

Our aim in this subsection is to provide some tools which help to understand the
behavior of the process of weekly Electricity demand in Djibouti-ville, the main city
of Djibouti. The dataset, provided by the company Electricité De Djibouti(EDD),
consists of daily mean electricity demands recorded from January 1, 2012, to December
31, 2020. It pertains to low-voltage (LV) electricity network customers with subscribed
powers from 1kva to 9kva. We are particularly interested in the distribution of the
electricity demand for each day of the week: Monday,..., Sunday.
We denote by (Xt,j) the process representing the level of electricity demand, where
j ∈ {Monday, ..., Sunday}. The observations are presented in Figure 4.7.
In a first step study, we have stationarized each time series, the (Xt,j)’s by removing
the deterministic trend and seasonal components. We assume then that the remaining
part of (Xt,j)’s are strictly stationary processes. From now on, we identify the (Xt,j)’s
with the stationarized version. This previous study has shown that the (Xt,j)’s
are periodic with a period of 6-months. Actually, our study concerns the Phase-
Amplitude representation of (Xt,j)’s (from their Fourier transform).
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Figure 4.7: The dataset.
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Amplitude, Phase representation

The motivation for such a study arises from its widespread applications such as
geology and oceanography, where the study of time series (or signals) commonly
involves their representation using Fourier transforms. These transformations lead
to complex signals that can be represented either by their real and imaginary parts
or by their phase and amplitude representations. In this context, our objective is to
illustrate our estimator from this point of view.
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Figure 4.8: Amplitude versus Phase representation for each day.

That is, we are interested in the estimation of the marginal distributions of the Xt,j’s
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(for any j) based on their phase and amplitude representations. Then, we identify
each (Xt,j) with its phase and amplitude series, Xt,j := (θt,j, zt,j) with (zt,j) and (θt,j)
being the amplitude(modulus) and the phase(argument) processes, respectively. The
observations exclude phase values of 0 and 2π, as illustrated in Figure 4.8. Thus,
each (Xt,j) has an unknown distribution f (j), supported on a cylinder, where zt,j
takes values along the "amplitude line" and θt,j takes values on S1. Similar behavior
of the daily electricity demand can be modeled using analogous distributions f (j).

As in the simulation part, our strategy consists of first estimating the optimal
bandwidth, hopt, and then computing the corresponding f̂n,opt. To determine hopt, we
proceed with a leave-one-out cross-validation procedure. It is well known (see Chiu
(1991)) that optimizing the MISE is equivalent to optimizing the ISE. The ĨSE,
defined as

ĨSE =

∫
f̂ 2
n(x)dµ(x)− 2E(f̂n(X)).

is a key criterion in this optimization process. We have approximated
∫
f̂ 2
n(x)dµ(x)

using a Monte-Carlo approach based on observations of the uniform distribution on
the cylinder of interest.

The optimization of the ĨSE for each j has led to the optimal bandwidths, which are
presented in Table 1. The results on the estimation of the f (j)’s, j ∈ {Monday, ..., Sunday}
are presented in Figure 4.10 and Figure 4.11.
It is worth noting that other representations of f̂ (j)

n,opt could be presented here, but we
have chosen those smoothed versions obtained through local linear smoothing. For
clarity, we have avoided highly underrepresented values of (θt,j, zt,j) (amplitude>
100).

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
1.33 1.55 1.12 1.23 1.55 1.55 0.91

Table 1: The optimal bandwidth, hopt, for each day.
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Figure 4.9: Optimization of the ĨSE’s for each j ∈ {Monday, . . . , Sunday}.

Here, we focus on the more restrictive condition hopt < h∗

2
. The results on Figure 4.9

show that the shape of the ĨSE depends on the day of the week, and we have
hopt = hopt,global for Monday, Wednesday, Thursday and Sunday. However, for
Tuesday, Friday and Saturday, hopt,global ∈]h

∗

2
,∞[. In this cases, we computed the

corresponding f̂n,opt with hopt = 1.55 to avoid boundary issues. Obviously, the density
depends on the day of the week, and further detailed interpretations can be made
from a signal analysis perspective.
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Figure 4.10: f̂ (j)
n,opt’s for j ∈ {Monday,Wednesday,Thursday, Sunday}.
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5 Conclusion

In this work, we study the behavior of the former kernel estimator of Pelletier
(2005) when used to estimate the marginal distribution of an α−mixing process. We
give both weak and strong consistency rates and check the estimator’s asymptotic
normality.
In the application, we faced some classical issues related to kernel models in the
Riemannian manifold setting. Namely, the curse of dimensionality issue which is
more acute in this setting. Actually, it is known that if Xi live in a submanifold,
they lie on a subspace whose dimension is smaller than that of the ambient space.
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Several strategies are proposed in the literature to estimate the latter. Typically, one
can proceed with methods such as upstream global or local dimensional reduction
or more methods that involve estimating the dimension of the manifold itself. As a
first step towards this concept, further developments can be considered by extending
the estimator, as suggested in Henry et al. (2013), Wu and Wu (2021), Aamari and
Levrard (2019). For additional context on relevant issues, the reader is referred to
the introduction of Berenfeld and Hoffmann (2021), which provides numerous key
references that support the discussion.
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6 Proofs.

For all x ∈ M, we have

V
(
f̂n(x)

)
= V

(
f̂n(x)− Ef̂n(x)

)
= V

(
1

nhdn

n∑
i=1

Zi(x)

)
,

where
Zi(x) =

1

θx(Xi)
K

(
d(x,Xi)

hn

)
− E

(
1

θx(Xi)
K

(
d(x,Xi)

hn

))
.

It is clear that the (Zi)i are dependent and identically distributed with expectation
E(Zi) = 0, ∀i = 1, ..., n. Therefore,

V
(
f̂n(x)

)
=

1

n2h2dn

n∑
i=1

V (Zi(x)) +
1

n2h2dn

∑
j ̸=i

Cov(Zi(x), Zj(x))

:= A+B.
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The expression of A was studied in Pelletier (2005), but we aim here to give an
explicit expression.

A =
1

nh2dn
V (Z1(x))

=
1

nh2dn

∫
M

1

θ2x(y)
K2

(
d(x, y)

hn

)
f(y)dµg(y)−

1

nh2dn

(∫
M

1

θx(y)
K

(
d(x, y)

hn

)
f(y)dµg(y)

)2

:= I1,n(x)− I2,n(x).

Note that for any v ∈ Tx, θx(expx(v)) = |gx(v)|
1
2 = 1+O(||v||2) by assumption, then

we have the first term on the right is such that

I1,n(x) =
1

nh2dn

∫
B(x,hn)

1

θ2x(y)
K2

(
d(x, y)

hn

)
f(y)dµg(y)

=
1

nh2dn

∫
B(hn)

1

θx(expx(v))
K2

(
∥v∥
hn

)
f (expx(v)) dv

=
1

nhdn

∫
B(1)

1

θx(expx(hnv))
K2 (∥v∥) f (expx(hnv)) dv.

Therefore ∫
B(1)

f

θx
(expx(hnv))K

2 (∥v∥) dv → f(x)

∫
B(1)

K2 (∥v∥) dv.

Hence,

nhdnI1,n(x) → f(x)

∫
B(1)

K2 (∥v∥) dv.

Similarly, it is easy to see that

I2,n(x) =
1

nh2dn

(∫
1

θx(y)
K

(
d(x, y)

hn

)
f(y)dµg(y)

)2

=
1

n

(∫
B(1)

K (∥v∥) f(expx(hnv))dv

)2

.

Using the Taylor expansion, under the assumption H1 we get

I2,n(x) =
f 2(x)

n
+ o(1) = O(n−1).
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The expression of B is such that

B =
1

n2h2dn

∑
j ̸=i

E(Zi(x)Zj(x))

=
1

n2h2dn

∑
(i,j)∈E1

E(Zi(x)Zj(x)) +
1

n2h2dn

∑
(i,j)∈E2

E(Zi(x)Zj(x))

:= J1,n(x) + J2,n(x),

where E1 = {(i, j) | 0 < |j − i| ≤ βn} and E2 = {(i, j) | βn + 1 ≤ |j − i| ≤ n− 1} ,
such that βn = o(n). We have∣∣Cov(Zi(x), Zj(x))

∣∣ =
∣∣E(Zi(x)Zj(x))

∣∣
≤

∫ ∫
1

θx(y)θx(z)
K

(
d(x, y)

hn

)
K

(
d(x, z)

hn

)
× |fi,j(y, z)− f(y)f(z)| dµg(y)dµg(z)

≤ Mh2dn

∫
B(1)

∫
B(1)

K(∥u∥)K(∥v∥)dvdu (By H5)

≤ M h2dn (By H1).

Therefore, J1,n(x) ≤ M
n
βn = O(n−1βn) = o(1). For E2, we use the modified Davydov

inequality for mixing processes (see Rio (1999), p.10, formula 1.12a). This leads, for
all i ̸= j, to

|Cov(Zi(x), Zj(x))| ≤ cα(|i− j|).

Then, J2,n(x) ≤ c
n2h2d

n

∑n
i=1

∑
βn+1<|i−j|≤n−1

α(|i−j|) < c
nh2d

n

∫ n−1

βn+1
s−νds = O(n−1β1−ν

n h−2d
n ).

Choosing βn = h
−2d
ν

n allows us to get, under Assumption H2,

J1,n(x) + J2,n(x) = o

(
1

nh
2d
ν
n

)
=

1

nhdn
o(1),

where o(1) is independent of x. Finally, we obtain

V
(
f̂n(x)

)
=

1

nhdn

(
f(x)

∫
B(1)

K2 (∥v∥) dv + o(1)

)
. (6.1)
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Proof of Theorem 3.1

Clearly
sup
x∈M

MSE(x) ≤ sup
x∈M

b2(x) + sup
x∈M

V
(
f̂n(x)

)
.

By Assumption H4 and for the same reasons as provided by Pelletier (2005)(on
p.302), for all v ∈ B(1), we have

|f(expx(hnv))− f(x) + hn ⟨gradf(x), v⟩ | ≤ Ch2n∥v∥2.

Therefore, under H1, we deduce that |b(x)| ≤ Ch2n, where C > 0 is independent of
x. Additionally, due to the compactness of M, the following bound holds

sup
x∈M

|b(x)| ≤ Ch2n.

Now, using the fact that o(1) is independent of x and f and K are bounded in (3.2),
we get straightforwardly

sup
x∈M

|V (f̂n(x))| ≤ C
1

nhdn
,

which achieved the proof.

Proof of Corollary 3.2

Based on results (3.1) and (3.2), for all x ∈ M, we have

MSE(x) = C1h
4
n + C2

1

nhdn
+ o

(
h4n +

1

nhdn

)
,

where C1 =
(∫

B(1)
Hess(f(x))(v, v)K(∥v∥)dv

)2
and C2 = f(x)

∫
B(1)

K2(∥v∥)dv.
Then, the goal of minimizing the MSE can be achieved by focusing on minimizing

the term C1h
4
n + C2

1
nhd

n
. Hence, we get hn,opt = C n

−1
d+4 , where C =

(
dC2

4C1

) 1
4+d .

The following proofs are based on the following lemma, which is a Large Deviation
result for the process

(
f̂n(x)− E

(
f̂n(x)

)
, n ∈ Z

)
, as a consequence of Lemma 3.2

of Dabo-Niang and Yao (2007).
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Lemma 6.1 Let n ≥ 1, without loss of generality, assume that there exists an integer
p and a real q such that n = 2pq. If H1, H4 and H5 hold, then for each ε > 0,

P
(∣∣∣f̂n(x)− E

(
f̂n(x)

)∣∣∣ > ε
)
≤ 4 exp

(
− ε

4A0

qhdn

)
+

8b2α (p)

εhdn

for some positive constant A0 and b2.

In the following, let Cg = sup
xM

Cg(y), where Cg(y) = sup
y∈B(x,hn)

θ−1
x (y) (we refer to

page 303 of Pelletier (2005) for the existence of 0 < Cg <∞ based on the geometrical
assumptions).

proof of Lemma 1.1

Let ζi(x) = Zi(x)
hd
n
. Then, Assumption H1 ensures that setting b2 = supv∈B(hn)K(||v||)×

Cg, we have for all x, y ∈ M, ∣∣∣∣∣∣
K
(

d(x,y)
hn

)
θx(y)

∣∣∣∣∣∣ ≤ b2

and consequently, ζi(x) is with 0 mean |ζi(x)| ≤ b2
hd
n
. By applying Lemma 3.2 in

Dabo-Niang and Yao (2007) with N = 1, we get

P
(∣∣∣f̂n(x)− E

(
f̂n(x)

)∣∣∣ > ε
)
≤ 4 exp

(
− ε2

4v(q)2
q

)
+

8b2α (p)

εhdn
,

where v(q)2 = 2
p2
σ2(q) + b2

hd
n
ε and σ2(q) = E

[(∑p+1
j=1 ζj(x)

)2]
= V

(
f̂p+1(x)

)
. From

Proposition 3.1, we know that σ2(q) ≤ a
phd

n
, where a = a (K, ||f ||∞, d, ν). Then,

v(q)2 ≤ b2
hdn
ε+

2a

phdn
.

Setting p = [ε−1], we get v(q)2 ≤ A0ε
hd
n
, where A0 is a positive constant.
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Proof of Theorem 3.4

Proof of the result (3.3)

Our aim is to show that ∣∣∣f̂n(x)− E
(
f̂n(x)

)∣∣∣ = Op (Ψn) ,

where Ψn =
√

logn
nhd

n
.

We apply Lemma 5.1 with ε = ηΨn, where η > 0 is a constant. Consequently, we
have α(p)

εhd
n
= α(p)

ηhd
nΨn

. By setting p = [Ψ−1
n ], we have q ≥ Ψnn

2
. Since Ψn =

√
logn
nhd

n
, we

have ε
A0
qhdn ≥ ηΨ2

nnh
d
n

2A0
= η

2A0
log n. Now, let c = η

8A0
, we obtain

P
(∣∣∣f̂n(x)− E

(
f̂n(x)

)∣∣∣ > ε
)
≤ C

(
n−c + vn

)
, (6.2)

with vn = α(p)
Ψnhd

n
. By Assumption H2, we have vn = α(p)

Ψnhd
n

≤ Cp−νΨ−1
n h−d

n ∼

CΨν−1
n h−d

n = C (n−1 log n)
ν−1
2 h

−d ν+1
2

n . Consequently,

vn ≤ C

(
n−1h

− d(ν+1)
ν−1

n log n

) ν−1
2

, (6.3)

and

P
(∣∣∣f̂n(x)− E

(
f̂n(x)

)∣∣∣ > ε
)
≤ C

(
n−c +

(
n−1h

− d(ν+1)
ν−1

n log n

) ν−1
2

)
, (6.4)

which achieved the proof since ν > 1 and n−1h
− d(ν+1)

ν−1
n log n→ 0 by assumption.

Proof of the result (3.4)

Note that we have sup
x∈M

|f̂n(x) − f(x)| ≤ sup
x∈M

|f̂n(x) − Ef̂n(x)| + Op (h
2
n) . Therefore,

our aim is to show that

sup
x∈M

∣∣∣f̂n(x)− E
(
f̂n(x)

)∣∣∣ = Op (Ψn) ,

where Ψn =
√

logn
nhd

n
. Since M is compact, it can be covered with µn balls which

have xk as a center and an as a radius that satisfies: an ≤ (h∗)−
d
2h

(d+1)
n Ψn, and
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µn ≤ C(h
(d+1)
n Ψn)

−d for some constant C > 0. We then have

f̂n(x)− Ef̂n(x) =
(
f̂n(x)− f̂n(xk)

)
+
(
Ef̂n(xk)− Ef̂n(x)

)
+
(
f̂n(xk)− Ef̂n(xk)

)
= S1n + S2n + S3n.

Then,

sup
x∈M

|f̂n(x)− Ef̂n(x)| ≤ max
1≤k≤µn

sup
x∈B(xk,an)

|S1n + S2n|+ max
1≤k≤µn

|S3n|. (6.5)

For all x ∈ B(xk, an), we have

S1n =
1

nhdn

n∑
i=1

(
1

θx(Xi)
K

(
dg(x,Xi)

hn

)
− 1

θxk
(Xi)

K

(
dg(xk, Xi)

hn

))
≤ 1

hdn
sup

y∈B(x,hn)∩B(xk,hn)

∣∣∣∣ 1

θx(y)

∣∣∣∣ ∣∣∣∣K (dg(x, y)hn

)
−K

(
dg(xk, y)

hn

)∣∣∣∣
+

1

hdn
sup

y∈B(x,hn)∩B(xk,hn)

∣∣∣∣ 1

θx(y)
− 1

θxk
(y)

∣∣∣∣K (dg(xk, y)hn

)
.

Concerning the first right term, we use the fact that K is Lipschitz ( by H1). For
the second right term, we use the fact that θx(y) = θy(x) for all x, y ∈ M (we refer
to Pelletier (2005)) and the Taylor expansion in the paper which leads to

|θx(y)− 1| ≤ C||Ricx||hs|| exp−1
x (y)||2

where Ricx is the Ricci tensor at x which is equivalent to

|θx(y)− 1| ≤ C||Ricx||hsd(x, y)2

as soon as y belongs to regular ball centered at x. Then, we obtain
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|S1n| ≤ cCg

hd+1
n

sup
y∈B(x,hn)∩B(xk,hn)

|dg(x, y)− dg(xk, y)|

+
Cg

hdn
sup

y∈B(x,hn)∩B(xk,hn)

1

θxk
(y)

K

(
dg(xk, y)

hn

)
× |θy(xk)− θy(x)|

≤ cCg

hd+1
n

dg(x, xk) +
C2

g∥K∥∞
hdn

sup
y∈B(x,hn)∩B(xk,hn)

C||Ricy||HS||

×
(
exp−1

y (x)||2 + || exp−1
y (xk)||2

)
≤ cCg

hd+1
n

dg(x, xk) + sup
y∈M

||Ricy||HSd(xk, x)
2C
C2

g

hdn
∥K∥∞

≤
(
cCg + anhnCC

2
g sup
y∈M

||Ricy||hs∥K∥∞
)
Can
hd+1
n

with c and C some positives constants. Consequently,

max
1≤k≤µn

sup
x∈B(xk,an)

|S1n| = O (Ψn) in probability, (6.6)

and the same result holds for S2n since S2n = E(S1n). Now, using (6.4), we obtain

P
(

max
1≤k≤µn

|S3n| > ε

)
≤ Cµn

(
n−c +

(
n−1h

− d(ν+1)
ν−1

n log n

) ν−1
2

)
. (6.7)

We have µn ≤ Cn
d
2h

−d( d
2
+1)

n (log n)
−d
2 . Since nhdn → ∞ by assumption H3, for n large

enough, there exists C > 0 such that nhdn > C. It follows that h−d( d
2
+1)

n ≤ Cn
d
2
+1.

Consequently,
µnn

−c ≤ Cnd+1−c(log n)
−d
2 , (6.8)

which goes to 0 since c > d+ 1. Next, using (6.3), we get

µnvn ≤ C

(
n−1(log n)h

−d ν+d+3
ν−(d+1)

n

) ν−(d+1)
2

. (6.9)

The proof is then achieved since ν > d+ 1 and n−1(log n)h
−d ν+d+3

ν−d−1
n → 0.
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Proof of Theorem 3.5

Proof of the result (3.5)

By Lemma 6.1, we know that for all ε > 0∑
n≥1

P
(∣∣∣f̂n(x)− E

(
f̂n(x)

)∣∣∣ > ε
)
≤ 4

∑
n≥1

An +
8b2
ε

∑
n≥1

Bn, (6.10)

where An = exp
(
− ε

4A0
qhdn

)
and Bn = α(p)

hd
n
. Let p =

[
nhd

n

(logn)2

]
. Then, ε

4A0
qhdn =

ε
4A0

n
2p
hdn ≥ ε

8A0
(log n)2 > c log n, with c > 2 for n large enough. Therefore, we

conclude that
∑
n≥1

An <∞.

Under Assumption H2, we have

α (p)

hdn
≤ C

p−ν

hdn
∼ Cn−νh−d(ν+1)

n (log n)ν = C
(
n−1h

−d ν+1
ν

n (log n)
)ν
,

which goes to 0 by assumption with ν > 2. For some ε > 0, we consider g(n) =
log n (log log n)1+ε . Then, we deduce that

Bnng(n) ≤ C
(
n−1h

−d ν+1
ν

n (log n)
)ν
ng(n)

≤ C
(
n

−ν+1
ν h

− d
2

ν+1
ν

n log n g(n)
1
ν

)ν
≤ C

(
n−1h

−d ν+1
ν−1

n (log n)
ν

ν−1 g(n)
1

ν−1

)ν−1

.

Since ν > 1 and n−1h
−d ν+1

ν−1
n (log n)

ν
ν−1 g(n)

1
ν−1 → 0, we deduce that Bnng(n) → 0.

Consequently, there exists an integer n0 such that for all n > n0, we have Bnng(n) ≤
C. Then,

∑
n>1Bn ≤

∑
n≤n0

Bn + C ×
∑

n>n0

1
ng(n)

<∞.

Proof of the result (3.6)

Here, we have to prove that∑
n≥1

P
(
sup
x∈M

|f̂n(x)− Ef̂n(x)| > ε

)
<∞.
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Based on (6.5), it suffices to show that
∑
n≥1

P
(

max
1≤k≤µn

∣∣∣f̂n(xk)− Ef̂n(xk)
∣∣∣ > ε

)
< ∞.

By combining (6.7) and (6.10), we have for all ε > 0,
∑
n≥1

P
(

max
1≤k≤µn

∣∣∣f̂n(xk)− Ef̂n(xk)
∣∣∣ > ε

)
<

∞. Then, by Borel-Cantelli Lemma, max
1≤k≤µn

∣∣∣f̂n(xk)− Ef̂n(xk)
∣∣∣→ 0 a.s. Consequently,

the proof is achieved.

Proof of Theorem 3.6

Proof of the result (3.7)

Recall that g(n) = log n (log log n)1+ε for some ε > 0, we deduce from (6.3) that

vnng(n) ≤ C

(
nh

d(ν+1)
ν−1

n (log n)−1

)−ν+1
2

ng(n)

≤ C

(
n

ν−3
ν−1h

d(ν+1)
ν−1

n (log n)−1 g(n)
−2
ν−1

)−ν+1
2

≤ C

(
nh

d(ν+1)
ν−3

n (log n)−
ν−1
ν−3 g(n)

−2
ν−3

)−ν+1
2

.

Since ν > 3 and nh
d(ν+1)
ν−3

n (log n)−
ν−1
ν−3 g(n)

−2
ν−3 → ∞ by assumption, we have vnng(n) →

0. Consequently, there exists an integer n0 such that for n > n0, vnng(n) ≤ C. Then,∑
n>1 vn ≤

∑
n≤n0

vn + C ×
∑

n>n0

1
ng(n)

< ∞. We achieve the proof by combining
this result with Inequality (6.2) and the Borel-Cantelli Lemma.

Proof of the result (3.8)

Our aim is to show that∑
n≥1

P( sup
x∈M

|f̂n(x)− Ef̂n(x)| > ε) <∞,

with ε = ηΨn. Since M is compact, we can use the following inequality

sup
x∈M

|f̂n(x)− Ef̂n(x)| ≤ C

√
log n

nhdn
+ max

1≤k≤µn

|S3n|.
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This leads us to prove ∑
n≥1

P( max
1≤k≤µn

|S3n| > ε) <∞.

Recall that g(n) = log n (log log n)1+ε for some ε > 0. From (6.9), we deduce

µnvnng(n)≤C
(
nh

d(ν+(d+3)
ν−(d+3)

n (log n)−
ν−1
ν−3 g(n)

−2
ν−(d+3)

)− ν−(d+3)
2

.

Since ν > d+ 3 and nh
d(ν+(d+3)
ν−(d+3)

n (log n)−
ν−1
ν−3 g(n)

−2
ν−(d+3) → ∞ by assumption, we have

µnvnng(n) → 0. Consequently, there exists an integer n0 such that for n > n0,
µnvnng(n) ≤ C. Then,

∑
n>1 µnvn ≤

∑
n≤n0

µnvn + C ×
∑

n>n0

1
ng(n)

< ∞. By
applying the Borel-Cantelli Lemma, the desired result yields.

Proof of Theorem 3.7

For all x ∈ M, we start by decomposing our expression into two terms, K1,n and
K2,n, as follows√
nhdn

(
f̂n(x)− f(x)

)
=
√
nhdn

(
f̂n(x)− Ef̂n(x)

)
+
√
nhdn

(
Ef̂n(x)− f(x)

)
= K1,n+K2,n.

Clearly, K2,n is negligible under the assumption H3, whereas K1,n is asymptotically
normal.
To establish the asymptotic normality of K1,n, dealing with strong mixing random
variables under Assumption H2, we define

Sn(x) := f̂n(x)− Ef̂n(x) =
1

nhdn

n∑
i=1

Zi(x),

where
Zi(x) =

1

θx(Xi)
K

(
d(x,Xi)

hn

)
− E

(
1

θx(Xi)
K

(
d(x,Xi)

hn

))
.

Since M is compact, we have |Zi(x)| ≤ C by assumption H1. Then, under Assumption
H4, we can deduce that

E|Zi(x)|γ <∞,

for some γ > 2. Additionally, Assumption H2 implies the existence of a constant C
such that

α(k) < Ck−ν ,
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where ν > 2 and ν > γ
γ−2

. We also establish that σ2(x) = f(x)
∫
B(1)

K2(∥v∥)dv > 0

(derived from Proposition 3.1). Utilizing Theorem 1.7 on page 36 of Bosq (1998), we
can conclude the following result√

nhdnSn(x)
D−→ N (0, σ2(x)),

which achieved the proof.
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