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We demonstrate the existence of interface-induced turbulence, an emergent nonequilibrium statis-
tically steady state (NESS) with spatiotemporal chaos, which is induced by interfacial fluctuations
in low-Reynolds-number binary-fluid mixtures. We uncover the properties of this NESS via direct
numerical simulations (DNSs) of cellular flows in the Cahn-Hilliard-Navier-Stokes (CHNS) equa-
tions for binary fluids. We show that, in this NESS, the shell-averaged energy spectrum E(k) is
spread over more than one decade in the wavenumber k and it exhibits a power-law region, in-
dicative of turbulence but without a conventional inertial cascade. To characterize the statistical
properties of this turbulence, we compute, in addition to E(k), the time series e(t) of the kinetic
energy and its power spectrum, scale-by-scale energy transfer as a function of k, and the energy
dissipation resulting from interfacial stresses. Furthermore, we analyze the mixing properties of this
low-Reynolds-number turbulence via the mean-square displacement (MSD) of Lagrangian tracer
particles, for which we demonstrate diffusive behavior at long times, a hallmark of strong mixing in
turbulent flows.

I. INTRODUCTION

Additives can lead to spatiotemporal chaos in a fluid, even when the inertia of the fluid is negligible and the
Reynolds number Re is low. The most notable instance of this is the phenomenon of elastic turbulence in polymer
solutions [1–3]. When elastic polymers are added to a laminar Newtonian solvent, their stretching generates elastic
stresses that can trigger instabilities eventually resulting in a chaotic flow, which is characterized by a power-law
energy spectrum [1, 4, 5] and strongly intermittent fluctuations [6, 7]. Similar chaotic regimes have been observed
in low-inertia wormlike-micellar solutions [8, 9] and in suspensions of microscopic rods [10–12] and spherical rigid
particles [13, 14]. In contrast to conventional hydrodynamic turbulence [15], these examples of low-Re turbulence
do not rely on an energy cascade, through an inertial range, so their main applications are in microfluidics, where
additives are employed to enhance mixing [16] as an alternative to passive or active mechanical perturbations [17].
By combining theory and direct numerical simulations (DNSs) we uncover a new type of low-Reynolds turbulence,
which is driven by interfacial fluctuations, in viscous binary-fluid mixtures. We call this interface-induced turbulence.

A good understanding of binary-fluid mixtures is crucial for modelling emulsions [18], which have a wide variety
of applications in the food [19], cosmetics [20], and pharmaceutical industries [21, 22], often in microfluidic devices,
where the enhancement of mixing is of vital importance in many situations. In addition to its practical applications,
investigations of low-Re turbulence in systems other than viscoelastic fluids is of fundamental interest in nonlinear
physics and fluid dynamics. Therefore, it behooves us to explore the possibility of mixing, induced by low-inertia
turbulence, in binary-fluid mixtures. We initiate such an exploration by studying a cellular flow in a two-dimensional
(2D) binary-fluid system. The Cahn-Hilliard-Navier-Stokes (CHNS) partial differential equations (PDEs), which
couple the fluid velocity u with a scalar order parameter ϕ that distinguishes between two coexisting phases, provide
a natural theoretical framework for such flows. Our investigations, based on direct numerical simulations (DNSs),
reveal an emergent nonequilibrium statistically steady state (NESS) with spatiotemporal chaos, which is induced
by interfacial fluctuations that destabilize the laminar cellular flow. Thus, we find the elastic-turbulence analog for
low-Re binary-fluid mixtures: this leads to a kinetic-energy spectrum E(k), spread over several decades in the wave-
number k, with a power-law regime that is characterised by an exponent ≃ −4.5. By analysing the time dependence
of the total kinetic-energy e(t) and its power spectrum, we characterize the transitions from the cellular flow to such
turbulence, for which we demonstrate, via a scale-by-scale analysis of the kinetic energy, that there is no significant
energy cascade, and therefore the chaotic dynamics is entirely driven by the interfacial stress. Furthermore, we
elucidate how such interfacial stress leads to global energy dissipation, even though it is responsibe for both local
injection as well as dissipation of energy. Finally, we quantify the mixing properties of interface-induced turbulence
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by showing that the mean-square-displacement (MSD) of Lagrangian tracers displays long-time diffusive behavior
with a strong enhancement of mixing with respect to the laminar regime. that is similar to its counterpart in inertial
turbulence.

II. MODEL

The CHNS PDEs have been used to study multi-fluid flows, which may involve droplet interactions [23–27], the
evolution of antibubbles [28], and phase separation and turbulence in such flows [29–32]. The two-dimensional incom-
pressible CHNS PDEs are [24, 29, 33]:

∂tϕ+ u · ∇ϕ =M∇2

(
δF
δϕ

)
; (1)

∂tω + u · ∇ω = ν∇2ω + (∇× Sϕ) · êz + fω; (2)

∇ · u = 0 ; ω = (∇× u) · êz ; (3)

ν, and M are the kinematic viscosity, and mobility, respectively. We write Eq. (2) in the vorticity-streamfunction
(ω−ψ) form, with u = ∇×(ψêz) and ψ = −∇−2ω; the surface stress and the Landau-Ginzburg free-energy functional
are, respectively,

Sϕ = −ϕ∇
(
δF
δϕ

)
and (4)

F [ϕ,∇ϕ] =
∫
Ω

[
3

16

σ

ϵ
(ϕ2 − 1)2 +

3

4
σϵ|∇ϕ|2

]
dΩ ; (5)

Ω is the spatial domain, σ is the bare surface tension, and ϵ the interfacial width. The first term in F is a double-well
potential with minima at ϕ = ±1, which correspond to two bulk phases in equilibrium; the second term is the penalty
for interfaces; ϕ varies smoothly across an interface.

We study the CHNS PDEs (1)-(5) at low Re, with an initially square-crystalline array of vortical structures (a
cellular flow), imposed by choosing

fω = êz · (∇× fu) = f0kf [cos(kfx) + cos(kfy)] , (6)

with amplitude f0 and wave number kf . Such cellular flows have been used to examine the melting of this crystalline
array by inertial, elastic, and elasto-inertial turbulence in viscoelastic fluids [34–36]. For α = 0 and ϕ(r) = 0, this
system has the stationary solution

ω = −ω0[cos(kfx) + cos(kfy)] ; ω0 = f0/νkf . (7)

The spatiotemporal evolution of this cellular flow depends on the Reynolds, Capillary, Cahn, non-dimensionalised
friction, and Péclet numbers that are, respectively,

Re =
UL

ν
, Ca =

νU

σ
, Cn =

ϵ

L0
, Pe =

L2U

Mσ
, (8)

with U = f0/νk
2
f , L = k−1

f , T = νkf/f0, and L0 the side of our square simulation domain. At low Re, the inertia
of the mixture is negligible and, as we will show below, there is no inverse cascade of energy in the system. For this
reason, we have not included a friction term in Eq. (2)

To characterize the mixing because of interface-induced turbulence, we introduce Np tracers into the flow. For
tracer i (position ri0 at time t0)

dri(t)

dt
= v(ri, t|ri0, t0) = u(ri, t) , (9)

where ri(t) and v(ri, t) are the position and velocity of the ith tracer. The mean-squared displacement (MSD) is

∆r2(t) = ⟨|r(t)− r(0)|2⟩, (10)

where ⟨·⟩ denotes the average over the Np particle trajectories.
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FIG. 1. Pseudocolor plots: (a) the initial condition for the ϕ field [Eq. (11)]; (b) steady-state laminar solution [Eq. (2)] for
the vorticity ω, with no droplets or friction; (c) illustrative ϕ field in the chaotic regime (Capillary number Ca = 0.15); and (d)
ω, corresponding to subplot (c), and with the overlaid ϕ = 0 contour lines (in black). See the Supplemental Material [37] for
the corresponding movie.

III. NUMERICAL METHODS AND INITIAL CONDITIONS

We carry out pseudospectral DNSs (parameters in Table I in the Supplemental Material [37]) of the CHNS PDEs (1)-
(5), with periodic boundary conditions, a square (2π×2π) box, 5122 collocation points [24, 38–40], the 1/2-dealiasing
scheme, and a semi-implicit exponential time difference Runge-Kutta-2 method [41] for time integration. To resolve
interfaces, we have three computational grid points in interfacial regions. We obtain v from u via bilinear interpolation
at off-grid points and a first-order Euler scheme for Eq. (9) [42, 43]. The initial condition [Fig. 1(a)] comprises Nd

circular droplets [44]; droplet i, centered at (xi, yi), has radius Ri:

ϕ(x, y, t = 0) =

Nd∑
i=1

tanh
[
ϵ−1

(
Ri −

√
(x− xi)2 + (y − yi)2

)]
, ω(x, y, t = 0) = 0 . (11)

In Fig. 1(b) we show a pseudocolor plot of ω for the cellular solution (7), for the single-fluid case (ϕ = 0).

IV. RESULTS

We consider Re = 1 < Rec =
√
2, the single-fluid (ϕ = 0) critical Reynolds number, given the cellular forcing we

use [45]. We choose Re < Rec to exclude inertial instabilities, so that we can focus only on interface-induced dynamics.
Our DNSs reveal that the second phase leads to interfaces whose fluctuations can destabilise this cellular flow and yield
interface-induced turbulence, a NESS with spatiotemporal chaos. In Figs. 1(c) and (d) we present pseudocolor plots,
of ϕ and ω, respectively, for Ca = 0.15, which illustrate the breakdown of the cellular flow in Fig. 1(b) (see also the
corresponding movie in the Supplemental Material [37]). Moreover, the time series of the rescaled total energy e(t)/e0,
with e0 = U2, shows that, as Ca is varied, the system undergoes a non-monotonic sequence of transitions between
periodic regimes and spatiotemporally chaotic NESSs at low Re (see Fig. 2). In the Supplemental Material [37], we
examine the above cellular-to-spatiotemporally chaotic transitions via additional plots of the time series of the total
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FIG. 2. Plots of (a) e(t)/e0 and (b) kfL(t) versus the rescaled time t/T : from bottom to top Ca = 0.1, 0.15, 0.16, 0.18, 0.6.
For Ca = 0.1, 0.16, and Ca = 0.6, the state shows periodic oscillations in t; by contrast, the state is temporally chaotic at
Ca = 0.15 and Ca = 0.18.

energy e(t), its frequency power spectrum, and pseudocolor plots of the vorticity and the energy spectrum for a wide
range of Ca. It is interesting to note that a non-monotonic sequence of periodic and chaotic states is also observed in
low-Re viscoelastic fluids as the fluid elasticity is varied [35].

In Fig. 2(b), we also show the time series of the coarsening length L(t) = 2π
∑

k S (k, t)/
∑

k kS (k, t), where
S (k, t)=

∑
k≤k′<k+1 |ϕ̂k(k′, t)|2. Coarsening is arrested in all the regimes, and the behavior of the coarsening length,

either periodic or chaotic, parallels that of the energy. We shall see below that the arrest of coarsening favors the
emergence of the chaotic regime, because it ensures a sufficiently large interface between the two fluids. However, this
alone is not sufficient to generate a chaotic regime: the interface must be deformable enough to create large stresses
between the two fluids, which is clearly not the case at large Ca.

We turn now to spatiotemporal properties. In Fig. 3(a) we give log-log plots of the power-spectrum of the total
energy, |ẽ(f)|, versus the normalized frequency fT . For Ca = 0.16, this spectrum shows a single dominant peak, a
signature of temporal periodicity; by contrast, for Ca = 0.15, we see a broad power-spectrum, which indicates that
e(t) is chaotic. In Fig. 3(b) we characterise the spatial distribution of the kinetic energy via a log-log plot of the
shell-averaged energy spectrum E(k) versus the wave-number k (see [37] for the definition), in the spatiotemporally
chaotic NESS for Ca = 0.15, 0.18, 0.2. Over a small range of k, E(k) ∼ k−4.5 [black line in Fig. 3(b)]; this power-law
exponent indicates that, in the regime of interface-induced turbulence, the flow is large-scale and smooth. is distinct
from the one for 2D fluid turbulence (with an exponent ≃ −3 in the forward-cascade regime, if there is no friction
[46,47]. Note that a spectrum steeper than k−3 is also a characteristic feature of elastic turbulence in polymer solutions
[2, 4]. By analogy with elastic turbulence, where the slope of the energy spectrum has been found to vary between
−4.6 and −3 depending on the flow configuration, we expect the slope of the energy spectrum in interface-induced
turbulence not to be universal, but to depend on the specific forcing and boundary conditions.

Unlike inertial fluid turbulence, the low-Re interface-induced turbulence we consider does not show an energy
cascade. We demonstrate this via the following scale-by-scale kinetic-energy-budget equation [48–50]:

∂tE(k, t) = T (k, t)− 2νk2E(k, t) + S(k, t) + F (k, t) , (12)

where S(k, t) is the contribution of the interfacial stress, T (k, t) is the nonlinear energy transfer, and F (k, t) the
energy-injection term (see [37] for the definitions). In the inset of Fig. 3(b), we present the k-dependence of the viscous
contribution 2νk2E(k), in blue, and, in red, the contribution of the interfacial stress, S(k), in the statistically stationary
state; both these terms are equal for all k, except at the forcing wave-number kf = 4. Equation (12) therefore implies
that T (k) is negligible at all k ̸= kf . We have also calculated the ratios |T (k)/S(k)| and |T (k)/2νk2E(k)| vs k,
and we have indeed found that the transfer term is at least one order of magnitude smaller than the dissipation and
interfacial-stress terms for all k. In fluid turbulence, inertia plays a pivotal role in transferring energy from the energy-
injection wavenumber(s) to other wavenumbers, and T (k) is non-zero for most k. By contrast, in the interface-induced
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FIG. 3. Log-log plots of (a) the frequency power spectrum |ẽ(f)| versus the scaled frequency fT for Ca = 0.15 and Ca = 0.16
and (b) the averaged energy spectrum E(k) in the spatiotemporally chaotic NESS for Ca = 0.15, 0.18, 0.2; inset: the k-
dependence of the viscous contribution 2νk2E(k) and the elastic-transfer term S(k) for Ca = 0.15; the black line suggests
E(k) ∼ k−4.5. (c) Plots versus Ca of ϵI , ϵν , and ϵϕ, the contributions of different dissipation terms in Eq. (13); inset: the
PDF of the local interfacial-stress contribution εϕ, for different values of Ca. (d) The pseudocolor plot of εϕ for Ca = 0.15 at a
representative time.

turbulence we consider, inertia is negligible, and energy in wavenumbers other than the injection wavenumber is solely
attributable to S(k), which is balanced by 2νk2E(k); hence, T (k) is negligibly small in Eq. (12). This energy transfer
by interfacial stresses is a unique property of low-Re interface-induced turbulence and distinguishes it clearly from
fluid turbulence. It is also useful to study the energy-budget equation

de(t)

dt
= ϵI − ϵν − ϵϕ ; (13)

ϵI = ⟨fu · u⟩x is the mean energy-injection rate, ϵν = −⟨u · ν∇2u⟩x is the mean energy-dissipation (viscous) rate,
ϵϕ = −⟨εϕ⟩x = −⟨u ·Sϕ⟩x is the additional mean dissipation because of interfaces, and ⟨·⟩x denotes the space average.
We plot ϵI , ϵν , and ϵϕ versus Ca in Fig. 3(c). At intermediate values of Ca, ϵϕ > 0; i.e., globally, the interfacial
contribution to the energy budget is dissipative. However, the interfacial stress both injects and dissipates energy
locally, as we demonstrate by plotting, in the inset of Fig. 3(c), the probability distribution functions (PDFs) of εϕ,
the local dissipation because of interfaces. The fat tails of this PDF exhibit that εϕ shows large fluctuations that are
both positive and negative. The pseudocolor plot of εϕ for Ca = 0.15 in Fig. 3(d) also confirms that εϕ is concentrated
at the interface between the two fluids. Therefore, the turbulent behavior, which we uncover by the energy-budget
analysis (13), is attributable solely to the presence of interfaces in the flow, and is observed at intermediate values of
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FIG. 4. (a) Illustrative plot of a tracer trajectory for Ca = 0.15; the colorbar shows the simulation time. (b) Log-log plots
of the mean-square displacement (MSD) (averaged over Np = 1024 × 128 particles), showing short-time ballistic (∼ t2) and
long-time diffusive (∼ t) asymptotes for the spatiotemporally chaotic NESSs (Ca = 0.15 and Ca = 0.18); only ballistic behavior
appears for the periodic time evolution at Ca = 0.16.

Ca. For low values of Ca (large σ), ϵϕ is low because the interfaces are so energetic that their energy surpasses the
kinetic energy of the flow: thus, droplets coalesce, interfaces do not break-up, and the interfacial length is minimal.
For high values of Ca (low σ), the interfacial energy is so low that it hardly affects the flow, and the system retains the
cellular structure of the applied force; and the energy injection and viscous dissipation balance, i.e., ϵI/ϵ0 = ϵν/ϵ0 = 1,
and ϵϕ/ϵ0 = 0, with ϵ0 ≡ f0U . The inset of Fig. 3(c) also shows a substantial difference in the statistics of εϕ for the
periodic (Ca = 0.16) and the chaotic (Ca = 0.15, 0.18) cases. Indeed, the Ca = 0.16 case is dominated by events with
very small εϕ, and the PDF of εϕ rapidly drops as |εϕ| deviates from zero. In contrast, the probability of moderate
fluctuations of εϕ remains significant in the chaotic cases.

One of the intriguing properties of interface-induced turbulence is that it enhances mixing even at low Re, which
makes this phenomenon of great interest for microfluidic applications. We quantify such mixing properties by investi-
gating the dispersion of tracer particles in the flow [Eqs. (9) and (10)]. In Fig. 4(a), we depict a representative tracer
trajectory in the spatiotemporally chaotic NESS for Ca = 0.15; the colorbar shows the simulation time. Initially,
the particles get trapped within vortices, but, when an interface moves through these vortices, it facilitates particle
transfer to other vortices. We plot the MSD [Eq. (10)] versus t for Ca = 0.15, Ca = 0.16, and Ca = 0.18 in Fig. 4(b).
For the chaotic NESSs (Ca = 0.15 and Ca = 0.18) the small- and large-t asymptotes of the MSD can be fit to the
power-law-form ⟨r2(t)⟩ ∼ tβ , with short-time ballistic behavior β = 2, and long-time diffusive behavior β = 1, because
of strong mixing via interface-induced turbulence. If the state is periodic, e.g., for Ca = 0.16, the MSD shows only
ballistic behavior and then trapping into a vortical cell at longer times.

V. CONCLUSIONS

We have demonstrated how interfaces in a binary-fluid mixture can disrupt low-Re cellular flows by precipitating
instabilities that lead to interface-induced turbulence, the binary-fluid analog of elastic turbulence in fluids with
polymer additives [1–3]. We have explored the transitions from cellular flows, to flows with spatiotemporal crystals,
and, eventually, to a NESS with interface-induced turbulence. We have characterised these states via the energy
time series e(t), its frequency power spectrum |ẽ(f)|, the energy spectrum E(k), the energy budget [Eqs. (12) and
13], and the MSD of Lagrangian tracers [Eqs. (9) and (10)]. The low-Re interface-induced turbulence that we have
uncovered exhibits the following distinctive properties: (a) |ẽ(f)| is significant over a broad range of frequencies f ;
(b) a power-law regime with E(k) ∼ k−4.5, with a power that is different from its counterpart in 2D fluid turbulence
with no friction [46, 47]; (c) a scale-by-scale energy transfer [Eq. (12)] with negligible inertial contribution T (k); (d)
an MSD of tracers that crosses over from ballistic to diffusive behaviors, indicating strong mixing. Cellular flows have
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been used in experimental studies of elastic turbulence [51]; we therefore look forward to experimental confirmations
of our predictions for low-Re interface-induced turbulence in such flows. In this regard, we note that in our study the
two fluids have same kinematic viscosity. Nevertheless, the turbulent state that we have identified is induced solely by
the stresses at the interface between the two fluids. We therefore expect it to persist when the kinematic viscosities
of the two fluids differ, even though the range of parameters over which interface-induced turbulence is observed is
likely to depend on the viscosity ratio.
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