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We investigate through numerical simulations how a two-dimensional crystal yields and flows
under an applied shear. We focus over a range that allows us to both address the response in the
limit of an infinitesimal shear rate and describe the phase behavior of the system at a finite shear
rate. In doing so, we carefully discuss the role of the topological defects and of the finite-size effects.
We map out the whole phase diagram of the flowing steady state in the plane formed by temperature
and shear rate. Shear-induced melting of the two-dimensional crystal is found to proceed in two
steps: first, the solid loses long-range bond-orientational order and flows, even for an infinitesimal
shear rate (in the thermodynamic limit). The resulting flowing hexatic phase then melts to a flowing,
rather isotropic, liquid at a finite shear rate that depends on temperature. Finally, at a high shear
rate, a third regime corresponding to a strongly anisotropic string-like flowing phase appears.

I. INTRODUCTION

How do crystals flow under an applied shear? This
question can be viewed from two different perspectives.
Alternatively, one may envisage the onset of flow as an
instance of a yielding transition between an elastically
responding rigid solid and a plastically flowing phase [1].
This pertains to a broad field of research within mechan-
ics, soft-condensed matter and statistical physics which
involves a very wide range of materials from granular me-
dia, foams, and a whole variety of so-called yield-stress
fluids to all kinds of harder solids such as glasses and to
crystalline materials [2, 3]. One is then concerned with
the mechanisms inducing plasticity, the properties of the
flow, the existence and the value of the yield stress, the
nature of the yielding transition, and all means to con-
trol the way the solids yield without breaking too soon.
One may also consider the phenomenon in a more spe-
cific way as a shear-induced melting transition associated
with some symmetry restoration and enquire how this
transition proceeds and differs (or not) from the melting
of the quiescent crystal in equilibrium [4].

Plasticity in crystals is known to be due to the presence
of defects in the structure, above all topological defects
in the form of dislocations. In many real systems they

are present in a rather large quantity and, having been
trapped in the solid during its preparation, they are out
of equilibrium. Here instead we are interested in start-
ing with perfect equilibrium crystals, which, as a result,
only contain thermal topological defects compatible with
the fixed nonzero temperature. We focus on the steady
state reached by imposing a constant shear (strain) rate
and do not address transient effects that may give a dif-
ferent angle on the yielding transition. Furthermore, we
consider a two-dimensional crystal, as for instance exper-
imentally studied in colloidal suspensions [5, 6], hexago-
nal columnar liquid crystals [7], complex plasmas [8], and
for which more analytical work is possible in the context
of the KTNHY theory of melting [9–13]. In two dimen-
sions the crystal has only quasi-long-range translational
(crystalline) order but long-range bond-orientational or-
der. (Note that here and below we use for convenience the
terminology “crystal” even in two dimensions where there
is no long-range translational order; this is an abuse of
language but should not lead to any confusion.) Melting
in equilibrium may take place through two distinct tran-
sitions that are associated with the unbinding of bound
topological defects and are separated by an intermediate
“hexatic” phase. The crystal-to-hexatic transition cor-
responds to the appearance of free dislocations, and the
resulting hexatic phase only has quasi-long-range bond-
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orientational order. The hexatic-to-liquid transition cor-
responds to the unbinding of the dislocations into free
disclinations which therefore also break the quasi-long-
range order and fully restore translational and bond-
orientational invariance.

Our goal is to investigate how a two-dimensional crys-
tal yields and flows under an applied shear over a range
of rates that allows us to both address the response in the
limit of an infinitesimal shear rate and describe the phase
behavior of the system at finite rate. It has been theo-
retically established [14–16] that even a perfect crystal
flows for an infinitesimal shear so that the notion of yield
stress is only a time-dependent property which should
vanish for a large, yet finite, observation time (even in
the thermodynamic limit). A viscosity can then be de-
fined but it diverges in a singular manner for a vanishing
shear rate. We give numerical evidence for these pre-
dictions and discuss the mechanism by which this takes
place in two-dimensional crystals. For larger shear rates
we provide a description of the shear-induced melting
and of the properties of the phases that are observed in
a steady state.

II. MODEL, METHOD, AND PHASE DIAGRAM

We numerically study a model of dense monodisperse
colloidal crystals under simple shear in two dimensions.
We consider the situation where hydrodynamic interac-
tions and inertial effects can be neglected and we perform
a Brownian (overdamped Langevin) dynamics for the po-
sition ri = (xi, yi) of each particle under a constant and
uniform applied strain rate γ̇ [17]:

ζ
dri
dt

= −
∑
j ̸=i

∂v(ri − rj)

∂ri
+ γ̇exyi + fi, (1)

with v(r) = ϵ
2 (1−|r|/d)2θ(d−|r|) a purely repulsive soft

potential, where d is the particle diameter and θ(x) is
the step function. The thermal bath is described through
the stochastic force fi = (fx,i, fy,i), which is a Gaussian
white noise with zero mean and correlations given by
⟨fα,i(t)fβ,j(t′)⟩ = 2kBTζδ(t − t′)δijδαβ , where ⟨· · · ⟩ is a
statistical average, T is the temperature of the bath, kB
is the Boltzmann constant, and α, β = x, y. We measure
lengths in units of the diameter d, times in units of τ0 =
ζd2/ϵ, and temperature in units of ϵ/kB .
We study N harmonic soft disks in a rectangular box

with area A = LxLy, where Lx is the box length along

the x-direction and Ly =
√
3
2 Lx is the length along the

y-direction. The ratio is chosen to accommodate the per-
fect hexagonal structure. The packing fraction ϕ of the
system is set to ϕ = (N/A)πd2/4 = 1.0, for which the sys-
tem has been shown to have a first-order hexatic-to-liquid
transition [18] at Tm,hex ≃ 0.0062 ± 0.0002 in thermal
equilibrium without applied deformation (γ̇ = 0) [19].
Although the full equilibrium phase diagram of the model
for γ̇ = 0 is not available, we note that the hexatic phase

in soft-core potential models always appears in a narrow
range of temperature (or density, but for power-law po-
tentials the latter can easily be converted to temperature)
which is a few percents of the transition temperature of
the hexatic phase to the liquid [19, 20]: we therefore esti-
mate the melting temperature of the solid to the hexatic
phase to be Tm,sol ≳ 0.0055.

To implement the uniform simple shear, Lees-Edwards
periodic boundary conditions are applied [21], and the
equations of motion are integrated through the Euler
scheme. We measure the shear stress component of the
system, σ = σxy, by using the Irving-Kirkwood for-
mula [21]: see Appendix A. In the initial condition, par-
ticles are arranged in a hexagonal close-packed struc-
ture, which is then subjected to an applied shear at the
chosen temperature based on Eq. (1). All the quanti-
ties presented in this paper are measured in the steady
state (after a long enough simulation time), except oth-
erwise stated. We investigate a wide range of shear rate
γ̇ and temperature T , which covers most of the rele-
vant physics of two-dimensional (2d) crystal flows and
we study N = 900, 3600, 14400, and 57600 to check the
finite-size effects.

Note that we consider a Brownian (overdamped
Langevin) dynamics which is appropriate for colloidal
suspensions and is different from the previous simula-
tion studies of sheared two-dimensional crystals that
used a nonequilibrium molecular dynamics algorithm
(SLLOD) [22, 23]. In the latter case there is an issue con-
cerning the way the system is thermostated (kinetic or
a configurational thermostat), which may influence some
of the results [23]. This specific problem is absent in
our Brownian dynamics simulations where temperature
is introduced through a white noise. For completeness
we have also carried out SLLOD dynamics simulations:
the results are discussed in Appendix B.

The phase diagram of the simulated model in the non-
equilibrium steady state is summarized in Fig. 1(a).

As the temperature T and the shear rate γ̇ are var-
ied, the system can be found in three different regimes.
Regime I: At small γ̇ > 0 and small T , we observe
a plastic flow with the nucleation of free dislocations.
Crystalline positional quasi-long-range order is then bro-
ken but hexatic quasi-long-range order persists. This
is a flowing hexatic phase. A representative snapshot
is shown in Fig. 1(b). Theories of 2d crystals under
shear [24, 25] can be applied in this regime, especially
in the limit of infinitesimal γ̇ where they help discussing
if and how a perfect crystal flows [14–16]. Regime II:
As γ̇ or T is increased, there is a transition to a regime
where the dislocations are unbound and free disclina-
tions are nucleated. Thus, both positional and bond-
orientational correlations have a short-ranged spatial de-
cay (see a snapshot in Fig. 1(c)). This regime is a flowing
liquid which appears rather isotropic. Regime III: When
γ̇ is further increased, the imposed shear rate dominates
the dynamics and we find a cross-over to a string-like
flow, in which the particle motion mostly follow lanes
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FIG. 1. (a): Phase diagram of a sheared two-dimensional crystal in its flowing steady state in the plane of the shear rate γ̇ and
the temperature T . Red dots indicate the phase points corresponding to the snapshots displayed in panels (b-d). In Regime I,
we observe a plastic flow with nucleated free dislocations and hexatic quasi-long-range order (QLRO). A representative snapshot
is shown in (b) for T = 0.003 and γ̇ = 2× 10−4. Blue, white, and red particles have 5, 6, and 7 neighbors, respectively, and a
pair of red and blue particles form a dislocation. In Regime II, the dislocations are unbound and free disclinations, shown as
isolated red and blue particles, are nucleated. Concomitantly, bond-orientational order has a short-ranged, exponential, spatial
decay and the system is in a flowing liquid phase. A representative snapshot is given in (c) for T = 0.003 and γ̇ = 1×10−2. One
can see an isolated disclination with 7 neighbors, as indicated by a circle. In Regime III, we observe a string-like flow in which
particles mostly move along lanes following the direction of shear. The system is then strongly anisotropic. The corresponding
snapshot is shown in (d) for T = 0.003 and γ̇ = 4× 10−1 and an inset illustrates representative particle trajectories in the bulk
of the system over a strain change ∆γ = 1.2.

in the direction of the imposed shear. This can be seen
in the snapshot shown in Fig. 1(d) and in the associ-
ated inset, where some representative particle trajecto-
ries are displayed. In this regime the system is strongly
anisotropic.

In the subsequent sections, we provide a detailed char-
acterization of the three regimes.

III. DO TWO-DIMENSIONAL CRYSTALS
FLOW UNDER AN INFINITESIMAL SHEAR

RATE?

A. Theoretical arguments

The fact that an infinitesimal shear stress destroys a
solid phase by making it flow was theoretically estab-
lished in full generality in Ref. [14]. The main idea is
that a shear stress deforms a solid, thus inducing an ex-

tensive increase of the energy of the system. Such an
excess energy can be relaxed at any finite temperature
by nucleating droplets of the undeformed solid within
the deformed solid state. Applying this metastability-
nucleation argument one can conclude that an infinites-
imal shear stress always destabilizes a solid state. The
drawback of this treatment is that it provides a possible
mechanism for flow but not necessarily the most efficient
one. Sengupta, Sollich, and coworkers [15, 16] have re-
cently built on this approach. They have used thermody-
namic arguments and predicted the presence of a nearby
first-order transition between two crystals with the same
symmetry but different mechanical response to evaluate
the effective stress at which a perfect crystal typically
yields, i.e., has its first plastic event, as a function of the
shear rate. They have focused on the transient behav-
ior in the limit γ̇ → 0. Here, we are more interested in
the steady-state regime and in the specific mechanisms
at play in 2d crystalline solids.
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In the case of a 2d crystal, the arguments can be made
more explicit by pinpointing the underlying mechanism
that gives rise to the instability of the solid state [24, 25].
The starting point is provided by the study of disloca-
tions – the defects destroying quasi-long-range positional
order – in the presence of shear stress. We here focus
on the physics along the glide direction (shear direc-
tion) which is a more dominant (faster) process than the
physics along the climb direction (perpendicular to the
shear direction). In a 2d crystal without shear there are
no free dislocations. The reason is that a pair formed by
a dislocation and an anti-dislocation (i.e., a dislocation
of opposite Burgers vector) at a distance r is subjected to
an effective attraction through a potential U0(r) (without
shear). This potential increases logarithmically at large

r as U0(r) =
Ka2

0

4π ln(r/a0), where a0 is the inter-particle
distance (or lattice constant) and K an effective elastic
constant. In the presence of a shear stress σ, the pair
of dislocations is submitted to an additional force in the
glide direction so that the effective potential becomes:

U(r) = U0(r)− a0(r − a0)σ. (2)

Even for a very small stress σ, the potential now favors
unbinding of the dislocations as the linear term prevails
on the logarithmic attraction: U(r) diverges to minus in-
finity for r → ∞. The competition between logarithmic
attraction and linear repulsion leads to a finite energy
barrier ∆U = U(rc)− U(a0) with rc = Ka0/(4πσ), thus
making unbinding at nonzero temperature a thermally
activated process. By computing the barrier and assum-
ing an Arrhenius-type law one can obtain at leading order
of the rate R per unit time and unit area for the dissoci-
ation of a pair of dislocations and the ensuing formation
of free dislocations [24, 25],

R ∼
D||

a40

(
σa20
kBT

) Ka2
0

4πkBT

e−2Ec/kBT , (3)

where D|| is the diffusion constant in the glide direc-
tion and Ec a microscopic energy scale. The important
(and leading) term in this expression is associated to the
power-law dependence in σ.

Due to this mechanism, at any nonzero temperature
and for an arbitrary small shear stress, a finite (albeit
very small) density of free dislocations ρdisl is produced,
thus destroying the quasi-long-range positional order.
The rate equation for ρdisl is written by

∂ρdisl
∂t

= R− ⟨v⟩rcρ2disl, (4)

where ⟨v⟩ is the mean velocity of free dislocations in the
glide direction, driven by shear stress σ. The second
term in Eq. (4) treats the recombination process approx-
imatly [24]. At the steady-state, ρdisl is obtained by

ρdisl =

√
R

⟨v⟩rc
. (5)

Free dislocations are expected to show a Brownian mo-
tion under an external force by shear, and hence, using
the Einstein relation, ⟨v⟩ is given by

⟨v⟩ = a0σD||/(kBT ). (6)

A moving dislocation also leads to deformation of the
solid. The associated strain rate is proportional to the
density of dislocations [26],

γ̇ ∼ ρdisl⟨v⟩. (7)

One combines Eqs. (3,5,6,7) and arrives at a relation be-
tween the strain rate γ̇ and shear stress σ,

γ̇ ∼ D||

(
σa20
kBT

) Ka2
0

8πkBT +1

. (8)

The viscosity is defined as η = σ/γ̇, and thus one finds

η ∼ η0

(
σa20
kBT

)− Ka2
0

8πkBT

, (9)

where η0 is a constant with dimension of viscosity. The
two expressions in Eqs. (8,9) can be combined to give

log

(
η

η0

)
∼ − 1

1 + (8πkBT )/(Ka20)
log γ̇ +O(1). (10)

These equations show that an infinitesimal shear stress
indeed leads to plastic flow of a crystal and to a very
large but finite viscosity. The behavior of the viscosity
is however singular. It diverges when σ → 0 or γ̇ → 0,
contrary to what happens for a liquid in which a finite
value of the viscosity is reached when σ → 0.

B. Numerical results

We first measure the averaged shear stress σ, where
the overline denotes an average over time (or strain γ)
and over independent trajectories in the steady state, as
a function of the imposed shear rate γ̇. The outcome is
displayed on a log-log plot in Fig. 2(a) for more than three
orders of magnitude of γ̇ and a wide range of temperature
from T = 0.0001 to 0.0080 that covers from the solid to
the liquid phases found at γ̇ = 0 (see above).
The flow curves at the lowest temperatures, T =

0.0001 and 0.0010, show a plateau at the smallest val-
ues of γ̇ which indicates an apparent nonzero yield stress
within our simulation time window. However, for the in-
termediate temperatures, T = 0.0030 and 0.0050, which
are still below the estimated Tm,sol and thus correspond
to a solid phase when γ̇ = 0, one clearly observes a
steady decay of σ with decreasing γ̇, as better seen in the
zoomed-in plot of Fig. 2(b). Below some crossover shear-
rate value, this decay is roughly linear on the log-log plot
with a slope that decreases as T decreases. This is com-
patible with the theoretical prediction in Eq. (8), which
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FIG. 2. Flow curves for a crystal ofN = 14400 particles under
uniform simple shear. (a): Log-log plot of the averaged shear
stress σ versus the shear rate γ̇ for several temperatures. (b):
Zoom-in plot of panel (a).

implies that log σ ∼ [1 +Ka20/(8πkBT )]
−1 log γ̇ (but the

data is not good enough to provide a meaningful extrac-
tion of the parameters), and supports the absence of a
nonzero yield stress in the limit γ̇ → 0. As T is increased
further, σ decreases rapidly with decreasing γ̇: one then
enters the Newtonian fluid regime with no yield stress,
as shown for instance in Fig. 2(a) for T = 0.0080.

To obtain a complementary picture we also plot the
effective viscosity η = σ/γ̇ in Fig. 3(a). At low and in-
termediate temperatures, T = 0.0001− 0.0050, the data
is well described by a power-law divergence at small γ̇,
η ∼ γ̇−α. As a consequence of the behavior of σ just
described, we find that α = 1 for the two lowest tem-
peratures because of the apparent nonzero plateau found
in σ within the simulation range, but it slightly deviates
from 1 for the two intermediate temperatures in agree-
ment with a vanishing yield stress, and as expected from
eq.(10). At the highest temperatures (T = 0.0080), η
saturates toward a finite value, as expected for a New-
tonian fluid. (At high shear rates the system displays
shear thinning with a viscosity that decreases with in-
creasing γ̇ at all temperatures.) All the above results
are illustrated for N = 14400 but they weakly depend
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disl
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(b)

FIG. 3. (a): Log-log plot of the effective viscosity η = σ/γ̇
as a function of the shear rate γ̇ for the same data as in
Fig. 2(a). The dashed straight line shows the dependence
η ∼ γ̇−1. (b): Log-log plot of the effective viscosity as a
function of the density of dislocations ρdisl. The dashed line
corresponds to η ∼ ρ−1

disl.

on system size: see Appendix C. We also confirmed the
absence of the yield stress and divergence of the viscosity
in the SLLOD dynamics (see Appendix B).

According to the theoretical arguments recalled in the
previous subsection, the plastic flow of a 2d crystal is
driven by the nucleation of free dislocations induced by
the stress (or the shear rate) and corresponding to the
unbinding of dislocation/anti-dislocation pairs. The mo-
tion of the free dislocations relaxes the shear stress and it
is more specifically predicted that the effective viscosity is
inversely proportional to the density of free dislocations,
η = σ/γ̇ ∼ ρ−1

disl by using Eqs. (7,6). This is what leads to
Eqs. (9,10). To more directly test the relation between
the viscosity η and the density of free dislocations ρdisl,
we have determined the latter numerically, as explained
in Appendix D. We show in Fig. 3(b) a log-log plot of η
as a function of ρdisl. We find that data at different tem-
peratures roughly collapse, and, although not perfect, a
behavior compatible with η ∼ ρ−1

disl at high η (or low γ̇) is
observed. This provides evidence that the mechanism for
the divergence of the viscosity when γ̇ → 0 is indeed the
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rarefaction of nucleated free dislocations. At lower η or
higher γ̇, the data show a nonmonotonic dependence and
the theoretical arguments no longer apply, as expected.

IV. REGIME I: FLOWING HEXATIC PHASE

A. Evidence for a hexatic phase and a
shear-induced transition to a liquid phase

We have seen that the crystaline solid at γ̇ → 0 yields
and flows as soon as an infinitesimal shear rate is im-
posed due to the nucleation of free dislocations. These
free dislocations also disrupt the positional quasi-long-
range order. Shear-induced melting of the crystal there-
fore take place as soon as γ̇ ̸= 0. The question that re-
mains is whether the flowing phase is a liquid with expo-
nentially decaying translational and bond-orientational
spatial correlations or an intermediate hexatic phase re-
taining quasi-long-range bond-orientational order.

We characterize the structural properties of the flowing
phase by using the local 6-fold bond-orientational local
order parameter,

ϕ6,j =
1

nj

nj∑
k=1

e6iθjk , (11)

where the sum is over the nj neighbors of particle j that
are determined through a Voronoi tessellation and θjk is
the angle between the vector joining particle j with par-
ticle k and the (arbitrarily chosen) x-axis. From ϕ6,j we
compute the volume-averaged bond-orientational order

parameter ψ6 = (1/N)
∑N

j=1 ϕ6,j and the 6-fold bond-

orientational spatial correlation function g6(r): see Ap-
pendix F for more details.

We display in Fig. 4(a) the averaged square modulus of

the bond-orientational order parameter |ψ6|2 versus γ̇ for
various temperatures and system sizes. For all temper-
atures in the solid and hexatic phases for the quiescent
system (γ̇ = 0), i.e., for T < Tm,hex ≈ 0.0062, one finds

that |ψ6|2 decreases, first slowly and then in a quite rapid
manner, as the shear rate increases and reaches a mini-
mum before rising up again. However, one has to be care-
ful about finite-size effects. Except for below Tm,sol with

γ̇ = 0 one indeed expects that |ψ6|2 = 0 in the thermo-
dynamic limit when the solid flows and free dislocations
appear. As in the equilibrium hexatic phase, we expect
that only quasi-long-range bond orientational order can
be present. One then anticipates a dependence on the
linear system size of the form |ψ6|2 ∼ L−η6 . Assuming
that this flowing hexatic phase shares the same proper-
ties of its equilibrium counterpart one would then expect
η6 to be a temperature dependent anomalous dimension
such that η6 ≤ 0.25 [27]. (Here, we make no difference
between Lx and Ly because we have chosen them propor-
tional to each other.) On the other hand in an isotropic

liquid phase with only short-range order, |ψ6|2 should de-

10 4 10 2 10010 5 10 3 10 1

0.0

0.2

0.4

0.6

0.8

|
6|2

(a)

T = 10 4

10 3

3 × 10 3

5 × 10 3

6.2 × 10 3

8 × 10 3

101

r

10 1

100

g 6
(r)

(b) T = 3 × 10 3

= 8 × 10 5

8 × 10 4

2 × 10 3

4 × 10 3

1 × 10 2

1 × 10 1

8 × 10 1

FIG. 4. (a): Averaged square modulus of the bond-

orientational order parameter, |ψ6|2, as a function of shear
rate for various temperatures and system sizes. Triangles
(with dotted-line), diamonds (dashed-line), and circles (solid-
line) correspond to data forN = 900, 3600, and 14400, respec-
tively. (b): Spatial decay of the bond-orientational correlation
function g6(r) for T = 0.0030, N = 14400, and a wide range
of γ̇. The grey dashed line represents the bound imposed on
a power-law decay by the KTHNY theory, g6(r) ∼ r−1/4.

crease much more rapidly with system size, possibly as
L−1 because the boundaries break the isotropy of space.

We indeed observe that at the smallest γ̇, below some
value that appears to decrease as temperature increases
(but still stays below Tm,sol), very little change of |ψ6|2
takes place for the system sizes under study whereas at
and around the minimum of |ψ6|2 a visible decrease is
found. As shown in Fig. 13 of Appendix C, the minimum,
minγ̇{|ψ6|2}, always decreases more rapidly than L−1/4

(and more so as T increases because the system sizes as
probably too small to reach the asymptotic regime at the
lowest temperatures). For T = 0.0062, which is around
Tm,hex, the finite-size effects is strong even at low γ̇ and
for the highest temperature that always corresponds to
a liquid phase |ψ6|2 is always zero, at least up to a shear
rate γ̇ ∼ 10−1 − 100. The data therefore indicate that a
transition from a flowing hexatic phase to a liquid phase
occurs at a shear rate that decreases as the temperature
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increases: This is the transition line between regimes I
and II shown in Fig. 1(a).

The above results are also confirmed by looking at
the bond-orientational correlation function g6(r). In
Fig. 4(b), we illustrate the outcome for T = 0.003 and a
wide range of shear rates, but the results for all tempera-
tures are given in Appendix F. For the lowest rates g6(r)
decays very slowly, as a power law g6(r) ∼ r−η6 . The
slope of the power law increases with γ̇ and reaches the
upper bound predicted by the KTHNY theory of the hex-
atic phase, i.e., η6 = 0.25, for some value slightly above
2×103. This suggests that the non-equilibirum transition
at which the hexatic order is lost is in the same universal-
ity class of its equilibrium counterpart. For larger values,
above γ̇ = 4×103, g6(r) decays quickly with an exponen-
tial rather than a power-law form. The passage from a
power-law decay to an exponential decay is characteristic
of a transition from quasi-long-range order to no order.
This locates the transition between regimes I and II. Note
that when γ̇ increases further, typically above 10−1, g6(r)
reaches a nonzero plateau at large distances suggesting
the appearance of long-range bond-orientational order,
but this will be discussed in the next section concerning
regime III.

The disappearance of quasi-long-range bond-
orientational order is due to the unbinding of dislocations
and to the resulting appearance of free disclinations.
This can be tested by identifying and characterizing
the latter: see Appendix D. In Fig. 5, we report for
various temperatures and values of the shear rate the
probability pdisc of finding at least one disclination in
the sample during the plastic flow. It is zero when the
system is in Regime I, which corresponds to a flowing
hexatic phase with no free disclinations. At a rather
well defined γ̇ the probability jumps to a value of 1 (or
nearly 1 for the lowest temperatures) and the system is
now in a (flowing) liquid phase. The onset of the jump
corresponds to the boundary between regimes I and II
shown in Fig. 1(a).

By studying the 6-fold bond-orientational order and
the emergence of free disclinations (which are defects
in this order) we have identified a transition between
Regime I, which can be described as a flowing hexatic
phase, and Regime II, which corresponds to a flowing
liquid phase. This is in line with the findings of previous
numerical simulations [22, 23] and experiments [5, 7] on
2d sheared crystals. However, we are not able to deter-
mine if the transition is continuous or first-order-like (as
argued by Ref. [23]).This aspect requires further investi-
gations with huge comuputational efforts.

B. Rotating crystals

In Regime I where quasi-long-range bond orientational
order is present we have also studied the dynamics of
the system in the steady state at fixed shear rate γ̇.
We have monitored the evolution with strain γ (which

10 5 10 4 10 3 10 2
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0.8

1.0

p d
isc

T = 10 4

10 3

3 × 10 3

5 × 10 3

6.2 × 10 3

8 × 10 3

FIG. 5. Probability to find at least one free disclination in
the system, pdisc, as a function of γ̇ and T for N = 14400
particles.

parametrizes time) of several quantities. As previously
observed in a simulation [22] and an experimental [5]
study of a sheared 2d crystal, we find evidence for a co-
herent rotation of hexagonal crystalline domains. Their
size scales like the system size and, as argued above and
further below, the phenomenon should therefore be taken
as a finite-size effect that would likely not persist in this
form in the thermodynamic limit.
We first consider the (instantaneous, i.e., not time av-

eraged) 6-fold bond-orientational order parameter, whose
real part ℜ{ψ6} as a function of γ, as shown in Fig. 6.
One can see a clear oscillating behavior between a posi-
tive maximum value and a negative minimum one. The
period γ∗ of the oscillations can be estimated from a sim-
ple argument. Consider a hexagonal lattice that coher-
ently rotates in a periodic box when the box is sheared
at a rate γ̇. The corresponding bond-orientational order
parameter ψ6 then periodically oscillates with a period
τ∗ which is such that τ∗γ̇/2 = π/3. As by definition
γ∗ = γ̇τ∗, this immediately gives

γ∗ =
2π

3
≈ 2, (12)

which indeed captures well the oscillation period shown
in Fig. 6.
The rotation can also be directly seen by looking at

the evolution of a given sample: real-space snapshots are
displayed in the top panels of Fig. 7. Particles are colored
according to the value of the real part of the local bond-
orientational order parameter ϕ6,j . When ℜ{ϕ6,j} = 1,
the local environment of a particle is that of a perfect
hexagonal triangular lattice with direction parallel to the
x-axis, while when ℜ{ϕ6,j} = −1, the orientation of the
surrounding environment is rotated by an angle of π/2.
The periodic appearance of red (large positive ℜ{ϕ6,j})
and blue (large negative ℜ{ϕ6,j}) regions indicates that
the solid flows with a coherent rotation.
Another signature of coherently rotating crystalline

domains is obtained by considering the instantaneous
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FIG. 6. Real part of the bond-orientational order parame-
ter ℜ{ψ6} obtained in a single trajectory as a function of the
shear strain γ for a fixed shear rate γ̇ = 1 × 10−3 and tem-
perature T = 0.0030 (corresponding to Regime I). Different
system sizes N are shown.

static structure factor Sγ(k) measured from each snap-
shot [5, 22]. It is defined as

Sγ(k) =
1

N

N∑
j,k=1

eik·(rj−rk), (13)

where k = (kx, ky) = (2πnx/Lx, 2πny/Ly), with nx, ny
integers, consistently with the imposed periodic bound-
ary condition. In the solid phase in thermal equilibrium,
this function shows six peaks in the (kx, ky) plane that
are located on the vertices of a regular hexagon. In the
bottom panels of Fig. 7 one can see that the 6-fold pat-
tern rotates while the deformation proceeds, indicating
that the local environment of each particle is coherently
rotated during the flow. As already mentioned such a
crystal rotation has been observed in two-dimensional
colloid experiments [5] and a SLLODmolecular-dynamics
simulation [22]. It was also recently predicted as a conse-
quence of dislocation nucleation in a mesoscopic athermal
model [28].

Several comments are in order. First, the oscillations
are not quite symmetric between the vicinity of the max-
ima of ℜ{ψ6} and that of the minima (see Fig. 6). The
rotation is faster and the absolute value is smaller near
the minima, which corresponds to the situation where
the crystal-like domains are oriented perpendicularly to
the shear direction (see also the experimental result in
Ref. [5]). Second, the overall coherence of crystal ro-
tation does not mean that the particles themselves ro-
tate coherently as they can escape the crystalline struc-
ture and be replaced by other ones. Finally, we recall
once again that a rotating crystal, characterized by a
nonzero bond-orientational order parameter, even an in-
stantaneous one, is likely a finite-size effect.

Interestingly, we observe an oscillating behavior also in
the instantaneous value of the bond-orientational correla-

tion function, g6,γ(r), as shown in Fig. 8. This correlation
function passes from an increasingly steep power-law de-
cay to an exponential one, coming back to the power-law
decay at the end of one period. This suggests that the
flow of the rotating solid proceeds through a transient
melting of the sample. This is similar to what was found
experimentally on sheared colloids [5]. The average value
of the correlation function across one oscillation period
nevertheless displays a power-law decay (see the dashed
line in Fig. 8), suggesting that only quasi-long-range
bond-orientational order is present in instantaneous con-
figurations in the thermodynamic limit.

V. CROSSOVER TO STRING-LIKE FLOW

The isotropic flowing liquid phase (Regime II) appears
rather narrow at low temperature and widens as T is in-
creased, as seen from Figs. 1(a) and 4(a). Indeed, upon
further increase of γ̇, the imposed shear dominates the
dynamics of the system and one finds a crossover to a sit-
uation in which particles in the steady state flow along
bands parallel to the shear direction. This leads to a
string-like flow (Regime III), as seen in the real-space
snapshot of Fig. 1(d). The effect of an increased shear
rate on the ability of particles to diffuse in the direction
perpendicular to the shear is presented in Fig. 9, where
we plot the mean square displacement in the y direction
as a function of strain for a fixed temperature T = 0.0030
and two different shear rates. While the mean square dis-
placement grows linearly for the small shear rate (which
corresponds to the flowing hexatic phase of Regime I) as
expected for a diffusive motion, it is virtually constant
for the large shear rate corresponding to the string-like
flow of Regime III.
Several signatures of the new regime are found in the

structure. One can see from Fig. 4(a) that the aver-
aged square modulus of the bond-orientational order pa-
rameter starts to increase again to nonzero values (with
virtually no system-size dependence). Accordingly, the
bond-orientational correlation function reaches a nonzero
plateau at large distances: see Fig. 4(b). One can also
look at the radial distribution function (averaged over all
directions) g(r). It is plotted for T = 0.0030 for several
γ̇ covering all three regimes in Fig. 10. For the small-
est γ̇, g(r) quickly decays to one, as expected from the
lack of positional order in Regimes I and II. However, for
γ̇ ≳ 8 × 10−2, a series of ripples appear, which persist
up to the system size. More data are presented in Ap-
pendix E, which allows us to estimate the crossover line
between regimes II and III as a function of temperature.
The obtained phase boundary is shown in Fig. 1(a).
Note that the ripples in g(r) do not imply positional

order characteristic of a crystal. It instead signals that
the flow is organized in parallel bands along the shear
direction. Beyond the real-space snapshots, this is sup-
ported by the study of the transverse static structure
factor that probes the ordering of the particles in the di-
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FIG. 8. Instantaneous value of the bond-orientational corre-
lation function g6,γ(r) for several values of the strain γ (solid
colored lines) and its value averaged over a period (black
dashed line) for a system ofN = 14400 particles at T = 0.0030
and γ̇ = 10−3 (Regime I).

rection orthogonal to the flow. As illustrated in Fig. 20
of Appendix G, this clearly shows an organization of the
particles in bands of width roughly equal to the parti-
cle size, in agreement with the visualization provide by
Fig. 1(d).

The regime of string-like flow is highly anisotropic.
This is what explains the nonzero value of the 6-
fold bond-orientational order parameter presented in
Fig. 4(a). This is confirmed by the study of another
bond-orientational order parameter, e.g., that associated

0 1 2 3
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1
y2 (

) (a)

T = 0.003
= 0.001

0 1 2 3 4 5
0.000

0.005

y2 (
) (b)

= 0.8

FIG. 9. Mean square displacement ∆y2(γ) along the direction
perpendicular to the shear for one trajectory in the steady
state as a function of the strain γ for two different shear rates,
γ̇ = 10−3 (a) and γ̇ = 0.8 (b), at a temperature T = 0.0030. γ
is measured from a configuration in the steady state. The top
panel corresponds to Regime I and the bottom one to Regime
III.

with cubic (4-fold) symmetry,

ψ4 =
1

N

N∑
j=1

1

nj

nj∑
k=1

e4iθjk . (14)

We plot in Fig. 11 the averaged square modulus of ψ4 as
a function of the shear rate γ̇ for several system sizes and
a temperature T = 0.0030. One can clearly see that the
flowing system ceases to be isotropic (even if there might
be a shear-induced small distortion of the structure [29,
30] possibly associated with the boundaries and leading
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FIG. 11. Averaged square modulus of the 4-fold bond-
orientational order parameter, |ψ4|2, as a function of shear
rate for a temperature T = 0.0030 and several system sizes.
Triangles, diamonds, and circles correspond to data for N =
900, 3600, and 14400, respectively.

to the small finite-size effect seen in the figure) around
γ̇ ∼ 10−1, which corresponds to the beginning of Regime
III (see Fig. 1(a)).

The existence of a string-like regime of flow has also
been reported in a 2d colloid experiment at higher shear
rate [5]. On the other hand, it has not been found in
molecular dynamics simulations up to rates for the order
of 10−1 [22, 23]. Inertial effects which are absent in col-
loidal systems and in our Brownian dynamics simulations
therefore appear to suppress the string-like organization
of the flow at high shear rate.

VI. CONCLUSION

We have given a unified description of a two-
dimensional crystal under a constant shear rate, starting
from the detailed account of how a perfect equilibrium
solid yields and flows when an infinitesimal shear rate is
imposed and then mapping out the whole phase diagram
of the flowing steady state in the plane formed by tem-
perature and shear rate. In doing so, we have carefully
discussed the role of the topological defects (dislocations
and disclinations) and of the finite-size effects.

Shear-induced melting of the 2d crystal proceeds in
two steps: the solid loses long-range bond-orientational
order and flows for an infinitesimal shear rate (in the
thermodynamic limit) and the resulting flowing hexatic
phase then melts to a flowing (rather isotropic) liquid
at a finite shear rate that depends on temperature. Fi-
nally, at high shear rate, a third regime corresponding to
a strongly anisotropic string-like flowing phase appears.
We note that contrary to what has been suggested [5] the
phase diagram does not seem to be controlled by a sin-
gle dimensionless parameter such as the Péclet number,
which for Brownian dynamics is simply proportional to
γ̇/T . Indeed, one can see from Fig. 1(a) that a large γ̇
and a small T do not have the same effect so that for the
same ratio the system can be found in any of the three
regimes.

What remains to be done in two dimensions is a precise
characterization of the nature of the transition from the
flowing hexatic to the flowing liquid. This would require
using much larger system sizes to check whether the tran-
sition is continuous or rather first-order-like with a coex-
istence between the two different flowing phases [18, 20].
In case of a continuous transition, it is important to de-
termine whether the universality class is the same one
of the equilibrium case. Beyond this, an obvious exten-
sion is to investigate yielding and shear melting of three-
dimensional crystals (for a review, see Ref. [30]) which
have been theoretically shown to flow at infinitesimal
shear rate in the thermodynamic limit [14–16] but for
which no intermediate hexatic-like phase exists in equi-
librium. Finally, it would be interesting to study how
the flow properties of crystals identified in this paper
change and converge to the rheology of amorphous mate-
rials [31] when introducing size polydispersity systemati-
cally [32, 33] or whether the connection made between the
mechanical properties of dense active matter and sheared
amorphous solids [34] carries over to crystalline phases.
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Appendix A: Shear stress measurement

We measure the xy component of the stress tensor de-
noted as σ by using the Irving-Kirkwood formula [35] for
the overdamped Brownian Dynamics,

σ = − 1

A

∑
i,j

xij

(
∂v(rij)

∂rij

)
y

, (A1)

where A = LxLy is the area of the system, xij = xi−xj ,
with xi the position of particle i along the x-axis (accord-
ing to the minimum image convention), and −(∂v/∂rij)y
is the y component of the force exerted by particle j onto
particle i. Note that when evaluating the distance rij we
take into account the periodic boundary condition and
the minimum image convention. We recall that x is the
direction of the imposed shear.

When we use the SLLOD dynamics (see Appendix B
for details), the shear stress σSLLOD contains an extra
term due to momentum flow:

σSLLOD = σ +
1

A

∑
i

px,ipy,i
m

, (A2)

where pi = (px,i, py,i) is the momentum of particle i (see
Eq. (B2)).

Appendix B: Results from nonequilibrium SLLOD
molecular dynamics simulations

In order to confirm the genericness of the conclusions
in the main text, in particular, the absence of a yield
stress and the divergence of the effective viscosity when
γ̇ → 0, we have also used the SLLOD dynamics as an
alternative to the Brownian dynamics. We follow the
implementation developed in Ref. [36].

We first explain the implementation of the thermostat
in the nonequilibrium simulations. The imposed shear
field leads the system to overheat and, therefore, a ther-
mostat mechanism is needed. A general prescription for
the development of a thermostat is as follows [37]: One
defines a “heat bath” coordinate, say ζ, which is cou-
pled to the equations of motion. Such a dynamics must
sample the system in a chosen state or ensemble. This
condition determines the form of the coupling between
the thermostat and the particles. The choice of the cou-
pling is not unique. In particular, when the thermostat is
applied out of equilibrium, some choices can introduce a
bias toward certain regimes with respect to others (for a
discussion relevant to the present problem, see Ref. [23]).
In this paper, we use for simplicity a configurational ther-
mostat [38]. The configurational temperature, labeled
Tconf , is measured from the configuration of the particles
in real space and their interactions:

kBTconf =

∑
i

(
∂U
∂ri

)2

∑
i
∂2U
∂r2i

, (B1)
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FIG. 12. (a) Flow curve of the two-dimensional crystal under-
going the SLLOD dynamics at T = 0.0001 for a wide range
of the strain rate for N = 3600 and 10000. (b) Correspond-
ing effective viscosity. The black dashed line represents the
divergence of the viscosity as a power law, η ∼ γ̇−1.

where U is the total potential energy of the system. The
equation of motion for the SLLOD dynamics coupled
with the configurational thermostat are as follows [36]:

ṙi =
pi

m
+ γ̇

(
yi −

Ly

2

)
ex − ζ

∂U

∂ri

ṗi = −∂U
∂ri

− γ̇py,iex

ζ̇ =
Fζ

Mζ

Fζ =

N∑
i=1

(
∂U

∂ri

)2

− kBT

N∑
i=1

∂2U

∂r2i

(B2)

Here, ζ is the coordinate of the thermostat, Fζ the force
governing its evolution, and Mζ its “mass”. A velocity
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Verlet-like integration scheme [36] has been implemented:

ri(t+∆t) =ri(t) + ∆t

(
pi(t)

m
+ γ̇

(
yi −

Ly

2

)
ex

)
+∆t

(
ζ(t) +

∆t

2m

)
Fi(t)

pi(t+∆t) =pi(t) +
∆t

2
(Fi(t) + Fi(t+∆t))

+
∆tγ̇

2
(py,i(t+∆t) + py,i(t)) ex

ζ(t+∆t) =ζ(t) +
∆t

2Mζ
(Fζ(t) + Fζ(t+∆t)) ,

where Fi = − ∂U
∂ri

is the force acting on particle i due to
the interaction with the other particles. Time is mea-

sured in units of τ0 =
√

md2

ϵ . We report results obtained

through the SLLOD dynamics for systems of N = 3600
and 10000 particles at T = 0.0001. Using a time step
∆t = 0.01 and a thermostat mass Mζ = 0.1. We have
chosen the units of mass m such that τ0 = 1.
Figure 12(a) shows the flow curves, σ as a function of γ̇.

We see no evidence of a yield stress as the average stress
appear to keep decreasing at the lowest shear rates. The
decrease of σ with γ̇ is enhanced by the presence of inertia
with respect to Brownian Dynamics. The corresponding
viscosity plot is shown in Fig. 12(b). We see a power-
law divergence of η approaching γ̇ → 0. These results
are consistent with those obtained with the Brownian
dynamics and presented in the main text.

Appendix C: System size dependence

In this Appendix, we report results on the different
system sizes investigated by the Brownian dynamics.

Figure 13 displays the variation with the system size
N of the minimum over γ̇ of |ψ6|2 (shown in Fig. 4(a) of
the main text) for several temperatures. As discussed in
the main text, the decrease with N , shown here on a log-
log plot, is always more rapid than L−1/4, which is the
limiting behavior for a hexatic phase. One can observe
that the slope associated with the apparent power law is
steeper as the temperature increases.

We also plot the flow curves and the corresponding
viscosity for different system sizes, N = 900, 3600, and
14400, in Fig. 14. We do not find any significant system-
size dependence in these quantities.

Appendix D: Identification of dislocations and
disclinations

Disclinations and dislocations are point topological de-
fects in two dimensions: disclinations are defects in the
bond-orientational order and dislocations in the posi-
tional order.

103 104
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m
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FIG. 13. System-size dependence of minγ̇{|ψ6|2}, the mini-

mum value over γ̇ reached by |ψ6|2 in Fig. 4(a), for various
temperatures below the putative Tm,sol. The dashed and dot-

ted lines indicates a L−1/4 and a L−1 dependence, respec-
tively.

The starting point to identify disclinations is to per-
form a Voronoi tessalation of the given configuration of
particles (snapshot). From the construction we count the
number of neighbors of each particle. At low tempera-
tures most particles have 6 neighbors (the average num-
ber of neighbors is constrained to be 6 in 2d Euclidean
space) and some have 5 or 7 neighbors. Particles with a
number of neighbors different than 6 correspond to discli-
nation defects. The defect organization is illustrated in
Fig. 1(b-d) of the main text. We have checked that the
concentration of disclinations corresponding to particles
with more than 7 neighbors and less than 5 neighbors are
negligible in the conditions that we study.

Dislocations are dipoles formed by two disclinations of
opposite topological charge. They can be identified with
a pair of adjacent 5-fold and 7-fold coordinated parti-
cles. In practice, however, dislocations can be condensed,
forming clusters, e.g., grain boundaries, and 5- and 7-fold
particles can also appear close to each other at vacan-
cies [39]. In order to detect truly isolated dislocations
and disclinations, we introduce a cutoff radius rcut. If
no 5- or 7-fold coordinated particle is found within a
distance rcut from a putative dislocation (respectively,
disclination), this dislocation (resp., disclination) is con-
sidered as isolated or free. The cutoff distance rcut is
separately chosen for dislocations and disclinations, as
described below.

For the identification of free disclinations, a natural
cutoff rcut is the first minimum of the radial distribution
function (see below for its definition), which can be taken
as a characterizing the notion of adjacency for two par-
ticles. We thus set rcut = 1.5. We have checked that
the results do not change significantly when varying rcut
from 1.0 to 2.0. In Fig. 5 of the main text, we show the
probability pdisc of finding at least one free disclination in
a given configuration. At lower and intermediate temper-
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FIG. 14. Flow curves obtained from the Brownian dynamics
for the averaged shear stress σ (a) and the effective viscosity
η (b) for several system sizes N . Triangles (with dotted-line),
diamonds (dahsed-line), and circles (solid-line) correspond to
data for N = 900, 3600, and 14400, respectively.

atures (T = 0.0001−0.0050) and low γ̇, pdisc is zero since
all disclinations are bound in dislocations, while pdisc very
rapidly increase at some larger γ̇ to reach a value close
to 1. We limit the display of data to γ̇ ≤ 2 × 10−2

since, at higher shear rates, the concentration of defects
is large and the identification of the isolated disclinations
becomes meaningless.

For defining free dislocations, we choose a cutoff dis-
tance rcut = 2.5, close to the second minimum of the ra-
dial distribution function (i.e., beyond the second coordi-
nation shell around a given particle). Figure 15 shows the
resulting density of free dislocations, ρdisl, for various val-
ues of γ̇ and T . At lower and intermediate temperatures
(T = 0.0001 − 0.0050), ρdisl roughly linearly increases
with γ̇ for low γ̇, as argued in Eq. (7) [26]. We limit the
display of data to γ̇ ≤ 10−2 because for higher γ̇, the
concentration of the defects is so large that identifying
isolated dislocations becomes difficult and meaningless.
As T is increased, ρdisl increases, and the dependence on
the shear rate saturates. The measured ρdisl is used in
Fig. 3(b) of the main text. We have also varied rcut from
1.0 to 2.5 and confirmed that ρdisl is insensitive to rcut in
Regime I, thereby showing that the relation between the
viscosity and the density of free dislocations in Fig. 3(b)
is robust.
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FIG. 15. Density of free dislocations, ρdisl, as a function of
the shear rate γ̇ for N = 14400. The dashed straight line
corresponds to ρdisl ∼ γ̇.
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FIG. 16. Viscosity η of the system as a function of the dislo-
cation density ρdisl for various system sizes. Triangles (with
dotted-line), diamonds (dashed-line), and circles (solid-line)
correspond to data for N = 900, 3600, and 14400, respec-
tively.

We also report the system size dependence of the vis-
cosity η versus dislocation density ρdisl curve in Fig. 16.
We see that finite size effects suppress the dislocation
density at N = 900. Yet, these effects do not appear
when comparing data for N = 3600 and N = 14400,
consolidating our conclusions in the main text.

Appendix E: Radial distribution function

The radial distribution function, g(r), is computed ac-
cording to

g(r) =
A

2πr∆rN(N − 1)

N∑
i,j,(i ̸=j)

∫ r+∆r

r

δ(r′ − |rij |)dr′,

(E1)
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FIG. 17. Radial distribution function g(r) for systems with N = 3600 (dashed curve) and N = 14400 (solid curve) particles
for various values of T and γ̇. g(r)’s are shifted vertically by hand for clarity.

where δ(x) is the Dirac delta function, A = LxLy is the
area of the system, and ∆r is the width of the bin used
in the numerical evaluation. We take ∆r ≈ 0.16 for N =
3600, ∆r ≈ 0.25 for N = 14400, and ∆r ≈ 0.28 for
N = 57600. The overline denotes the average over time
and trajectories in the steady state.

In Fig. 17 we show g(r) for all the temperatures in-
vestigated and some representative values of the shear
rate γ̇. The onset γ̇ corresponding to the appearance of
system-spanning ripples is used for the phase boundary
between Regime II and III in Fig. 1(a).

Appendix F: Bond-orientational order parameter
and its spatial correlations

We study the local 6-fold bond-orientational order pa-
rameter for each particle j,

ϕ6,j =
1

nj

nj∑
k=1

e6iθjk , (F1)

where the sum is over the nj neighbors of particle j that
are determined through a Voronoi tessellation and θjk is
the angle characterizing the vector (the “bond”) joining
particles j and k, which is determined through the rela-
tion cos θjk = r̂jk · ex, with r̂jk =

rk−rj
|rk−rj | a vector of unit

norm joining particle j with particle k and the x-axis is
arbitrarily chosen.

From this local order parameter, one can define the
volume-averaged bond-orientational order parameter,

ψ6 =
1

N

N∑
j=1

ϕ6,j . (F2)

When the system has a perfect hexagonal structure,
|ψ6| = 1, while in a disordered liquid, |ψ6| is nearly zero.

We also define the 6-fold bond-orientational spatial cor-
relation function,

g6(r) =
A

2πr∆rN(N − 1)g(r)

×
N∑

i,j,(i̸=j)

∫ r+∆r

r

ϕ6,iϕ∗6,jδ(r
′ − |rij |)dr′,

(F3)

where ∆r is defined as in the previous section and the cor-
relation function is conventionally normalized by the ra-
dial (isotropic) distribution function g(r) to remove some
of the effects coming from local positional ordering. · · ·
denotes an average over time (or strain) and independent
trajectories once the steady state has been reached.
In Fig. 18, we show the log-log plots of g6(r) for two

system sizes and all values of T and γ̇ considered in this
study. At low temperatures, below the melting tempera-
ture Tm,sol ≈ 0.0055−0.0060, and small shear rates, g6(r)
has a power law decay, g6(r) ∼ r−η6 with η6 ≤ 0.25, es-
tablishing the presence of hexatic quasi-long-range order
(Regime I). For higher values of γ̇, g6(r) decays faster
than the KTHNY bound (Regime II). Upon raising γ̇
even further but still at low temperatures, g6(r) displays
small plateau, with some ripples, signaling a new flow
regime. Figure 18 also shows the absence of significant
finite-size effects as the curves for the two system sizes
essentially coincide, except for the lowest values of γ̇:
then, the power-law decay of g6(r) seems to saturate for
the smaller system size; this effect disappears when the
system size increases, suggesting that it is a finite-size
effect.
Additionally, we have performed simulations for a

larger system of N = 57600 particles in the vicinity of
the Regime I-II transition to see the orientational corre-
lation function g6(r) at a longer distance. The resulting
plots are compared with the ones obtained for N = 14400
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curves) particles. The gray dashed straight lines in the background represent the upper bound imposed on the exponent η6 of

the power-law decay for a hexatic phase by the KTHNY theory, g6(r) ∼ r−1/4.

particles in Fig. 19. The results show little deviation be-
tween the two system sizes, except the trend that the
smaller systems reach the plateau earlier at the hexatic
quasi-long-range order regime (Regime I), as expected in
generic spatial correlation functions. We note that the fi-
nal plateau is also observed in the liquid regime without
showing the system size dependence. This observation
suggests that the plateau in the liquid regime is a gen-
uine consequence of the anisotropy of the system, even
in the thermodynamic limit.
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FIG. 19. Orientational correlation function g6(r) for a system
size of N = 14400 (solid-lines) and N = 57600 (dash-dotted-
lines) in the vincinity of the transition between Regime I and
II for several temperatures.

Appendix G: Transverse structure factor and
string-like regime

In this Appendix, we present more supporting evidence
for the description of Regime III as a string-like flow in
which particle motion is organized in parallel bands.
We show in Fig. 20 the transverse structure factor

computed for modes perpendicular to the direction x of
the shear flow,

ST(ky) =
1

N

N∑
j,k=1

eiky(yj−yk), (G1)

with ky = 2πny/Ly, ny being an integer.
As the shear rate increase (at low enough temper-

ature), ST(ky) develops sharp primary and secondary
peaks whose magnitude grows until it becomes of order
N . This signals the appearance of string-like ordering
induced by the flow (see the snapshot in Fig. 1(d)). The
position of the first and second peak correspond respec-
tively to 2π

c0,y
and 4π

c0,y
, with c0,y the distance along the y

direction between the centers of the particles located in
two adjacent rows on a triangular lattice. c0,y is related

to the lattice constant c0 by the relation c0,y =
√
3
2 c0.
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