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ABSTRACT The class imbalance problem negatively impacts learning algorithms’ performance in minority
classes which may constitute more severe attacks than the majority ones. This study investigates the benefits
of balancing strategies and imbalanced learning approaches on intrusion data from Software Defined
Networking (SDN). Although the research community has covered the imbalance problem in machine
learning-based intrusion detection, addressing this problem in SDN is novel and powerful. Addressing the
class imbalance problem over InSDN (the only publicly available SDN intrusion detection dataset as of
recent) is of significant impact on future research in the area of intrusion detection in SDN. We address
the class imbalance problem through data-level and classifier-level techniques. Our research objective
is to determine suitable methods of addressing the class imbalance problem in machine learning-based
intrusion detection in SDN. We propose custom deep learning architectures based on GANs and Siamese
Neural Networks for generative modeling and similarity-based intrusion detection. This paper provides
benchmarking results from classification with Random Oversampling (ROS), SMOTE, GANs, weighted
Random Forest, and Siamese-based one-shot learning. We have found that Random Forest (RF) outperforms
deep learning models in the classification of minority class instances. This supports the notion that
RF can handle class imbalance well. We also observe that widely-used balancing techniques, ROS and
SMOTE, drastically decrease the False Positive Rate (FPR) but increase the False Negative Rate (FNR)
in the classification of minority classes. Conclusively, while data-level methods improve classification
performance over deep learning models, they, in fact, degrade RF’s performance, i.e. cause higher numbers
of false predictions. Therefore, RF does not need additional balancing strategies to get higher performance.
Although this work addresses the class imbalance problem in SDN intrusion data, it provides a well-designed
benchmark that can be exemplary for any network intrusion detection data. Thus, it may have a significant
impact on future studies in this respective domain.

INDEX TERMS Class imbalance problem, machine learning, deep learning, cyber intrusion detection,
software-defined networking.

I. INTRODUCTION
Intrusion detection is a critical security function for identify-
ing cyber attacks in real time and initiating the appropriate
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responses to threats. Common solutions depend on attack
signatures resulting in a limitation in detecting future
variations or enhancements of existing attack types. Machine
learning-based approaches promise to detect new attack
types by learning from statistical patterns in network traffic
data.
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Most intrusion datasets incorporate severe imbalance ratios
between classes. InSDN [12] (a novel SDN intrusion dataset)
includes more cases of DoS, DDoS, and Probe attacks than all
other classes combined. Severe class imbalance usually leads
to poor performance of learning algorithms in generalization
of classes in minority. For example, a recent study [32] shows
that Decision Trees handle the class imbalance problem better
than neural networks in the AWID WiFi Intrusion dataset.
Another study shows that Deep Learning models, in particu-
lar, fail to learn the generalizable features of minority classes
and lean more towards the majority class [25]. In learning
over imbalanced InSDN dataset [38] machine learning-based
IDS yields adequate performance in detecting majority
classes such as Normal, DDoS, DoS, and Probe, which can be
easily detected by the contemporary detection technologies.
However, such a detection system creates high numbers of
false negatives and false positives in minority classes, i.e.
exploitation attack types such as U2R (privilege escalation),
Web-attack, and Botnet, which is all the more important to
detect as they usually appear in the form of very few packets
over the network and may have more severe consequences,
e.g., acquiring control of target system, data exfiltration,
et c. In some cases, attackers seek to masquerade exfiltration
traffic by mimicking innocuous protocols such as DNS,
a common choice of amplifier in DDoS attacks [1], [6], [35].

Machine Learning algorithms offer value in the detection
of Cyberattacks in software-defined settings. Minority attack
classes, i.e. classes that are underrepresented, are usually
challenging for a learning algorithm to detect. for example,
exfiltration traffic rates may be hidden in high-volume flow
traces of DDoS attack. The task of imbalanced learning can
be viewed as alleviating a learning algorithm’s bias towards
majority class instances. Learning algorithms generally build
classification models based on maximum accuracy, which
may lead to biased classification towards the majority class
and misclassification of the minority class instances [11],
[31], [54]. Poor classification performance over imbalanced
datasets is caused not always solely by class imbalance but
also by class overlap. For example, a linearly separable
dataset can be perfectly classified by a typical classification
algorithm regardless of how skewed the class distribution
is [3]. Class overlap occurs when multiple classes share the
same region in the data space as seen by the classifier. It is
in the presence of class overlap that even a balanced dataset
can be challenging for a learning algorithm. In fact, class
overlap shows the highest negative impact among potential
factors including class imbalance [11], [53]. Classification
becomes more difficult with the class overlap problem when
class imbalance is also present in the data, and vice versa [17].

Learning systems trained on imbalanced datasets typically
exhibit bias towards majority groups. Cost-sensitive learn-
ing [59], for example, assigns a varying penalty to each class
and seeks to minimize the misclassification error. Weighted
Decision Trees are another example of an effective approach
to learning from data distributions where minority class
instances are given higher priority. Oversampling of minority
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classes prior to training is an effective method of learning
from imbalanced data distributions. Synthetic Minority
Oversampling TEchnique (SMOTE) [8] is an over-sampling
approach in which the minority class is over-sampled by
creating synthetic examples along the line segments joining
any/all of the k minority class nearest neighbors.

Even though the class imbalance problem was first
recognized three decades ago, it remains a challenge in an
evolving research area. The class imbalance problem has
been addressed mainly in two ways [21]: by (1) employing
dataset-balancing techniques prior to classification (data-
level method) and (2) incorporating imbalance-aware clas-
sification methods (classification-level method). The former
alters the sizes of training datasets by adding or reducing
some instances in order to achieve balanced learning. The
latter proposes models that learn directly from an unbalanced
dataset without modifying it.

Even though the class imbalance problem has been
discussed over well-known intrusion detection datasets such
as NSL-KDD [50] and UNSW-NB15 [42], this problem has
not been addressed over publicly available SDN intrusion
data. This is perhaps because InSDN [12] is the first publicly
available intrusion dataset that was generated in an SDN
testbed. Like most intrusion detection datasets, InSDN suffers
from the class imbalance problem.

This study aims to identify and compare suitable methods
to address the class imbalance problem in SDN intrusion
data as well as provide comprehensive benchmarking that
compares various data-balancing and classifier-level methods
for a multi-class classification problem in detecting intrusions
in SDNs. We ask the question: how effective are shallow and
deep learning-based data-level and classifier-level methods
in addressing the class imbalance problem in machine
learning-based intrusion detection in SDN? More specifi-
cally, while evaluating data-balancing strategies, we selected
widely-used naive approaches such as Random Oversam-
pling (ROS) and Random Undersampling (RUS) in addition
to more complex approaches such as SMOTE and Generative
Adversarial Networks (GANs). As data balancing should
be complemented by a learning model, we investigated
the performance of two deep-learning models with vary-
ing parameter sizes (i.e., Multi-Layer Perceptron (MLP)
models with 6 layers and 10 layers) and a shallow model
(i.e., Random Forest) with the above-mentioned balancing
strategies. We selected two different classifier-level methods:
one-shot learning and weighted random forest. The overall
detection performance of the model is evaluated by the
multi-class classification metrics Macro-F1 and Micro-F1.
Macro-F1 better reflects the model performance as it equally
considers the minority classes. Measures of accuracy, recall,
precision, and F1 scores are utilized for assessing the model
performance on each attack type.

This work presents several contributions:

« We provide a comprehensive benchmarking study that

compares data-level and classifier-level strategies for the
SDN dataset.
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« We present detailed experimental results that compare
how data-level methods perform with deep learning and
shallow learning models

o We explain the impact of each model choice on majority
and minority classes in a detailed way

To our knowledge, a detailed benchmarking study that
assesses data balancing strategies within SDN intrusion data
has not been conducted before. The research community can
also benefit from our benchmarking design while evaluating
network intrusion detection datasets in similar domains.

The remainder of the paper is organized as follows:
Section II describes some key findings in the literature.
Section III describes the materials and methods employed
in this work and Section IV presents the results. Section V
discusses the main findings and limitations of this work, and
Section VI concludes the paper.

Il. RELATED WORK

The class imbalance problem has been widely discussed
in the literature. A comprehensive review of research in
learning from imbalanced data [21] discusses ROS and RUS,
synthetic data generation, cost-sensitive learning, and active
learning as effective methods to deal with the class imbalance
problem. It has been demonstrated that the effect of class
imbalance is detrimental to classification performance over
three benchmark datasets, i.e. MNIST, CIFAR-10, and
ImageNet [5]. A comprehensive review of the development
of research in learning from imbalanced data [21] provides a
critical review of the nature of the problem, state-of-the-art
solutions, and assessment metrics. Methods of dealing with
the class imbalance problem are studied for classical machine
learning models [7], [24], [36].

A study on the effect of the class imbalance problem
on ml-based network intrusion detection [52] concludes
that downsampling coupled with upsampling and SMOTE
is the best re-sampling technique over the NSL-KDD dataset.
The authors propose an ensemble model that achieves
the highest performance. Downsampling, upsampling, and
SMOTE are simple yet effective methods. The strength
of sampling methods is their simplicity. While SMOTE
produces data points that belong to the original distri-
bution, upsampling and downsampling may not provide
expected results sometimes even degrading learning models’
performance due to duplication and underrepresentation,
respectively.

This study [51] uses SMOTE to develop a rich training
set prior to classification via random forest. They conclude
that this approach reduced the time required to build the
model and increased the detection rate for minority classes
substantially.

A common solution to the class imbalance problem is
the oversampling of minority classes. A combined Synthetic
Minority Oversampling Technique (SMOTE) and Particle
Swarm Optimization (PSO) technique has been proposed [16]
for the two-class imbalanced classification problem that
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utilizes the radial basis function (RBF) classifier. Data
augmentation using Variational Autoencoders (VAEs) and
Generative Adversarial Networks (GANs) [41] has been
proposed as an effective approach to dealing with the
class imbalance problem in deep learning. While deep
learning-based sampling methods based on Auto Encoders
and Generative Adversarial Networks have proven effective
in producing realistic synthetic data, the complexity of
these methods is their weakness. These models require large
training sets and more optimization time compared to simpler
methods such as oversampling and SMOTE.

This paper [2] focuses on resampling methods as the
solution to the class imbalance problem over benchmark
network intrusion datasets such as KDD99, UNSW-NB15,
UNSW-NB17, and UNSW-NB18. They conclude that over-
sampling and undersampling both increase the measure
of recall significantly in the case of severely imbalanced
data. A novel Difficult Set Sampling Technique (DSSTE)
algorithm [30] has been proposed to tackle the class
imbalance problem that utilizes the Edited Nearest Neighbor
(ENN) algorithm to divide the imbalanced training set
into separate buckets and then uses the k-means algorithm
to compress the majority class samples. They combine
majority and minority class instances in the difficult set in
order to perform data augmentation. Experimental results
on classic intrusion datasets NSL-KDD and CSE-CIC-
IDS2018 show that their algorithm outperforms methods
such as SMOTE, Random Oversampling (ROS), and Random
Undersampling (RUS). A Novel class imbalance processing
technology, referred to as SGM-CNN [58], has been proposed
that combines SMOTE and undersampling for clustering
based on Gaussian Mixture Model (GMM). They then
integrate imbalanced class processing with a convolutional
neural network to design a flow-based intrusion detection
model. Their experimental results show that SGM-CNN
provides an effective solution to imbalanced intrusion
detection.

This study [57] has proposed a hybrid filter-wrapper
feature selection algorithm that selects robust features, i.e.
features that are resistant to concept drift and represent
minority classes. Experimental results over Cambridge
Intrusion Dataset [40] show that proper feature selection leads
to higher classification accuracy and better F-measure for
each class, especially minority classes. They provide a wide
variety of features to characterize flows that includes simple
statistics about packet length and inter-packet timings as well
as information from the transport protocol. Cost-sensitive
learning of deep neural networks is also widely studied [9],
[26], [46]. A Flexible Neural Tree (FNT) can search optimal
network structures using tree structure evolving algorithms
which results in high performance in predictive modeling.
A new similarity evaluation method for FNT has been
proposed [45] to keep the population diversity and deal with
imbalanced data. Their proposed method uses an imbalanced
fitness function to control its evolving procedure to deal with
imbalanced data problems.
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A survey of recent literature on the class imbalance
problem in the context of deep learning [18] suggests that
while increasing the depth of neural networks is beneficial
to their robustness and predictive power, depth alone is not
sufficient to deal with the problem of class imbalance in the
cases of MLP or Convolutional Neural Networks (CNNs).
Their experiments on CNNs show that too deep a network
may, in fact, be harmful. The same study [18] finds that while
regularization helps improve classification performance in
some domains, these improvements remain insignificant in
the context of class imbalance.

A systematic study on CNNs [5] finds oversampling to be
the most effective method in addressing the class imbalance
problem next to cluster-based oversampling, SMOTE, and
RUS over three benchmark datasets MNIST, CIFAR-10 and
ImageNet. They assert that it does not cause overfitting of
CNNs and suggest applying it to the level that completely
eradicates the imbalance. They conclude that undersampling
performs on par with oversampling in the case of extreme
ratios of imbalance and most classes being in the minority.

Given that network traffic incorporates timestamps, this
study [49] adopts phased processing prior to classification,
i.e. they deploy a Bidirectional Long Short-term Memory
(BLSTM) model to learn the sequential features in the traffic
data. Next, the attention layer is used for feature learning on
the sequential data.

In [38], we present a preliminary study on learning from
SDN intrusion data [12] where SMOTE remarkably improves
classification results. In the current paper, we present a
comprehensive study of the class imbalance problem in SDN
intrusion data and extend the work in [37] significantly by
investigating the benefits of multiple balancing strategies
along with imbalanced learning techniques that acknowledge
the class imbalance problem and incorporate appropriate
strategies in the learning process so as to improve classifica-
tion performance in minority classes where a higher detection
rate is of importance. Although existing literature has
extensively covered the class imbalance problem, addressing
the class imbalance problem in machine learning-based
intrusion detection in SDN remains to be a research gap. This
paper provides comprehensive benchmarking and a detailed
discussion of the class imbalance problem in SDN intrusion
data.

lll. METHODS

Data-level methods require a balancing phase prior to
classification whereas classifier-level methods do not call
for balancing and directly incorporate imbalanced learn-
ing within the learning phase. Fig. 1 demonstrates the
methods used in this study to learn from the imbalanced
dataset. We selected balancing methods from two main
categories: data-level and classifier-level. Our study applies
four data-level balancing methods, RUS, ROS, SMOTE, and
GAN:s, to three learning models (deep learning and Decision
Trees): (1) MLP with 6 layers (model MLP1) (2) MLP
with 10 layers (model MLP2), (3) Random Forest (model
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RF with hyperparameter max_depth=10). We selected two
classifier-level methods: weighted RF and one-shot learning
via Siamese Neural Networks. Here, we present the details of
the balancing strategies and utilized learning models.

A. DATASET

To evaluate the proposed approach, we use the InSDN dataset
that provides 343889 network flows captured within a syn-
thetic SDN testbed. In the evaluation, we compare sampling
techniques against three baseline classifiers, namely MLP
and RF learning models. Then, we compare imbalanced
learning approaches separately as they do not require a dataset
balancing phase prior to classification.

B. DATA PRE-PROCESSING

Network Identifiers such as source IP, Destination IP, and
flow ID are removed in order to avoid the overfitting problem
on account of the fact that they can be changed from
network to network. Moreover, 8 zero variation features in the
InSDN dataset that do not contain any information useful for
classification are eliminated. Next, features are standardized
to restrict the scale of the values between —1 and 1.

TABLE 1. Distribution of samples over data-level methods.

Method Class Train Test
pre-balancing Normal 47897 20527
DDoS 85359 36583
DoS 37531 16085
Probe 68690 29439
BFA 984 421
Web-Attack 134 58
Botnet 115 49
U2R 12 5
ROS Normal 85359 20527
DDoS 85359 36583
DoS 85359 16085
Probe 85359 29439
BFA 85359 421
Web-Attack 85359 58
Botnet 85359 49
U2R 85359 5
SMOTE Normal 69236 20527
DDoS 85359 36583
DoS 58870 16085
Probe 111369 29439
BFA 43663 421
Web-Attack 42813 58
Botnet 42794 49
U2R 42691 5
GANSs Normal 58137 20527
DDoS 86639 36583
DoS 42651 16085
Probe 72530 29439
BFA 13784 421
Web-Attack 2694 58
Botnet 10355 49
U2R 10252 5

C. EVALUATION

Our evaluation metrics for classification performance results
are True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) predictions. Measures of
accuracy, precision, recall, and Fl-score [44] are computed
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Learning from Imbalanced Data

Data-level Methods

| |
Random Undersampling (RUS)

Random Oversampling (ROS)

Classifier-level Methods

Weighted Random Forest One-shot Learning

SMOTE mdeme  Gienerative Modeling (GANSs)

FIGURE 1. Data-level and classifier-level approaches to learning from imbalanced data.
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FIGURE 2. Distribution of network traffic samples across classes with
data-level methods: (a) Pre-balancing (b) ROS (c) SMOTE (d) GANs.

directly from the abovementioned metrics for assessing the
performance of each intrusion type in a multi-class model.
Measures of Macro and Micro F1 are used for the cumulative
evaluation of a model for all intrusion types. Macro F1 better
reflects the classification performance over imbalanced data
as it considers each intrusion type equally regardless of the
representation of that type in the datasets. Macro F1 better
reflects a model’s classification performance in minority
classes. 1), precision (equation 2), recall (equation 3) and F1
score (equation 6) are calculated as follows:

TP + TN

Accuracy = (1)
TP+ FP+FN + 1N
. TP
Precision = —— 2)
TP + FP
TP
Recall = —— (3)
TP + FN

Macro Average Precision (equation 4) and Macro Average
Recall (equation 5) are calculated as the arithmetic mean of
the Precision and Recall values for each class [20].

ZkK: | Precisiony
k
K
> iy Recally
k

“

P = MacroAveragePrecision =
R = MacroAverageRecall = 5)
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Macro F1-Score is computed as the harmonic mean of
Macro-Precision and Macro-Recall [20] as given below:
PxR
MacroF 1score = 2« ————— (6)
Pl +R!

Finally, Micro F1-Score is computed from Micro-Precision
and Micro-Recall, which are weighted averages of Precision
and Recall values of all classes.

We carried out the experiments on a processor with
2199.998 MHz, 13G memory, and 56320K L3 cache. Exper-
iments were implemented using Python and PyTorch [43]
library.

D. DATA-LEVEL METHODS

An imbalanced dataset is one where classes are not approx-
imately equally represented. Imbalanced classification poses
a challenge for predictive modeling as most machine learning
algorithms were designed around the assumption of an equal
number of samples for each class. Learning systems trained
with imbalanced data usually fail to recognize minority
class instances effectively. InSDN [12] consists of 7 distinct
intrusion types. The majority of traffic flows belong to
Normal, DDoS, DoS, and Probe classes with the remaining
classes (BFA, Web-Attack, and U2R) making up about 1%
of the entire dataset. Therefore, a learning system may not
effectively learn decision boundaries for minority classes
which are important to identify.

The goal of sampling methods in the context of imbalanced
learning is to modify an imbalanced dataset through a
mechanism where a balanced distribution is provided among
classes to enhance overall classification performance [13],
[21], [28], [55].

1) RANDOM OVERSAMPLING (ROS) AND RANDOM
UNDERSAMPLING (RUS)

In ROS, the original set is augmented by replicating
randomly selected minority examples, increasing the number
of total examples. In RUS, randomly selected majority
class examples are removed from the dataset, adjusting the
balance of the original dataset. While oversampling and
undersampling provide balance to the dataset, they introduce
their own set of problematic consequences in the context
of learning systems. For example, removing examples from

VOLUME 11, 2023
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FIGURE 3. The silhouette plot for data-level methods: (a) train set (average silhouette score: 0.46) (b) ROS (average silhouette score: 0.46)
(c) SMOTE (average silhouette score: 0.51) (d) GANs (average silhouette score: 0.91). The silhouette plot shows a measure of the
compactness of each class, i.e. how close each point in one class is to the points in the neighboring classes. We observe that while ROS
improves the silhoutte score, SMOTE retains the same score. SMOTE seems to retain the structure of classes more accurately whereas GANs

seem to improve balance among classes.

TABLE 2. Optimal set of hyperparameters for DNN models.

Model HL HU LR Optimizer AF Batch-Size  Epoch
MLPI 6 52,64, 128, 64, 16, 8 0.0001 Adam ReLU 1024 200
MLP2 10 52,128,512, 1024, 1024, 512,256, 128, 64,8  0.0001 Adam ReLU 1024 200
TABLE 3. Optimal set of hyperparameters for GANs models.
Model Convolutional Layers Kernels LR Optimizer AF Batch-Size  Epoch
Discriminator 64*, 128, 256, 1 4,4)*,(3,3) 0.0002 Adam LeakyReLU 64 200
Generator 256%*, 128, 64, 1 (3,3)%, (4,4)  0.0002 Adam ReLU 256 200
TABLE 4. Optimal set of hyperparameters for siamese neural network.
Model Kernels Optimizer  Batch-Size  Epoch
Siamese Neural Networks  (7,7), (3,3) AdaDelta 64 200

the majority class may cause the learning system to miss
important information and replicating instances may lead to
overfitting [10].

2) SMOTE

In this method, minority classes are over-sampled by
creating synthetic examples rather than over-sampling with
replacement. In this fashion, the oversampling of minority
classes is achieved by taking each sample and introducing
synthetic examples along the line segments joining any/all of
the k nearest neighbors [8]. Authors of SMOTE [8] suggest
combining it with random undersampling of the majority
class. These synthetic examples lead to creating larger and
more specific decision regions in the model, resulting in
better generalization of learning algorithms where more
general regions are learned for the minority class examples
rather than by the majority class examples around them [8].

3) GENERATIVE MODELING

The core idea behind generative modeling in the context
of tackling the class imbalance problem is to estimate the
probability density function describing the data and generate
new data instances in a random fashion [39] in order to
balance the data distribution in an otherwise imbalanced
dataset. Generative models typically construct a latent space
that aims to capture the direct cause of the target variable.
The latent space is represented by a probability distribution
over possible values rather than a single fixed value, enforcing
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uncertainty onto the model, which may lead to more stable
predictions. Randomness is also incorporated into the data
generation process so that we can arrive at well-justified
sampling variability considerations from a statistical point of
view. The idea behind GANSs is to create a contrived game
between two deep learning models, namely the discriminator
and the generator networks [19]. The generator model
continues to synthesize data points that highly resemble the
original data distribution, whereas the discriminator model
continues to evaluate whether the synthetic data point actually
belongs to the original distribution. GANs are based on
game theory, while most other approaches to generative
modeling are based on optimization [19]. The goal of the
game is for the generator to synthesize data points that the
discriminator believes to belong to the original distribution.
In this way, realistic synthetic data are generated for the
task of data augmentation. Fig. 4 shows the architecture and
dimensions of the proposed conditional Deep Convolutional
Generative Adversarial Networks model. Table 3 shows the
optimal hyperparameters for our GANs model. Network flow
instances are reshaped into image-like structures prior to
entering the discriminator network. Both the generator and
discriminator are CNNs.

E. CLASSIFER-LEVEL METHODS

Although data-level methods explained above are widely
used, this does not, however, imply that classifiers cannot
learn directly from imbalanced datasets. In fact, it is
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TABLE 5. Hyperparameters for random forests.

Model Estimators Classes Features Maximum Depth  Minimum Samples in a Leaf  Minimum Split Samples
RF, wRF 100 8 52 10 1 2

TABLE 6. Ranges of hyperparameters for deep learning models.

Model LR Batch-size Epoch Layers
52,64,128,512,512,128,64,16,8
MLPI 0.0001-0.0002  512-1024  100-2000 L1851 128 60168
52,128.,512,1024.1024,512,256,128,64,8

MLP2 0.0001-0.0002  512-1024  100-2000 55 15¢"178512 1024.1024.512.256.128.128,64,8

Discriminator (GANs) ~ 0.0001-0.0002  64-128  100-2000 1286‘;’5162%1225 61’218 X

Generator (GANs) 0.0001-0.0002  64-256  100-2000 . 4215%122?66;‘&; |
Siamese Neural Networks ~ 0.01-0.0001 32256 100-2000 64,64,128,256,256,512,512,1
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FIGURE 5. Architecture of siamese neural networks framework.
shown that classifiers trained on some imbalanced datasets neural networks and weighted Random Forest as effec-
exhibit comparable performance metrics to those trained tive methods to learn from imbalanced data distributions.

on data sets balanced by sampling techniques [4], [24]. Tables 5 and 6 describe the hyperparameters of baseline
Here, we discuss distance-based learning using Siamese classifiers.
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1) BASELINE CLASSIFIERS

To detect intrusions in InSDN network traffic data, a multi-
class classification approach was adopted where the dataset
was split into train and test sets by a 70%-30% train-test
ratio while preserving the stratified ratio of all classes.
Network flows were reshaped to image-like structures (28*28
matrices) to fit the dimensions of the convolutional layers
within the proposed GANs and Siamese Neural Networks
models. The following baseline classifiers were selected:

o MLP with 6 layers (referred to as MLPI) with 52, 64,
128, 64, 16, and 8 nodes in each layer, respectively;

« MLP with 10 layers (referred to as MLP2) with 52, 128,
512, 1024, 1024, 512, 256, 128, 64, and 8 nodes in each
layer, respectively.

o RF: We use a Random Forest Classifier with a maximum
depth of 10. Class weights are not specified, assigning
the same weight to all classes. The number of estimators
in Random Forest classification is 100.

2) ONE-SHOT LEARNING
Learning from only a few examples remains a key challenge
in machine learning. One-shot learning has emerged suc-
cessful in computer vision [27], where objects are classified
after learning from only a few examples. In this method,
the classification of images is performed based on their
similarity, not the analysis of a large number of features.
One-shot learning can be achieved through different
methods using Siamese networks to evaluate the probability
that input pairs belong to the same class. Siamese Networks
are made up of twin branches of identical neural networks
whose outputs are used to learn the contrastive loss function
between data pairs, also referred to as the distance between
them. These twin CNNs share weights in the training process
of data pairs. The resulting feature space, in fact, represents
distances between data points in the latent feature space.
A number of studies such as [33] and [34] have utilized
Siamese networks with active learning in the non-stationary
data stream. One-shot learning offers excellent feature
extraction capabilities in distance-based learning [14]. In this
fashion, the similarity between any two data points can be
measured to determine whether they belong to the same class.
A Similarity-based Intrusion Detection [23] has been pro-
posed that leverages the Siamese architecture and a majority
voting scheme for classification provided that the generation
of data pairs during the training process complies with the
following constraints [23]: (a) uniqueness of data pairs and
(b) balanced representation of all combinations. Fig. 5 shows
the architecture of the proposed Siamese Neural Networks
model. It is a variant of the ResNet [22] architecture. Deep
Residual Learning [22] explicitly reformulates the layers as
learning residual functions with reference to the layer inputs
instead of learning unreferenced functions. The bottleneck
design is used to prevent high-time complexity when the
network is very deep. Moreover, skip connections within the
network help resolve the vanishing gradient problem. Table 4
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shows the optimal set of hyperparameters for the Siamese
Neural Networks model.

3) WEIGHTED RANDOM FOREST

The traditional RF method utilizes an ensemble of classi-
fication trees to predict the outcome from predictors, with
each tree trained on a different sample of N subjects, and
random subset predictors considered at each node of the
tree. RF then aggregates tree-level results equally across
trees. WRF [56] utilizes performance-based weights for tree
aggregation where votes from each tree in the forest are
considered in such a fashion that better-performing trees are
weighted more heavily. Weighted Random Forest can easily
handle imbalanced data by forming ensembles with weights
for different classes. Therefore, it does not require dataset
balancing prior to classification.

IV. RESULTS

For the purpose of comparison, the performance of learning
directly from imbalanced data is given as a baseline. Besides,
we compare the proposed approach with the fundamental
methods for processing imbalanced data, .i.e., ROS and
SMOTE. RUS was used only alongside SMOTE as recom-
mended by its authors [8].

A. DATA-LEVEL METHODS

InSDN incorporates a high degree of imbalance between
classes (Fig. 2 (a)) where minority classes, BFA, Web, Botnet,
and U2R, make up less than 1% of the entire dataset.
We balance class distributions prior to classification via data-
level methods. Fig. 2 shows the distribution of classes before
and after data augmentation using ROS, SMOTE, and GANSs.
Table 1 reports the exact sizes of the train and test sets with
respect to each method.

As reported in Table 7, our baseline classifiers (i.e., pre-
balancing row) offer great performance over majority classes
based on precision, recall, and Fl-score values (99% and
above) for Normal, DDoS, DoS, and Probe classes. However,
all three classifiers (MLP1, MLP2, and RF) perform poorly
over minority classes. For example, deep learning models
offer a 50% F1-score in the detection of Web-Attack instances
at best and a 0% in U2R. Moreover, while Random Forest
offers adequate performance in the classification of minority
classes (Fl-score values above 74%), it suffers from high
numbers of False Negatives (FN), i.e. lower recall values.
It can be observed that Random Forest’s classification
performance with respect to U2R (60% Precision) and BFA
(81.23% Precision) is relatively lower than other classes.
We observe that Random Forest has performed well over
imbalanced data, i.e. RF’s Fl-score for classification over
imbalanced dataset is the best compared to other results
from data-level methods with the exception of U2R and
Botnet classes in which case RF’s Fl-score is close to the
best classification performance through SMOTE and ROS,
respectively.
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An important evaluation metric regarding classification
over imbalanced data is the difference between Micro and
Macro F1-score values which indicates a classifier’s behavior
on imbalanced datasets. Micro Fl-score does not usually
reflect an objective measure of classification performance
when the classes are imbalanced, while Macro F1-score does
in fact reflect the class imbalance problem in classification
accuracy. We can see in Table 9 that while Micro F1-score
values are remarkable for all baseline classifiers, Macro
F1-score says more about a classifier’s ability to deal with
imbalanced data. For example, while pre-balancing Micro
F1-score values for MLP1 and MLP2 are above 99%, Macro
Fl-score values are only between 76 % and 78 %. After
balancing via SMOTE, however, we can see that Macro
F1-score values actually increased for MLP1 and MLP2 as
Micro Fl-score slightly decreased. When we explore the
specific changes in classes as given in Table 7, SMOTE
slightly decreases the F1 performance of the majority class,
Probe, from 99.71% to 97.97% in MLPI1. Although this
balancing strategy increases the F1 for U2R class remarkably
from 0% to 72.72%, it degrades the result of the other
minority class, BFA. These results indicate that balancing
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strategies may have varying effects on majority and minority
classes, requiring special attention.

Here, we compare results from classification with ROS,
SMOTE, and GANs. Table 7 shows classification per-
formance with data-level methods in terms of accuracy,
precision, recall, and F1-score per class. Experimental results
reported in Table 9 give an overall view of classification
performance, which suggests that while ROS, SMOTE, and
GAN:Ss all offer improvement to classification performance in
MLP1 and MLP2, SMOTE has yielded better overall Macro-
F1 values than ROS and GANs. However, the contribution of
GAN:Ss is very limited for deep learning models. On the other
side, ROS and GANSs decreased the Macro-F1 performance
of RF. We obtained similar, excellent performance from
all three baseline classifiers for the majority classes, i.e.,
Normal, DDoS, DoS, and Probe. An interesting finding
is that RF outperforms both MLP1 and MLP2 models in
the classification of all minority classes. This suggests that
Random Forest can handle class imbalance well. In fact, it can
be observed that balancing strategies result in the degradation
of RF’s classification performance over minority classes,
with the exception of a slight enhancement achieved through
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TABLE 7. Classification performance with data-level methods.

Normal DDoS [ DoS [ Probe
Classifier: MLP1 MLP2 RF | MLPI MLP2 RF | MLPI MLP2 RF | MLPI MLP2 RF
Accuracy
Pre-balancing 99.86 % 99.93 % 99.97 % 99.98 % 99.98 % 99.99 % 99.84 % 99.89 % 99.94 % 99.83 % 99.84 % 99.87 %
ROS 99.92 % 99.95 % 99.95 % 99.98 % 99.99 % 99.99 % 99.89 % 99.92 % 99.90 % 98.23 % 98.08 % 98.98 %
SMOTE 99.88 % 99.97 % 99.96 % 99.99 % 99.99 % 99.99 % 99.84 % 99.94 % 99.93 % 98.86 % 99.33 % 99.85 %
GANS 99.93 % 99.94 % 99.96 % 99.99 % 99.98 % 99.99 % 99.85 % 99.91 % 99.88 % 99.85 % 99.84 % 99.85 %
Recall
Pre-balancing 99.72 % 99.83 % 99.97 % 99.98 % 99.98 % 99.97 % 99.78 % 99.65 % 99.83 % 99.74 % 99.78 % 99.85 %
ROS 99.73 % 99.88 % 99.85 % 99.96 % 99.98 % 99.99 % 99.70 % 99.76 % 99.81 % 93.94 % 93.35 % 96.50 %
SMOTE 99.53 % 99.91 % 99.97 % 99.98 % 99.99 % 99.99 % 99.57 % 99.76 % 99.79 % 96.21 % 97.89 % 99.72 %
GANS 99.81 % 99.89 % 99.95 % 99.99 % 99.97 % 99.99 % 99.77 % 99.72 % 99.80 % 99.76 % 99.79 % 99.81 %
Precision
Pre-balancing 99.58 % 99.86 % 99.92 % 99.98 % 99.97 % 100 % 99.21 % 99.65 % 99.78 % 99.69 % 99.68 % 99.69 %
ROS 99.90 % 99.90 % 99.91 % 99.98 % 99.99 % 100 % 99.60 % 99.73 % 99.56 % 99.86 % 99.91 % 99.92 %
SMOTE 99.88 % 99.95 % 99.86 % 99.99 % 100 % 100 % 99.41 % 99.87 % 99.81 % 99.80 % 99.76 % 99.75 %
GANS 99.86 % 99.83 % 99.87 % 99.98 % 99.98 % 99.99 % 99.31 % 99.72 % 99.45 % 99.71 % 99.65 % 99.68 %
F1-score
Pre-balancing 99.65 % 99.84 % 99.94 % 99.98 % 99.97 % 99.99 % 99.49 % 99.65 % 99.81 % 99.71 % 99.73 % 99.77 %
ROS 99.81 % 99.89 % 99.88 % 99.97 % 99.99 % 99.99 % 99.65 % 99.74 % 99.69 % 96.81 % 96.52 % 98.18 %
SMOTE 99.70 % 99.93 % 99.91 % 99.99 % 99.99 % 99.99 % 99.49 % 99.82 % 99.80 % 97.97 % 98.82 % 99.74 %
GANS 99.84 % 99.86 % 99.91 % 99.98 % 99.97 % 99.99 % 99.54 % 99.72 % 99.63 % 99.74 % 99.72 % 99.75 %
BFA ‘ Web-Attack ‘ BOTNET ‘ U2R
Classifier: MLP1 MLP2 RF | MLPI MLP2 RF | MLPI MLP2 RF | MLPI MLP2 RF
Accuracy
Pre-balancing 99.78 % 99.83 % 99.90 % 99.95 % 99.98 % 99.98 % 99.99 % 99.98 % 99.99 % 99.99 % 99.99 % 99.99 %
ROS 98.29 % 98.12 % 99.02 % 99.97 % 99.98 % 99.98 % 99.99 % 100 % 99.99 % 99.99 % 99.99 % 99.99 %
SMOTE 98.89 % 99.36 % 99.90 % 99.97 % 99.98 % 99.98 % 99.99 % 100 % 99.99 % 99.99 % 99.99 % 99.99 %
GANS 99.79 % 99.86 % 99.86 % 99.96 % 99.95 % 99.98 % 99.98 % 99.98 % 99.99 % 99.99 % 99.99 % 99.99 %
Recall
Pre-balancing 61.75 % 77.43 % 81.23 % 32.75 % 39.65 % 89.65 % 100 % 100 % 97.95 % 0% 0 % 60 %
ROS 97.62 % 97.14 % 95.01 % 100 % 100 % 100 % 100 % 100 % 100 % 60 % 80 % 80 %
SMOTE 91.92 % 88.12 % 84.79 % 100 % 100 % 100 % 100 % 100 % 97.95 % 80 % 60 % 80 %
GANS 67.93 % 80.04 % 71.25 % 36.20 % 36.20 % 82.75 % 97.95 % 100 % 97.95 % 0% 0 % 20 %
Precision
Pre-balancing 82.27 % 80.29 % 95.53 % 65.51 % 67.64 % 89.65 % 90.74 % 74.24 % 97.95 % 0% 0 % 100 %
ROS 18.99 % 17.51% 28.92 % 69.87 % 7532 % 79.45% 96.07 % 100 % 98 % 37.5 % 80 % 57.14 %
SMOTE 26 % 37.97 % 90.15 % 65.90 % 74.35 % 78.37 % 87.5 % 100 % 97.95 % 66.66 % 75 % 80 %
GANS 79 % 86.18 % 95.23 % 87.5 % 80.76 % 88.88 % 76.19 % 79.03 % 96 % 0% 0 % 100 %
F1-score
Pre-balancing 70.55% 78.83 % 87.80 % 43.67 % 50% 89.65 % 95.14 % 85.21 % 97.95 % 0% 0 % 74.99 %
ROS 31.79 % 29.68% 44.34 % 82.26 % 85.92 % 88.54 % 98 % 100 % 98.98 % 46.15 % 80 % 66.66 %
SMOTE 40.54 % 53.07 % 87.39 % 79.45 % 85.29 % 87.87 % 93.33 % 100 % 97.95 % 72.72 % 66.66 % 80 %
GANS 73.05 % 83 % 81.52 % 51.21 % 50 % 85.71 % 85.71 % 88.28 % 96.96 % 0% 0 % 33.33 %
TABLE 8. Classification performance with imbalanced learning.
| Normal DDoS DoS Probe
Classifier: SIM | wRF SIM wRF SIM | wRF SIM wRF
Accuracy 99.84 % 99.99 % 99.96 % 99.99 % 96.02 % 99.97 % 85.74 % 99.86 %
Precision 99.63 % 99.98 % 99.96 % 99.99 % 89.39 % 99.88 % 98.15 % 99.79 %
Recall 99.59 % 99.96 % 99.94 % 100 % 84.56 % 99.92 % 51 % 99.73 %
F1-score 99.61 % 99.97 % 99.95 % 99.99 % 86.91 % 99.90 % 67.12 % 99.76 %
| BFA Web-Attack BOTNET U2R
Classifier: SIM wRF SIM | wRF SIM wRF SIM wRF
Accuracy 97.45% 99.89 % 99.90% 99.99 % 99.99 % 99.99 % 87.88 99.99%
Precision 11.41% 84.56 % 35.29% 98.27 % 87.5% 97.95 % 0% 60 %
Recall 77.43% 88.55 % 93.10% 89.06 % 100 % 97.95 % 0% 100 %
F1-score 19.89 % 86.51 % 51.18 % 93.44 % 93.33 % 97.95 % 0% 74.99 %

wRF: weighted Random Forest, SIM: Similarity-based Classification with Siamese Neural Networks

oversampling over Botnet (a minority class in InSDN). GAN-
based data augmentation has proven to be helpful in better
classification of BFA, whereas statistical methods such as
ROS and SMOTE improved the classification of Web-Attack
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and U2R. Fig. 7 shows confusion matrices for classification
before and after data augmentation using ROS, SMOTE, and
GANSs. The numbers inside each confusion matrix add up
to 103, 167 flows (the size of our test set). All confusion
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TABLE 9. Macro-F1 and Micro-F1 values for different approaches.

Pre-balancing Oversampling SMOTE GANSs
Metric: Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
MLP1 76.82 % 99.63 % 85.03 % 98.14 % 87.61 % 98.72 % 77.60 % 99.68 %
MLP2 77.35 % 99.71 % 89.74 % 98.02 % 89.38 % 99.29 % 78.75 % 99.74 %
RF 94.32 % 99.84 % 89.12 % 98.92 % 94.25% 99.81 % 90.17 % 99.77 %
wRF 94.67 % 99.85 %
SIM 70.04 % 83.41 %

wRF: weighted Random Forest, SIM: Similarity-based Classification with Siamese Neural Networks

matrices were created from the predicted data of the trained
model over the test set. The values of the main diagonal
correspond to the values correctly estimated by the model.
Evaluating classification performance over different baseline
classifiers such as MLPs and RF also helps understand
how these classifiers perform over data that is balanced via
different balancing strategies. Fig. 6 shows the number of
false predictions with each balancing method over baseline
classifiers for minority classes, i.e. BFA, Web-Attack, Botnet,
and U2R. For example, we observe that ROS and SMOTE
drastically decrease the False Positive (FP) rate but increase
the False Negative (FN) in the classification of BFA, Web-
Attack, and U2R. Fig. 6 (a) shows that while data-level
methods usually improve classification performance over
deep learning models, i.e. reduce the overall number of false
predictions, they, in fact, degrade RF’s performance, i.e.
cause higher numbers of false predictions.

B. CLASSIFIER-LEVEL METHODS

Table 8 reports the performance metrics of imbalanced
learning using wRF and Similarity-based classification (SIM)
methods. Both methods offer remarkable performance in
the classification of Normal and DDoS instances with
measures of precision, recall, and Fl-score above 99%.
Similarity-based classification (SIM) of DoS and Probe
classes, however, exhibits lower overall accuracy than wRF.
Only 51% of instances detected as Probe by SIM were in
fact the Probe class. SIM offers very low performance in
the detection of minority classes, especially BFA and U2R
where it achieves a precision of 11.41% and 0%, respectively.
While wRF outperforms SIM in every class, SIM has detected
Botnet instances with comparable confidence and an even
better recall measure. Moreover, all instances detected as
Botnet by SIM were in fact correctly classified, whereas wRF
has a non-zero False Positive (FP) rate. However, the Botnet
class tends to be easier to detect than other minority classes,
for example, according to Table 7 data-level methods achieve
the highest F1 scores for this particular minority class. Fig. 8
shows confusion matrices classifier-level methods.

V. DISCUSSION

We observe that many studies do not pay particular attention
to identifying metrics suitable for imbalanced datasets. One
of the strengths of this study is our metric selection for
multi-class classification, where we present Macro and Micro
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Fl-score values as well as per-class measures of accuracy,
precision, recall, and F1. Although Micro-F1 is useful in
understanding the impact of balancing strategies on the
entire dataset, including the majority ones, Macro-F1 is more
instrumental in demonstrating the performance of the model
in minority ones as it treats each class equally. Therefore,
a lower score in a minority class is easily reflected in the
overall score. Nevertheless, our study also presents accuracy,
precision, recall, and F1 for each class, enabling us to
comprehend the balancing effect on a per-class basis.

Learning algorithms handle the class imbalance problem
in different ways. In Random Forest, for example, Small
changes to training data can result in a significantly different
tree structures. Perhaps, one reason why Random Forest
handles class imbalance fairly well is that Random Forest
is an ensemble method combining results from multiple
decision trees. As reported in Table 9, wRF performs well
in both Macro and Micro F1-scores which is indicative of the
effectiveness of weighted ensembles within the wRF’s tree
structure. RF and wRF have similar results demonstrating
the effectiveness of RF in the face of data imbalance. It is
interesting to observe that an RF model without any balancing
strategy outperforms all complex deep learning models with
varying balancing strategies according to Macro-F1 scores.

It is observable that balancing strategies such as ROS,
SMOTE, and GAN:S all offer improvement to the classifica-
tion performance of baseline deep learning models, MLP1
and MLP2. However, GANs induce minuscule improvement
in the model performance. Even though GANs have proven
successful in generating realistic synthetic data in multiple
domains, such as Computer Vision and Natural Language
Processing, this generative modeling approach has offered
little improvement in the case of InSDN. SMOTE has
outperformed ROS and GANs by offering the utmost overall
improvement over the classification results of deep learning
models. With respect to baseline classifiers, we can observe
that Random Forest performs well without any data balancing
prior to classification. Interestingly, ROS and GANs results
decrease Macro-F1 performance, whereas SMOTE results
remain almost the same.

Our findings reaffirm the findings of other studies [15],
[29] on the class imbalance problem that suggests
ensemble-based methods tend to produce good classification
results over imbalanced datasets, usually better than data-
level methods. A study on the class imbalance problem in
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classical NSL-KDD dataset [47] similarly finds that Random
Forest outperforms other classifiers. None of the classifiers
provides adequate performance in the case of U2R, which
is the smallest minority class. It is a common finding that
ensemble-based classifiers work well for minority classes,
however, for an extremely rare class such as U2R, even
Random Forest fails to perform adequately. Even though
SMOTE has been considered [48] a suboptimal alternative
for research problems in high-dimensional space because
of its orientation towards feature space rather than data
space, we have found that SMOTE has outperformed more
sophisticated data augmentation methods such as GANs.

We covered data-level and classifier-level methods for
addressing the class imbalance problem in SDN intrusion
data. Here, we summarize the benefits of each technique with
respect to each minority class as supported by our experi-
ments. With deep learning baseline classifiers, we observe
that

« GANs improved the detection of BFA significantly.

« ROS improved the detection of Web-Attack and Botnet
classes.

« ROS and SMOTE improved the detection of U2R.

Due to the ensemble nature of random forest classifier,
it can handle class imbalance well. With random forest
classifier, we observe that while ROS improved the detection
of Botnet and U2R, random forest performed well with no
data-level methods in the detection of BFA and Web-Attack
classes.

In discussing the limitations of our study, we hypothesize
that contrastive learning via Siamese Networks may require
hefty fine-tuning of the convolutional neural networks as well
as the data pairing process during training. We reckon pairing
Siamese networks with other classifiers would probably
produce more robust results compared to the similarity-based
learning approach. In this fashion, Siamese networks would
be utilized as a feature extractor. The similarity-based
detection approach proposed in [23] seems to not be able to
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differentiate between the minority classes, which are all the
more important to detect.

VI. CONCLUSION AND FUTURE WORK

This paper investigates the class imbalance problem in
machine learning-based intrusion detection in SDN. It has
been shown that the detection rate can be severely affected
by the imbalanced distribution of attack classes which
is a widespread issue with most intrusion datasets. Data
balancing strategies (data-level methods) such as Random
Oversampling (ROS), SMOTE, and generative modeling
via Generative Adversarial Networks (GANs) have been
proposed to mitigate the impact of class imbalance on
classification performance. Moreover, imbalanced learning
methods (classifier-level approach) such as weighted Ran-
dom Forest and Siamese Neural Networks for one-shot
learning have been adopted which render promising in the
detection of minority class instances without the need for a
balancing phase prior to classification. In particular, weighted
RF yielded the best performance throughout the experiments
described in the previous section. However, the original RF
provided almost the same performance. This is indicated by
weighted RF’s only slightly superior Macro and Micro-F1
values of 99.85% and 94.67% as compared to RF’s Macro
and Micro-F1 values of 99.84% and 94.32%, respectively.
The results show that RF without any balancing effort can
provide the highest detection performance on imbalanced
SDN intrusion data, especially in minority classes.

One of the limitations of employing deep learning-based
sampling methods such as Generative Adversarial Networks
(GANY) is their training time. Deep neural networks require
high optimization time due to the time-consuming backprop-
agation process. While these methods excel at capturing the
underlying data distribution, they can overfit to training data
and in some cases even memorize training instances. Simpler
methods such as SMOTE are perhaps more effective in this
regard as they avoid duplication and are solely based on the
statistical properties of the training data.
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One of the limitations in the study of intrusion detection
in SDN is the lack of publicly available data from SDN.
We provide benchmark results over the InSDN dataset. One
future direction for this study is to extend this analysis to more
datsets from SDN as more datasets become available.

Future research directions are identified as follows: An
interesting direction is to employ adversarial training and/or
virtual adversarial training prior to the classification of
SDN intrusion data. Adversarial training consists of training
classifiers (especially deep learning models) over adversarial
examples that are carefully computed to be misclassified.
Through adversarial training, decision boundaries are cal-
ibrated so that minority class instances would be better
separated from majority cases. It would be beneficial to
investigate the impact of adversarial training on classification
performance, especially in the case of minority classes, where
the decision boundaries are usually not as precise as those of
majority classes. Other generative modeling approaches, such
as Deep Convolutional Autoencoders are another interesting
direction for future research as they have shown immense
potential in generating realistic synthetic data based on the
original data distribution.
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