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A B S T R A C T

Starting from the Ffowcs Williams-Hawkings surface integral formulation for a moving medium,
the article proposes rather simple expressions for the radiated pressure and its gradient in the
time domain, that are valid for solid or porous, fixed or moving integration surfaces. Moreover,
these original expressions allow calculations with integration surfaces in supersonic motion (such
as rotating surfaces around propellers or rotors). Versions dedicated to fixed integration surfaces
are also proposed. The usual locally compact and the fully non-compact integration techniques
are recalled, with, for both, a detailed description of efficient calculation algorithms. Particular
attention is devoted to the order of precision of the calculations. The time derivation techniques
and integration schemes used in this study lead to a theoretical second order that can easily be
increased for the locally compact integration method. The results of these expressions and inte-
gration methods are compared to the analytical solution for the case of a fixed monopole and for
that of a rotating monopole. They clearly show the benefit of the direct gradient calculation over a
calculation by finite differences of the pressure around the observation point, particularly for
broadband signals.

1. Introduction

The analysis of the noise generated by aerodynamic disturbances most often consists in calculating the acoustic pressure they
radiate at various observation points, in particular in the far field. The Ffowcs Williams-Hawkings (FW-H) formulation [1] is a
particularly well-suited tool for this purpose. This formulation, based on Lighthill’s acoustic analogy [2] and extended to permeable
surfaces [3], provides an explicit expression of the radiated pressure in the form of an integral over known quantities on a control
surface encompassing the noise sources. The relationship between this surface formulation with the Kirchhoff method has been shown,
for example, in [4,5].

In practice, the assumption of uniform flow and of free-field acoustic propagation outside the control surface is generally made in
the Green’s function used for the radiation calculation. However, in many cases, free-field radiation calculation is unsuitable, as the
presence of reflecting bodies (centerbody of a propeller, aircraft fuselage or wing…) outside the control surface significantly alters the
acoustic field.

A solution for taking these reflecting bodies into account is to couple the FW-H calculation with BEM methods [6–8] or with the
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Kirchhoff method [9]. In both cases, knowledge of the acoustic velocity or pressure gradient on the reflecting wall is required (the
relationship between the acoustic velocity and the pressure gradient is described in [10]). Independently of couplings, these vector
quantities are interesting in their own right, as they enable more comprehensive analyses of the acoustic field than the pressure field
alone.

Expressions resulting from the FW-H formulation have been developed for the pressure gradient, in the time domain [11–14] as
well as in the frequency domain [15,16]. These expressions are sometimes rather complicated [14], most are only valid for a prop-
agation medium at rest [11–13,15] and none are applicable to control surfaces in supersonic motion (e.g. rotating control surfaces
around rotors or propellers).

This article proposes, in the time domain, relatively simple expressions - from our point of view - for the radiated pressure and its
gradient, for a moving medium, as well as efficient algorithms for fixed surfaces, for surfaces in subsonic motion and for surfaces in
supersonic motion. A particular attention is devoted to the order of precision of the calculations.

The article is organized as follows. In Section 2, starting from the time-domain expression of pressure, original formulas for the
pressure gradient are developed, valid whatever the kinematics of the integration surface. Formulas more suited to fixed surfaces are
also proposed. Section 3 then describes in detail efficient integration techniques for each kinematics. The results of these expressions
and these integration techniques are analyzed and compared with analytical solutions in Section 4. Finally, conclusions are drawn in
Section 5.

2. Formulation

2.1. Expression of the radiated pressure

We define a reference frame Ry in which the unperturbed fluid is at rest, and a reference frame RY in translation at the subsonic
velocity -U0y1 (y1: unit vector of the y1 axis) with respect to Ry (Fig. 1). Reference frame RY corresponds to wind tunnel or flight
aeroacoustic simulations. In this reference frame, the unperturbed fluid is thus in uniform, steady translation at velocity U0Y1.

In the following, S is a fictitious closed porous surface, fixed or moving in RY, and enclosing noise sources (Fig. 1). The observation
points are assumed to be fixed in RY. The space coordinates Xi of an observation point X and Yi of an emission point Y are defined in RY.
The velocities u of the fluid and v of the surface S are relative to Ry.

Starting from the extension of the Ffowcs Williams and Hawkings formulation to porous surfaces [3], the pressure radiated to
observer at location X at time t by the acoustic sources inside surface S can be written as [17,18]:

pʹ(X, t) = −
∂

∂Xi

∫

τ

∫

S

AiGdSdτ + d
dt

∫

τ

∫

S

BGdSdτ (1)

where Ai = ṕ ni + ρui(un − vn) (viscous term assumed to be negligible), B = ρ0vn + ρ(un − vn),G =
δ(g)
4πd the free-space Green’s function in

R3 for the convective wave equation, τ an emission time, t a reception time and d
dt =

(
∂
∂t

)

X
+ U0

∂
∂X1

, with ṕ = p − p0 the pressure

perturbation, p0 the pressure in the unperturbed fluid, ρ the density, ρ0 the density in the unperturbed fluid, un = u.n, vn = v.n, n the
normal unit vector on the surface S, pointing outward, δ(f) the Dirac distribution, g = τ − t+ σ /a0, σ = (d − M0(X1 − Y1)) /β2, d =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ci(Xi − Yi)2
√

, Ci =
(
1 − β2)δ1i+ β2, δij the Kronecker symbol, β2 = 1 − M2

0, M0 = U0 /a0, a0 the speed of sound in the unperturbed
medium.

Moving the space derivatives inside the integrals leads to:

pʹ(X, t) = −

∫

τ

∫

S

Ai
∂G
∂Xi

dSdτ + ∂
∂t

∫

τ

∫

S

BGdSdτ +
∫

τ

∫

S

U0B
∂G
∂X1

dSdτ (2)

Remarks:

Fig. 1. Schematic of the coordinate systems and integration surface S.
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- The time derivative is not moved inside the integral because the internal time derivative reinforces the numerical singularity
present in the integral for a surface S in supersonic motion (see Section 3.3), and the problem due to this singularity is then no
longer resolved by the fully non-compact integration technique described in Section 3.3.

- It is worth noting that Eq. (2) remains valid for a solid integration surface (e.g. the surface of a rotor or propeller blade). For such a
surface, un − vn = 0 and we find the well-known loading and thickness noises [19], respectively in the terms linked to Ai = ṕ ni and
B = ρ0vn. This remark applies to all the expressions which follow, for the radiated pressure as well as for its gradient. However, the
thickness and loading terms do not have any real physical meaning in the more general framework of a porous surface, which is the
focus of this study (Fig. 1). Therefore, they will not be discussed further.

Knowing that ∂g /∂t = − 1, the spatial derivative ∂G/∂Xi can write:

∂G
∂Xi

= −
1

4πd

(
∂(δ(g))

∂t
∂g
∂Xi

+
δ(g)
d

∂d
∂Xi

)

Therefore Eq. (2) becomes:

pʹ(X, t) =

∫

τ

∫

S

Ai
4πd

∂g
∂Xi

∂(δ(g))
∂t dSdτ +

∫

τ

∫

S

Ai
d

∂d
∂Xi

δ(g)
4πddSdτ + ∂

∂t

∫

τ

∫

S

B
δ(g)
4πddSdτ

−

∫

τ

∫

S

U0B
4πd

∂g
∂X1

∂(δ(g))
∂t dSdτ −

∫

τ

∫

S

U0B
d

∂d
∂X1

δ(g)
4πddSdτ

(3)

For fixed observation points, d and ∂g/∂Xi do not depend on the reception time t. Putting the time derivative outside the integrals
gives:

pʹ(X, t) =
∫

τ

∫

S

1
d

(

Ai
∂d
∂Xi

− U0B
∂d

∂X1

)

GdSdτ + ∂
∂t

∫

τ

∫

S

(

Ai
∂g
∂Xi

+B
(

1 − U0
∂g

∂X1

))

GdSdτ (4)

By developing ∂g
∂Xi

= 1
a0β2

(
Ci(Xi − Yi)

d − M0δ1i

)

and ∂d
∂Xi

=
Ci(Xi − Yi)

d , Eq. (4) transforms into :

pʹ(X, t) =

∫

τ

∫

S

(
AiCi(Xi − Yi) − U0B(X1 − Y1)

d2

)

GdSdτ

+
∂
∂t

∫

τ

∫

S

(
Ai
a0β2

(
Ci(Xi − Yi)

d
− M0δ1i

)

+ B
(

1 −
U0

a0β2

(
X1 − Y1

d
− M0

)))

GdSdτ
(5)

Knowing that AiCi(Xi − Yi) = β2Ai(Xi − Yi) +M2
0A1(X1 − Y1) and 1+ U0M0 /a0β2 = 1 /β2, Eq. (5) writes:

pʹ(X, t) =
∫

τ

∫

S

FGdSdτ + ∂
∂t

∫

τ

∫

S

FʹGdSdτ (6)

where F = 1
d2

(
β2Ai(Xi − Yi) +

(
M2

0A1 − U0B
)
(X1 − Y1)

)

Fʹ =
1
a0

(

Ai
(Xi − Yi)

d
+
M0A1

β2

(

M0
(X1 − Y1)

d
− 1
))

+
B
β2

(

1 − M0
(X1 − Y1)

d

)

We finally arrive to the following expressions of the terms F and F’:

F =
β2

d2Σ1, Fʹ = Σ1
a0d+

Σ2
β2 with Σ1 = Ai(Xi − Yi) +

(M2
0A1 − U0B)

β2 (X1 − Y1) and Σ2 = B − M0A1
a0

2.2. Expression of the radiated pressure gradient

Starting from Eq. (6), the pressure gradient can write:

∂pʹ(X, t)
∂Xj

=

∫

τ

∫

S

∂F
∂Xj

GdSdτ +
∫

τ

∫

S

F
∂G
∂Xj

dSdτ + ∂
∂t

∫

τ

∫

S

∂Fʹ

∂Xj
GdSdτ + ∂

∂t

∫

τ

∫

S

Fʹ∂G
∂Xj

dSdτ (7)

As done for the terms Ai ∂G
∂Xi

and U0B ∂G
∂X1

in Eq. (2) of the pressure:
∫

τ

∫

S
F ∂G

∂XjdSdτ = −
∫

τ

∫

S

1
d

∂d
∂Xj FGdSdτ − ∂

∂t
∫

τ

∫

S

∂g
∂Xj FGdSdτ and ∂

∂t
∫

τ

∫

S
Fʹ∂G

∂XjdSdτ= − ∂
∂t
∫

τ

∫

S

1
d

∂d
∂XjF

ʹGdSdτ − ∂2

∂t2
∫

τ

∫

S

∂g
∂XjF

ʹGdSdτ

Therefore, the pressure gradient writes:
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∂pʹ(X, t)
∂Xj

=

∫

τ

∫

S

(
∂F
∂Xj

−
1
d

∂d
∂Xj

F
)

GdSdτ + ∂
∂t

∫

τ

∫

S

(
∂Fʹ

∂Xj
−

1
d

∂d
∂Xj
Fʹ −

∂g
∂Xj

F
)

GdSdτ − ∂2

∂t2

∫

τ

∫

S

∂g
∂Xj
FʹGdSdτ (8)

Noting r̂ i = Xi − Yi
d :

∂F
∂Xj

=
β2

d2

(
∂Σ1

∂Xj
−

2Σ1

d
Cj r̂j

)

∂d
∂Xj

F
d
= Cj r̂j

β2

d3Σ1

∂Fʹ

∂Xj
=

1
a0d

∂Σ1

∂Xj
−

Σ1

a0d2Cj r̂j +
1
β2

∂Σ2

∂Xj

∂d
∂Xj

Fʹ

d
= Cj r̂j

(
Σ1

a0d2 +
Σ2

β2d

)

∂g
∂Xj

F =

(
Cj r̂j − M0δ1j

a0d2

)

Σ1

∂g
∂Xj
Fʹ =

(
Cj r̂j − M0δ1j

a0β2

)(
Σ1

a0d
+

Σ2

β2

)

Since Ai and B do not depend on Xj, ∂Σ2
∂Xj

= 0.

Grouping terms and noting Σʹ
j =

∂Σ1
∂Xj − 3Cj r̂jΣ1

d = Aj +
(M2

0A1 − U0B)
β2 δ1j − 3Cj r̂jΣ1

d , the pressure gradient finally writes:

∂pʹ(X, t)
∂Xj

=

∫

τ

∫

S

F1jGdSdτ + ∂
∂t

∫

τ

∫

S

F2jGdSdτ + ∂2

∂t2

∫

τ

∫

S

F3jGdSdτ (9)

F1j = β2Σʹ
j

d2

F2j =
Σʹ
j

a0d
+M0δ1j

Σ1

a0d2 −
Cj r̂j
β2

Σ2

d

F3j = −

(
Cj r̂j − M0δ1j

)

a0β2

(
Σ1

a0d
+

Σ2

β2

)

2.3. Other expressions for fixed integration surfaces

Moving the time derivatives outside the integrals is a necessary condition for the space-time integration method designed for
integration surfaces in supersonic motion (Section 3.3). On the other hand, it has the disadvantage of amplifying high-frequency
oscillations due to numerical calculation inaccuracies. For fixed integration surfaces in the reference frame RY (Fig. 1), using ex-
pressions with inner time derivatives does not lead to more complicated expressions nor numerical singularities, as shown in the
following. Applications have shown that they lead to more regular signals than those obtained with outer time derivatives.

Moving the time derivative inside the integral, Eq. (6) becomes:

pʹ(X, t) =
∫

τ

∫

S

FGdSdτ +
∫

τ

∫

S

∂
∂t (F

ʹG)dSdτ (10)

For fixed surface S and fixed observation points, F’ does not depend on the reception time t and ∂G
∂t = − ∂G

∂τ .
So:

∫

τ

∫

S

∂
∂t (F

ʹG)dSdτ = −
∫

τ

∫

S
Fʹ∂G∂τ dSdτ =

∫

τ

∫

S

∂Fʹ
∂τ GdSdτ

Therefore, the pressure can be written in the following form:

pʹ(X, t) =
∫

τ

∫

S

(

F+
∂Fʹ

∂τ

)

GdSdτ (11)

In the same way, from Eq. (9), the pressure gradient can be written in the following form:
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∂pʹ(X, t)
∂Xj

=

∫

τ

∫

S

(

F1j +
∂F2j

∂τ +
∂2F3j

∂τ2

)

GdSdτ (12)

3. Integration techniques

3.1. Integration technique well-suited to fixed integration surfaces

For a fixed integration surface, ∂g/∂τ= 1 and changing the integration variable τ in g in Eqs. (11) and (12) leads to the following
expressions for the pressure and its gradient:

pʹ(X, t) =
∫

g

∫

S

(

F+
∂Fʹ

∂τ

)
∂(g)
4πd dSdg (13)

∂pʹ(X, t)
∂Xj

=

∫

g

∫

S

(

F1j +
∂F2j

∂τ +
∂2F3j

∂τ2

)
∂(g)
4πd dSdg (14)

That is, finally:

pʹ(X, t) =
∫

S

1
4πd

[

F +
∂Fʹ

∂τ

]

ret
dS (15)

∂pʹ(X, t)
∂Xj

=

∫

S

1
4πd

[

F1j +
∂F2j

∂τ +
∂2F3j

∂τ2

]

ret
dS (16)

where the quantities inside the brackets have to be evaluated for g = 0, that is at the emission time τ = t − σ /a0(called retarded time).
Usually, the integration surface S is discretized in source elements δS treated as point sources. This locally compact approach,

referred to as compact grid cells (CGC) approach in the following, considerably simplifies the spatial integration. It then comes down to
a sum over the cells of the mesh, of quantities calculated at their center. A fast method is to start from the emission time and proceed
forward in time. There is no need then to calculate any retarded quantities. The values at times ti used to describe the received signals
can be determined by linear interpolation from the values obtained for the reception times τj + σ /a0 resulting of the emission at times
τj. A particularly efficient algorithm consists of describing the received signals with the same time step as that of the emission and
distributing the quantity Q = [.] δS

4πd calculated for each emission time τj over the two reception time tk and tk+1 on either side of the
reception time t = τj+ σ /a0, using the following simple operations:

pʹ(X, tk)←pʹ(X, tk) +
tk+1 − t
tk+1 − tk

Q

pʹ(X, tk+1)←pʹ(X, tk+1) +
t − tk
tk+1 − tk

Q

This time integration scheme, based on linear interpolations, is thus of second order. In this study, the first and second derivatives in
time are calculated by second-order centered finite differences. Therefore, time derivation and integration schemes are consistent with
each other, and the complete time scheme is of second order, as confirmed by the results presented in section 4.1. The space integration
then consists of summing the contributions of each cell of surface S to the pressure and its gradient at the observation point.

3.2. Integration technique well-suited to subsonically moving integration surfaces

Changing the integration variable τ in g in Eqs. (6) and (9), leads to the following expressions:

pʹ(X, t) =
∫

g

∫

S

F
|∂g/∂τ|

∂(g)
4πd dSdg +

∂
∂t

∫

g

∫

S

Fʹ

|∂g/∂τ|
∂(g)
4πd dSdg (17)

∂pʹ(X, t)
∂Xj

=

∫

g

∫

S

F1j

|∂g/∂τ|
∂(g)
4πd dSdg +

∂
∂t

∫

g

∫

S

F2j

|∂g/∂τ|
∂(g)
4πd dSdg +

∂2

∂t2

∫

g

∫

S

F3j

|∂g/∂τ|
∂(g)
4πd dSdg (18)

That is, finally:

pʹ(X, t) =
∫

S

[
F

4πd|∂g/∂τ|

]

ret
dS+

∂
∂t

∫

S

[
Fʹ

4πd|∂g/∂τ|

]

ret
dS (19)
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∂pʹ(X, t)
∂Xj

=

∫

S

[
F1j

4πd|∂g/∂τ|

]

ret
dS+

∂
∂t

∫

S

[
F2j

4πd|∂g/∂τ|

]

ret
dS+

∂2

∂t2

∫

S

[
F3j

4πd|∂g/∂τ|

]

ret
dS (20)

with ∂g
∂τ = 1+ 1

a0β2

(

M0v1 −
Ci(Xi − Yi)

d vi
)

.

∂g
∂τ can be expressed in the form 1 − MR with MR = 1

a0β2

(
Ci(Xi − Yi)

d vi − M0v1
)

.

MR can be interpreted as the ‘acoustic Mach number’ of the center Y of the cell in the direction of the observation point X, taking
into account the velocityU0 of the flow. For a surface S in subsonic motion relative to the observer location X, ∂g /∂τ is never null (MR<

1). The CGC approach described in the previous section still makes it possible to reduce spatial integration to a simple summation over
the cells of the mesh of quantities evaluated at their center.

For each of the two pressure terms and three terms of its gradient, the contributions Qk received at a reception time tk can still be
determined by linear interpolation from the values Qj and Qj+1 obtained at the reception times tj = τj + σj /a0 and tj+1 = τj+1 +

Fig. 2. Schematic of the time integration process for a subsonically moving point source.

Fig. 3. Schematic of the time integration process for a non-compact source element δS, for two pressure rate shape functions: (a) rectangular and
(b) triangular.
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σj+1 /a0on both sides of tk (Fig. 2). The calculation is, however, a little longer than for a fixed integration surface because the prop-
agation times (hence the interpolation coefficients) linked to an emission point are no longer constant because of its movement. Note
that the particular summation algorithm described in Section 3.1 does not work for moving integration surfaces, because the reception
times tj are no longer equidistant and several reception times tk can be included in a reception interval [tj, tj+1].

Once all the spatial summations performed, the time derivatives can be calculated by finite differences (second-order centered
differences in the present study) and the contributions of the different terms are added to provide the final result.

3.3. Integration technique well-suited to supersonically moving integration surfaces

For surfaces in supersonic motion, the integrals in Eqs. (19) and (20) become singular because the term ∂g/∂τ can equal zero for
certain observation points. They can no longer be calculated numerically using the usual CGC approach (cf. Sections 3.1 and 3.2). A
very interesting study has been carried out by Ianniello to solve the problem raised by this singularity [20,21], but the calculation cost,
due to the complexity of the method, seems excessive for industrial applications. This problem, together with an original alternative
solution, has already been presented in previous articles and a paper [5,18,22]. To sum up, the usual CGC approach does not reflect the
continuity of the integration surface – especially the fact that at a given emission time, the different points of a cell are not all at the
same distance from the observer. In fact, because of these different distances, the emission of a cell at time τ is not received at a single
instant t, but during a time interval [t1, t2] of which boundaries depend on the size, shape and orientation of the cell. Therefore, the
CGC approach leads to focusing the radiation of the whole cell onto the same reception time. This phenomenon of acoustic focusing is
accentuated when the velocity of the source point towards the observation point tends towards the speed of sound. The radiation then
"piles up" even more on the same reception time, which explains the divergence in the results for the transonic moving cells. Rather
than modeling the emission of the cell at the time τ by a point source, a relatively simple way of taking into account the continuity of
the integration surface consists in modeling the reception of the radiated signal at the observation point by a pressure rate Π (in Pa s-1)
over the time interval [t1, t2]. This is what is performed in the so-called fully non-compact (FNC) integration technique, which does not
use the analytical time integration leading to Eqs. (19) and (20), but restarts from Eqs. (6) and (9).

In practice, the reception intervals [t1, t2] are determined for each cell Δi of the integration surface and for each emission time τj,
starting from the position of the observation point and the position of the nodes of the cell and of its center, at time τj. The associated
radiated pressure rate Πij is calculated as a function of the considered source term F (which can be evaluated at the center of the cell), of
the surface |Δi| of the cell, and of the reception time duration t2-t1. For instance, if a constant pressure rate is considered, the pressure
rate Πij is then equal to F|Δi|/(t2-t1) over the time interval [t1, t2] and to zero outside. The pressure received at the observation point at a
given instant t is then determined by summing this pressure rate over the emission times (see Fig. 3). This time integration can be quite
simple (depending on the pressure rate model), since it consists in calculating the area of the hatched surface in Fig. 3 by linear in-
terpolations starting from the reception time intervals and the pressure rates determined for the emission times τj and τj + 1. Examples
of integration bounds τa and τb are given in Fig. 4. They show the effect of the cell’s kinematics in the summation of the pressure rate
received at the observation point (integration range [τa, τb] greatly increased forMR ≈ 1). The space integration is then carried out by
summing the contributions of each cell of the mesh, for each integral of Eq. (6) and Eq. (9). The rest of the calculation process (time
derivations and terms summation) is the same as for the previous method (section 3.2). It is worth pointing out that this integration
technique gives the same result as the usual CGC method when the mesh is fixed. The FNC approach has been thoroughly validated
[22] and is used by ONERA and by its industrial partners for rotors and propellers acoustic studies (for example [23,24]).

From a numerical point of view, calculating the area of the hatched surface in Fig. 3 requires logic tests to precisely determine its

Fig. 4. Example of evolutions of the reception time interval between two emission times τj and τj + 1 and example of integration bounds τa and τb, for
subsonic, transonic and supersonic kinematics of the emission cell.
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geometry as a function of the reception time t. This process is time-consuming, as shown by the comparison of calculation times in
Table 1. To facilitate this calculation, a pressure rate that is constant over the reception interval, and therefore discontinuous at the
boundaries of this interval, was initially used (Fig. 3a). This very simple model has been fully satisfactory in the specific case of rotating
meshes describing axisymmetric integration surfaces ([5,22], FNC integration technique applied to formulations with inner time
derivatives, see Section 3.4). A continuous increasing/decreasing model (Fig. 3b) was then designed for any moving mesh. It is twice as
computationally expensive because the hatched surface is more complicated to determine, but it leads to much regular results for
formulations with time derivatives outside the integral [18]. In this study, all acoustic calculations are carried out using this second
model.

For a cell, this time integration scheme, which is based on linear interpolations, is therefore of the second order, as the previous
schemes, but the modeling of the radiated pressure rate introduces inaccuracies which reduce the actual order of complete calculations
(see section 4.3). After summation on the cells, none of the two models presented leads to signals that are regular enough to prevent the
external time derivatives – calculated by second-order centered finite differences – from being slightly noisy at the sampling frequency
and a few subharmonics. These spurious high frequencies remain at an acceptable level, even for surfaces in supersonic motion,
however they reduce or stop the decrease of the error – in L∞ norm – with that of the time step.

3.4. Particular case of fixed integration surfaces described by moving meshes

It can be shown that the expressions established for fixed surfaces (Section 2.3) remain valid in the special case of a moving mesh
describing, over time, a geometrically identical surface [5]. This situation occurs, for example, with a rotating mesh describing a
surface of revolution around the axis of rotation of a rotor or propeller. The FNC integration technique can then be applied to ex-
pressions with inner time derivatives (Eqs. (11) and (12)), using the simplest pressure rate model (rectangular shape function, Fig. 3a).
This approach has been used to account for volume sources in the noise radiated by a transonic rotor without numerical difficulties,
using rotating cylindrical surfaces of large radii to include these sources, therefore with supersonically moving meshes [5].

To conclude this part of the article, a summary of the formulas and integration techniques is provided in the Appendix. This
Appendix indicates the formulas and integration methods best suited to each configuration, but they are not exclusive. For example,
Eq. (A.5) and Eq. (A.6) with the FNC integration method can be applied to surfaces in subsonic motion or to fixed surfaces, although the
calculations are unnecessarily more expensive. Table 1 provides an example of calculation times as a function of the surface kinematics
and integration technique.

Table 1
Calculation time per observation point, on a processor running at 3 GHz, for an integration surface described by 50,000 cells and for 1000 emission
times.

Integration tech. CGC (S fixed) CGC (S moving) FNC (rectangular pressure rate model) FNC (triangular pressure rate model)

Pressure 2.5 s 3.5 s 7 s 14 s
Pressure gradient 3 s 5 s 10 s 20 s

Fig. 5. Instantaneous pressure field on the integration surface. M0 = 0.5.
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4. Validations

4.1. Formulas with inner time derivatives and CGC integration method

The expressions and integration methods described in Section 3 are first validated for formulas with inner time derivatives and the
CGC integration method (Eqs. (15) and (16), Section 3.1), which are well-suited for fixed integration surfaces.

The configuration is as follows. The integration surface is a fixed sphere of radius R = 1 m represented by a uniform unstructured
mesh composed of 71,060 triangles. The acoustic field is generated by a monopolar point source of amplitude A and frequency f in a
uniform flow at velocityU0 in the X1 direction, placed at the sphere’s center. The complex potential for the monopole, at a node X of the
integration surface and at an instant t, is [25,26]:

φ(X,Y, t) = A
4πdexpi(2πf)(t− σ/a0) where A is its strength and Y = (0, 0, 0). (See notations in Section 2.1)

The inputs to the FW-H calculation are the real parts of the velocities uí = ∂φ /∂Xi, pressure ṕ = − ρ0

(
∂φ
∂t +U0

∂φ
∂X1

)

and density ρ́

= ṕ /a2
0 disturbances. Their developed expressions are:

pʹ =
Aρ0

4πd

[

2πf
(

1 −
U0

a0

∂σ
∂X1

)

sin(2πf(t − σ / a0))+
U0

d
∂d

∂X1
cos(2πf(t − σ / a0))

]

(21)

Fig. 6. Pressure time histories at the observation point (0, 10, 0). M0 = 0.5, dt = T/97.

Fig. 7. Pressure error (L∞ norm) as a function of the time step dt, for the observation point (10, 10, 10).
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ρʹ =
pʹ

a2
0

(22)

uʹi =
A

4πd

[
2πf
a0

∂σ
∂Xi

sin(2πf(t − σ / a0)) −
1
d

∂d
∂Xi

cos(2πf(t − σ / a0))

]

(23)

Calculations are performed for a0= 1 m s-1, p0= 1 Pa, f= 1 Hz. For a fluid at rest (M0= 0), the wave length λ0 is thus equal to unity.
A is taken equal to 1/7 10–2 m3 s− 1 so that, for a flow at rest, the amplitude of the pressure disturbance p’ is equal to 10–4 Pa at 10 m
from the point source. An example of instantaneous pressure field on the integration surface is given in Fig. 5. For the pressure, the
results at an observation point (X1, X2, X3) are compared to the analytical solution Eq. (21). For the pressure gradient, the reference
solution is the pressure gradient obtained by centered finite differences of the analytical solution Eq. (21) for 8 points around the
observation point with a very small space step h = 0.002 m (λ0/500), identical in the three directions: (X1 ± h/2, X2 ± h/2, X3 ± h/2).
The deviation from the reference solution is quantified by L∞ norm divided by the maximum absolute value of the reference solution.

Results for the pressure - A comparison of FW-H calculation (Eq. (15)) with the analytical solution is given in Fig. 6 for the obser-
vation point (0, 10, 0), a flow Mach number M0 = 0.5 and a time step dt = T/97 (T = 1/f). The difference between the signals is not

Fig. 8. Pressure gradient time histories at the observation point (0, 10, 0). M0 = 0.5, dt = T/97.

Fig. 9. Pressure gradient error (L∞ norm) as a function of h in calculation by finite differences, and indication of the error level of the direct
calculation (dashed lines). Observation point (10, 10, 10), dt = T/97.
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discernible on this plot. The evolution of the deviation from the analytical solution as a function of the time step dt (from T/5 to T/97)
of the FW-H calculation is plotted Fig. 7 for the more general case of an observation point out of any plane of symmetry. This evolution
provides more precise information on the precision of the calculations. In particular, it confirms that the time scheme is of second
order, with or without flow.

Results for the pressure gradient - For the observation point (0, 10, 0) and identical parameters M0 = 0.5, dt = T/97, the direct
calculation using Eq. (16) provides the same signals as those of the reference solution, for all components of the pressure gradient
(Fig. 8). For the observation point (10, 10, 10), the error (L∞ norm on the three components) of the gradient calculation by finite
differences starting from the pressures provided by Eq. (15), is plotted as a function of the spatial step h, in Fig. 9. We find fairly well the
second-order precision of the calculation by centered finite differences. The error level of the direct calculation by Eq. (16) clearly
highlights the advantage of this approach for fixed integration surfaces. Note that deviation of FW-H direct calculation with respect to
the reference solution depends on the time step dt, as for the pressure (Fig. 7). This deviation would therefore be lower with a time step
smaller than T/97.

4.2. Formulas with outer time derivatives and CGC integration method

The expressions and integration methods described in Section 3 are now validated for formulas with outer time derivatives and the
CGC integration method (Eqs. (19) and (20), Section 3.2), which are well-suited for subsonically moving integration surfaces.

The acoustic field is created by a point monopole placed in the plane X1 = 0 and rotating around the X1 axis at the frequency f on a
circle of radius r = 1 m (Fig. 10). Starting from the general expressions established by Golstein for moving sources [27], the velocities,
pressure and density disturbances (ui’ = ui – U0δ1i, p’ = p – p0 and ρ’ = ρ – ρ0, respectively) radiated by this rotating monopolar point
source in an uniform flow at velocity U0 in the X1 direction, can write:

uʹ1 =
A

4πdʹ2

[

(1 − c)
(X1 − Y1) − aM0/a0

dʹ +M0c
]

(24)

Fig. 10. Rotating point monopole, integration surfaces S0.7, S0.9, S1.2, S1.6, S2.0 and observation point.

Fig. 11. Instantaneous pressure fields on the integration surface S0.7. (a) M0 = 0 and (b) M0 = 0.5.
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uʹ2 =
A

4πdʹ2

[

(1 − c)
β2(X2 − Y2)

dʹ
−
Ve2
a0

]

(25)

uʹ3 =
A

4πdʹ2

[

(1 − c)
β2(X3 − Y3)

dʹ
−
Ve3
a0

]

(26)

pʹ =
Aρ0

4πdʹ3

(
β2a − db

)
− ρ0U0u1

ʹ (27)

ρʹ =
pʹ

a2
0

(28)

where dʹ = d − Ve⋅X
a0

, a = X2Ve2 + X3Ve3, b =
2πf
a0

(X2Ve3 − X3Ve2), c = b
β2a0

and Ve = Ω× Y =

⎛

⎝
2πf
0
0

⎞

⎠×

⎛

⎝
Y1
Y2
Y3

⎞

⎠

Like in the previous section, the sound velocity a0 and the pressure p0 are respectively equal to 1 m s-1 and 1 Pa. The rotation
frequency f of the monopole is taken equal to 1/4π so that its rotation Mach number Mωr = 2πfr /a0 is equal to 0.5. For a fluid at rest
(M0 = 0), the wave length λ0 is thus equal to 4π. A is taken equal to 0.0127 m3 s− 1 so that, for a flow at rest, the amplitude of the

Fig. 12. Pressure time histories (CGC integration method). dt = T/120. (a) M0 = 0 and (b) M0 = 0.5.

Fig. 13. Pressure error (L∞ norm) as a function of the time step dt. Surface S0.7, M0 = 0.
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pressure disturbance p’ is equal to 10–4 Pa at 10 m from the sphere center, in the plane of rotation of the monopole.
The integration surface is a sphere of radius R’, obtained by scaling the mesh of the sphere from the previous section. It rotates

around the X1 axis at the same speed as the monopole. Therefore the rotation Mach number depends on its radius. It is supersonic for
radii R’ greater than 2. It can be noted that the perturbation fields are stationary in the rotating frame of the sphere. Five scaling factors
from 1.4 to 4 are considered - i.e. 5 rotation Mach numbers from 0.7 to 2 - for the integration surface (Fig. 10) and two flow Mach
numbers are considered:M0= 0 andM0= 0.5. Examples of instantaneous pressure fields on an integration surface are given in Fig. 11.

All the computations are performed for the observation point (0, 10, 0) in the rotation plan of the monopole (Fig. 10). Results for the
pressure are compared to the analytical solution Eq. (27). For the pressure gradient, as done in the previous section, the reference
solution is the pressure gradient obtained by centered finite differences of the analytical solution Eq. (27) for 8 points around the
observation point with a very small space step h = 0.02 m (λ0/628), identical in the three directions.

For the observation point considered, the ‘acoustic Mach number’ MR in Eqs. (19) and (20) remains subsonic only for the inte-
gration surfaces S0.7 and S0.9 forM0 =0, and only for the surface S0.7 forM0 =0.5. Therefore, the results presented below concern only
these three cases.

Results for the pressure – Calculations for the three cases mentioned above are first performed with a time step equal to T/120.
Despite this moderate number of time steps to describe one monopole revolution, the pressure time histories provided by Eq. (19)
compared very well to the analytical solution Eq. (27) (Fig. 12). The evolution of the error as a function of the time step (from T/90 to

Fig. 14. Pressure gradient time histories (CGC integration method). Surface S0.7, M0 = 0, dt = T/120.

Fig. 15. Pressure gradient time histories (CGC integration method). dt = T/120. (a) M0 = 0 and (b) M0 = 0.5.
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T/720) of the FW-H calculation is plotted in Fig. 13, for the integration surface S0.7 and a fluid at rest. The order of precision is slightly
lower than the second order expected for the complete temporal scheme (derivation and integration). This is due to the integration
scheme. Indeed, because of the source motion, the interpolation described in section 3.2 is applied to non-equidistant reception times
(Fig. 2), which tends to reduce the order of precision of the calculations. The plot also shows that the error presents a minimum value
(close to 10–3 in the present case) linked to the space discretization of the integration surface.

Results for the pressure gradient – The three components of the pressure gradient are compared to the reference solution in Fig. 14, for
the surface S0.7 and a fluid at rest. This comparison is also made in Fig. 15 for the surface S0.9 and for M0 = 0.5, for the predominant
component (dp’/dx2) for the observation point considered. The results of the FW-H direct calculation by Eq. (20) are in excellent
agreement with the reference solution. For the surface S0.7 and a fluid at rest, the error (L∞ norm on the three components) of the
gradient calculation by finite differences, starting from the pressures provided by Eq. (19), is plotted as a function of the spatial step h
in Fig. 16. The second-order precision expected from the space-centered finite difference calculations is not completely achieved. As
with pressure, the slight deviation from the theoretical second-order precision can be attributed to the time integration scheme
(inaccuracies due to non-equidistant reception times that depend on the observation point, hence on h). This influence of the time
scheme on the precision of a gradient is not surprising for an acoustic propagation calculation. Furthermore, we can notice that the
error of direct calculation can be slightly higher than that of calculation by finite differences. This can be explained by the presence of
an outer second derivative in time in the direct calculation which tends to amplify errors in high frequencies. Direct gradient

Fig. 16. Pressure gradient error (L∞ norm) as a function of h in calculation by finite differences, and error level of the direct calculation. Surface
S0.7, M0 = 0, dt = T/360.

Fig. 17. Pressure time histories as a function of the integration surface (FNC integration method). dt = T/120. (a) M0 = 0 and (b) M0 = 0.5.
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calculation remains nonetheless, on the whole, more reliable.

4.3. Formulas with outer time derivatives and FNC integration method

For configurations with supersonically moving grids, calculations can no longer be performed using Eqs. (19) and (20) and the CGC
integration method. Instead, Eqs. (6) and (9) and the FNC integration method must be used, as explained in Section 3.3.

The calculations carried out in the previous section are repeated, this time using the FNC integration method and are supplemented
by calculations for surfaces for which the “acoustic Mach number” MR in the direction of the observation point is locally supersonic.
This includes surfaces S1.2, S1.6 and S2.0, for M0 = 0, and surfaces S0.9, S1.2, S1.6 and S2.0, for M0 = 0.5.

Results for the pressure – Like for the CGC integration method, the calculations are first carried out with a time step equal to T/120.
For both Mach numbersM0, the signals obtained appear identical whatever the integration surface (Fig. 17). The evolution of the signal
as a function of the time step is plotted in Fig. 18 for a flow at rest (M0 = 0), for the two extreme surfaces S0.7 and S2.0. This evolution
highlights small oscillations at high frequencies for the supersonically rotating surface (S2.0). Zooming in on the most affected time
interval (Fig. 19) shows that these oscillations appear for small time steps, but have a relative amplitude that remains lower than 0.1.
These oscillations are due to the modeling of the pressure rate upon which the FNC integration method is founded (section 3.3, second

Fig. 18. Pressure time histories as a function of the time step dt (FNC integration method). M0 = 0. (a) Surface S0.7 and (b) Surface S2.0.

Fig. 19. Zooms on pressure time histories. M0 = 0. (a) Surface S0.7 and (b) Surface S2.0.
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model). Although this pressure rate is more progressive than that of the first model, its temporal derivative remains discontinuous (see
Fig. 3). This leads to oscillations in the contribution of cells in supersonic motion for which the outer time derivative in Eq. (6) has a
predominant contribution. A more elaborate pressure rate model could eliminate these small oscillations if it were necessary for certain
applications. The results for the surface in subsonic motion (S0.7) show, for their part, a monotonic convergence of the signal with the
time step. For this integration surface, the evolution of the error as a function of the time step is plotted in Fig. 20. The error decreases
slightly slower with the FNC integration method than with the CGC one. This slight degradation in accuracy is another consequence of
the rather simple modeling of the radiated pressure rate. With the present discretization of the integration surface, the minimum error
of the CGC method is not reached by the FNC approach, within the range of time steps explored.

Results for the pressure gradient – The three components of the pressure gradient are compared to the reference solution in Fig. 21, for
the surfaces S0.7 and S2.0, and for a fluid at rest. This comparison is also made in Fig. 22 for all the integration surfaces and forM0= 0.5,
for the predominant component (dp’/dx2) for the observation point considered. The results of the FW-H direct calculation by Eq. (9)
are in good agreement with the reference solution in all the cases. For surfaces in supersonic motion, the amplitude of the spurious
oscillations are slightly superior to those observed for pressure. It is a logical consequence of the presence of a second time derivative in
the expression of the gradient.

For the surface S0.7 and a fluid at rest, the error (L∞ norm on the three components) of the gradient calculation by finite differences,
starting from the pressures provided by Eq. (6), is plotted as a function of the spatial step h in Fig. 23. For spatial steps h greater than or

Fig. 20. Pressure error (L∞ norm) as a function of the time step dt, for compact grid cells (CGC) and fully non-compact (FNC) integration methods.
Surface S0.7, M0 = 0.

Fig. 21. Pressure gradient time histories (FNC integration method). M0 = 0, dt = T/120. (a) Surface S0.7 and (b) Surface S2.0,.
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equal to λ0/100, the precision of the gradient calculation by finite differences is identical for both integration methods (CGC, FNC). For
smaller spatial steps, because of inaccuracies introduced by the radiated pressure rate model, the error with the FNC integration
method no longer decreases, unlike with the CGC method. On the other hand, with both methods, the error of the direct gradient
calculation is close to the minimum error of the calculation by finite differences, which consolidates the consistency of the results. As
with the CGC method, direct calculation thus seems more reliable, especially for signals rich in harmonics (rotor or propeller impulsive
noise, for example) for which h/λ can take both small and large values in a gradient calculation by finite differences.

5. Conclusion

Starting from the Ffowcs Williams-Hawkings surface integral formulation for a moving medium, time-domain expressions were
developed for the radiated pressure and its gradient. These expressions, with outer time derivatives, have the benefit of being relatively
simple and valid for all integration surfaces (solid or porous, fixed or moving, rigid or deformable). As they do not comprise the 1/(1-
MR) singularity, these expressions have the considerable advantage of allowing calculations with integration surfaces in supersonic
motion (case of rotating propeller or rotor meshes, for instance). An expression with inner time derivatives, likely to provide more
regular signals but limited to fixed surfaces, was also proposed.

Fig. 22. Pressure gradient time histories (FNC integration method). dt = T/120. (a) M0 = 0 and (b) M0 = 0.5.

Fig. 23. Pressure gradient error (L∞ norm) as a function of h in calculation by finite differences, for CGC and FNC integration methods, and error
levels of direct calculations. Surface S0.7, M0 = 0, dt = T/360.
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Three integration methods, based on the compact grid cells (CGC) usual simplification or a fully non-compact (FNC) approach,
were presented, each well-suited to fixed integration surfaces, subsonically moving surfaces and supersonically moving surfaces,
respectively. Calculation algorithms were proposed for each integration method, and their computational efficiency was illustrated by
examples of calculation times.

The results of these expressions and integration methods were compared to analytical solutions for the case of a fixed monopole and
for that of a rotating monopole. For fixed or subsonically moving surfaces, the computational error can be considered negligible for
both the pressure and its gradient, for both CGC and FNC approaches. They clearly show the benefit of the direct gradient calculation
over a calculation by finite differences of the pressure around the observation point, in particular for broadband signals for which the
spatial step in the calculation by finite differences cannot be optimal for all wavelengths.

Particular attention was devoted to the order of precision of the calculations, which, to our knowledge, has never been done before.
In the present case, the choice of time derivatives by centered finite differences and time integration schemes based on linear in-
terpolations leads to a theoretical second order.

For the pressure, on the whole, this theoretical second order is found quite well. With the fully non-compact method, however, the
pressure rate model, as it stands, slightly degrades the accuracy of the calculations. For surfaces in supersonic motion, which require
this particular integration method, the error linked to this model is dominant and does not really depend on the time step. Never-
theless, the error remains below 10 % in the L∞ norm and is essentially due to spurious fluctuations at the sampling frequency and a few
subharmonics that can be filtered, if necessary. It therefore seems acceptable for most applications.

For fixed or subsonically moving surfaces, the order of precision of the CGC integration method can be increased without difficulty.
Indeed, this can be achieved simply by increasing the order of the finite-difference time derivatives and the order of the interpolations
in the time integration process. However, it should be noted that the order of precision of the time integration scheme and that of the
time derivatives must be identical for consistency (the final order of precision of the calculations being determined by the smaller of the
two orders). Improving accuracy for surfaces in supersonic motion is also possible, but requires the design of a more elaborate model
for the pressure rate on which the FNC integration method is based.
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Appendix. Summary of formulas and integration techniques

This appendix summarizes the best suited integration formulas and techniques, based on the kinematics of the integration surface
(Table A.1). It should be noted that the similarity of the expressions simplifies the design of programming capable of handling all
configurations with relative ease.

Table A.1
Best suited formulas and integration techniques based on the kinematics of the integration surface.

Case Formulas Integration technique

Fixed integration surface
ṕ (X, t) =

∫

S

1
4πd

[

F+
∂Fʹ
∂τ

]

ret
dS (A.1)

∂ṕ (X, t)
∂Xj

=
∫

S

1
4πd

[

F1j +
∂F2j

∂τ +
∂2F3j

∂τ2

]

ret

dS

(A.2)

CGC (locally compact) Constant interpolation
coefficients See Section 3.1

Subsonically moving integration surface
ṕ (X, t) =

∫

S

[
F

4πd|1 − MR |

]

ret
dS

+
∂
∂t
∫

S

[
F́

4πd|1 − MR|

]

ret
dS (A.3)

∂ṕ (X, t)
∂Xj

=
∫

S

[
F1j

4πd|1 − MR |

]

ret
dS

CGC (locally compact) Non constant interpolation
coefficients
See Section 3.2

(continued on next page)
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Table A.1 (continued )

Case Formulas Integration technique

+
∂
∂t
∫

S

[
F2j

4πd|1 − MR|

]

ret
dS

+
∂2

∂t2
∫

S

[
F3j

4πd|1 − MR |

]

ret
dS (A.4)

Supersonically moving integration surface ṕ (X, t) =
∫

τ

∫

S

F
4πd δ(g)dSdτ

+
∂
∂t
∫

τ

∫

S

Fʹ

4πd δ(g)dSdτ (A.5)

∂ṕ (X, t)
∂Xj

=
∫

τ

∫

S

F1j

4πd δ(g)dSdτ

+
∂
∂t
∫

τ

∫

S

F2j

4πd δ(g)dSdτ

+
∂2

∂t2
∫

τ

∫

S

F3j

4πd δ(g)dSdτ (A.6)

FNC (fully non compact, triangular pressure rate
shape function)
See Section 3.3

Particular case of fixed integration surface described by a
subsonically or supersonically moving mesh ṕ (X, t) =

∫

τ

∫

S

1
4πd

(

F+
∂Fʹ
∂τ

)

δ(g)dSdτ (A.7)

∂ṕ (X, t)
∂Xj

=
∫

τ

∫

S

1
4πd

(

F1j +
∂F2j

∂τ +

∂2F3j

∂2τ

)

δ(g)dSdτ

(A.8)

FNC (fully non compact, rectangular pressure rate
shape function) See Section 3.4

The terms used in the various expressions are developed below:

F =
β2

d2Σ1

Fʹ =
Σ1

a0d
+

Σ2

β2

F1j = β2Σʹ
j

d2

F2j =
Σʹ
j

a0d
+M0δ1j

Σ1

a0d2 −
Cj r̂j
β2

Σ2

d

F3j = −

(
Cj r̂j − M0δ1j

)

a0β2

(
Σ1

a0d
+

Σ2

β2

)

MR =
1
a0β2

(
Ci(Xi − Yi)

d
vi − M0v1

)

Σ1 = Ai(Xi − Yi) +
(
M2

0A1 − U0B
)

β2 (X1 − Y1)

Σ2 = B −
M0A1

a0

Σʹ
j = Aj +

(
M2

0A1 − U0B
)

β2 δ1j − 3Cj r̂j
Σ1

d

Ai = ṕ ni + ρui(un − vn)

B = ρ0vn + ρ(un − vn)

See other notations and reference frame in Section 2.

Data availability

Data will be made available on request.
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