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Abstract

The knowledge graph emerges as powerful data structures that provide a deep

representation and understanding of the knowledge presented in networks. In the

pursuit of representation learning of the knowledge graph, entities and relation-

ships undergo an embedding process, where they are mapped onto a vector space

with reduced dimensions. These embeddings are progressively used to extract

their information for a multitude of tasks in machine learning. Nevertheless, the

increase data in knowledge graph has introduced a challenge, especially as knowl-

edge graph embedding now encompass millions of nodes and billions of edges,

surpassing the capacities of existing knowledge representation learning systems.

In response to these challenge, this paper presents DistKGE, a distributed

learning approach of knowledge graph embedding based on a new partition-

ing technique. In our experimental evaluation, we illustrate that the proposed

approach improves the scalability of distributed knowledge graph learning with

respect to graph size compared to existing methods in terms of runtime perfor-

mances in the link prediction task aimed at identifying new links between entities

within the knowledge graph.

Keywords: knowledge graph, knowledge graph embedding, distributed learning,
translating embeddings (TransE).
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1 Introduction

The Knowledge Graph (KG) serves as a powerful data structure that captures
relationships among diverse entities, playing a fundamental role in modeling and
understanding complex knowledge. There has been a notable resurgence of interest, as
evidenced by a multitude of research articles, solutions, analyst reports, communities,
and conferences dedicated to the subject. This popularity can be attributed in part
to the rapid advancements in graph technology in recent years, as well as the pressing
need to extract meaningful insights from data. Knowledge Graph that focus on rela-
tionships between concepts and entities are often associated with related open data
projects [1]. They are also employed by social media platforms like Facebook contains
over 100 billion connections among entities [2] as well as search engines like Google
encompasses 18 billion statements related to 570 million entities, featuring a schema
that includes 1,500 entity types and 35,000 relation types [2], and Yahoo encom-
passes approximately 3.5 million entities and 1.4 billion relations [2]. They also include
knowledge-engines and question-answering services like WolframAlpha, Apple’s Siri
and Amazon Alexa.

However, to fully leverage these KG in machine learning models and data anal-
ysis tasks, it is often necessary to represent entities and relations as numerical
vectors, a process known as knowledge graph embedding (KGE or known also as
Low-dimensional representations).

Knowledge graph embedding is a technique that transforms elements from a knowl-
edge graph into vector representations. Learning these embeddings is intended to make
it easier to manipulate graph elements (entities and relations), which are used in tasks
like entity classification, link prediction, and recommender systems [3]. Although there
are a variety of models such as TransE [4], TransH [5], and ComplEx [6] available
for generating embeddings and their training is time consuming or infeasible for large
graphs for many reasons since there are millions of nodes, billions of edges and tens of
thousands of relationships in the KGs. Training embeddings of this scale requires com-
pute resources that far exceed the capabilities of any machine. Therfore, distributed
learning of knowledge graph embedding has attracted significant interest within the
research community in recent years where the challenges related to the partitioning of
knowledge graphs is an important step.
Moreover, there is a growing need for techniques specifically tailored to partitioning
knowledge graphs, which are complex data structures containing interconnected enti-
ties, relationships and knowledge. In this research, a gap exists in this regard with
relatively few methods dedicated to knowledge graph partitioning, such as AWAPart
[7] and MCS [8].
In this paper we focus on distributed learning of knowledge graph embedding. As such,
we propose a new partitioning method to partition the KG into a set of sub-KGE.
Subsequently, these partitions are distributed among the compute nodes for training.
Finally, we apply the proposed architecture to the link prediction task.
The main contributions of this paper are summarized as follows:
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• We propose a distributed learning approach for knowledge graph embedding (Dis-
tKGE). This method enhances the efficiency of learning embeddings for large
knowledge graphs.

• We propose a new partitioning method (PartKG) that divides the knowledge graph
into sets of sub-knowledge graphs.

• We propose distributed training to efficiently process the partitioned knowledge
graph, and we experimentally evaluate its effectiveness in a link prediction task.

• We conducted experimental evaluations to assess the performance of our method
on different publicly available datasets.

The remainder of this paper is structured as follows. In Section 2, we present a
state of the art of knowledge graph embedding methods. Section 3 introduces the
proposed approach, followed by the presentation of experiments in Section 4. Section
5 covers the experimental results. Finally, we conclude the paper in Section 6.

2 State of the art

This section explores the taxonomy of knowledge graph embedding [6]. The literature
presents various approaches, broadly categorized into three groups: (i) translation-
based models, (ii) Semantic matching-based models and (iii) neural network-based
models.

Previous research on knowledge graph embedding has showcased various methods.
Let’s start by examining the translation-based models. These models employ scoring
methods based on distance, approaching the task of identifying valid triples as the
translation of entities via relations. It presuppose that a translation vector may cap-
ture the semantic meaning of a relationship between two entities and can be used
to represent that relationship. The essential concept is to learn these vectors in such
a way that the relationships between entities are preserved while representing each
entity and relationship as a vector in a continuous vector space. Among well-known
models for KGE are:
TransE [4] remains the most classic and the first translational model. It depicts rela-
tions and entities as vectors of the same euclidean space Rd. A relation r is understood
to be a translation vector that, with minimal error, joins the head entity (h) and the
tail entity (t), the scoring function as illustrated by formula (1):

fr(h, t) = −∥h+ r − t∥ℓ1/ℓ2 (1)

Where, ℓ1/ℓ2 represents the norm constraints. TransH [5] (with relation-specific hyper-
planes), it maps entities onto a hyperplane to tackle the challenge of embedding
complex relations, and TransR [9] (with relation-specific vector spaces), it addresses
the complexity of relation embedding by transforming the entities using the same
matrix. In our work, we use TransE as the most representative model. TransE stands
out as a widely used algorithm within the realm of knowledge graph embedding,
designed to acquire low-dimensional vectors for entities and relationships.
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Having observed that translation-based models employ distance-based scoring
functions for assessing similarity between distinct entities and relations, semantic
matching models, in contrast, utilize similarity-based scoring functions. Numerous
knowledge graph embedding algorithms fall under this model, and a few of them are
elucidated below.
DistMult [10] represents each entity as a vector embedding and the relationship
between the head and tail entities using a diagonal matrix (diag(.)). It uses matrix
multiplication to characterize the composition of relations. The scoring function is [11]:

fr(h, t) = hT diag(r)t =

d−1
∑

i=0

[r]i · [h]i · [t]i (2)

ComplEx [6] [12] is an extension of the DistMult model. It presents embeddings with
complex values for entities and relations, enhancing the ability to deduce antisymmet-
ric relations and uncover potential semantic associations. In ComplEx model h, r and
t are located in the complex space Cd rather than the real space. The score function
is calculated as illustrated by formula (3):

fr(h, t) = Real(hT diag(r)t̄), (3)

Where t̄ represents the complex conjugate of the tail entity and Real(.) denotes the
real part of a complex relation.

Neural network-based models have shown predictive capabilities in diverse domains
like knowledge graph-based learning and natural language processing (NLP). These
models use deep neural networks to capture non-linear dependencies and interactions
among entities and relationships. The ConvE and ConvKB are examples for this meth-
ods.
ConvE [13] was the first model to integrate cnn arichatecture into the knowledge
base completion problem and is undeniably recognized as a significant milestone in
every literature survey. CNNs consists of layers of neurons that perform convolution
operations to extract important features from the input data. In contrast to fully
connected neural networks, CNNs have the capability to acquire nonlinear features
capable of capturing intricate relationships while utilizing a significantly reduced num-
ber of parameters [6]. The key concept of ConvE lies in the use of 2D convolutional
layers to process entities and relations as matrices. The scoring function is defined as
illustrated by equation (4):

fr(h, t) = g
(

vec
(

g
(

concat(h, r) ∗ w
))

W
)

t (4)

Where concat(., .) is the concatenation operator, * represents convolution and g
denotes a nonlinear function.
ConvKB [14] uses 1D convolutional operations to capture global relationships and
temporal attributes among entities. It is a representation of the k-dimensional embed-
ding of every triple (h, r, t) into a matrix of three rows. The score function given by
eqation (5) [6]:

fr(h, t) = concat(σ([h, r, t] ∗ Ω))w (5)
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Where Ω represents a set of filters, σ is an activation function and concat(., .) is
the concatenation operator [6].

3 Proposed approach

The substantial size of the data in KGs has also become increasingly massive. For
example the Facebook knowledge graph contains billions of entities and trillions of
edges. Similarly, the Freebase comprises millions of entities and billions of edges. With
the increased amount of data, these KGs become very large which lead not only to
data storage problem but also to limited processing capacity. Although the expand-
ing size and computational complexity associated with knowledge graph, the research
community has oriented its efforts to distributed learning of large graphs (the distri-
bution of large graph learning), where one of the technical challenges is to effectively
partition this graph into enough partitions ensuring that each compute node deals
with a relatively small amount of data. The goal is to balance the workload across
all compute nodes. In addition, the partitioning strategy consists of partitioning the
knowledge graph using the Louvain algorithm [15]. This choice is attributed to its
speed and capability to generate high-quality communities [16].

The architecture that we propose, illustrated by figure 1, has been developed on
a distributed cluster of nodes. Below, we discuss every component of the proposed
architecture.

3.1 The proposed architecture: A distributed learning of

knowledge graph embedding: DistKGE

In the proposed architecture (Global architecture figure 1) the KG is first partitioned
and then partitions are distributed across the compute nodes for training. Therefore,
the distributed learning of knowledge graph embedding process encompasses the
following steps:

• Partition the knowledge graph into p-partitions.
This step partitions the initial knowledge graph into a set of sub-KGE using PartKG,
our new partitionng method (it is discussed in detail in 3.2).

• Distributed training.
Once the knowledge graph is partitioned into a set of sub-KGE, these partitions
are eventually distributed across a set of nodes and local learning takes place to
perform a link prediction task. We describe this process over a cluster of compute
nodes where each node is responsible of loading data using (SGD) and running a
copy of the model (Embedding Model()). This step involves launching a worker on
each node and every iteration of the training process samples a negative triplets (
which is usually grounded in the assumption that the model, in its operation, does
not solely generate positive triples) in its partition.
Then when we refer to the optimization step, it typically involves simultaneously
optimizing both types of triplets (negative and positive). By doing so, the embed-
ding model improves its ability to represent relationships between entities in the
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knowledge graph. This enhancement contributes to the overall quality of embeddings
and the model effectiveness in accurately capturing the graph structure. Ultimately,
this technique strengthens the model capacity to predict new relationships and to
acquire embeddings (vector representations) for entities and relations in a man-
ner that minimizes the distance between the embeddings of positive triplets, while
simultaneously maximizing the distance between the embeddings of negative triplets
(explained in detail in 3.3).

Fig. 1 Global architecture of the proposed approach: DistKGE

The following subsections provide a detailed description of each of the steps listed
in the proposed architecture.

3.2 Knowledge graph partitioning

In this article, we introduce a PartKG method, which is inspired by the Louvain
algorithm to partition the KG into sub-KGE. It is based on the following element such
as the modularity metric [17].
Modularity1 is defined as:

Q =
1

2m

∑

ij

[

Aij −
kikj
2m

]

δ(ci, cj) (6)

Where:

• Q represents modularity, which is the value we aim to maximize.

1Q
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• Aij is a binary indicator equal to 1 if a link exists between nodes i and j and 0
otherwise.

• ki and kj are the degrees of nodes i and j, meaning the number of links connected
to these nodes.

• 2m is the total number of links (edges) in the graph.

• ci and cj represent the communities to which nodes i and j belong, respectively.

• δ is a delta function that equals 1 if nodes i and j are in the same community
(ci = cj) and zero otherwise.

The main steps of PartKG algorithm

Algorithm 1 Partition KG (PartKG) summarizes the entire process. Initially, a mod-
ification is conducted to the structure of the knowledge graph to generate a suitable
representation required for the execution of the Louvain algorithm [18]. Such modifi-
cation results in the transformation of nodes (entities) into triplets;
( N ⇐ {tn}; ∀tn ∈ T (represents a set of triplets) ) and the relations are the result of
a similarity between the relations of each pair of triples;
R ⇐ {Result of Sim(r(ti), r(ti+1)); ∀(ti) and (ti+1) ∈ T};
Where r represents the relation, ti and ti+1 represent the number of triplets.

For this evaluation, we employ Sim ⇐ cos(T1, T2) =
(

T1·T2

∥T1∥∥T2∥

)

;

In the vector space model, ’Cosine similarity’ is widely employed to measure the sim-
ilarity between two vectors. This is due to its effectiveness in assessing the semantic
proximity of relations among triplets [19]. If it achieves a high score it indicates that
the pair of triplets is similar (sharing the same relation), otherwise, they are not.
If the triplets share the same relation, it indicates that this relation serves as a link
between the entities in the updated knowledge graph representation. On the other
hand, if the triplets do not share the same relation, a random selection is made from
one of the relations within these triplets to establish a connection between the two
entities.

Following this new representation of the knowledge graph, we apply the Louvain
algorithm to conduct the partitioning. The latter is essentially based on the following
steps:

• The first step consists of a partitioning of the graph into smaller communities.

• The second step consists of the aggregation of the communities obtained during the
first step to form larger and more coherent communities.

In another perspective, it treats each triplet (entities) as an independent commu-
nity;

C ⇐ ((tn) ∈ T ) (7)

Where, C represents communities in the louvain algorithm, and (tn) ∈ T represents
the triplets.
It randomly chooses a starting node and calculates the modularity Q (equation 6) of
their neighbors, and this iterative procedure continues until the value of Q reaches
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its maximum, this indicates that it remains constant, or until i reaches the specified
value I (the algorithm stops when the number of iterations is predetermined from
the beginning and is finished). Finally, an update is performed to obtain a set of
sub-knowledge graphs.

Algorithm 1 PartKG algorithm

Input: Set of triplets (t1, . . . , tn), where (t1, . . . , tn) ∈ T ;
Output: KGE partition on sub-KGE;
N ⇐ {tn | ∀tn ∈ T};
R ⇐ {Result of Sim(r(ti), r(ti+1)); ∀(ti) and (ti+1) ∈ T};

Sim ⇐ cos(T1, T2) =
(

T1·T2

∥T1∥∥T2∥

)

Start Louvain algorithm

C ⇐ {(tn) ∈ T}
For i ∈ (1..I) Do

Do

Q = 1
2m

∑

ij

[

Aij −
kikj

2m

]

δ(ci, cj)

While (Q reaches its maximum)
End For

Return (KGE partition on sub-KGE)

Upon completion of the partitioning process, the graph partitions identified by the
PartKG algorithm are then forwarded to the distributed training phase, as detailed
in the subsequent section 3.3.

3.3 Distributed training of knowledge graph embedding

The distributed processing is carried out using Ray framework which is a unified way
to scale Python and AI applications from a laptop to a cluster.
With Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray
is designed to be general-purpose, meaning that it can performantly run any kind of
workload.

Step1: Local learning on each sub-KGE. As shown in figure 1, the initial
knowledge graph is fragmented into several partitions, each of them is assigned to
a machine (node). Each compute node is specifically assigned to one or more sub-
KGE. This assignment remains constant throughout the training phase, ensuring a
continuous focus on a specific subset of data. It facilitates the development of in-depth
expertise on the relationships and entities within the assigned partition for each node.

Then, a set of negative triplets is generated, composed of combinations of arti-
ficially created relations to enrich the training dataset. This process is crucial for
enhancing the model ability to discern relevant relationships within the assigned par-
tition by introducing examples of relations that may not be present in the initial
knowledge graph. The next task in the distributed training process involves training
the embedding model (transE) using the complete triplet set. It is crucial for enrich-
ing the training dataset by introducing more complex and varied scenarios. To achieve
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this, we combine the newly generated negative with the existing positive triplets. This
combination creates a diverse set that exposes the model to a variety of potential rela-
tions. Each node, based on its assigned data partition, uses this set to train the graph
embedding model.

During the training process, the model adjusts its parameters using the complete
triplets set. This enables it to learn from existing positive relations and comprehend
potential relations between entities. Throughout each iteration, the model parameters
are fine-tuned to minimize the predicted loss. This loss is assessed by comparing the
model predictions with the actual relations observed in the complete training set,
which includes both existing positive relations and potential relations generated during
the training process. The optimization objective is to align it more closely with the
real and potential relations in the dataset. This alignment enhances the model ability
to generalize and make more accurate predictions.

Step2: Aggregate the result of local learning on sub-KGE. The aggregation
involves combining these local learning results from all computing nodes to create
a unified and comprehensive model update. It ensures that the knowledge acquired
by each node during its local learning contributes to the collective understanding of
the entire knowledge graph. It contributes to building a globally informed model that
reflects the collective knowledge acquired from different data.

This step is designed to construct a model that efficiently captures the richness
and diversity of data associated with this type of graph. Consequently, it enhances the
model ability to comprehend more intricate relationships within the large knowledge
graph.

To validate our contribution we carry out the different experiments in the following
section.

4 Experiments

In our experiments, we tested our proposed approach using MalKG a malware dataset
of cybersecurity domain. The main objective behind these was to predict rates of
new relationships among these malware instances using knowledge graph embedding
(KGE). This approach assists cybersecurity managers in discovering and predict-
ing future malware. Aditionnaly, we have experimented our distributed learning
approach using datasets of other domains including FB15K, WN18, and FB15K-237
as illustrated in table 1.

Table 1 Dataset statistics

Dataset Entities Relations Triples

FB15K 14.951 1345 592.213
MalKG 27.354 34 40.000
WN18 40.943 18 151.442
FB15K-237 14.541 237 310.116
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• FB15K dataset [20]: Freebase is a public dataset knowledge graph, it contains a very
large set of data in different domains like film, music, medicine, business etc. There
are presently more than 80 million entities and 1.2 billion triplets. This version
includes 592.213 triplets with 14,951 entities and 1,345 relationships.

• MalKG dataset [21]: The malware knowledge graph or MalKG represents hetero-
geneous multi-modal data on malware in the cybersecurity domain. This dataset
consists of almost 40.000 triples, produced by 27.354 entities and 34 relations.

• WN18 dataset [22]: The WordNet knowledge graph consists of a subset of rela-
tions from the WordNet lexical database. It contains 151.442 triples, 18 lexical and
semantic relations and 40.943 entities.

• FB15K-237 dataset [23]: Is a subset of FB15K which contain 310.116 triplets with
14.541 entities and 237 relationships.

Link Prediction

The link prediction (LP) task refers to the process of utilizing the existing triplets
within a knowledge graph to deduce the new ones. This essentially involves predicting
the correct entity that completes a valid triple with 〈h, r, ?〉 or 〈?, r, t〉 [24] in order to
forecast the new relationship. We divide the set of triplets T into three subsets: train,
valid and test as shown in table 2.

Table 2 Number of training, validation and testing triples on each
dataset. Each split includes positive and negative triples

Dataset Training triples Validation Triples Testing Triples

FB15K 483.142 50000 59071
MalKG 28.000 6000 6000
WN18 141.442 5000 5000
FB15K-237 272.115 17535 20466

Metrics

To assess the performance of our model against baseline methods. In link predic-
tion, we use Mean Rank, Hits@10 (the proportion of correct entities ranked in the top
10) and Hits@5 as a metrics.

Mean Rank

Corresponds to the arithmetic mean over rank Scores of the triples:

Mean Rank =
1

|P |

∑

r∈P

r (8)

Hits@10

Is a metric that accounts for the proportion appearing in the first 10 top-scored
triples.
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This metric is bounded in the [0, 1] range and its values increases with [0, 1] :

Hits@10 =
(|r ∈ P |r ≤ 10)

|P |
(9)

where |P | is the number of rank scores and r is rank.
Hits@5

Is a metric that accounts for the proportion appearing in the first 5 top-scored
triples. This metric is bounded in the [0, 1] range and its values increases with [0, 1] :

Hits@5 =
(|r ∈ P |r ≤ 5)

|P |
(10)

where |P | is the number of rank scores and r is rank.
System Setup

Our proposed architecture was developped on Ray 2.3.1 [25] as the distributed
training framework, PyTorch 1.9.0 [26] as the backend deep learning framework and
PyTorch Geometric 1.7.2 [27] for graph embedding. Our experiments were conducted
on a cluster consisting of three nodes. We used transE model to learn the embeddings
of nodes and relationships. For this model, we set the hyperparameters as follows:
learning rate 0.005, embedding dimension K = 5. For all experiments, we train all
models for a maximum of 1000 epochs using Adam [28] optimizer.

5 Experimental results

In this section, the experiments are conducted to better comprehend the impact of
centralized processing on the quality of knowledge graph embedding. Additionally, we
aim to assess performance in terms of processing time using various metrics, including
MR, Hits@10, and Hits@5, for the task of link prediction.

Table 3 Result of centralized processing with DGL-KE

Centralized processing with DGL-KE

Dataset MR Hits@10 Hits@5 Time processing (ms)

FB15K 243.26 0.354 0.265 72
MalKG 1167.76 0.130 0.094 217
WN18 6428 0.338 0.320 103
FB15K-237 477.02 0.240 0.171 59

The tables (3 and 4) shown the results of various metrics on the FB15K, MalKG,
WN18 and FB15K-237 datasets using two popular library Deep Graph Learning(DGL-
KE) [29] and TorchKGE [30]. We measured the processing time for the TransE model
shows that really there is not a big difference between the two methods used. The
results show that with the use of DGL-KE the values of the metrics are higher than
TorchKG. Therefore, we observe that the TransE model gives more efficient results
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Table 4 Result of centralized processing with TorchKGE

Centralized processing with TorchKGE

Dataset MR Hits@10 Hits@5 Time processing (ms)

FB15K 221 0.283 0.254 75
MalKG 1092.46 0.116 0.068 223
WN18 4207.23 0.332 0.304 107
FB15K-237 429 0.262 0.157 64

with DGL-KE in the new link prediction task. Using DGL-KE we get the best train-
ing time compared to TorchKG. On the FB15K dataset we achieve a time of 72 ms
compared to 75 ms with torchKG. MalKG, WN18 and FB15K-237 are attained a time
of 217 ms, 103 ms and 59 ms against 223 ms, 107 ms and 64 ms with TorchKG.

These experiments reveal the results regarding the model performance in link pre-
diction across diverse datasets in a centralized processing setting. The metrics MR,
Hits@10, and Hits@5 provide insights into the quality of the embedding, while the
processing time conveys information about its efficiency and speed in accomplishing
the desired task.

m
Results of the running time of distributed training

m
In this experiments, we present the outcomes of our experimental strategy. We con-

duct a comparison between our proposed distributed training method and a centralized
training. First of all, we assess the efficacy of various partitioning strategies apart
from DistKGE and their impact on execution times with random partitioning and
Metis partitioning[31]. With random partitioning the knowledge graph is divided ran-
domly, and in the context of Metis the process seeks to minimize the edge cut between
partitions, balance the workload among them and obtain high-quality partitions.

Fig. 2 Results of training time on the FB15K
dataset

Fig. 3 Results of training time on the MalKG
dataset
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Fig. 4 Results of training time on the WN18
dataset

Fig. 5 Results of training time on the FB15K-237
dataset

In figures 2, 3, 4, and 5, the comparison of DistKGE performance in link prediction
tasks across various datasets reveals that it outperforms other methods in terms of
processing time. Specifically, on the FB15K dataset, utilizing 2 nodes and 3 nodes with
DistKGE results in the best training times 52 ms and 50 ms, respectively, surpassing
the random partitioning method 59 ms and 52 ms on 3 nodes, and the Metis partition-
ing method 59 ms and 57 ms. Moving to the MalKG dataset, DistKGE demonstrates
efficient processing times of 128 ms and 123 ms on 2 and 3 nodes, respectively, com-
pared to random partitioning 152 ms and 149 ms, and Metis partitioning 149 ms and
152 ms. The WN18 dataset exhibits a similar trend, with DistKGE achieving times of
96 ms and 75 ms on 2 and 3 nodes, while random partitioning and Metis partitioning
show higher times, ranging from 97 ms to 102 ms. Finally, for the FB15K-237 dataset,
DistKGE delivers impressive processing times of 56 ms and 50 ms on 2 and 3 nodes,
outperforming random partitioning 58 ms and 56 ms, and Metis partitioning 58 ms
on both nodes.

We can conclude that our DistKGE approach gives better results in the new link
prediction task than random partitioning and metis. As well as when increasing the
number of nodes the processing will be carried out in a minimum of time so it is more
accelerated than working on a single node.

m
Evolution of the MR metric in the different approaches

m
To evaluate the performance of our model against random partitioning and Metis

partitioning . We vary the number of training 1, 2 and 3 nodes.
Figure 6 illustrates that our proposed approach outperforms Metis, and in comparison
to random partitioning, demonstrates highly efficient results across various datasets,
including FB15K, MalKG, WN18, and FB15K-237. The distributed training, 2 and 3
Nodes, MR scores were more scalable compared to centralized processing (1 node). We
observe that with 2 nodes we obtain the best score of 7796.3 from the WN18 dataset
for the DistKGE method.
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Fig. 6 Evolution of MR in DistKGE method Fig. 7 Evolution of MR in random method

Fig. 8 Evolution of MR in metis partitioning method

Therefore working with a distributed setup offers significant advantages in terms
of embedding quality efficiency and processing time (as its shown at results of the
running time of distributed training ).

m
Evolution of the Hits@10 metric in the different approaches

m
In these experiments, figures 9, 10, and 11, we compare the performance of the

embedding quality using the Hits@10 metric in the link prediction task of all knowledge
graph partitioning methods, DistKGE, random partitioning and Metis partitioning.
We note the same observation that working in distributed setup gives better results
than a centralized processing (1 node), for example for the FB15K dataset with the
DistKGE method at a score of 41% on 2 nodes and 38% on 3 nodes while in centralized
mode it reaches a score of 35%. As well as for the DistKGE approach, the scores of
this metric achieve more efficient values than those of other methods.
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Fig. 9 Evolution of Hits@10 in DistKGE method Fig. 10 Evolution of Hits@10 in random method

Fig. 11 Evolution of Hits@10 in metis partitioning method

Therefore, we can deduce that when we do well-guided distributed learning we can
have effective results in terms of model performance than doing random learning.

m
Evolution of the Hits@5 metric in the different approaches

m
The figures 12, 13 and 14 show that our proposed approach DistKGE is scalable

compared to centralized training, which takes much longer during this experience. For
example the WN18 dataset has a score of 34% and 33% with DistKGE, 33% and 32%
for random partitioning and 34% and 33% for Metis partitioning, while in centralized
mode we have a score of 32% . And almost it is the same case for the following datasets
FB15K, MalKG, and FB15K-237 the score of the Hits@5 metric realizes an evolution
from 1 node to 2 and 3 nodes.

We can therefore deduce that when we do well-guided distributed learning we can
have effective results in terms of model performance than doing random learning.
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Fig. 12 Evolution of Hits@5 in DistKGE method Fig. 13 Evolution of Hits@5 in random method

Fig. 14 Evolution of Hits@5 in metis partitioning method

6 Conclusion and future works

In this paper, we proposed DistKGE, a distributed learning approach for knowledge
graph embedding. DistKGE is based on a PartKG, a novel approach for partitioning
knowledge graph using the Louvain algorithm. Subsequently, we establish distributed
training with Ray for the TransE knowledge embedding model. We compared our
proposed method for a link prediction task. Our experimental results shown that
working in centralized system does not affect the processing efficiency of a task. While
using our contribution shows processing speedup on a set of nodes and our proposed
algorithm is scalable than non-distributed training.

In our future work, we will attempt to alter the partitioning method and assess
its impact comparing it with our own approach for example using other partitioning
algorithms and also distributed processing on more nodes is a very interesting task to
test it.
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