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Topological lasers based on optical cavity arrays –such as the Su-Schrierfer-Heeger (SSH) array–
in active media have been recently realized in various platforms. In all these studies the coupling
coefficient between any adjacent sites of the lattice was positive. Consequently, the lasing mode
featured an out of phase oscillation which is typically impractical for any application because it
weakens the far field intensity. This problem can be mitigated by altering the coupling signs along the
array. However, implementing negative evanescent coupling in microrings, microdisks or micropillars
is not possible using standard designs and fabrication processes. In this work, we design and
experimentally implement a photonic crystal cavity array that consists of three sites where the sign
of one coupling parameter is inverted, which enables the observation of an in-phase topological zero
mode. The photonic crystal array presented here utilizes the recently proposed “image barrier”
technique, where the photonic barriers are copied at opposite sides of the array, which mitigates
chain-termination effects, and at the same time enables sign flip from one barrier to the adjacent one,
resulting in “twisted coupling”. Consequently the overall symmetry of the zero mode is inverted and
becomes even, which is experimentally demonstrated. Our work opens the door for implementing
a new generation of phase-locked topological laser arrays that oscillates in the same phase with
enhanced far field optical intensities.

I. INTRODUCTION

Topological zero modes in optics and photonics are col-
lective excitations of coupled waveguide or cavity arrays
whose frequency is pinned to a particular point of the
optical spectrum [1]. These states have attracted consid-
erable attention recently due to their robustness against
a certain class of perturbation. The topological features
of these modes are warranted by one or more underlying
lattice symmetries such as chiral (also known as sublat-
tice) symmetry [2–11] and particle-hole symmetry [12–
14]. For instance, in one dimensional geometries such as
the Su-Schrierfer-Heeger (SSH) array, these modes arise
because of chiral symmetry. As a result, the eigenfre-
quencies associated with these modes are robust against
variation in the nearest neighbour coupling distribution.
In non-Hermitian systems featuring optical gain and loss,
however, chiral symmetry does not pin a zero mode un-
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less the latter is also guaranteed by the Lieb theorem. An
even number of non-zero modes might become degenerate
at the zero mode energy as a function of a system param-
eter, but they emerge again as non-zero modes when this
parameter is further tuned.

Nevertheless, there are also zero modes in non-
Hermitian systems that are protected by a given sym-
metry, which allows them to survive within a sizeable
neighborhood in parameter space, such as gain/loss per-
turbation in the cavities. For example, in the case of non-
Hermitian particle-hole symmetry (NHPH), the energy
eigenvalues come in pairs satisfying Ωi = −Ω∗

j , where
Ω is the complex eigenfrequency. As a result, the non-
Hermitian zero modes evolves along the imaginary axis
of the complex plane [<(Ωi) = 0] for a whole range of
spatial perturbation of the pump beams [13, 14]. Be-
cause of this symmetry protection, photonic zero modes
become compatible with a high degree of freedom in the
coupling design, which makes them interesting for ap-
plications in topological lasers [15–18] and laser mode
engineering [13, 19], as well as in the context of a recent
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proposal for applications in optical computing [20].
Small non-Hermitian cavity arrays, such as a lin-

ear SSH array of three evanescently coupled cavities (a
“photonic trimer”), are minimal systems exhibiting zero
modes. Recently, zero modes in coupled photonic crys-
tal (PhC) nanocavities have been demonstrated through
spatially-resolved micro photoluminescence experiments
[21]. Such zero modes arise from the Lieb’s theorem in
the effective Hermitian limit (i.e., with uniform gain or
loss across the array), which guarantees their existence
provided that the number of cavities is odd. They persist
in the presence of non-uniform gain and loss, thanks to
the protection from the NHPH symmetry. In Ref. [21],
only one pump spot has been utilized, which was not
efficient enough to bring the non-Hermitian zero mode
above the laser threshold. This is because the zero mode
was close to the dark mode of the Hermitian counter-
part array, i.e. it was mostly localized in the extreme
cavities with only a few percent of intensity in the cen-
ter one, hence difficult to excite with a single light spot.
In a subsequent work, such a “dark-like” zero mode was
brought above the laser threshold through the spatial
patterning of the pump beam using a spatial light mod-
ulator (SLM) [22]. In this latter study, the laser zero
mode could be observed as the excitation was maximum
in the two extreme cavities, and it has been shown to be
robust against a certain amount of pump-unbalance. Im-
portantly, these lasing zero modes inherit much of their
Hermitian counterpart (i.e. the zero modes of the pas-
sive cavity array without gain or loss). In particular,
they feature: i) dark-mode characteristics, where the in-
tensity of the center cavity vanishes; ii) anti-symmetric
field distribution, arising from π phase jump between the
extreme cavities. The first of these features is a direct
consequence of chiral symmetry while the second arises
because of the positive coupling coefficients between the
neighboring elements. As a result, coupling these lasing
modes to the outside world is challenging. In addition,
in these previous studies, coupling perturbation effects
have not been investigated.

In this work, we consider zero-modes in PhC arrays
of a different regime. Namely, we investigate a three-
coupled cavity array with two different couplings, that
can be seen as the embryo of a larger SSH chain. While
PhC topologically protected modes have already been re-
ported in PhC coupled cavity arrays [23], here we pro-
pose a twisted coupling configuration to induce in-phase
oscillation, focusing on a minimal coupled cavity array.
In order to realize such symmetry-protected zero modes,
all the PhC cavities must have the same resonance fre-
quency. However, the unavoidable edge effects causes

the outer cavities to have slight detuning from the in-
ner ones. To mitigate this problem, we employ what we
call an “image barrier” design, which consists in copying
photonic barriers at opposite sides of the nanocavities.
This technique, together with the barrier engineering ap-
proach, provides enough degrees of freedom for control-
ling the coupling sign between any two adjacent cavities.
By taking advantage of this feature, we demonstrate a
bright zero mode in a PhC cavity array that consists of a
nanophotonic trimer with alternating coupling sign, thus
resulting in an in-phase zero mode. It is important to
note that while negative coupling can be achieved in laser
written waveguides [24], these platforms are not suitable
for laser applications due to the difficulty of including
gain medium and controlling the pump profile. In addi-
tion, the technique proposed in [24] relies on introduc-
ing extra elements (waveguides) with precise detuning
which increases the complexity of the system. On the
other hand, the photonic crystal platform used here is
planar which offers two advantages: (1) It is compatible
with laser systems as has been demonstrated by numer-
ous groups including ours (our experiment here is im-
plemented using III-V semiconductor material platform
as we discuss later in detail), and (2) It can be pumped
optically from the top which allows for controlling pump-
ing profiles to study different lasing regimes. Addition-
ally, the planar nature of our geometry makes it ideal for
implementing other exotic topological structures that re-
quired 2D optical lattices [25–28]. Equally interestingly,
our platform can in principle allow for extending these
previous studies to the lasing regimes and investigating
the interplay between their topological features and non-
linear laser dynamics. Our work then provides the proof-
of-concept towards the realization of in-phase topological
modes in one dimensional active photonic arrays, which
could prove useful for building a next generation of topo-
logical laser systems.

II. ZERO MODES IN A PHOTONIC TRIMER:
MODEL PREDICTIONS

We consider the system depicted in Fig. 1, which
consists in three evanescently coupled optical cavities
(n = 1, 2, 3) with linear resonant frequencies ω0,n to-
gether with cavity damping times τn that we assume all
identical (ω0,n = ω0, τn = τ), and conservative coupling
parameters K12 and K23, which are different in general.
Within a coupled mode theory, the equations of motion
read:
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da

dt
= −iHa,

H =

ω0 + αHg1 + ∆ω1 K12 0
K12 ω0 + αHg2 + ∆ω2 K23

0 K23 ω0 + αHg3 + ∆ω3


+ i

g1 − 1
τ 0 0

0 g2 − 1
τ 0

0 0 g3 − 1
τ

 , (1)

where gn = −α(Nn)Γ/2cnr are the gain coefficients, Γ
is the filling factor of the gain medium, c the speed of
light, nr the effective refractive index of the transpar-
ent medium, N the charge-carrier density in cavity n
and α(N ) the carrier-dependent absorption of the active
material. Here we use a logarithmic model for the sat-
urable absorption suitable for semiconductor quantum
wells (QWs) where N varies over a wide range of values
(from well below transparency to carrier saturation)[21]:

α(N ) = − ω0

cnr
· log

(
N +A

N0 +A

)
, (2)

where A is a constant and N0 the carrier density at QW
transparency. The terms αHgn in Eq. 1, where αH is the
Henry factor of the QWs, account for carrier-dependent
refractive index change and lead to pump induced reso-
nance blue-shift. The passive —cold cavity— detunings
are ∆ωn. Note that the real matrix in Eq. 1 accounts for
the energy conserving —Hermitian— Hamiltonian, while
the imaginary part is the non-Hermitian operator.

We first discuss non-Hermitian zero modes in the sim-
plest case where αH = 0, i.e. in the absence of any pump-
induced blue-shift effect, and where the passive detunings
are equal (∆ωn = ∆ω), which will be possible in the ac-
tual PhC cavity system by means of the image barrier
technique discussed in the next Section; we choose the
origin of frequency to be ω0+∆ω, i.e. ω → ω−(ω0+∆ω),
such that zero modes verify ω = 0. Let us assume that
the cavity 3 is pumped with N3 = 0.23 (g3 = 1.045τ−1),
and we let the gain in cavity 1 vary from N1 = 0
[g1 = −3.57τ−1, black squares in Fig. 1(a)] to N1 = N3

[black crosses in Fig. 1(a)]. The trajectories of the eigen-
values are displayed in Fig. 1(a) for K12 = 15.02τ−1

and K23 = 12.36τ−1, showing the evolution of the com-
plex eigenvalues ε as the pump is increased in the left
cavity; note that the imaginary part of the zero mode
frequency gets close to zero at the final state, therefore
lasing oscillation is predicted for such a mode. This has
been experimentally demonstrated in Ref [22] for equal
couplings.

It can be observed in Figs. 1(b)-(c) that the non-
Hermitian zero mode features π/2 phase-shift between
adjacent cavities (see horizontal bars). Importantly, un-
like the uniform coupling case, the zero mode intensity is
unbalanced, being largest in the cavity next to the weak-
est coupling, here the rightmost cavity [green lines in Fig.

1(b)-(c)] which is close to K23. Note that, in the general
case where the pumping is different in the two extreme
cavities [as in Fig. 1(b)] the central cavity intensity is
nonzero. However, as the two pump intensities become
equal [Fig. 1(c)] the central cavity intensity of the zero
mode vanishes. The latter case reduces to a dark zero
mode and geometric frustration, analogous to the purely
Hermitian case. The intensity imbalance can be easily
explained in the dark zero mode case of Fig. 1(c) by set-
ting an = An exp(−iεt) and A2 = 0 in Eq. 1, leading
to

A3

A1
= −K12

K23
. (3)

We stress that Eq. 3 no longer holds in the general case of
non-uniform pumping, for instance of Fig. 1(b), because
the central cavity intensity becomes nonzero. However,
since the latter is only a few percent of the total mode
energy, Eq. 3 remains approximately valid, which can
be justified using a perturbation theory (see, for exam-
ple, Ref. [29]). As a result, the mode energy distribution
generally follows the rule of larger intensity in the cavity
next to the weakest coupling, which holds even when the
weakest intensity —in the example Fig. 1, the leftmost—
cavity is pumped at a higher level compared to the cavity
with the highest intensity —in the example Fig. 1, the
rightmost— one.

It is important to point out that the zero mode oscil-
lates out-of-phase as long as the two coupling signs are
the same [Figs. 1(b)-(c)]. When only one coupling sign is
flipped, the overall symmetry gets inverted as revealed in
Figs. 1(d)-(e), for K12 = −24.92τ−1. We will show in the
following section that such a zero mode, when imaged in
the far field, features a local maximum at the normal di-
rection of emission, consistent with the overall symmetric
field distribution. From the applications viewpoint, zero-
modes with “twisted coupling” are potentially interesting
for improving photon collection.

Including the pump-induced blue-shift effects, modeled
here through the αH -factor in Eq. 1, has the conse-
quence of blue shifting all the modes. Red trajectories
in Fig. 1(a), obtained for αH = 3, depict the evolution
of eigenvalues as the pump intensity in cavity 1 is in-
creased, while that in cavity 3 remains fixed. Note that
the two-spot pumping configuration efficiently excites the
zero mode laser, even in the presence of blue-shift effects
[22]. Importantly, the nonzero αH -factor also modifies
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(a)

Variable pump
N1

Fixed pump
N3	=0.23

(b)𝐾12 𝐾23 = 12.36t−1

Cav3Cav2Cav1

(d)

(e)

𝐾12=15.02 t-1

𝐾12=15.02 t-1

𝐾12=-24.92 t-1

𝐾12=-24.92 t-1

(c)

FIG. 1. Zero mode with non-uniform couplings: field localization and non-Hermiticity. (a) Top: schematics of three evanescently
coupled cavities with different coupling parameters: K23 = 12.36τ−1 is fixed, K12 is varied. Bottom: evolution of the mode
frequencies as cavity 1 is pumped from N1 = 0 (squares) to N1 = 0.23 (crosses), for K12 = 15.02τ−1. Black: αH = 0, and red:
αH = 3. Field amplitude and phase spatial distributions from the CMT model with: (b)-(c) K12 = 15.02τ−1 (corresponding to
a barrier perturbation parameter of h12 = 0.1, see Sec. III); (d)-(e) twisted coupling with K12 = −24.92τ−1 (corresponding to
a barrier perturbation parameter of h12 = −0.35). The photon lifetime is τ = 7 ps. Cavities are located at x1 = 60, x2 = 100
and x3 = 140. The extension of the gaussian pump profile is σ = 40 (see Appendix), and the colored lines in (b)-(e) represent

the cavity intensities I
(j)
n (x), modelled as I

(j)
n (x) = |E(j)

n (x)|2, where E
(j)
n (x) = exp[−(x− xn)2/σ2

c ]A
(j)
n , with σc = 30 and A

(j)
n

the cavity amplitudes of mode j. Vertical gray bars indicate the cavity positions. αH = 0 in (b)-(e).

the cavity phases, while essentially preserving the phase
difference between the two extreme cavities. Such phase
perturbations, however, have important consequences in
the mode radiation patterns, as will be discussed in Sec.
III B.

III. RESULTS

We fabricated suspended Indium Phosphide (InP)-
membranes containing three coupled PhC L3 nanocav-
ities with embedded InGa0.17As0.76P QWs, whose pho-
toluminescence (PL) is centered about λ = 1520 nm. We
have designed the central hole-row in the PhC barriers
with radius r3 = r0(1 + h), r0 being the hole radius of
the underlying PhC lattice (r0 = 0.266a, a is the period
of the triangular lattice lying in the range 400−420 nm).
We call the parameter h (|h| < 1) the barrier perturba-
tion. In order to increase the Q-factor [30], the two holes
closing each cavity have a reduced radius r1 = r0−0.06a
and are shifted apart by s = 0.16a. Also holes around the
cavities are modified with a period 2a by r2 = r0 + 0.05a
in order to improve the beaming quality of the emit-
ted light and hence the collection efficiency [31]; con-
sequently, beaming holes inside the barrier have radius
r4 = r2(1 +h). The coupled cavity structure is displayed
in Fig. 2(a), incorporating two different barrier parame-
ters, h12 and h23 at the left and right sides, respectively.

With the aim of avoiding cavity-to-cavity detuning as
a consequence of varying h, we have utilized the image
barrier technique that copies opposite barriers at the ter-
minations of the cavity array (details will be published
elsewhere). As a result, the three cavity detunings are
approximately equal, ∆ωn ≈ ∆ω(h12) + ∆ω(h23), where
∆ω(h12) and ∆ω(h23) are the cavity detunings in the
presence of the modified left and right barrier, respec-
tively.

A. Non-uniform coupling: photoluminescence maps

We have first experimentally characterized the cou-
pling parameter as a function of the barrier perturba-
tion h using a two coupled-cavity configuration. Micro-
photoluminescence (PL) experiments were performed to
measure the emission spectra of the cavities as a function
of the spatial position of the illumination spots, which is
varied by means of a PZT-driven sample holder. The
sample is pumped on the surface using a pulsed (∼ 100
ps-pulse duration) laser at λ = 785 nm through a mi-
croscope objective (100x, N.A.=0.95), and the emission
is then collected by the same microscope objective and
sent to a spectrometer coupled to a nitrogen-cooled in-
frared sensor. Figure 2(b) shows the coupling parameter
as a function of h, which has been obtained from the
mode splitting measurements in the photonic dimer.
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FIG. 2. (a) Schematics of the three coupled PhC L3 nanocav-
ities with image barriers: the left barrier (red) is copied at the
right side of cavity 3, and the right barrier (yellow) is copied
at the left side of cavity 1, which ensures uniform detuning.
(b) Experimental determination of intercavity coupling in a
two coupled cavity system as a function of the barrier pertur-
bation. In a three-coupled cavity system where h23 = 0, the
green (red) background stands for regions where |K12| < |K23|
(|K12| > |K23|). (c)-(d) PL intensity maps upon scanning of a
single pump spot across the three coupled cavity system. (c)
h12 = −0.1, where the weakest coupling is the one between
cavities 1 and 2, and (d) h12 = 0.1, where the weakest cou-
pling is the one between cavities 2 and 3. It can be observed
that the PL maximum of the central mode (quasi-zero mode)
is displaced from the geometrical center (central dashed white
line), leaning towards cavity 1 in (c) and towards cavity 3 in
(d).

In the three coupled cavity array we fix the right bar-
rier to h23 = 0 (unperturbed) and fabricate samples with
h12 ranging from −0.35 to 0.35. Note that the coupling
magnitude between cavities 1 and 2 is weaker than that
between cavities 2 and 3 in the range −0.3 < h12 < 0
[Fig. 2(b), green region], whereas the opposite situation
is verified outside this range [Fig. 2(b), orange region].
We then choose two representative cases: h12 = −0.1
leads to |K12| < |K23| [Fig. 2(c)], and h12 = 0.1 verifies
|K12| > |K23| [Fig. 2(d)]. Later on, we will also inves-
tigate the case h12 = −0.35, featuring coupling sign flip.
We collect the PL emission for varying pump spot posi-
tions with respect to the cavities. Figures 2(c) and (d)
show the PL maps in the two coupling configurations.
Three modes can be observed: we call M1 the lowest
energy mode which is generally weak, though clearly vis-
ible at λ ≈ 1555nm in Fig. 2(c), and more intense in Fig.
2(d) at λ ≈ 1548nm; M3 is the highest-energy mode [at
λ ≈ 1550nm in Fig. 2(c), and at λ ≈ 1540nm in Fig.

2(d)], which is the strongest one; finally, M2 is the zero
mode, clearly visible at λ ≈ 1553nm and λ ≈ 1544nm
for h12 = −0.1 and h12 = 0.1, respectively. Interestingly,
while two symmetric lobes are observed in the case of
equal coupling at both sides [21], the case of non-uniform
coupling reveals more intense PL when the pump spot is
located between the center cavity and one of the two ex-
treme cavities: the bottom one in 2(c), which corresponds
to cavity 1, and the top cavity in Fig. 2(d), which cor-
responds to cavity 3. We attribute this behavior to the
intensity imbalance of the zero mode in the presence of
non-equal couplings (Eq. 3). Indeed, in the case of Fig.
2(c) the smallest coupling is the bottom one (between
cavities 1 and 2), and the situation is reversed in Fig.
2(d) (weakest coupling between cavities 2 and 3). It is
important to point out that the PL maps in Figs. 2(c)-
(d), although they do not directly quantify the spatial
distribution of the mode energy in the cavities, they pro-
vide a measure of the spatial overlap of the pump beam
with the mode energy distribution. Hence, inverting the
location of the weaker photonic barrier also inverts the
location of the strongest PL intensity. In Fig. 3(a), the
PL intensity map for h12 = −0.1 is compared with nu-
merical simulations obtained from the carrier-dependent
CMT (Eq. A1), for a single pump spot at different lo-
cations (X). Despite the simplicity of the model, the
experimental results and simulations are in good quali-
tative —and partially quantitative— agreement. As in a
previous work [21], one feature that is well captured by
the numerical simulations is the fact that the M2 lobes
are not centered at the extreme cavity positions; rather,
they are located somewhere at the midway between the
center and the extreme cavities.

B. Near and far-field patterns

In order to investigate the spatial energy distribution
of the modes, near and far-field patterns are measured for
fixed positions of the pump spot using an InGaAs cam-
era. Near field patterns must be understood in the sense
of imaging the sample plane on the camera, while far-field
patterns are obtained imaging the back-focal plane of the
microscope objective [32]. The results for h12 = −0.1 are
shown in Appendix B for nonzero modes, and in Figs.
4(a),(b) for zero modes. Nonzero-mode energy distribu-
tions are, overall, in very good agreement with the expec-
tations from CMT calculations. Let us now focus on zero
modes [Figs. 4(a),(b)]. Here, in order to excite M2 more
efficiently, we use a spatial light modulator (SLM), which
allows us to mold the pump spot at will: we use a double
spot approximately centered at the extreme cavities. The
far-field emission exhibits a node in the center, which is
an indication of a π-phase difference between the extreme
cavities, also predicted by the CMT model. The coupling
imbalance produces some asymmetry in the near-field PL
intensity along the x-direction, in the form of a slight
intensity localization in the cavity close to the weakest
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FIG. 3. PL intensity maps upon scanning of a single pump spot. (a),(b) Experimental results. (c),(d) Numerical simulations,
Nmax = 0.27. (a) and (c): same coupling sign, K12 = 9.14τ−1 (h12 = −0.1) and K23 = 12.36τ−1 (h23 = 0). (b) and (d):
flipped coupling sign, K12 = −24.92τ−1 (h12 = −0.35) and K23 = 12.36τ−1 (h23 = 0). The flipped coupling sign is represented
by a twisted red arrow.

coupling, which is expected from Eq. 3. However, at this
point, it is important to discuss the presence of pumping-
induced blue-shift effects perturbing the relative phase
shift of the cavities, as evidenced in the numerical simu-
lations [Fig. 4(b),(c)]. The cavity-to-cavity phase shift of
π/2, typical of a zero mode, is destroyed; instead, for the
two pump-spot configuration, about ∼ π phase shift is
predicted between cavities 2 and 3, while there is a small
phase difference between cavities 1 and 2. In this respect,
the zero modes characterized herein are rather quasi-zero
modes, while actual zero modes necessitate compensation
of the pump-induced detuning, as it has been recently im-
plemented in the nanophotonic dimer in the context of
exceptional points [33]. Importantly, the non-Hermitian
zero mode is predicted to be a bright mode in general, as
evidenced in Fig. 4(c), where the emission is simulated
under a single pump-spot excitation. Unlike exciting the
zero mode by pumping the two extreme cavities [22], here

the center cavity has nonzero intensity.

Notably, such a carrier-induced phase perturbation has
dramatic consequences in the near field patterns. While
imaging the sample plane could in principle enable the
identification of three distinct lobes accounting for the
cavity intensities, this is strongly modified in the pres-
ence of carrier-induced blue-shift effects. As it can be
observed in Fig. 4(c), the zero mode interference pattern
in the near field features two maxima instead of three,
due to the constructive interference between cavity fields
2 and 3. In contrast, the intensity of cavity 1 is expected
to form an isolated lobe. In the experiment, no more
than two maxima are observed regardless of the exci-
tation conditions [one spot –not shown–, and also two
spots with different intensities, see Fig. 4(a)], which can
then be attributed to such a phase distribution yielding
the coherent merging of fields emitted by two adjacent
cavities. The predicted numerical phases are confirmed
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FIG. 4. Spatially resolved mode PL with non-uniform cou-
plings and equal coupling signs: quasi-zero modes. (a) Ex-
perimental results, upon two pump-spot illumination. (b),(c)
Numerical simulations, under two different pumping profiles.
The two coupling parameters are K23 = 12.36τ−1 (h23 = 0)
and K12 = 9.14τ−1 (h12 = −0.1). (b) Two excitation points
(marked as red asterisks in the near field pattern), N1 = 0.229
and N3 = 0.23, and (c) single excitation point (red asterisk in
the near field pattern), corresponding to the X-value at the
cross with label M2 in Fig. 3(c). In (b) the zero mode is a
dark mode (vanishing intensity in the central cavity), while
in (c) it is a quasi zero mode characterized by non-vanishing
intensity in the middle cavity.

by the far-field pattern, which always shows a two-lobe-
intensity-distribution with a node in the center, which
characterizes the overall ∼ π phase difference between
cavities 1 and 3, regardless of the excitation conditions.
We conclude that the configuration of two couplings with
the same sign is not suitable for assessing the near field
pattern of the quasi-zero mode.

C. Zero mode with twisted coupling

We investigated the case of flipped sign of the left bar-
rier (h12), and the results are shown in Fig. 3(b),(d) for
the PL map upon pump spot scanning, together with Fig.
5 for the radiation patterns. In this case, the coupling due
to the modified barrier h12 = −0.35 is K12 ≈ −3.56 THz,

(a) (c)
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FIG. 5. Spatially resolved PL of the quasi-zero mode with
twisted coupling. (a) Single pump spot in cavity 1 [blue curve
in (e)]. (b) Twin pump spots in cavities 1 and 3 [yellow curve
in (e)]. The intensity in cavity 2 is measurable in (a), and falls
below the limit of detection in (b). The coupling sign is flipped
between cavities 1 and 2 (K12 = −24.92τ−1), represented by
a twisted red arrow. (c)-(d) CMT simulations. (e) Intensity
cross sections as a function of a pump spot intensity in cavity
3.

is larger in modulus than that of h23 (K23 ≈ 1.77 THz),
yet the sign is reversed: we call this a twisted coupling
configuration. Note that the twisted coupling is achieved
by choosing a barrier perturbation parameter between
cavities 1 and 2 smaller than the degeneracy value, i.e.
h12 < −0.2157.

First, unlike Fig. 4(c), in Figs. 5(a),(c) we observe
three distinct lobes corresponding to the emitted pho-
tons from each cavity. Second, the far field image of the
(quasi) zero mode shows a lobe in the center, and the
mode symmetry is overall even [Figs. 5(a)-(d)]. Such
a symmetry inversion is the consequence of the twisted
coupling, and also drastically modifies the far-field pat-
terns of the other two modes [Figs. 7(b) and (d)]. Let
us stress that the near-field image of the zero mode un-
der single pump-spot excitation now exhibits three clear
lobes at a pump spot position displaced from the center,
i.e. upon strongly asymmetric pump. In particular, the
center cavity intensity, although weak, is non-vanishing
in Fig. 5(a), which demonstrates deviation from the Her-
mitian dark zero mode, as predicted in Fig. 1(d). Imag-
ing individual emission lobes in the near field of the zero
mode can be understood from the numerical simulations
of Fig. 5(c), as the phase difference between cavities 1-
2 and 2-3 is ∼ 0.9π in both cases, which induces nodes
between adjacent cavity fields.
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In a last experiment, we implement our SLM beam
shaping starting from the single pump spot in cavity 3,
where a weak but nonzero intensity is observed in the cen-
ter cavity, and turn on a second pump spot in cavity 1
whose intensity is progressively increased [Fig. 5(e) from
left to right]. We observe that the center cavity intensity
progressively decreases as the pump spot power in cavity
1 is increased, from the single pump spot [Fig. 5(a)] up
to the symmetric pumping conditions [Fig. 5(b)], where
the intensity in cavity 2 falls below the limit of detection.
These results show a behavior compatible with the pre-
dictions of Fig. 1: we continuously move from the quasi-
zero mode intensity distribution for asymmetric pump-
ing, akin to Fig. 1(d), to the dark-mode of Fig. 1(e)
upon symmetric pumping conditions. These results illus-
trate the ability of a system with twisted coupling to map
the PL emission patterns of zero modes to the predicted
mode-energy distributions across the cavity array. This
is particularly true in the presence of carrier induced re-
fractive index effects, where the resulting near field mode
distributions of quasi-zero modes feature nodes between
adjacent cavities.

IV. CONCLUSIONS

We have demonstrated bright zero modes in a
nanophotonic trimer, formed by three evanescently cou-
pled photonic crystal nanocavities with embedded quan-
tum wells. The nanocavities gain and loss are varied by
using a spatial light modulator acting on the pump laser.
Bright zero modes have been achieved through the inver-
sion of one coupling parameter’s sign, which is enabled
by means of the so-called barrier engineering technique.
Cavity detuning effects are mitigated by copying pho-
tonic barriers on opposite sides of the array, which we
denote as “image barriers”. Flipping only one coupling
sign results in a “twisted coupling” configuration, that
proves instrumental for enhancing far-field radiation.

The meaning of bright zero mode must be understood
in a twofold sense. First of all, the mode overall sym-
metry has been inverted, from odd in the otherwise zero
mode with equal coupling signs, to even in the case of
twisted coupling, which induces a maximum of PL emis-
sion in the normal direction of the far-field emission. Sec-
ond, the center cavity intensity is non vanishing, which
is a consequence of the non-Hermitian nature of system
under asymmetric pumping. The actual near field radi-
ation pattern could be observed thanks to the twisted
coupling geometry that induces field nodes between the

cavities.

In sum, we unveil a coupling geometry to generate
in-phase zero modes, which is of paramount importance
for applications that exploit their far-field emission. Al-
though the zero-mode investigated here benefits from
symmetry instead of topological protection, the system
could be easily extended to topologically protected zero
modes is SSH chains, similarly to Ref. [34], but us-
ing the barrier engineering technique, such that coupling
signs can be inverted. It is worth pointing out that non-
uniform couplings in topologically protected zero modes
not only appear in the alternate form (such as the binary
strong and weak couplings in the SSH model and the
breathing Kagome lattice) but also in a monotonically
varying fashion, as in the recently found selective non-
Hermitian skin effect [29]. Furthermore, we believe that
the concept of “twisted coupling” provides additional de-
grees of freedom to engineer laser modes in coupled cavity
arrays with embedded gain materials, which might also
prove useful for the realization of active corner states by
the means of dimerized cavity arrangements [35, 36].

Appendix A: Carrier-dependent coupled mode
model

We restrict our theoretical analysis to the sponta-
neous emission regime —i.e. below laser threshold
and neglecting amplification—, in which a linear but
carrier-dependent non-Hermitian CMT is valid [21]. We
assume in general M -pump spots with gaussian pro-
files P (x;X(m)) = exp[−(x − X(m))2/σ2], centered at
given X(m)-positions (1 ≤ m ≤ M), therefore Nn =∑M
m=1N

(m)
maxP (xn;X(m)), where xn are the central po-

sitions of the cavities. The gain in each cavity depends
on N through the QW absorption α(N ) (Eq. 2), i.e.,
gn = −α(Nn)Γ/cnr and therefore εj depends not only
on the pump intensities but also on the pump positions,
εj = εj(X), where X is a vector containing all the pump

spot positions X(m). The spontaneous emission in the
cavities is |f〉 (fn ∝ Nn), and the modal excitation am-
plitudes fj(X) = 〈Φj |f〉, 〈Φj | being the left eigenvec-

tors of H̃. In this spontaneous emission regime the total
emitted spectral intensity can be calculated as the in-
coherent superposition of the N mode intensities (here
N = 3), each one contributing with a Lorentzian peak
of amplitude fj(X), resonant frequency Re[εj(X)] and
width Im[εj(X)][21]:

I(ω;X) =

∣∣∣∣∣∣
∑
j

fj(X)

(ω − Re [εj(X)]) i+ Im [εj(X)]

∣∣∣∣∣∣
2

'
∑
j

|fj(X)|2

(ω − Re [εj(X)])
2

+ (Im [εj(X)])
2 . (A1)

Figure 6 shows the calculated spectral intensity maps I(ω;X) under spatial scanning of a single Gaussian pump
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spot, computed from Eq. A1, for two representative val-
ues of coupling imbalance, h23 = 0 and h12 = ±0.1. The
signatures of the zero mode are the two central lobes
corresponding to M2. The PL maps show that the in-
tensity is larger in the cavity close to weakest coupling
strength. The zero-mode near-field patterns, computed
as the coherent superposition of cavity fields, do not al-
low one to isolate the emissions from cavities 2-3 [Fig.
6(b)] and cavities 1-2 [Fig. 6(d)], because of the con-
structive interference resulting from a strong blue-shift
phase perturbation, as discussed in the main text.

Appendix B: Field radiation patterns of nonzero
modes

Figure 7 shows the near and far-field images of nonzero
modes in the two different situations: non-uniform cou-

pling but same coupling sign, corresponding to h12 =
−0.1 [Fig. 7 (a,c)], and non-uniform twisted coupling for
h12 = −0.35 [Fig. 6 (b,d)]. There is good agreement be-
tween the model predictions and the experimental results
overall. Only the far-field of M1 in Fig. 7(a) does not
show a clear center lobe as in the numerical calculation;
such a discrepancy might be due to a weak emission that
falls below the limit of detection of the infrared camera.
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FIG. 6. PL intensity maps and radiation patterns upon scanning of a single pump spot : numerical simulations for equal
coupling sign. (a) and (c) Intensity maps. (b) and (d): near (left column) and far (right column) field patterns. Nmax = 0.27
and K23 = 12.36τ−1 (h23 = 0). (a) and (b): K12 = 9.14τ−1 (h12 = −0.1). (b) and (d): K12 = 15.02τ−1 (h12 = 0.1).
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FIG. 7. Spatially resolved mode PL with non-uniform couplings: non-zero modes. (a),(b) Experimental results. (c),(d)
Numerical simulations (CMT), Nmax = 0.27, with point excitations X marked as red asterisks in the near field patterns,
and also at the crosses with labels M1-M3 in Fig. 3(c). (a) and (c): h12 = −0.1, leading to the same coupling sign and
|K12| < |K23|; (b) and (d): h12 = −0.35, leading to flipped coupling sign and |K12| > |K23|. Experimental near-field patterns
are obtained imaging the sample plane on an InGaAs camera, while far-field patterns are obtained imaging the back focal
plane of the microscope objective . CMT near-field patterns are obtained as the coherent superposition of cavity fields,

I(j)(x, y) = |E(j)(x, y)|2, where E(j)(x, y) =
∑

n exp{−[(x− xn)2 + y2]/σ2
c}A

(j)
n , with σc = 30 and A

(j)
n the cavity amplitudes

of mode j. CMT far-fields are obtained Fourier transforming E(j)(x, y).


