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Abstract
Purpose: This study evaluated the performance of three machine learning
(ML) algorithms—decision tree (DT), multilayer perceptron (MLP) and ex-
treme gradient boosting (XGB)—in identifying regular athletes who suffered
a knee injury several months to years prior. In addition, the contribution of
psychological variables in addition to biomechanical ones in the classifica-
tion performance of the ML algorithms was assessed, to better identify
factors to get back to competitive sport with the lowest possible risk of new
knee injury.
Methods: A cohort of 96 athletes, 36 with prior knee injuries, practicing an
average of 5.7 ± 2.4 h per week, participated in a horizontal force‐velocity
test on a ballistic ergometer providing data of force, velocity and power from
each lower limb. They also completed a psychological questionnaire, which
included components from the Knee Injury and Osteoarthritis Outcome
Score (KOOS) and the Sport Anxiety Scale (SAS). The three ML algorithms
were trained on a thousand different train‐test sets. Also, Shapley values
were calculated for each input variable of a data set to highlight its contri-
bution to the prediction from an ML model.
Results: Over a thousand cross‐validations, higher area under the curve
(AUC) values were obtained when accounted for the psychological attri-
butes (p < 0.001). Also, higher AUC values were obtained from MLP com-
pared to XGB or DT (p < 0.001). XGB exhibited higher AUC values than DT
(p < 0.001).
Conclusions: Our results suggested that psychological factors play a more
important role in recognition than biomechanical factors, with KOOS and
SAS scores ranking high in the list of influential factors. Additionally, the
computing stability of MLP could be recommended for classification tasks in
the context of knee injuries.

Level of Evidence: Level III.
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BACKGROUND

Knee injuries, particularly anterior cruciate ligament
(ACL) injuries, are among the most common in sports
[10, 32] and the rate at which they occur has consid-
erably increased [15, 20]. The return to play (RTP) after
an ACL reconstruction is complex with only 44%–65%
of athletes returning to their previous level of play
[6, 35]. Despite the complexity of these injuries, most
studies have focused on a limited set of risk factors and
often overlook the significant role of psychological
factors [9]. For example, 66% of athletes did not return
to competitive sports after rehabilitation due to fear of
reinjury [3]. Thus, to better understand ACL injury risks,
it is crucial to consider psychological factors alongside
biomechanical ones. Recent studies also highlighted
the force–velocity relationship as a tool for both injury
prevention and optimizing ACL rehabilitation, espe-
cially by addressing strength asymmetries at different
velocities [8, 31].

Machine learning (ML) algorithms are effective at
analyzing large volumes of data helping to identify
patterns and predict knee injury risk by considering
simultaneously various physical, biomechanical and
psychological factors [10, 18, 33]. Decision trees (DT)
are nonparametric supervised learning algorithms that
adopt a tree structure comprising nodes (attributes of a
database) and branches (decision based on attributes).
Such tree‐based ML algorithms are frequently used for
injury prediction due to their interpretability. As usually
done in ML, a Receiver Operating Characteristic (ROC)
curve is used to graphically represent the performance
of a binary classification model, and the area under the
curve (AUC) quantifies the ‘quality’ of classifier pre-
dictions, which serves as a key performance measure
[7]. However, DTs often overfit the training data, leading
to poor generalization [16]. More advanced methods
like extreme gradient boosting (XGB), which builds
strong predictive models through a series of DTs, and
multilayer perceptron (MLP), a type of neural network
that processes data through multiple layers, offer
improved performance and stability [16]. As recom-
mended by Tjønndal et al. [33] and similarly to DT for
which decision rules are displayed on the tree struc-
ture, XGB and MLP predictions could be explained with
the use of the Shapley values (SHAP) [30]. The SHAP
method further enhances model interpretability by
explaining the contribution of each input to each model
prediction, enabling personalized identification of knee
injury risk factors in addition to general population risk
factors, as highly recommended by Van Eetvelde et al.
[34]. The purpose of this study was to investigate and
compare the predictive performance of DT, XGB and
MLP methods in identifying knee injury sequelae. We
hypothesized that (i) XGB and MLP would outperform
DT in recognizing knee injury sequelae and provide
more accurate identification of injury risk factors on

both the global and individual levels using the SHAP
method and (ii) the inclusion of both biomechanical and
psychological variables in the models would enhance
performance compared to models relying solely on
biomechanical factors. Our objective was for the ML
models to accurately identify individuals with a history
of knee injury, rather than predicting injury occurrence,
as previously done [18]. This approach would help
prevent the recurrence of knee injuries and improve
RTP by detecting athletes who still have injury
sequelae, enabling the creation of tailored rehabilitation
sessions to optimize their return to competitive sports.

METHODS

Participants

To address these hypotheses, a database consisting of
96 athletes has been constructed. The data set con-
sisted of 35 women with an average age of 21.1 ± 1.4
and 61 men with an average age of 21.9 ± 2.8. To con-
duct the participant selection, the following inclusion
criteria were used: practicing sport at least once a week
and in case of a previous knee injury, being in the last
stages of rehabilitation. Indeed, every participant was at
least a recreational athlete and the average time of
practice by week was 5.7 ± 2.4 h. Noninclusion criteria
were as follows: ongoing knee pain, ongoing muscle
injury or being within the first 6 months of rehabilitation
after an ACL tear. As a consequence, the sample
included athletes in good physical condition without a
history of knee injury (n = 60, 39 men and 21 women)
and athletes in good physical condition but with a history
of knee injury or in the final stages of the process of RTP
after a knee injury (n = 36, 22 men and 14 women).
Finally, whatever their condition, no individuals ex-
pressed having felt pain during the experiment. In the
case of multiple knee injuries, only the most serious one
was reported (Figure 1). The most represented sports in
the cohort were rugby (21 men, three women), football
(13 men, four women) and judo (six men, six women).
All participants signed written consent, and the study
was approved by an ethics committee (CERSTAPS:
IRB00012476‐2022‐21‐01‐149).

Procedure

For each participant, the experimental session began
with the completion of an informational questionnaire
and an 8‐min warm‐up, which included cycling, squats
and squat jumps. This was followed by a minimum of
10 unloaded pushes on the ballistic ergometer to
familiarize participants with the supine position required
for the test. During both the warm‐up and recorded
session, participants were instructed to apply their
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force as quickly as possible on the force plates, with
one force plate positioned under each foot [22], while
verbal encouragements were provided. The horizontal
force–velocity test started with ballistic push‐offs per-
formed in a supine position on a frictionless cart. The
test included five load conditions: 0%, 30%, 60%, 90%
and 110% of the participants' body weight, performed in
a random order [21]. For each load level, two horizontal
push‐offs were performed with a 30‐s interval. A 2‐min
rest period was provided between each load change to
prevent fatigue. The ergometer was the same as the
one presented by Macchi et al. [22]. It minimized the
risk of injury as it was a guided movement and pre-
vented loaded landings.

Data collection

The informational questionnaire consisted of questions
providing basic information on the athlete and their sports
practice, psychological questions from the Sport Anxiety
Scale (SAS) and the Knee Injury and Osteoarthritis Out-
come Score (KOOS). Both SAS and KOOS provided an
overview of athletes' anxiety levels prior to competition and
of their perception of their knees, respectively. Higher
values indicated lower anxiety and better knee perception
[4, 23, 24]. Two force plates [Kistler 9260AA3 (0.5 × 0.3m)]
were used to record the components of the ground
reaction forces produced under each foot with a sampling
frequency set at 2 kHz. Additionally, the displacement of
the cart caused by the push‐off movement performed by
the athlete was recorded with a linear encoder of 0.1 cm
accuracy (Micro‐Epsilon WDS‐3000‐P115‐SR‐U).

Data preprocessing

The first preprocessing step involved extracting the
biomechanical variables from the sensor measure-
ments with Matlab scripts (MATLAB and Statistics
Toolbox Release 2022a, The MathWorks, Inc.). For
each push‐off, the force and displacement data were
retained during the push‐off phase (i.e., when partici-
pants began to apply force on the force plates until
take‐off). From these retained raw data, the script
computed 20 variables (also called attributes) that
depicted the biomechanical signature of the push‐off
(Table 1). In addition to these biomechanical variables,
nine others came from the informative questionnaire,
while five psychological variables were retained
(Table 1). Although these biomechanical variables were
not specific to the knee, they were similar to other
physical tests (e.g., hop test) used to assess the RTP of
an injured athlete [26]. Therefore, these selected bio-
mechanical variables provided information on the ath-
letes' capacity to develop high force, power and
velocity as required in several sport movements.

Two data sets were built from the cohort to predict
the presence of knee injury sequelae. The first one
aggregated the load level with attributes listed in
Table 1 excluding the KOOS and SAS scores. It con-
tained 964 rows (corresponding to each push for each
load level and each athlete) and 30 attributes.
The second data set was similar to the first one but
included the five scores from the KOOS and the SAS. It
then consisted of 964 rows and 35 columns.

In this study, the selected ML algorithms were
trained from a training data set, and their generalization

F IGURE 1 Injury distribution in the cohort of 96 athletes that participated in the study. ACL, anterior cruciate ligament; MPFL, medial
patellofemoral ligament; PCL, posterior cruciate ligament.
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was tested on a test data set. The train‐test split of the
overall data set followed a standard 80%–20% ratio
[14]. To cope with the sample size, a cross‐validation
procedure was done, with a thousand subject‐based
80%–20% train‐test splits. In other words, athletes in
the training set were not included in the test set [29]. In
each of the thousand trials, the athletes in the train and

test sets were randomly reassigned while maintaining a
consistent distribution of the two classes: athletes with
a history of knee injury and those without. We chose a
thousand iterations of train‐test splits to preserve
computing efficiency, although over a billion combina-
tions were possible. Finally, as a standard practice to
achieve optimal performance metrics after training, a
min–max normalization was applied to each column of
the selected train and test data sets [1, 25].

Algorithm selection

The DT method is a commonly used ML algorithm and
served as the initial classifier in the current study. It is a
nonparametric supervised learning algorithm that
adopts a tree structure comprising nodes (attributes of
our database) and branches (decision based on attri-
butes). DT aims to tightly fit the training data and
identify relationships that maximize a chosen classifi-
cation metric within the data set [14]. The second
classifier of the study was the XGB. It works by building
and training an ensemble of DT and combining
sequentially their predictions to make a final one. Thus,
it reduces the risk of overfitting the data and can also
achieve better performance [5]. The third classifier of
the study was a MLP with one hidden layer containing
30 neurons and the ReLU activation function. The MLP
aims to approximate a function that maps an input to a
category. The network defines a mapping and learns
the values of the parameters that result in the best
approximation of the function [11]. In addition, MLPs
have a larger number of mathematical parameters than
DTand XGB. This means that they require more data to
perform well but can capture more complex relation-
ships between them.

For each algorithm, the class imbalance problem in
the data set was addressed in the same way, as
inspired by King and Zeng's study [19]. Class weights
have been computed with the following formula for the
i‐th class:

n

n nith

samples

classes classes

. These weights were applied

during model training, ensuring that prediction errors
for athletes with a history of knee injury were given
equal importance to errors for athletes without knee
injury.

Metrics

The predictive capacity of the different ML models used
in the present study was assessed by an ensemble of
performance indicators, referred to as metrics, based on
the confusion matrix [12]. The confusion matrix is a
cross table that records the number of occurrences
between two raters, the true classification (rows) and the
predicted classification (columns), as shown in Table 2.

TABLE 1 All variables extracted from the questionnaires
(informative and psychological) and push‐off biomechanics.

Feature Unit

History of knee injury 1 if yes, else 0

Height cm

Body mass kg

Body mass index kg.m−2

Age years

Gender unitless

Sport practiced unitless

Amount of practice hours/week

Level of practice unitless

SAS score unitless

KOOS symptoms unitless

KOOS sport and recreation unitless

KOOS pain untiless

KOOS quality of life unitless

Total peak force N

Left peak force; right peak force N

Total mean force N

Left mean force; right mean force N

Mean velocity m.s−1

Total mean inertial force N

Left mean inertial force; Right mean inertial
force

N

Push‐off time s

Inertial push‐off time s

Push‐off distance m

Total effective force ratio unitless

Left effective force ratio; Right effective force
ratio

unitless

Time to reach total peak force s

Maximum power W

Force at maximum power N

Velocity at maximum power m.s‐1

Abbreviations: KOOS, Knee Injury and Osteoarthritis Outcome Score; SAS,
Sport Anxiety Scale.
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Herein, true positives represented athletes with a
history of knee injury and predicted as such, false po-
sitives represented healthy athletes predicted as hav-
ing knee injury sequelae, true negatives represented
healthy athletes predicted as healthy and false nega-
tives represented athletes who had suffered a knee
injury but predicted as healthy.

To quantify the proportion of correct predictions, the
accuracy was computed as follows:

accuracy =
TP + TN

TP + TN + FP + FN
.

In the case of unbalanced classes (the current data
sets had two‐thirds of the healthy participants), addi-
tional metrics are needed to conclude the efficiency of a
model. The proportion of positive predictions that were
truly positive, also called precision, was calculated as
follows:

precision =
TP

TP + FP
.

The recall, also named the true positive rate, was
calculated as a measure of the model's ability to rec-
ognize all positive observations:

recall =
TP

TP + FN
.

Finally, the F1‐score, aggregating precision and
recall metrics, was used to find the best tradeoff
between these two quantities:

‐
⋅

F1 score = 2
precision recall

precision + recall
.

Indeed, it is a complex matter to simultaneously
increase precision and recall once they have reached
a certain value. Thus, F1‐score rewards models that
have similar precision and recall values rather than
models that decrease one of them to reach a value
near 1.0 with the other [12].

Finally, the last metric was the AUC, representing
the area under the ROC curve defined by the plot of the

recall (true positive rate) versus the false positive rate

(FPR =
FP

TN + FP ). This area represents the inherent
ability of the model to discriminate between healthy and
diseased population [13].

Push‐off classification versus athlete
classification

The algorithms were trained to recognize knee injury
sequelae from push‐offs. Nevertheless, to get the
model prediction with such sequelae for each athlete,
all push‐off predictions belonging to one athlete have
been gathered. Then, the performance metric scores
for athlete classification were the average of the metric
scores of all athletes' push‐offs. The prediction score
for athlete classification was the number of push‐offs
classified as ‘presence of knee injury sequelae’ divided
by the number of push‐offs.

SHAP method

Despite their success, ML algorithms such as neural
networks and gradient boosting methods are often
compared to ‘black boxes’ because even the users of
these algorithms can find it difficult to explain why the
algorithm made a particular decision [30]. To address
this issue, explainable artificial intelligence has been
developed to make the decision‐making of ML algo-
rithms more understandable to humans. The chosen
technique for the present study was SHAP which
stands for the SHAP and originated from the game
theory [30]. The SHAP were computed by carefully
perturbing input features and seeing how these chan-
ges could impact the model prediction. The Shapley
value of a given feature was then calculated as its
average marginal contribution to the overall model
score. SHAP were computed with respect to a com-
parison or background group which served as a
‘baseline’ for the explanation. Thus, ML algorithms
based on SHAP can be used to explain both a partic-
ular prediction and general outcomes of a model [30].

Statistical analysis

For each train‐test split (n = 1000), each metric
(accuracy, precision, recall, F1‐score, AUC) was com-
puted for each model and data set. Two‐way analysis
of variance was conducted to determine the effect of
model selection (DT, XGB and MLP) and used data set
(with or without psychological variables) on classifica-
tion performances, that is, AUC values. When signifi-
cant differences were identified, Bonferroni post hoc
tests were used to identify pairwise differences. Such

TABLE 2 The theoretical confusion matrix.

History of knee injury Healthy

History of knee injury TP FN

Healthy FP TN

Note: Columns correspond to the true classification (ground truth) while rows
represent the predicted classification made by the model. The objective is to
have a diagonal matrix.

Abbreviations: FN, false negatives; FP, false positives; TN, true negatives; TP,
true positives.

| 5 of 11

 21971153, 2024, 4, D
ow

nloaded from
 https://esskajournals.onlinelibrary.w

iley.com
/doi/10.1002/jeo2.70081 by C

ochrane France, W
iley O

nline L
ibrary on [22/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



analysis was done for push‐off classification and for
athlete classification. The threshold of significance was
set at p < 0.05.

RESULTS

Results on push‐offs

Performances related to the push‐off classifications are
depicted in Table 3. On average (first part of Table 3),
over the thousand cross‐validations, higher AUC val-
ues were obtained when accounted for the psycho-
logical attributes (F1,5994 = 71.7, p < 0.001). Also, a
main effect of model selection has been found
(F2,5994 = 91.4, p < 0.001) with higher AUC values from
MLP compared to XGB or DT (p < 0.001). XGB ex-
hibited higher AUC values than DT (p < 0.001).
The second part of Table 3 presents the best per-
formance of each model for a specific train‐test split
(i.e., the number indicated in the last column of the
table). In such specific conditions, it appeared that DT
showed the best performances compared to XGB and
MLP when accounting for the psychological attributes
in almost all the metrics.

Results on athletes

Performances related to the athlete classifications are
depicted in Table 4 and were quite similar to those
related to push‐off classifications. On average (first part
of Table 4), higher AUC values were obtained when

accounted for the psychological attributes
(F1,5994 = 54.0, p < 0.001). Also, a main effect of model
selection has been found (F2,5994 = 96.4, p < 0.001) with
higher AUC values from MLP compared to XGB or DT
(p < 0.001). XGB exhibited higher AUC values than DT
(p < 0.001). The second part of the Table 4 presents the
best performance of each model for a specific train‐test
split. In such specific conditions, it appeared that DT
and MLP showed the best performances in comparison
with XGB and when accounted for the psychological
attributes in all the metrics.

Figure 2 presents the variables among those sum-
marized in Table 1 that influenced the most models'
predictions for the two best athlete classification mod-
els: DT and MLP with psychological attributes (second
part of Table 4). These features are general risk factors
for the presence of knee injury sequelae based on the
athletes in our data set.

According to the best DT model (on the right of
Figure 2), an athlete practicing more than 8 h a week
with high scores in sport and recreation, and symptoms
subsections of the KOOS (meaning good values) is
more likely to have knee injury sequelae. For the best
MLP model (on the left of Figure 2), male athletes with
high body mass index (BMI), practicing ski, volleyball,
basketball or gymnastics at a high level and with low
scores in the ‘quality‐of‐life’ subsection of the KOOS
are more likely to present knee injury sequelae. In
addition to general risk factors identified in our data set,
the SHAP technique allowed us to explain individual
predictions. For instance, we used this method to elu-
cidate the most influential factors for an athlete who
had experienced a partial ACL tear exactly 2 years

TABLE 3 Performance metrics from push‐off classifications.

Attributes selected for training Model Accuracy Precision Recall F1‐score AUC Test sample

Without psychological attributes DT 0.56 (0.09) 0.46 (0.14) 0.41 (0.17) 0.42 (0.14) 0.54 (0.10) Overall mean

XGB 0.56 (0.10) 0.47 (0.14) 0.45 (0.17) 0.45 (0.14) 0.55 (0.10) Overall mean

MLP 0.63 (0.07) 0.46 (0.35) 0.24 (0.24) 0.29 (0.26) 0.57 (0.09) Overall mean

With psychological attributes DT 0.58 (0.11) 0.48 (0.17) 0.41 (0.18) 0.43 (0.16) 0.55 (0.11) Overall mean

XGB 0.59 (0.10) 0.51 (0.16) 0.46 (0.18) 0.47 (0.15) 0.57 (0.11) Overall mean

MLP 0.65 (0.08) 0.51 (0.33) 0.31 (0.26) 0.36 (0.27) 0.60 (0.10) Overall mean

Without psychological attributes DT 0.84 0.81 0.77 0.79 0.83 845

XGB 0.82 0.75 0.87 0.80 0.83 731

MLP 0.85 0.84 0.77 0.80 0.83 883

With psychological attributes DT 0.95 0.99 0.88 0.93 0.94 461

XGB 0.90 0.86 0.87 0.87 0.89 643

MLP 0.93 1.0 0.82 0.90 0.91 356

Note: First part of the table: Averages (and standard deviations) of each metric for each algorithm over the thousand cross‐validations made on each data set.
The second part of the table: Best metrics achieved for one specific model training. Bold values represent the best metric score obtained.

Abbreviations: AUC, area under the curve; DT, decision tree; MLP, multilayer perceptron; XGB, extreme gradient boosting.
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TABLE 4 Performance metrics from athlete classifications.

Attributes selected for training Model Accuracy Precision Recall F1‐score AUC Test sample

Without psychological attributes DT 0.56 (0.10) 0.45 (0.16) 0.42 (0.18) 0.42 (0.15) 0.54 (0.11) Overall mean

XGB 0.56 (0.10) 0.45 (0.15) 0.45 (0.18) 0.44 (0.14) 0.54 (0.11) Overall mean

MLP 0.64 (0.07) 0.43 (0.38) 0.25 (0.25) 0.29 (0.26) 0.58 (0.09) Overall mean

With psychological attributes DT 0.57 (0.11) 0.47 (0.18) 0.41 (0.19) 0.42 (0.16) 0.55 (0.11) Overall mean

XGB 0.59 (0.11) 0.49 (0.16) 0.46 (0.18) 0.46 (0.15) 0.57 (0.11) Overall mean

MLP 0.66 (0.08) 0.48 (0.34) 0.32 (0.26) 0.36 (0.27) 0.60 (0.11) Overall mean

Without psychological attributes DT 0.90 0.88 0.88 0.88 0.90 845

XGB 0.75 0.67 0.75 0.71 0.75 731

MLP 0.85 0.86 0.75 0.80 0.83 883

With psychological attributes DT 0.95 1.0 0.88 0.93 0.94 461

XGB 0.90 0.88 0.88 0.88 0.90 643

MLP 0.95 1.0 0.88 0.93 0.94 356

Note: First part of the table: Averages (and standard deviations) of each metric for each algorithm over the thousand cross‐validations made on each data set.
The second part of the table: Best trained models for each data set for athlete classification. Bold values represent the best metric score obtained.

Abbreviations: AUC, area under the curve; DT, decision tree; MLP, multilayer perceptron; XGB, extreme gradient boosting.

F IGURE 2 SHAP graph of the most influential variables for MLP (left panel) and DT (right panel) models with psychological attributes. From
top to bottom are the attributes ranking from the most to the less influential. Points on the right increased the prediction score of knee injury
sequelae whereas points on the left decreased this prediction score. Red values are for high variable values and blue values are for low variable
values. BMI, body mass index; DT, decision tree; KOOS, Knee Injury and Osteoarthritis Outcome Score; MLP, multilayer perceptron; QOL,
quality of life; SAS, Sport Anxiety Scale; SHAP, shapley value method.
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prior to the test and who was correctly classified by
both models as having knee injury sequelae. For the
DT model, the key factors included low scores in every
subsection of KOOS, the sport played (football) and
the athlete's long push‐off time. For the MLP model, the
major influencing factors were low KOOS scores in the
quality of life (QOL) and symptoms sections, the type of
sport played (football) and the athlete's BMI.

DISCUSSION

Over a thousand train‐test splits, MLP and XGB models
were on average better than DT. Moreover, regardless
of the ML model and the type of classification, adding
psychological variables (KOOS, SAS) to informative
physical and biomechanical attributes increased pre-
diction performances. This conclusion was strongly
supported by the results from the SHAP analysis
(Figure 2) with psychological variables, particularly the
KOOS subsections scores (Pain, QOL, Symptoms,
Sport and Recreation), being predominantly at the top
of the list, ahead of biomechanical, physical and infor-
mational variables. Differences in feature hierarchy
between models are a common issue as noted by
Saarela et al. [28] who found that different features of
importance were detected by different methods for
injury prediction in running. The present results were in
agreement with the conclusions of Andrade et al. [2]
who found in their meta‐analysis that KOOS subsec-
tions scores were discriminant factors in recognizing
return‐to‐play and nonreturn‐to‐play athletes after ACL
reconstruction. In their meta‐analysis, they observed
that the return‐to‐play criteria were study‐specific:
some studies considered that patients were cleared
for RTP after just a range of motion tests, others after a
specific rehabilitation programme and finally other
studies waited for patients to play at the same level
than before. However, regardless of the return‐to‐play
criteria, the conclusion remained consistent with psy-
chological attributes being more influential than bio-
mechanical ones.

Focusing on models trained with psychological at-
tributes, both MLP and DT achieved the same single
best performances but on two different specific train‐
test splits. Finally, no matter the train‐test split, the
chance to obtain better results was higher with MLP
than with DT as hypothesized because of the better
computational power of MLP models [16]. As a con-
sequence, MLP seemed to be the most suitable ML
algorithm for classifying push‐offs and subsequently,
for classifying athletes in relation to the presence of
knee injury sequelae. The average AUC presented in
this study for MLP models (0.60 ± 0.10) was slightly
lower than the best AUC presented by Jauhiainen et al.
[17] in a similar study (0.63 ± 0.02). However, we per-
formed one thousand train‐test splits to limit the

selection bias contrary to the hundred made by these
authors. One can suggest that the differences in mean
and standard deviation were due to the larger number
of train‐test splits performed in the current study.
Indeed, MLP models sometimes had very fluctuating
performance metrics (see standard deviations of pre-
cision, recall and F1‐scores). As a result, the more
training and testing we did, the greater the possibility of
obtaining either very poor or very strong results, lead-
ing to higher standard deviation and differences in
mean. As a consequence, it is not possible to draw
strong conclusions from the results obtained on one
random split, especially with such a small data set. This
variability was also highlighted by Ruddy et al. [27] who
found AUC ranging from 0.24 to 0.92 on 10 cross‐
validations for injury prediction over 186 Australian
football players. This bias can be explained by the
highly multifactorial and athlete‐dependent aspects of
knee injuries, but also by the horizontal squat jump test
we chose to perform. Indeed, the supine position to
develop a maximum power on horizontal push‐offs
could be disturbing for some athletes no matter their
injury background. To reduce this bias, increasing the
cohort size up to 500 athletes would provide more
training examples for the ML models. However, as this
is a challenging task, finding a balance between cohort
size and the number of train‐test splits performed
would be an alternative approach. As far as we are
concerned, we chose to do a thousand of them as a
tradeoff between running time (10 h on our computer)
and all train‐test split possibilities (more than a billion).

The present study focused on identifying sequelae
of knee injury instead of following up with athletes and
monitoring injury occurrence as previously done. For
instance, Jauihainen et al. [17] tested a large popula-
tion during the preseason and then monitored the
occurrence of knee injuries during the season to build
their database. Despite this difference in methodo-
logical approach, the performances of the present al-
gorithms were quite similar to those of Jauihainen et al.
[17]. This suggested that our models worked well in
predicting knee injury while all of our athletes were
clinically allowed to practice sports and thus made
predictions based on subtle differences in physical
performance. Overall, focusing on knee injury sequelae
allowed us to emphasize preventing the recurrence of
knee injuries by optimizing the return‐to‐play process.
Specifically, the SHAP technique could provide the
variables that most influenced the model's prediction
for a particular athlete. For instance, it was applied to
an individual who suffered a partial ACL tear 2 years
before the test and was correctly classified by both
MLP and DT. Both models exhibited several similar risk
factors for this participant though ranked differently:
KOOS QOL score (1st for MLP, 4th for DT) and gen-
erally all subsection scores of the KOOS were
among the twenty most important features alongside
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the push‐off time and the time to reach peak propulsive
force. Nonetheless, for the MLP method, there were
more biomechanical attributes on which this athlete
could work than for DT (mean velocity, left mean inertial
force, right and left peak force). As a consequence, the
ranking of influential variables obtained with SHAP for
individuals with a history of knee injury who were cor-
rectly classified could help athletes, trainers and phy-
siotherapists identify key variables to focus on when
building a training or rehabilitation programme. It could
also serve as another indicator to help determine the
appropriate time for the athlete's RTP, thereby reducing
the risk of knee injury relapse on the same or contra-
lateral leg.

While the present study achieved varying AUC
values through a thousand train‐test splits, high-
lighting the challenge of generalizing ML models in
rehabilitation [27], it emphasized the importance of
individualization in injury prediction, aligning with the
need expressed by previous authors [34]. Practical
applications based on the present findings include the
potential to tailor training programmes according to a
multitude of psychological (e.g., mental health ques-
tionnaire scores) and biomechanical factors (e.g.,
force, velocity, power…). Clinically, it could help to
individually optimize the time of RTP by providing new
information to professionals responsible for making
this decision.

Despite the valuable insights gained from this study,
several limitations must be acknowledged. One limita-
tion was the small number of subjects included in this
study. This may have influenced the performance of
the ML models and their generalization. This population
was also very heterogeneous with individuals practic-
ing different sports, playing at different levels and with
different knee injuries. Expanding the data set consid-
erably would allow for a more precise investigation of
specific injuries and sports without compromising per-
formance. Another limitation could be the use of the
horizontal force–velocity test which was not a dedi-
cated test used in clinical routine to assess knee injury
or recovery. Addressing these limitations and adding
data obtained from other physical tests (e.g., triple hop
tests, agility tests, …) would enhance performance and
the impact of this research.

CONCLUSIONS

The present study suggested that psychological factors
play a more important role than biomechanical factors
in ML model recognition of knee injury in athletes.
Additionally, the computing stability of MLP makes it the
reference for classification tasks as it is now possible to
interpret results from these neural networks. Never-
theless, future studies should aim to expand the sam-
ple size and integrate psychological data alongside

results of other physical evaluations to further validate
this approach in clinical routine.
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