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Abstract. We develop a set-cover based integer-programming approach
to an optimal safety-landing-site location arising in the design of ur-
ban air-transportation networks. We link our minimum-weight set-cover
problems to efficiently-solvable cases of minimum-weight set covering
that have been studied. We were able to solve large random instances to
optimality using our modeling approach. We carried out strong fixing, a
technique that generalizes reduced-cost fixing, and which we found to be
very effective in reducing the size of our integer-programming instances.
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Introduction

In the last few years, different actors all around the world have been pushing for
the development of Urban Air Mobility (UAM). The idea is to integrate into the
current transportation system, new ways to move people and merchandise. In
particular, drones are already a reality, and they have the potential to be highly
exploited for last-mile deliveries (for example, Amazon, UPS, DHL, and FedEx,
just to mention a few involved operators). Concerning passenger transportation,
several companies are competing to produce the first commercial electric Vertical
Take-Off and Landing (eVTOLs) vehicles, which will be used to move passengers
between vertiports of sprawling cities. Several aspects have to be taken into
account for this kind of service, the most important one being safety. Air-traffic
management (ATM) provides and adapts flight planning to guarantee a proper
separation of the trajectories of the flights; see e.g., [14,4,13]. In the case of UAM,
some infrastructure has to be built to provide safe landing locations in case of
failure or damage of drones/eVTOLs. These locations are called “Safety Landing
Sites” (SLSs) and should be organized to cover the trajectory of eVTOLs for
emergency landings at any position along flight paths.

In what follows, we study the optimal placement of SLSs in the air-transpor-
tation network. We aim at installing the minimum-cost set of SLSs, such that all
the drones/eVTOLs trajectories are covered. We show an example in Figure 1.
It represents an aerial 2D view of a part of a city, where the rectangles are the
roofs of existing buildings. The black crosses represent potential sites for SLSs.
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The two red segments are the trajectory of the flights in this portion of the
space. The trajectory is fully covered thanks to the installation of 3 SLS over 5
potential sites, namely the ones corresponding to the center of the green circles.
The latter represents the points in space that are at a distance that is smaller
than the safety distance for an emergency landing. Note that every point along
the trajectory is inside at least one circle, thus the trajectory is fully covered.

Fig. 1. Example of full covering provided by installing 3 SLSs

The problem of finding an optimal placement of SLSs has not received a
lot of attention. In fact, there appears to be no published work on the variant
that we are considering. In the literature, we can find the masters thesis of Xu
[19], where he studied the problem of SLS placement coupled with the routing
problem of drones/eVTOLs for each origin-destination pair. The potential SLSs
are assumed to fully cover a subset of the arcs of the considered network, i.e.,
a partial covering is not allowed. In [15], Pelegín and Xu consider a variant
of the problem, which can be formulated as a continuous covering problem. In
particular, they interpret the problem as a set-covering/location problem where
both candidate locations and demand points are continuous on a network. In
this work, we consider the demand points continuous on the network, but the
candidate-location set is finite and composed of points not restricted to be in
the network; see e.g., Figure 1.

More attention has been accorded to the optimal placement of vertiports; see
e.g., [18,17]. However, their location depends on the estimated service demand
and, based on the decisions made on the vertiport location, the UAM network
is identified. In contrast, we suppose that these decisions were already made.
In fact, despite the scarcity of literature on the topic, the main actors in the
UAM field assert that pre-identified emergency landing sites are necessary to
guarantee safety in UAM; see e.g., [12,8].
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Organization and contributions. In §1, we describe our new mathematical
model for the optimal safety-landing-site location problem, a generally NP-hard
minimum-weight set covering problem. In §2, we see what kinds of set-covering
matrices can arise from our setting, linking to the literature on ideal matrices.
In §3, we identify three classes of efficiently-solvable cases for our setting. In
§4, toward practical optimal solution of instances, we carry out “strong fixing”,
which enhances the classical technique of reduced-cost fixing. In §5, we present
results of computational experiments, demonstrating the value of strong fixing
for reducing model size and as a useful tool for solving difficult instances to
optimality. In §6, we identify some potential next steps.

Notation. We denote the set of real numbers by R and the set of positive real
numbers by R++ . We denote an all-ones vector by e. For a vector x ∈ Rn, we
denote its 2-norm by ∥x∥ :=

√∑n
i=1 x

2
i . For a matrix A, we denote the transpose

of A by AT and column j of A by A·j .

1 Covering edges with a subset of a finite set of balls

We begin with a formally defined geometric optimization problem. Let G be a
straight-line embedding of a graph in Rd, d ≥ 1 (although our main interest is
d = 2, with d = 3 possibly also having some applied interest), where we denote
the vertex set of G by V(G), and the edge set of G by I(G), which is a finite set
of intervals, which we regard as closed, thus containing its end vertices. Note that
an interval can be a single point (even though this might not be useful for our
motivating application). We are further given a finite set N of n points in Rd, a
weight function w : N → R++ , and covering radii r : N → R++ (we emphasize
that points in N may have differing covering radii). A point x ∈ N r(x)-covers
all points in the r(x)-ball B(x, r(x)) := {y ∈ Rd : ∥x − y∥2 ≤ r(x)}. A subset
S ⊂ N r-covers G if every point y in every edge I ∈ I(G) is r(x)-covered by
some point x ∈ S. We may as well assume, for feasibility, that N r-covers G.
Our goal is to find a minimum w-weight r-covering of G.

Connecting this geometric problem with our motivating application, we ob-
serve that any realistic road network can be approximated to arbitrary precision
by a straight-line embedded graph, using extra vertices, in addition to road
junctions; this is just the standard technique of piecewise-linear approximation
of curves. The point set N corresponds to the set of potential SLSs. In our ap-
plication, a constant radius for each SLS is rather natural, but our methodology
does not require this. We also allow for cost to depend on SLSs, which can be
natural if sites are rented, for example.

Associated with each ball B(x, r(x)) is its boundary, the sphere B̄(x, r(x)).
Each such sphere B̄(x, r(x)) intersects each interval I ∈ I(G) at most twice.
Collecting all of these at most 2n subdivision points, as we let x vary over N ,
the interval I is subdivided into at most 1+2n closed subintervals, the collection
of which we denote as C(I). It is clear that all points in a given one of these
subintervals are covered by the same set of balls.
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With all of this notation, we can re-cast the problem of finding a minimum
w-weight r-covering of G as the 0/1-linear optimization problem

min
∑
x∈N

w(x)z(x)∑
x∈N :

J⊂B(x,r(x))

z(x) ≥ 1, ∀ J ∈ C(I), I ∈ I(G); (CP)

z(x) ∈ {0, 1}, ∀ x ∈ N,

where each z(x) is a binary indicator variable associated with selecting the point
x ∈ N (equivalently, the ball B(x, r(x))). Because |C(I)| ≤ 1+ 2n, for each edge
I ∈ I(G), the number of covering constraints, which we will denote by m, is at
most (1 + 2n)|I(G)|. Of course we can view this formulation in matrix format
as

min{wTz : Az ≥ e, z ∈ {0, 1}n}, (SCP)

for an appropriate 0/1-valued m×n matrix A, and it is this view that we mainly
work with in what follows.

The problem is already NP-Hard for d > 1, when all balls have identical
radius, the weights are all unity, N := V(G), and the edges of G are simply the
points N ; see [9, Theorem 4]. Of course, this type of graph (with only degenerate
edges) is not directly relevant to our motivating application, and anyway we are
aiming at exact algorithms for practical instances of moderate size.

2 What kind of constraint matrices can we get?

There is a big theory on when set covering LPs have integer optima (for all
objectives). It is the theory of ideal matrices; see [5]. A 0/1 matrix is balanced
if it does not contain a square submatrix of odd order with two ones per row
and per column. In fact, the 0/1 TU (totally unimodular; see [16], for example)
matrices are a proper subclass of the balanced matrices.

Berge [3] showed that, if A is balanced, then both the packing and cover-
ing systems associated with A have integer vertices. Fulkerson, Hoffman, and
Oppenheim [10] showed that, if A is balanced, then the covering system is TDI
(totally dual integral; see [16], for example). So balanced 0/1 matrices are a
subclass of ideal 0/1 matrices.

We can observe that the matrices that can arise for us are not generally
balanced, already for a simple example, depicted in Figure 2; the drawing is
for n = 5, but it could have been for any odd n ≥ 3. The edges of the graph
are indicated with red. The points of N are at the midpoints of the black lines
(which are not themselves edges). The (green) circle for each point of N goes
through the center. It is easy to see that edges are not subdivided by circles,
and each circle covers a pair of edges in a cyclic fashion. The constraint matrix
of the covering problem is an odd-order (5 in this case) 0/1 matrix violating the
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Fig. 2. Does not have an ideal covering matrix

definition of balanced. In fact, the matrix is not even ideal as the covering LP
has an all-12 extreme point.

We can also get a counterexample to idealness for the covering matrix with
respect to unit-grid graphs. In particular, it is well known that the “circulant
matrix” of Figure 3 is non-ideal, see [6]. Now, we can realize this matrix from

C3
8 :=



1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
1 0 0 0 0 0 1 1
1 1 0 0 0 0 0 1


Fig. 3. Non-ideal circulant matrix

an 8-edge “unit-grid graph” (or the reader may prefer to see it as a 4-edge “unit-
grid graph”), see Figure 4, and eight well-designed covering disks, each covering
an “L”, namely {a, b, c}, {b, c, d}, {c, d, e}, {d, e, f}, {e, f, g}, {f, g, h}, {g, h, a},
{h, a, b}. As a sanity check, referring to Figure 5, we see that C3

8 is not balanced.

3 Efficiently solvable cases

In this section, we present three situations for which CP/SCP is efficiently solv-
able.

3.1 When G is a unit-grid graph in Rd, d ≥ 2, N ⊂ V(G), and
1 ≤ r(x) < d

√
5/4, for all x ∈ N

Briefly, a unit-grid graph is a finite subgraph of the standard integer lattice graph.
For this case, we will observe that our minimum-weight r-covering problem on
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Fig. 4. Yields the non-ideal covering matrix C3
8 .

Fig. 5. C3
8 is not balanced.

G is equivalently an ordinary minimum-weight vertex covering problem on G,
with vertices in V(G) \N disallowed. Choosing a vertex x as a covering vertex
fully r-covers all of its incident edges (because r(x) ≥ 1), but it will not r-cover
the midpoint of any other edge (because r(x) < d

√
5/4, which is the minimum

distance between x and the midpoint of an edge that is not incident to x). The
only way to r-cover a midpoint of an edge is to choose one of its endpoints, in
which case the entire edge is r-covered (because r(x) ≥ 1).

The efficient solvability easily follows, because unit-grid graphs are bipartite,
and the ordinary formulation of minimum-weight vertex covering (with vari-
ables corresponding to vertices in V(G) \ N set to 0) has a totally-unimodular
constraint matrix; so the SCP is efficiently solved by linear optimization.
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3.2 When G is a path intersecting each ball on a subpath

When G is a straight path (in any dimension d ≥ 1), ordering the subintervals
naturally, as we traverse the path, we can see that in this case the constraint
matrix for SCP is a (column-wise) consecutive-ones matrix, and hence is totally
unimodular (and so SCP is polynomially solvable in such cases). In fact, this
is true as long as the path (not necessarily straight) intersects B(x, r(x)) on a
subpath, for each x ∈ N . For example, if G is monotone in each coordinate, then
G enters and leaves each ball at most once each.

3.3 A fork-free set of subtrees

Given a tree T , a pair of subtrees T1 and T2 has a fork if there is a path P1 with
end-vertices in T1 but not T2 , and a path P2 with end-vertices in T2 but not
T1 , such that P1 and P2 have a vertex in common. We consider the problem of
finding a minimum-weight covering of a tree by a given set of subtrees; see [2,
called problem “C0”]. This problem admits a polynomial-time algorithm when
the family of subtrees is fork free, using some problem transformations and then
a recursive algorithm. This problem and algorithm is relevant to our situation
when: G is a tree, each ball intersects G on a subtree (easily checked), and the
set of these subtrees is fork free (easily checked). A simple special case is the
situation considered in §3.1. Much more broadly, if the degrees of a tree are ≤ 3,
then any family of subtrees is fork free.

Now, it is easy to make a simple example arising from our situation (which
is even a unit-grid graph), where a fork arises; see Figure 6 (The tree is the
red graph, and the pair of green covering disks define the two subtrees). So

Fig. 6. A forking configuration

the algorithm from [2] does not apply to this example. On the other hand, the
constraint matrix of this instance of SCP is balanced, so this is an easy instance
for linear programming.

Referring back to Figure 2, we also find forks. Also see [2, Sec. 5] which raises
the interesting question on the relationship between totally-balanced matrices4

4 a 0/1 matrix is totally balanced if it has no square submatrix (of any order) with
two ones per row and per column, thus a subclass of balanced 0/1 matrices; see [11].
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and covering matrices of fork-free families. These notions are incomparable; [2]
has a very simple example that is fork free but not totally balanced. But we can
even get fork free coming from our context and not balanced, returning again to
our example of Figure 4 (it is not a tree, but we can break an edge).

4 Strong fixing

We consider the linear relaxation of SCP, that is min{wTz : Az ≥ e, z ≥ 0},
and the associated dual problem

max{uTe : uTA ≤ wT, u ≥ 0}. (D)

An optimal solution of D is commonly used in the application of reduced-cost
fixing, see, e.g. [7], a classical technique in integer programming that uses upper
bounds on the optimal solution values of minimization problems for inferring
variables whose values can be fixed while preserving the optimal solutions. The
well-known technique is based on Theorem 1 (a general theorem, which we state
specifically for our situation).

Theorem 1. Let UB be the objective-function value of a feasible solution for
SCP, and let û be a feasible solution for D. Then, for every optimal solution z⋆

for SCP, we have:

z⋆j ≤
⌊

UB−ûTe
wj−ûTA·j

⌋
, ∀ j ∈ {1, . . . , n} such that wj − ûTA·j > 0. (1)

For a given j ∈ {1, . . . , n}, we should have the right-hand side in (1) equal
to zero to be able to fix the variable zj at zero in SCP. Equivalently, we should
have ûT(e−A·j) > UB − wj .

We observe that any feasible solution û can be used in (1). Then, for all
j ∈ {1, . . . , n}, we propose the solution of

zj := max{uT(e−A·j) : uTA ≤ wT, u ≥ 0}. (Fj)

Note that, for each j ∈ {1, . . . , n}, if there is a feasible solution û to D that can
be used in (1) to fix zj at zero, then the optimal solution of Fj has objective
value greater than UB − wj and can be used as well.

We call strong fixing, the procedure that, for a given upper bound UB on
the optimal value of SCP, fixes the maximum number of variables in SCP at
zero, by solving problems Fj and applying Theorem 1, for all j ∈ {1, . . . , n}.
In fact, [1] (and probably many others) considered this approach (they call a
model “relaxed consistent” after no variable fixing of this type is possible) but
discarded the idea as probably being computationally prohibitive.

5 Computational experiments

We have implemented a framework to generate 25 random instances of CP and
formulate them as the set covering problem SCP. We solve the instances applying
the following procedures in the given order.
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(a) Reduce the number of constraints in SCP by eliminating dominated rows of
the associated constraint matrix A.

(b) Fix variables in the reduced SCP by applying reduced-cost fixing, i.e., using
Theorem 1, taking û as an optimal solution of D. If it was possible to fix
variables, reapply (a) to reduce the number of constraints further.

(c) Apply strong fixing (see §4). We note that the only difference between prob-
lems Fj , for j = 1 . . . , n, is the objective function, so we warm start the
solution of each problem (except the first one solved) with the optimal so-
lution of the previous one solved. After solving Fj for a given j we fix all
possible variables using its optimal solution. Then, we select the next prob-
lem to solve, Fȷ̂, among all the possible options associated to the unfixed
variables. Fȷ̂ is such that A·ȷ̂ is the closest column to A·j , according to the
‘Jaccard similarity’ (i.e. for a pair of columns, the cardinality of the intersec-
tion of the supports divided by the cardinality of the union of the supports).
In case it was possible to fix variables, reapply procedure (a) to reduce the
number of constraints in the remaining problem.

(d) Solve the last problem obtained with Gurobi.

Our implementation is in Python, using Gurobi v. 10.0.2. We ran Gurobi
with one thread per core, default parameter settings (with the presolve option
on). We ran on an 8-core machine (under Ubuntu): Intel i9-9900K CPU running
at 3.60GHz, with 32 GB of memory.

In Algorithm 1, we show how we construct random instances for CP, for a
given number of points n, and a given interval [Rmin, Rmax] in which the covering
radii for the points must be. We construct a graph G = (V,E) with node-set
V given by ν := 0.03n points randomly generated in the unit square in the
plane, and the edges in E initially given by the edges of the minimum spanning
tree (MST) of V , which guarantees connectivity of G. Finally, we compute the
Delaunay triangulation of the ν points in V , and add to E the edges from
the triangulation that do not belong to its convex hull. All other details of the
instance generation can be seen in Algorithm 1. In Figure 7, we show an example
of the MST of V and of the graph G.

Fig. 7. Constructing an instance of CP - MST of V (left) and graph G (right)
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Algorithm 1: Instance generator
Input: n, Rmin, Rmax (0.1 < Rmin < Rmax < 0.2).
Output: instance of CP/SCP.

1 randomly generate a set V of ν := 0.03n points in Q := {[0, 1]× [0, 1]};
2 use the Python package networkx to compute the edge set EST of an MST of

V , letting the weight for edge (i, j) as the Euclidean distance between i and j;
3 compute the Delaunay triangulation of V , and denote the subset of its edges

that are not in the convex hull by EDT ;
4 let G = (V,E), where E := EST ∪ EDT ;
5 randomly generate a set N of n points xk in Q, k = 1, . . . , n;
6 randomly generate rk in [Rmin, Rmax], k = 1, . . . , n;
7 randomly generate wk in [0.5r2k, 1.5r

2
k], k = 1, . . . , n;

8 let ck be the circle centered at xk with radius rk , for k = 1, . . . , n;
9 for each e ∈ E, compute the intersections (0, 1 or 2) of ck and e, for

k = 1, . . . , n;
10 compute all the subintervals defined on each edge by the intersections, and let

m be the total number of subintervals for all edges;

We note that the instance constructed by Algorithm 1 may be infeasible, if
any part of an edge of G is not covered by any point. In this case, we iteratively
increase all radii rk , for k = 1, . . . , n, by 10%, until the instance is feasible. For
feasible instances, we check if there are circles that do not intercept any edges
of the graph. If so, we iteratively increase the radius of each of those circles by
10%, until they intercept an edge. By this last procedure, we avoid zero columns
in the constraint matrices A associated to our instances of SCP. In Figure 8, we
represent the data for an instance of CP and its optimal solution. In the optimal
solution we see nine points/circles selected.

In Table 1 we present numerical results aiming at observing the impact of
strong fixing in reducing the size of SCP, after having already applied standard
reduced-cost fixing and eliminating redundant constraints. Because one of our
main goals is to see the full power of strong fixing, in applying Theorem 1, we
always set UB to the optimal objective value of SCP. We display the number
of rows (m) and columns (n) of the constraint matrix A after applying each
procedure described in (a-d) and their elapsed time (seconds). We have under
‘Gurobi’ the size of the original A and the time to solve with Gurobi, and
under ‘Gurobi presolve’, the size of the matrix A after Gurobi’s presolve is
applied and the time to apply it. Finally, we have in the next three columns
the size of the matrix A after applying the procedures described in (a-c) and
the times to apply them. Finally, in the last column, we have the time to solve
the last problem obtained with Gurobi, as described in (d). We see that our
own presolve, corresponding to procedures (a-c), is effective in reducing the size
of the problem, and does not lead in general to problems bigger than the ones
obtained with Gurobi’s presolve (even though, from the increase in the number of
variables when compared to the original problem, we see that Gurobi’s presolve
implements different procedures, such as sparsification on the equation system
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Fig. 8. Instance data (left) and its optimal solution (right)

after adding slack variables). We also see that strong fixing is very effective
in reducing the size of the problem. Compared to the problems to which it is
applied, we have an average decrease of 49% in m and 44% in n. Of course, our
presolve is very time consuming compared to Gurobi’s. Nevertheless, for 22 out
of the 25 instances tested, there is an improvement in the final Gurobi time to
solve the problem, and we note that all the steps of reduction and fixing can
still be further improved. This shows that strong fixing is a promising tool to
be adopted in the solution of difficult problems, as is the case of the well-known
strong-branching procedure.

We can also see that with our set-covering modeling methodology, even with-
out strong fixing, a modern integer-programming solver is capable of solving
to optimality large instances of CP in the plane. Specifically, our largest five
instances all have 75 vertices and ≈ 273 edges, and we choose from a set of
n = 75/.03 = 2500 points/circles.

6 Outlook

Extensions. Our integer-programming approach can be extended to other geo-
metric settings. We can use other metrics, or replace balls B(x, r(x)) with arbi-
trary convex sets B(x) for which we can compute the intersection of with each
edge I ∈ I(G). In this way, N is just an index set, and we only need a pair of
line searches, to determine the endpoints of the intersection of B(x) with each
I ∈ I(G). We still have |C(I)| ≤ 1+2n, for each I ∈ I(G), and so the number of
covering constraints in CP is at most (1+2n)|I(G)|. Finally, we could take G to
be geodesically embedded on a sphere and the balls replaced by geodesic balls.
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Gurobi Gurobi matrix reduced-cost strong Gurobi
presolve reduction (a) fixing (b) fixing (c) reduced

I m n time m n time m n time m n time m n time time (d)
1 7164 500 0.28 372 257 0.17 531 500 24.49 214 167 0.50 12 19 5.39 0.003
2 4078 500 0.37 427 327 0.10 574 500 12.08 344 267 0.94 49 63 16.20 0.01
3 3865 500 0.34 399 331 0.10 537 500 10.22 342 291 0.83 46 71 17.90 0.007
4 4399 500 0.27 412 300 0.10 559 500 13.15 310 236 0.79 6 14 11.35 0.007
5 4098 500 0.22 446 359 0.13 546 500 11.92 146 132 0.35 16 16 2.33 0.008
6 13254 1000 2.90 1279 1119 0.73 1728 1000 136.00 1331 705 15.92 244 202 96.34 0.035
7 9709 1000 3.91 1263 1125 0.77 1581 1000 81.86 1443 837 13.33 909 562 140.72 2.29
8 10847 1000 2.53 1307 1140 0.80 1672 1000 94.13 1351 712 15.22 263 196 94.20 0.06
9 9720 1000 2.81 1335 1149 0.69 1700 1000 84.27 1247 667 12.14 209 193 89.13 0.03

10 9377 1000 3.20 1300 1193 0.67 1621 1000 75.76 1329 764 12.17 322 246 103.94 0.08
11 17970 1500 29.46 2720 2222 2.75 3175 1500 278.33 2862 1304 62.73 1061 609 486.60 2.31
12 22022 1500 65.65 2838 2208 3.01 3316 1500 425.03 3115 1336 68.69 1725 844 595.06 9.24
13 18716 1500 42.05 2944 2219 2.86 3466 1500 315.96 3311 1379 82.08 2184 983 619.66 24.44
14 18464 1500 14.30 2545 1988 2.44 3114 1500 306.49 2856 1270 59.32 1548 762 441.53 6.17
15 19053 1500 33.95 2908 2207 2.82 3376 1500 327.13 3162 1361 72.56 1745 851 581.55 7.57
16 29227 2000 170.78 4194 3037 6.59 4988 2000 832.81 4691 1793 177.51 2959 1221 1493.63 83.46
17 29206 2000 212.07 4365 3186 7.04 4993 2000 823.83 4793 1828 188.71 3182 1318 1547.75 102.57
18 28927 2000 762.26 4120 2971 7.22 5016 2000 799.22 4889 1862 192.64 4060 1557 1717.11 497.09
19 30746 2000 6970.90 4943 3645 7.22 5243 2000 842.61 5243 1998 229.23 5109 1944 2879.75 7421.27
20 31606 2000 1914.49 5158 3711 8.20 5378 2000 885.00 5374 1997 241.15 5088 1897 2924.22 1034.66
21 42137 2500 30111.51 6928 4656 14.99 7606 2500 1785.99 7580 2470 517.05 7308 2356 7588.82 28318.53
22 41229 2500 594.63 6511 4454 15.07 7454 2500 1689.45 7127 2344 432.95 3979 1450 4391.32 142.18
23 43100 2500 614.62 6236 4209 15.16 7381 2500 1856.51 7139 2313 462.52 5477 1828 4212.32 494.37
24 42053 2500 51978.94 6654 4776 16.84 7031 2500 1685.95 7031 2500 433.37 6958 2467 7493.67 56012.21
25 42641 2500 3594.00 6639 4723 16.43 7038 2500 1615.20 7032 2497 412.83 6604 2360 6135.45 6540.81

Table 1. Numerical results

Solvable cases. We may seek to generalize the algorithm mentioned in §3.3 to
arbitrary families of subtrees of unit-grid-graph trees (i.e., get rid of the fork-free
condition but restrict to unit-grid graphs — which can have degree-4 vertices).

Extending our computational work. An important direction is to reduce the time
for strong fixing, so as to get a large number of variables fixed without solving all
of the Fj . Additionally, the strong-fixing methodology is very general and could
work well for other specific classes of mixed-integer optimization problems.
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