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Mesothelioma is a type of late-onset cancer that develops in cells covering

the outer surface of organs. Although it can affect the peritoneum, heart,

or testicles, it mainly targets the lining of the lungs, making pleural meso-

thelioma (PMe) the most common and widely studied mesothelioma type.

PMe is caused by exposure to fibres of asbestos, which when inhaled leads

to inflammation and scarring of the pleura. Despite the ban on asbestos by

most Western countries, the incidence of PMe is on the rise, also facilitated

by a lack of specific symptomatology and diagnostic methods. Therapeutic

options are also limited to mainly palliative care, making this disease

untreatable. Here we present an overview of biological aspects underlying

PMe by listing genetic and molecular mechanisms behind its onset, aggres-

sive nature, and fast-paced progression. To this end, we report on the role

of deubiquitinase BRCA1-associated protein-1 (BAP1), a tumour suppres-

sor gene with a widely acknowledged role in the corrupted signalling and

metabolism of PMe. This review aims to enhance our understanding of this

devastating malignancy and propel efforts for its investigation.
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1. Introduction

The mesothelium refers to the layer of tissues (epithe-

lium) that surrounds most body cavities and the organs

of the chest (pleura and pericardium), abdominal cavity

(peritoneum and mesentery), and pelvis (including the

tunica vaginalis that surrounds the testes) [1]. It func-

tions to protect internal structures and aid in movement

and breathing. Such functions are supported by the

cells—called mesothelial cells—which are commonly

found in pleural, peritoneal, and pericardial fluids [2].

Mesothelial cells tend to have a large, round, and cen-

trally placed nucleus with a generous amount of baso-

philic cytoplasm. In response to inflammation or

infection, mesothelial cells lose their cytoplasm and con-

verge into clusters. Several medical problems may

involve the mesothelium and its resident population

such as pleural and pericardial effusions, adhesions, and

malignant mesothelioma (MMe) [3]. MMe has an inci-

dence rate ranging between 7 and 40 cases per million

[4], killing approximately 40 000 people worldwide per

year [5]. Currently, there is a lack of suitable treatments

to revert its fatal prognosis as well as of reliable

markers allowing for an early diagnosis. MMe develops

in lining tissues of the body such as the pericardium,

tunica vaginalis, peritoneum, and the pleura [6] (Fig. 1).

Pleural mesothelioma (PMe), which includes the parietal

layer of the internal chest cavity and the visceral line

which covers the lungs [7], accounts for more than 70%

of all MMe cases. PMe can develop on either layer of

the pleura and spreads to the other [8], resulting in the

growth of the tumour around the affected lung, which

can lead to breathing difficulties caused by the accumu-

lation of pleural fluids in the thoracic cavity [9]. Impor-

tantly, PMe is histologically distinguishable according

to the cell type involved in the pathology [10], i.e. (a)

epithelioid, (b) sarcomatoid, or (c) biphasic [11]

(Fig. 2). Epithelioid mesothelioma is the most common

type, tends to be less aggressive, and spreads more

slowly compared to sarcomatoid and biphasic ones [12].

Sarcomatoid mesothelioma is associated with the worst

prognosis and is the most aggressive and difficult to

treat of the three types, accounting for 10–20% of the

PMe cases [13]. The biphasic type is a mix of the previ-

ous two [14] and its prognosis may depend upon which

cell type is most abundant in the tumour. Epithelioid

PMe is composed of polygonal, oval, or cuboidal cells,

whilst sarcomatoid PMe cells have a spindle shape [15].

The most widely accepted method currently to define

PMe pathology progression is the Tumour Node

Metastasis (TNM) staging system [16]. See Box 1 on

Tumour Node Metastasis (TNM) classification.

Assessment of cancer progression through the staging

system is essential to plan the best possible treatments,

but as of today a cure for this pathology has yet to be

achieved. For this reason, the average life expectancy

for PMe patients is between 8 and 22 months after diag-

nosis [17], depending on stage and histological subtype.

Symptoms include dry cough, shortness of breath, and

chest pain [4], which often appear at a late stage of the

pathology and since these are common symptoms of

other diseases, they may lead to misdiagnosis [18].

This occurs despite an awareness of the main risk fac-

tor of the pathology is exposure to asbestos [6]. Even

though genetic background [19] and simian virus

(SV40) [20,21] infections have been contemplated as

triggers of the condition, accumulation of asbestos in

respiratory routes is the prominent one. Asbestos is a

term used to describe different mineral species [22], of

which the most common is chrysotile. Chrysotile, also

known as white asbestos [23], makes up 99% of the

total types of asbestos produced worldwide [24]. White

asbestos has been widely used in the past century in the

textile and building industries, due to its durability and

physical properties [22,25], its usage has been nonethe-

less banned in more than 65 countries since 1970 for the

threat it poses to human health via its fibre release into

the air [26,27]. Asbestos modifies DNA and induces

chronic inflammation [28,29], thereby impairing lung

function. However, the damage caused to an organism

can take up to 50 years to manifest and PMe is indeed a

cancer characterised by a very long latency period [30].

The incidence peak of the pathology is believed to have

happened already [31] in the Western countries that

have banned the use of the mineral. However, highly

populated countries such as China, Russia, and India

[32] are continuing the mining of asbestos and its usage

in construction indicates that the number of PMe

patients is expected to rise globally.

Given the growing global attention to this disease,

we review what is known about PMe by detailing (a)

mechanisms of carcinogenesis, (b) signalling pathways,

(c) proven genetic determinants besides diagnostics,

and (d) treatments. This overview represents a

core-based knowledge of the disease, which is aimed at

assisting both researchers and clinicians.

2. Asbestos-induced PMe
pathogenesis

The mesothelium is an important structure that serves

not only to protect and lubricate movements of
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Fig. 1. Tissues affected by mesothelioma. Representation of the most common tissues of origin for the mesothelioma pathology. Source:

www.asbestos.com/mesothelioma. Created with Biorender.com.

Fig. 2. Mesothelioma cell types.

Illustration of the three possible cell

types involved in mesothelioma.

Created with Biorender.com.
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organs, but also facilitates fluid transport, blood clot-

ting, and helps resistance against infections and can-

cers. While it can aid in controlling tumours, it is also

particularly sensitive to asbestos [3]. The first line of

evidence showing that asbestos exerts regulatory effects

in pleural mesothelial cells came from a study in which

asbestos fibres caused the induction of c-fos and c-jun

proto-oncogenes [33] in human cells. It is yet ill-

defined how asbestos influences the biology of meso-

thelial cells, but the currently accepted view is that the

induced cytotoxicity leads to DNA damage and/or

frustrates phagocytosis, triggering chronic inflamma-

tion [34,35]. During the latency period, from exposure

to the carcinogen and pathology outbreak, several core

aspects of mesothelial cells change, spanning chromo-

somal integrity and epigenetic modifications (e.g. pro-

moter hypermethylation at tumour suppressor loci)

[36,37]. Currently, there are four main hypotheses

regarding the pathogenesis of asbestos-induced meso-

thelioma (Fig. 3A–D).

i The first one pertains to the production of a large

amount of reactive oxygen species (ROS). ROS

are dangerous oxygen forms, and are highly reac-

tive due to their unstable nature [38]. These

molecules can be produced directly from the

exposed surface of the fibre, or by phagocytic cells

such as macrophages, which engulf asbestos fibres

but are not able to digest them (Fig. 3A). ROS

can then interact with DNA, leading to DNA

damage lesions and mutations. It is nonetheless

important to consider that it might be difficult for

ROS to reach the DNA in their active state, as

they would probably react with membranes and

molecules on their way to the nucleus. Therefore,

one of the other three mechanisms below, or a

combination of them, could better explain the spe-

cific action of these dangerous fibres on the cells.

ii The second hypothesis indicates that asbestos

fibres are engulfed directly by mesothelial cells and

can physically interfere with the mitotic process of

the cell cycle (Fig. 3D). Tangling of asbestos fibres

with chromosomes or mitotic spindles may result

in chromosomal structural abnormalities during

cell division [39] (Fig. 3B).

iii The third one proposes that asbestos traps other

molecules on its surface [40], such as proteins and

other chemical compounds, resulting in the accu-

mulation of hazardous molecules, including carcin-

ogens (Fig. 3C).

iv Finally, the fourth hypothesis suggests that meso-

thelial cells and macrophages exposed to asbestos

fibres release a variety of cytokines and growth

factors, such as tumour necrosis factor-a,
interleukin-1b, transforming growth factor-b, and
platelet-derived growth factor, which induce

inflammation and tumour promotion [41]. This is

probably due to the ability of asbestos to directly

interact and activate surface receptors (Fig. 3D).

Indeed, it has been demonstrated that asbestos

fibres activate the epidermal growth factor recep-

tor (EGFR) in mesothelial cells and in turn the

downstream extracellular signal-regulated kinases

(ERK) [42] cascade. Moreover, the activation of

the pathway is coupled by an upregulation of

EGFR mRNA and protein levels [43], leading to

an amplification of the signal. One of the princi-

pal effects following the upregulation of the

ERK cascade in PMe is the activation of the

transcription factor activator protein 1 (AP-1)

[44], which controls several cellular processes,

such as cellular proliferation, differentiation, and

apoptosis [45].

Therefore, asbestos exhibits pleiotropic effects,

linked to aberrant transcriptional responses, cell prolif-

eration, and transformation. Either through direct

interactions or via the generation of ROS, asbestos

Box 1. TNM Classification uses three components to

identify cancer stage.

• Tumour extent (T): The location and size of the

primary tumour site, which can range from T0 if

there is no evidence of the tumour, to T4 when

the tumour has spread from the pleura to nearby

tissues and organs.

• Lymph node involvement (N): Whether the cancer

has spread to nearby lymph nodes, from N0 to

N2 based on how far from the primary tumour

the affected lymph nodes are.

• Metastasis (M): M0 for no evidence and M1 the

for presence of distant metastases, depending on

whether the tumour is localised or has spread to

distant areas of the body.

The clinician will then score each component and

assigns a value. A combination of component scores

establishes the mesothelioma stage, between I and IV.

• Stage IA: T1, N0, M0

• Stage IB: T2 or 3, N0, M0

• Stage II: T1 or 2, N1, M0

• Stage IIIA: T3, N1, M0

• Stage IIIB: T1-3, N2, M0 or T4, any N, M0

• Stage IV: any T, any N, M1
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activates cell signalling pathways that regulate gene

expression and cell fate.

3. Pathogenesis beyond asbestos

Even though approximately 80% of individuals

developing PMe have been previously exposed to

asbestos, fewer than 5% of asbestos workers develop

PMe [46]. This suggests that genetic traits may be

relevant for the development of the pathology. For

instance, a higher incidence of PMe has been

observed in certain families among residents exposed

to asbestos [47]. Cytogenetic studies have shown that

mesothelioma cells carry highly complex and variable

chromosomal aberration. However, other pathogenic

mechanisms have been unveiled and are reported

below.

3.1. Chromosomal and genetic changes

Loss-of-heterozygosity analyses have demonstrated

frequent deletions of specific sites within chromosome

arms 1p, 3p, 6q, 9p, 13q, 15q, and 22q [48]. Three of

these regions are most frequently altered: the tumour

suppressors cyclin-dependent kinase inhibitor 2A

(CDKN2A) at 9p21, neurofibromin 2 (NF2) at

22q12, and the BRCA1-associated protein 1 (BAP1)

at 3p21.1. Homozygous deletion appears to be the

major mechanism affecting CDKN2A, whereas inacti-

vating mutations coupled with allelic loss occur at

the NF2 locus [48]. More recently, BAP1 was deter-

mined to be the gene involved in the mutations or

deletions at 3p21.1 [49]. BAP1 is a tumour suppressor

protein [50], mainly by acting on DNA repair, cell

death, and gene transcription. The CDKN2A locus on

chromosome 9p21 encodes two tumour suppressor

proteins, namely p16INK4A and p14ARF [51]. Mesothe-

lioma, as opposed to many other cancers, rarely has

mutated TP53 [52]. However, loss of p14ARF indi-

rectly inactivates p53, since the degradation of p53 is

blocked by p14ARF activity [53]. P53 is an important

tumour suppressor, essential for the regulation of cell

division, senescence, and apoptosis [54]. The protein

p16INK4A, instead, controls cell cycle and division by

suppressing CDK4 and CDK6 activity [55]. More-

over, in murine models it has been shown that hyper-

methylation of p16INK4A or p19ARF (orthologous of

the human p14ARF) precedes mesothelioma accompa-

nied by silencing of CDKN2A and loss of p16INK4A

and p19ARF proteins, suggesting that epigenetic alter-

ations may play an important role in gene regulation

leading to PMe [37].

Fig. 3. Possible mechanisms of

carcinogenesis caused by asbestos.

Representation of the proposed

mechanisms of action of asbestos

fibres in mesothelioma progression.

(A) DNA damage caused by ROS

produced by macrophages after

asbestos phagocytosis. (B)

Abnormal cell cycle due to

asbestos fibres entangling

chromosomes during mitosis. (C)

Activation of receptors localised on

the cell surface by asbestos fibres.

(D) Transport of cancerous

chemical compounds inside the cell

carried on the surface of the fibres.

Created with Biorender.com.
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3.2. Merlin signalling

Moesin-ezrin-radixin-like protein (Merlin) is the pro-

tein encoded by the NF2 gene that affects multiple

signalling cascades, including cell adhesion, small

GTPases, receptor tyrosine kinase (RTK), Hippo,

and the mammalian target of rapamycin (mTOR)

pathways [56]. Given its plethora of functions, the

loss of Merlin in PMe has been linked not only to

increased proliferation, but also increased invasive-

ness, spreading, and migration [56]. In patients with

no detectable NF2 mutations, Merlin was found to

be phosphorylated at Ser518, and thus inactivated

[57], confirming the role of Merlin in PMe

development.

More specifically, its role in PMe seems to be tightly

linked to Hippo and mTOR signalling cascades.

Besides the recurring mutations of the LST1 and LST2

kinases, arising from loss of NF2 gene function [56],

Merlin interplays with the Hippo pathway by influenc-

ing the transcriptional co-activator Yes-associated pro-

tein 1 (YAP1). The latter is known to be involved in

mesothelial cell growth through the upregulation of

cell cycle-promoting genes [58]. YAP1 activity is nor-

mally inhibited by Merlin, through phosphorylation

and cytoplasmic retention [59].

3.3. Noncoding miRNAs

Not only conventional coordinators of gene transcrip-

tion such as transcription tactors have been linked to

PMe onset, but also microRNAs (miRNAs). miRNAs

are small, single-stranded, noncoding RNA molecules

containing 21–23 nucleotides that regulate gene expres-

sion by blocking the translation of target messenger

RNA (mRNA) [60]. It has been demonstrated that

several miRNAs are differentially expressed in meso-

thelioma cells compared to normal or immortalised

mesothelial cells [61,62]. Most of the differences

involve the downregulation of miRNA directed at

silencing proto-oncogenes such as BCL-2, OCT4,

MCL-1, and others [63]. This leads to a deregulation

of essential cellular processes, such as differentiation,

proliferation, apoptosis, and metabolism [64]; hence,

promoting cancer progression. The downregulation of

miRNA expression in PMe is usually due to chromo-

somal aberrations [63] (e.g. miR-31 [65]). However,

not all differences in miRNA expression are related to

a downregulation, given that some miRNAs are abun-

dantly overexpressed in PMe cells [61], such as those

targeting CDKN2A and NF2 [61]. Deregulation of the

miRNA processing could therefore hold pathogenic

relevance in PMe patients.

3.4. mTOR and AKT signalling

There are several signalling pathways exploited by

PMe during onset and rapid progression. The mamma-

lian target of rapamycin (mTOR) is an important seri-

ne/threonine protein kinase, involved in fundamental

processes such as autophagy, mitochondrial biogenesis,

protein and lipid biosynthesis, and growth. Its defec-

tive function in PMe is linked with the fast progression

of the disease as well as with its late onset [66].

Recently, it was demonstrated how pharmacologically

targeting the mTOR complex [67] it is possible to

inhibit malignant cell growth in vitro and in vivo

tumour tissues. mTOR-regulating signals are predomi-

nately linked to a lack of nutrients (specifically amino

acids) [68] and are negatively regulated by Merlin,

which is repressed by phosphorylated AKT (pAKT)

[69,70]. The constant activation of AKT in PMe could

be due to the absence of phosphatase and tension

homologue (PTEN), which is either mutated or

completely absent in some cases [71,72]. PTEN acts as

a tumour suppressor by negatively regulating intracel-

lular levels of phosphatidylinositol-3,4,5-trisphosphate,

and phosphorylation levels of AKT [73]. Notably, the

undetectable level of this protein in PMe might not

only arise from mutations but also from hyperactiva-

tion of the Notch-1 signalling pathway, which controls

the transcriptional regulation of PTEN [74]. Moreover,

a further mechanism of inactivation of this protein

could be related to the effect of asbestos fibres on

ROS production since PTEN is also frequently inacti-

vated by H2O2 [75].

3.5. Calretinin and C-met signalling

The sustained activation of AKT leading to Merlin

repression and mTOR exploitation in PMe has been

linked to calretinin (CR) [76,77], which is overex-

pressed in certain types of tumours and pathologies,

including colon carcinoma and PMe [78]. Mostly char-

acterised as an intracellular Ca2+ effector and buffer

[79], its expression promotes cellular growth, survival,

and invasiveness inducing the epithelial to mesenchy-

mal transition (EMT) [73]. In murine cortical neurons,

it has been demonstrated that CR expression is regu-

lated by an AP2-like element present in the promoter

region of the gene [80]. This element does not influence

CR transcription in PMe [81], indicating different reg-

ulation between neuronal and non-neuronal cells. A

further activator of the AKT/mTOR pathway in PMe

is speculated to be the hepatocyte growth factor recep-

tor (c-Met), the dysregulation of which contributes to

the regulation of cell growth, motility, and invasion, as
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well as confers tumours the ability to metastasize [82].

Expressed in most PMe patients but not in healthy

mesothelial cells [83], its inhibition by a specific drug

(PHA-665752) resulted in the arrest of the cell cycle

and reduction of the activity of AKT and ERK signal-

ling pathways [84].

3.6. NF-kB and WNT signalling

In PMe, the proteasome is also overexpressed, which

in combination with the activation of AKT causes

activation of the nuclear translocator factor k-light

chain enhancer of activated B-cells (NF-kB) [44,85]. In

human mesothelial cells exposed to asbestos fibres [86],

NF-kB is translocated to the nucleus, resulting in the

expression of prosurvival genes such as BCL-2 [87]. A

further stimulus for NF-kB activation in PMe is

tumour necrosis factor-a (TNF-a), which is abundant

in PMe [86]. The Wingless and INT-1 (WNT) pathway

is also deregulated in PMe. The WNT signalling path-

way regulates developmental processes, cell prolifera-

tion and polarity, and its upregulation is caused by

overexpression of the activating protein Dishevelled

(Dvl) [88]. Among the proteins capable of redesigning

cancer cell signalling, greater consideration for its

prominence in PMe was gained by the BRCA1-

associated protein 1 (BAP1). BAP1 is one of the most

mutated genes in PMe. Loss of BAP1 nuclear staining

is considered a reliable indicator of malignancy, partic-

ularly for epithelioid histology, and therefore part of

the panel for the differential diagnosis.

All this highlights that PMe pathogenesis is multi-

factorial, mirrored by the complex genetic which char-

acterises the transformed cells causing the disease

(Fig. 4).

4. Role of the BRCA1-associated
protein 1 (BAP1) in malignant
mesothelioma

BAP1 is a ubiquitin carboxy-terminal hydrolase of

729 aa, encoded in humans by the BAP1 gene [89]. In its

native form it assumes a molecular mass of 80.4 kDa

and its structure contains three domains: (a) a catalytic

carboxy-terminal hydrolase (UCH) domain, localised at

the first 240 aa of the N-terminus, which removes ubi-

quitin from ubiquitylated substrates; (b) a linker region,

which includes a host cell factor C1 (HCF1) binding

motif; and (c) the C-terminal region, which comprises a

UCH37-like domain (ULD) and two nuclear localiza-

tion sequences [90,91] (Fig. 5). BAP1 was discovered in

1998, following a two-hybrid screening and named after

its interaction with breast cancer-associated protein 1

(BRCA1) [92]. BRCA1, by interacting with BRCA1-

associated RING domain 1 (BARD1) forms a tumour

suppressor complex that regulates the DNA damage

response via its E3 ubiquitin ligase activity [93].

BAP1 associates with the complex by binding and

deubiquitylating BARD1 [94], thereby modulating the

DNA damage response of BRCA1–BARD1. BAP1

interacts with several other proteins in the cell [95–
97] and its DNA repair activity could also be linked

to its interaction with the proteins MBD5 and MBD6

[98]. Contrary to what was originally thought, BAP1

localization and activity are not exclusively nuclear,

and can also be found in the cytosol [99] (Fig. 6).

Given its protective role, BAP1 loss is established as

“a foe” when it comes to tumour susceptibility and

development. However, patients carrying germline

BAP1 mutations in PMe [100–102] and cutaneous

melanoma [103] show an improved survival and a

better prognosis, suggesting that the presence of a

mutated BAP1 might mitigate tumour aggressiveness

(a “friendly” aspect). Moreover, in uveal melanoma,

somatic BAP1 mutations cause metastasis with a

probability of 74%, while the same has been

observed in only 36% of the patients carrying a

germline mutation [104]. A possible explanation for

the differences reported is that in patients carrying a

germline mutation, often a somatic mutation is also

observed, thus probably inducing a complete inactiva-

tion of the protein [105]. What is clear is that PMe

in carriers of BAP1 mutations are almost exclusively

of the epithelioid subtype [101,106], they are well-

differentiated, and have an overall nonaggressive

morphology, consistent with prolonged survival. In

addition, even though wildtype BAP1 affects sensitiv-

ity to gemcitabine [107], very recent work has shown

that mutation of the gene as well as its ablation

improves the response to platin/pemetrexed [108].

The question of how the lack of a tumour suppres-

sor protein like BAP1 can lead to an improvement in

patient’s outcome remains open. This positive effect

may be due to the involvement of Ca2+ homeostasis in

tumour progression. It has been reported that a few

Ca2+ signalling effectors promote the cancer stem cell

(CSC) state and are associated with cell resistance to

cancer treatments [109]. In liver cancer, for example,

Ca2+ oscillation mediated by IP3R2 plays a central

role in CSC self-renewal [110]. The recent findings on

the role of BAP1 in the stabilisation of the IP3R3

receptor may support this theory. It is therefore possi-

ble indeed that malfunctions in BAP1, even though

leading to cancer progression, may prevent the forma-

tion of CSCs, thereby reducing the aggressiveness of

the cancerous cells.
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5. Targets for molecular diagnosis

5.1. Diagnostic protein markers

Histological analysis is usually not sufficient for PMe

diagnosis. It may indeed be hard to distinguish sarco-

matoid mesothelioma from sarcomatoid carcinoma of

the lung [111] and epithelioid mesothelioma from

adenocarcinoma or reactive mesothelial cells [15].

Therefore, an immunohistochemistry (IHC) approach

is required using antibodies specific for PMe bio-

markers. Even though biomarkers with 100% sensitiv-

ity and specificity [112] for MMe are still missing, a

few promising candidates have been discovered.

Namely, by using a combination of Wilms’ tumour 1

(WT1) protein, CAM5.2, and AE1/3 cytokeratins, it is

Fig. 4. Schematic representation of the genes and protein most commonly deregulated in PMe. Representation of a PMe cell with

dysregulated pathways and molecular mediator differently expressed or regulated during the onset of the pathology indicated. Created with

Biorender.com.
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possible to distinguish between sarcomatoid carcinoma

and sarcomatoid mesothelioma with a specificity of

97.7% [113]. CR is also a useful diagnostic protein to

distinguish mesothelioma from adenocarcinoma, with

a sensitivity of 95% and specificity of 87% [114].

Another promising readout is the heart development

protein with EGF-like domains 1 (HEG1), which for

the epithelioid subtype offers a sensibility comparable

to CR, but with a higher specificity [115]. The discrimi-

nation between benign mesothelial proliferation and

epithelial mesothelioma is rather difficult. To this end,

the evaluation of the nuclear absence of BRCA1-asso-

ciated-protein 1 (BAP1) and 5-hydroxymethylcytosine

(5-hmC) emerges as a valid strategy [116]. Further-

more, a loss of BAP1 has been associated with meso-

thelioma in situ (MIS) [117]: a condition currently

acknowledged as a precursor to PMe with an epitheli-

oid component [118].

It is worth mentioning that there are blood-based

biomarkers that can help inform diagnosis, thus aiding

the development of a screening methodology beyond

classical histology, perhaps allowing for an early detec-

tion of PMe. To this goal, fibulin-3 has been proposed

as a possible detectable protein in the serum, even

though there is still controversy that would explain a

lack of attention towards this blood-based marker

[119]. Mesothelin is present in the blood too, and a

study conducted on more than 4000 [120] patients has

shown that it could be used as a serum marker to con-

firm PMe due to its high specificity (95%), although a

sensitivity score of 32% does not advocate for this

protein as a suitable diagnostic tool. However, encour-

aging recent studies have demonstrated that when

mesothelin is scored in combination with CR, it is

possible to reach a sensitivity of 75% [121] without

losing any specificity.

5.2. The role of microRNAs as diagnostic

markers

The screening for sarcomatoid mesothelioma via a

blood test remains challenging, since it appears to be

quite difficult to find specific protein markers linked to

a histological subtype. Hope in this direction is

brought by the detection of miRNAs. Previous analy-

sis of tissue samples showed that for the correct diag-

nosis of PMe, the detection of differentially expressed

miRNA [62] stands as a valid option. The deregulation

of several miRNAs is a characteristic of PMe, regard-

less of histologic subtypes [122], and an assay validated

on 68 samples based on the detection of three miR-

NAs reached a sensitivity of 100% and a specificity of

94% against adenocarcinoma [123]. In addition, it has

been shown that miRNA and DNA molecules can be

released from the cells into the body fluids [124,125],

in which they are remarkably stable, being protected

from endogenous RNAse activity [126]. In keeping

with this, the circulating upregulated microRNAs

miR-197-3p, miR-1281, and miR-32-3p have been pro-

posed as potential new biomarkers [127] in PMe, but

further studies will be needed to prove the efficacy of

such a screening methodology for the detection

of both epithelioid and sarcomatoid cell types. Lastly,

for the same purpose, a novel interesting screening

technique termed SOMAscan proteomics has been

proposed, in which the presence of thousands of pro-

teins in the serum is scored simultaneously. Recently,

it has been shown that it is possible to detect PMe

Fig. 5. Schematic representation of BAP1 sequence, domains, and binding sites. Representation of BAP1 illustrating the functional domains

and known binding sites to other proteins and complexes. UCH, ubiquitin carboxyl-terminal hydrolase domain; ULD, UCH37-like domain;

NLS, nuclear localization sequence.
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with a 75% sensitivity and 88.2% specificity using this

method [128], which is an encouraging result but still

not enough by itself. Perhaps soon, it will be possible

to increase the sensitivity and specificity of this assay

by producing a better screening array for this

pathology.

6. Therapeutic tools

There is no cure for PMe and most of the current

strategies of intervention are palliative, aimed at

extending the lifespan of the patients. The multimodal-

ity treatment that sees surgery followed by radiother-

apy and chemotherapy is the adopted standard of

care, even though high incidences of failure and recur-

rence are still registered [129].

A recent cross-sectional study has found that the inci-

dence of PMe’s death toll is constantly increasing

worldwide, and particularly so in regions with limited

resources [130]. Furthermore, the survival rate 5 years

postdiagnosis is around 10% [131], corroborating that

currently available treatments for PMe have little

impact. Patient candidates recommended for radical

surgery represent a lower percentage (around 20%)

[132] and those are younger individuals. The surgical

procedures consist of: (a) extrapleural pneumonectomy

(EPP), en-bloc resection of the lung, pleura, pericar-

dium, and diaphragm, or (b) the pleurectomy/decortica-

tion (P/D), a lung-sparing surgery that involves

removing the tumours and the affected pleura [133]. A

cure is not generally achieved following EPP [134], so

the liberation of the tumour mass with P/D in a

Fig. 6. Scheme of the different BAP1 functions in the cell. BAP1 is a tumour-suppressor protein that exerts its role via the coordination of

several different cellular mechanisms. In the nucleus, it is involved in gene expression regulation, DNA damage repair, and chromatin remo-

delling, while in the cytosol it can stabilise the calcium channel IP3R3. The downstream effects on a cell include the regulation of cell death

via apoptosis and ferroptosis. Created with Biorender.com.
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multimodal treatment scenario has been mostly adopted

in recent years [135], mainly as a palliative [136].

The utility of P/D is still under debate and a recent

study in the UK was conducted to assess whether the

adoption of this procedure is effectively advantageous

in terms of survivability and quality of life [137], but

the results have yet to be published. It is important to

note that although the multimodality treatment includ-

ing surgery, chemotherapy and radiotherapy has been

proposed for many years, it is not indicated as a stan-

dard of care [136].

Radiotherapy alone does not appear to be effective

in resolving the pathology for PMe [138], although

intensity-modulated radiotherapy (IMRT) following

surgery [139,140] is mainly beneficial in easing the pain

and symptoms.

Chemotherapy too shows marginal efficacy in PMe

[136], considering the high resistance phenomena with

efficacy just under 30% in the patients [55]. The stan-

dard chemotherapy protocol, used just in patients with

unresectable disease, is a combination of a platinum

drug (cisplatin or carboplatin) and pemetrexed

[132,141], which is a coadjuvant to increase cytotoxicity.

The addition of antiangiogenic drugs such as bevacizu-

mab [142] to this combination can increase the therapy’s

efficacy [136]. More recently, attention has shifted to

immune checkpoint inhibitors (ICI), to activate the

immune system to fight the disease. ICI uses monoclonal

antibodies directed to specific receptors present on cyto-

toxic T-cells [143], which inhibits their function against

the cells of our body. By blocking these receptors (or their

ligands) the T-cells can exert their function when they rec-

ognise specific epitopes on the cancerous cells. In a ran-

domised phase III study conducted on 605 patients, Baas

et al. [144] showed that the administration of ipilimu-

mab/nivolumab significantly increases the overall survival

of the patients to 18 months, compared to 14 with che-

motherapy alone. This is now a standard treatment for

PMe in the USA, Australia, and the UK. The approval

has nonetheless raised criticisms by several experts who

have questioned the clinical and pharmaeconomic benefit

of this approach compared to standard chemotherapy,

following a thorough analysis [145–149]. There are also a

few other experimental approaches that are currently

being explored for the treatment of this pathology. For

example, photodynamic treatment (PDT) is based on a

chemical accumulated in tumour cells activated by a spe-

cific wavelength of light to produce reactive singlet oxy-

gen (1O2). This technique showed potential as therapy

after surgical resection [150].

Another option is the use of miRNA [150]: the over-

expression of miR-31 miR-29c, or miR-145172 in PMe

cell lines has been shown to induce a decrease in

proliferation, migration, invasion, and colony forma-

tion. Despite the promising findings in vitro, the only

clinical study [151] so far completed failed to deliver

conclusive positive results.

Finally, oncolytic viral therapy (OVT) involves the

use of engineered viruses to kill the tumorigenic cells

[152] via lysis and parallel stimulation of the immune

system. In PMe, various viruses have been manipu-

lated such as adenovirus, HSV Type 1, vaccinia virus,

and measles virus. Even though clinical studies are still

ongoing, OVT did not prove to be effective alone

[153], but useful in combination with chemotherapy

and surgery [154], thus indicating a possible adjuvant

rather than curative for this approach.

The current lack of a standard of care for PMe

highlights that a deeper knowledge of biology and its

pathogenesis is indispensable to designing effective

approaches, as well as designating standards for clini-

cal trials to measure success.

7. Conclusion

The progress made in the comprehension of genetic

and molecular mechanisms involved in the aetiopatho-

genesis of PMe has not yet evolved into therapeutic

protocols or predictive biomarking strategies. This

means that more needs to be done to explore the cell

biology of the PMe’s onset and progression. The right

focus on securing translational impact has left several

of the molecular hits, which recently emerged, not fully

characterised. In the same way, those that have been

used instead far more robustly linked with the disease

are still in need of further clarification. This is epito-

mised by the evidence of the dual role acknowledged

for BAP1, considered as a “friend” in healthy subjects,

but as a “foe” in PMe patients. This is indicative that

the full picture of the underlying dysregulated biology

in PMe is not yet fully elucidated. However, the litera-

ture reviewed here highlights that in PMe physiopa-

thology, two promising aspects of this disease remain

understudied: signalling and metabolism. Despite the

contributions on Ca2+ signalling, the role of other

intracellular second messengers or respiration by-

products holding a similar role (e.g. ROS) remains

unclear. Equally, a deeper knowledge of metabolic

pathways and metabolites would better inform hidden

oncological aspects of PMe, thus offering new avenues

for personalised therapies. Formation and maintenance

of a CSC population, tumour micromovements and T-

cells function are all strictly dependent on modified

metabolism. In keeping with this, the dynamics of

interorganelle contacts are also unexplored, which

determine foci of metabolic and signalling events.
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Their full understanding will empower the ambition

for tailored therapeutic strategies and improved diag-

nosis in this aggressive malignancy.
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