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ON THE CURVATURES OF

RANDOM COMPLEX SUBMANIFOLDS

MICHELE ANCONA AND DAMIEN GAYET

Abstract. For any integers n ≥ 2 and 1 ≤ r ≤ n − 1 satisfying 3r ≥ 2n − 1, we show that the
expected volume fraction of a random degree d complex submanifold of CPn of codimension r where

the bisectional holomorphic curvature (for the induced ambient metric) is negative tends to one when

d goes to infinity. Here, the probability measure is the natural one associated with the Fubini–Study
metric. We provide similar estimates for the holomorphic sectional curvature, the Ricci curvature,

and the scalar curvature. Our results hold more generally for random submanifolds within any
complex projective manifold.

1. Introduction

Let M be a Kähler manifold of dimension n and denote by J the complex structure of M . Let g
be the Kähler metric on M and R := RM be the associated Riemannian tensor curvature. Recall that
for any x ∈M and two non-zeros tangent vectors X,Y ∈ TxM , the holomorphic bisectional curvature
at x in the directions (X,Y ) equals [10, Note 23]:

HBC(M,g)(X,Y ) =
R(X, JX, Y, JY )

‖X‖2g‖Y ‖2g
.

We will sometimes write HBCM (X,Y ) when the metric we choose is clear. when the metric we choose
is clear. The holomorphic bisectional curvature depends only on the two complex lines defined by X
and Y . Note also that the holomorphic bisectional curvature can be recovered from the Riemannian
sectional curvature using the formula

R(X,JX, Y, JY ) = R(X,Y,X, Y ) +R(X,JY,X, JY ).

Having a positive holomorphic bisectional curvature is a very strong constraint, see [8]. In particular,
any such compact Kähler manifold is biholomorphic to CPn [18]. On the other hand, any complex
submanifold in Cn, or in a complex flat torus, has non-positive bisectional curvature, see Proposition 3.2
below. For x ∈M and X ∈ TxM , the holomorphic sectional curvature of g at x is defined by

HSCM (X) = HBCM (X,X),

and the Ricci curvature by

RicM (X) =

n∑
i=1

HBCM (X, ei),

where {ei, Jei}i=1,··· ,n is any orthonormal basis of (TxM, g). Finally, the scalar curvature equals

ScalM =

n∑
i,j=1

HBCM (ei, ej).

For complex curves, all these curvatures coincide. In general, the holomorphic bisectional curvature de-
termines the holomorphic sectional curvature, the Ricci curvature, and the scalar curvature. Note also
that the Ricci and scalar curvatures can be defined on a general Riemannian manifold, not necessarily
Kähler.

The research leading to these results has received funding from the French Agence nationale de la recherche ANR-

20-CE40-0017 (Adyct).
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1.1. Probabilistic setting. The goal of this paper is to study these four curvatures for random
complex submanifolds Z of a complex projective manifold, equipped with the restriction g|Z of a fixed
ambient Kähler metric g. We now introduce our setting, which has become quite standard since [17].
Let us equip M with a Hermitian ample holomorphic line bundle (L, h)→M with positive curvature
ω, that is, locally

(1.1) ω =
1

2iπ
∂∂̄ log ‖s‖2h > 0,

where s is any local non vanishing holomorphic section of L. Let g = ω(·, J ·) be the associated Kähler
metric, that is fixed from now on. Consider a rank r holomorphic Hermitian bundle (E, hE) over M .
The space H0(M,E ⊗ Ld) of holomorphic sections of E ⊗ Ld := E ⊗ L⊗d is non trivial for d large
enough, and can be equipped with the L 2 Hermitian product

(1.2) (s, t) ∈ (H0(M,E ⊗ Ld))2 7→ 〈s, t〉 =

∫
M

〈s(x), t(x)〉hd
ωn

n!
,

where hd := hE ⊗ hd. This product induces a Gaussian measure µd over H0(M,E ⊗ Ld), defined for
any Borelian U ⊂ H0(M,E ⊗ Ld) by

(1.3) µd(U) =

∫
s∈U

e−
1
2‖s‖

2 ds

(2π)Nd
,

where Nd denotes the complex dimension of H0(M,E ⊗ Ld), and ds denotes the Lebesgue measure
associated with the Hermitian product (1.2).

Remark 1.1. Given the previous L 2 Hermitian product, an equivalent way to define a random section
s with respect to the previous metric µd is the following: if (Si)i∈{1,...,Nd} denotes a unitary basis of
this space, then

s =

Nd∑
i=1

aiSi

follows the law µd if the random variables
√

2ai are i.i.d standard complex Gaussians, that is <ai and
=ai are independent, centered Gaussian variables with variance equal to 1/2. Note also that for any
event depending only on the vanishing locus Z(s) of s ∈ H0(M,E ⊗ Ld), the probability measure µd
can be replaced by the invariant measure over the unit sphere

SH0(M,E ⊗ Ld)

for the product (1.2), or equivalently the Fubini–Study measure on the linear system PH0(M,E⊗Ld).

Example 1.2 (Random polynomials). When M is the projective space CPn, the line bundle (L, h) is
the degree 1 holomorphic line bundle (O(1), hFS) equipped with the standard Fubini–Study metric and
(E, hE) = (CPn ×Cr, h0) is the trivial rank r bundle equipped with the standard Hermitian product,
then the space of global section H0(M,E ⊗ Ld) is naturally identified with to the space of r-uples of
degree d homogeneous polynomials in n+1 variables (Chomd [Z0, · · · , Zn])r. In this case, if (ei)i∈{1,··· ,r}
denotes the standard basis of Cr, the family√ (n+ d)!

n!i0! · · · in!
)Zi00 · · ·Zinn ⊗ ei


i0+···+in=d, i∈{1,··· ,r}

is a unitary basis for the Hermitian metric (1.2).

1.2. Statement of the main results. Our main result estimates the proportion of a complex sub-
manifold Z where its bisectional, holomorphic sectional, Ricci, and scalar curvature of Z has negativity
properties. To do this, for any a ∈ R and any complex submanifold Z of M , we define

vol(HBCZ < a) := vol

{
x ∈ Z, sup

X,Y ∈TxZ
HBCZ,g|Z (X,Y ) < a

}
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the volume of the part of Z where the holomorphic bisectional curvature is smaller than a and by

(1.4) volfrac(HBCZ < a) :=
vol(HBCZ < a)

volZ

the volume fraction of M where the holomorphic bisectional curvature is smaller than a. We emphasize
that the curvature of Z is computed for the restriction g|Z to Z. Similarly, we define volfrac(HSCZ < a),
volfrac(RicZ < a) and volfrac(ScalZ < a). The main theorem of the paper computes the average of
volfrac(HBCZ(s) < a), where Z(s) is the zero locus of s ∈ H0(M,E ⊗ Ld).

Theorem 1.3. Let n ≥ 2 and 1 ≤ r ≤ n − 1 be integers, M be a complex projective manifold of
dimension n, (E, hE)→M be a rank r holomorphic vector bundle equipped with a Hermitian metric,
(L, h) → M be an ample holomorphic line bundle equipped with a Hermitian metric with positive
curvature ω, and g be the associated Kähler metric. Then there exists C > 0 such that for any
sequence (ad)d∈N of positive reals the following holds:

(1) (holomorphic bisectional curvature) if 3r ≥ 2n− 1,

∀d� 1, Eµd [volfrac(HBCZ(s) < −ad)] ≥ 1− C
(
ad + C

d

)3r−2n+2

.

(2) (holomorphic sectional curvature) If 2r ≥ n,

∀d� 1, E[volfrac(HSCZ(s) < −ad)] ≥ 1− C
(
ad + C

d

)2r−n+1

.

(3) (Ricci curvature) ∀d� 1, E[volfrac(RicZ(s) < −ad)] ≥ 1− C
(
ad + C

d

)r(n−r)−(n−r−1)

.

(4) (Scalar curvature) ∀d� 1, E[volfrac(ScalZ(s) < −ad)] ≥ 1− C
(
ad + C

d

) 1
2 r(n−r)(n−r+1)

.

The condition on the codimension that appears in the case of holomorphic sectional and bisectional
curvature in the theorem is optimal. In fact, if these relations are not satisfied, then, for every point
of the submanifold, there will always be directions in which the holomorphic sectional and bisectional
curvature are equal to that of the ambient manifold, which can be positive, see section 2.

Remark that for any d ∈ N∗,

inf
P∈Chomd [Z0,··· ,Zn]

volfrac(ScalZ(P ) < 0) = 0,

and similarly for the other curvatures. This can be seen by the smoothing of d generic hyperplanes:
by making increasingly smaller perturbations of this singular hypersurface, one can obtain smooth
hypersurfaces with a volume fraction arbitrarily close to 1 of the region the curvature is positive. An
analogous construction can be made in higher codimension. Moreover, note that any complex curve
in CP2 has points with positive curvature. These are the inflexion points, and generically there are
3d(d − 2) of them. Similarily, let T = Cn/Λ be a complex torus equipped with the standard flat
metric. Then, there is no hypersurface with negative holomorphic sectional curvature, hence with
negative holomorphic bisectional curvature. Indeed, the covering of the hypersurface would be a
complete hypersurface in Cn with negative sectional curvature, which is not possible [20].

For n = 2 and r = 1, then Z(s) is a complex curve and the holomorphic bisectional curvature is the
Gauss curvature. In this case, a weaker version Theorem 1.3 has been proved in [3].

Corollary 1.4 (Concentration in probability). Under the hypotheses of Theorem 1.3, for any ε ∈ (0, 1],

(1) (holomorphic bisectional curvature) if 3r ≥ 2n− 1 and 0 < η < ε(3r − 2n+ 2),

µd
[
volfrac(HBCZ(s) < −d1−ε) > 1− d−η

]
→d→∞ 1.

(2) (holomorphic sectional curvature) If 2r ≥ n and 0 < η < ε(2r − n+ 1),

µd
[
volfrac(HSCZ(s) < −d1−ε) > 1− d−η

]
→d→∞ 1.
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(3) (Ricci curvature) If 0 < η < ε(r(n− r)− (n− r − 1))

µd
[
volfrac(RicZ(s) < −d1−ε) > 1− d−η

]
→d→∞ 1.

(4) (Scalar curvature) If 0 < η < ε( 1
2r(n− r)(n− r + 1))

µd
[
volfrac(ScalZ(s) < −d1−ε) > 1− d−η

]
→d→∞ 1.

Note that, in a slightly different direction, the authors proved in in [2, Theorem 1.6] that

µd

[
s ∈ H0(E ⊗ Ld), min

x∈Z(s)
Kmin(x) > −d3(n+1)

]
→ 1,

where Kmin(x) is the infimum of the sectional curvature of Z(s) at x. This implies the same for
the holomorphic bisectional curvature, since the latter can be expressed as the sum of two sectional
curvatures.

Before stating the next corollary, let us consider the probability space (H, µ), where

H :=

∞∏
d=1

H0(M,E ⊗ Ld)

and µ is the product of the measures µd.

Corollary 1.5 (Almost-sure convergence). Under the hypotheses of Theorem 1.3,

(1) (holomorphic bisectional curvature) if 3r − 2n + 2 > 1, then, for almost all sequence (sd)d≥1

of H, volfrac(HBCZ(sd) < −1)→d→∞ 1.
(2) (holomorphic sectional curvature) If 2r − n + 1 > 1, then, for almost all sequence (sd)d≥1 of
H, volfrac(HSCZ(sd) < −1)→d→∞ 1.

(3) (Ricci curvature) If r(n − r) − (n − r − 1) > 1, then, for almost all sequence (sd)d≥1 of H,
volfrac(RicZ(sd) < −1)→d→∞ 1.

(4) (scalar curvature) If 1
2r(n − r)(n − r + 1) > 1, then, for almost all sequence (sd)d≥1 of H,

volfrac(ScalZ(sd) < −1)→d→∞ 1.

Finally, let us state a deterministic consequence of Theorem 1.3:

Corollary 1.6 (Existence). Under the hypotheses of Theorem 1.3, for any ε ∈ (0, 1],

(1) (holomorphic bisectional curvature) if 3r ≥ 2n − 1 and 0 < η < ε(3r − 2n + 2), there exists
a sequence of sections (sd)d≥d0 with sd ∈ H0(M,E ⊗ Ld) such that Z(sd) ⊂ M is a smooth
(n− r)-submanifold and

volfrac(HBCZ(s) < −d1−ε) > 1− d−η.
(2) (holomorphic sectional curvature) If 2r ≥ n and 0 < η < ε(2r−n+ 1), there exists a sequence

of sections (sd)d≥d0 with sd ∈ H0(M,E ⊗ Ld) such that Z(sd) ⊂ M is a smooth (n − r)-
submanifold and

volfrac(HSCZ(s) < −d1−ε) > 1− d−η.
(3) (Ricci curvature) If 0 < η < ε(r(n − r) − (n − r − 1)), there exists a sequence of sections

(sd)d≥d0 with sd ∈ H0(M,E ⊗ Ld) such that Z(sd) ⊂M is a smooth (n− r)-submanifold and

volfrac(RicZ(s) < −d1−ε) > 1− d−η.

(4) (Scalar curvature) If 0 < η < ε( 1
2r(n − r)(n − r + 1)), there exists a sequence of sections

(sd)d≥d0 with sd ∈ H0(M,E ⊗ Ld) such that Z(sd) ⊂M is a smooth (n− r)-submanifold and

volfrac(ScalZ(s) < −d1−ε) > 1− d−η.

Recently J.-P. Mohsen [14] proved that

(1) if 4r ≥ 3n − 1 then, for every sufficiently large d, there exists a complete intersections Zd of
degree d and dimension n − r such that g|Zd has negative holomorphic bisectional curvature
in M .
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(2) if 3r ≥ 2n, the same holds for the holomorphic sectional curvature.
(3) if r ≥ 2, the same holds for the Ricci curvature.
(4) For n ≥ 3, the same holds for the scalar curvature.

For the proof of his theorem, Mohsen used Donaldson’s method [5], which is a subtle construction of
holomorphic sections with a prescribed lower positive bound of the norm of their derivatives. Our proof
does not use Donaldson’s construction at all. In fact, from a probabilistic point of view, Donaldson’s
sections are exponentially rare. Moreover, our dimensional conditions are milde. On the other side,
we cannot recover his result.
Acknowledgments. The research leading to these results has received funding from the French
Agence nationale de la ANR-20-CE40-0017 (Adyct).

2. Symmetric complex bilinear maps and distance to the discriminant

The proof of Theorem 1.3 involves the second derivative of a section s ∈ H0(X,E ⊗ Ld) at a point
x ∈ Z(s). For large degree d, this derivative converges to a symmetric bilinear complex map from
TxZ(s) to E ⊗ Ld, see Proposition 4.7. In this paragraph, we develop some elementary results for the
space of such maps.

For any r ∈ {1, . . . , n}, define SymC(n−r, r) to be the set of complex bilinear symmetric maps from
Cn−r with values in Cr, that is the set of maps of Cn−r×Cn−r in Cr which are complex linear in both
variables and symmetric. Let

S1 := {T ∈ SymC(n− r, r), ∃(x, y) ∈ (Cn−r \ {0})2, T (x, y) = 0}
S2 := {T ∈ SymC(n− r, r), ∃x ∈ Cn−r \ {0}, T (x, x) = 0}.
S3 := {T ∈ SymC(n− r, r), ∃x ∈ Cn−r \ {0}, T (x, ·) = 0 ∈ L(Cn−r,Cr)}.

Remark 2.1. In the proof of Theorem 1.3, S1 is related to the holomorphic bisectional curvature, S2

to the holomorphic sectional curvature, and S3 to the Ricci curvature. The scalar case does not need
these preliminaries.

Let us also define

H1 := H0
(
(CPn−r−1)2, (O(1) �O(1))r

)
H2 := H0

(
CPn−r−1, (O(2))r

)
H3 := H0

(
CPn−r−1, (O(1))r(n−r)

)
,

where O(d) denotes the degree d line bundle over CPn−r−1. For any k ∈ {1, 2, 3}, denote

Φk : SymC(n− r, r)→ Hk

the following natural isomorphisms:

∀T ∈ SymC(n− r, r), Φ1(T ) = (Ti(X,Y ))i∈{1,··· ,r},

Φ2(T ) = (Ti(X,X))i∈{1,··· ,r},

Φ3(T ) = (Ti(ej , X))i∈{1,··· ,r},j∈{1,··· ,n−r},

where Ti, i ∈ {1, · · · , r}, denotes the i-th component of T , where (ej)j∈{1,··· ,r} denotes the standard

basis of Cn−r and where we identified the holomorphic sections of O(1) (resp. O(2)) with the linear
forms (resp. quadratic polynomials) in X ∈ Cn−r.

For any i ∈ {1, 2, 3}, let
∆i ⊂ Hi

be the discriminant loci of Hi, that is the set of sections of Hi which do not vanish transversally.
Finally, let

∆Si := Φ−1
i (∆i).

Lemma 2.2. Using the above notations, for any r ∈ {1, . . . , n} the following holds.

(1) If 3r > 2n− 2, then codimC ∆1 ≥ r − 2(n− r − 1) = 3r − 2n+ 2.
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(2) If 2r > n− 1, then codimC ∆2 ≥ r − (n− r − 1) = 2r − n+ 1.
(3) If codimC ∆3 = r(n− r)− (n− r − 1).

Proof. Let F be a rank e holomorphic vector bundle over a projective manifold M of dimension m.
Suppose that e > m. Thus, the discriminant ∆ in H0(M,F ) is the subset of sections that vanish
somewhere in M . Define the incidence variety to be

Σ = {(s, x) ∈ H0(M,F )×M, s(x) = 0}.
By construction, ∆ = π(Σ), where π : H0(M,F ) × M → H0(M,F ) denotes the first projection.
Suppose that Σ has codimension e in H0(M,F )×M . Then, by [14, Theorem 10], the codimension of
∆ in H0(M,F ) is equal or greater than e−m.

Thus, the result follows by taking

(1) M = (CPn−r−1)2 and F = (O(1) �O(1))r for ∆1,
(2) M = (CPn−r−1)2 and F = (O(2))r for ∆2,
(3) M = (CPn−r−1)2 and F = (O(1))r(n−r) for ∆3.

In all three cases, using the fact that O(1) and O(2) are very ample, it is easy to show that the map
(s, x) ∈ H0(M,F )×M 7→ s(x) ∈ F is a surjection, and thus, the respective incidence variety has the
correct codimension, equal to the rank of F . �

Lemma 2.3. Using the above notations, for any T ∈ SymC(n− r, r) the following holds.

(1) min
(x,y)∈(S2n−2r−1)2

|T (x, y)|Cr = min
([X],[Y ])∈(CPn−r−1)2

‖Φ1(T )([X], [Y ])‖FS,

(2) min
x∈S2n−2r−1

|T (x, x)|Cr = min
[X]∈CPn−r−1

‖Φ2(T )([X])‖FS,

(3) min
x∈S2n−2r−1

‖T (x, ·)‖Cr = min
[X]∈CPn−r−1

‖Φ3(T )([X])‖FS.

Proof. The proof is straightforward, since for any homogeneous degree d polynomial P ,

∀[X] ∈ CPn−r−1, ‖P ([X])‖FS =
|P (X)|
‖X‖d

by definition of the Fubini–Study norm. �

Proposition 2.4. Using the above notations, the following holds.

(1) 3r > 2n− 2⇔ S1 ⊂ ∆S1
.

(2) 2r > n− 1⇔ S2 ⊂ ∆S2
.

(3) S3 ⊂ ∆S3
.

Proof. For i ∈ {1, 2, 3}, notice that

(2.1) ∀T ∈ SymC(n− r, r), T ∈ Si ⇔ Φi(T )−1(0) 6= ∅.
Since O(1) �O(1) is a very ample holomorphic line bundle over (CPn−r−1)2, by Bertini Theorem,

• if 2(n− r − 1) < r, for any s ∈ H1 \∆1, s
−1(0) is empty;

• if 2(n − r − 1) ≥ r, for any s ∈ H1 \ ∆1, s
−1(0) is a r-codimension smooth submanifold of

(CPn−r−1)2. In particular, it is not empty.

The latter and (2.1) proves (1). Let us prove (2). Since O(2) is a very ample holomorphic line bundle
over CPn−r−1, by Bertini Theorem,

• if n− r − 1 < r, for any s ∈ H2 \∆2, s
−1(0) is empty;

• if n−r−1 ≥ r, for any s ∈ H2\∆2, s
−1(0) is a r-codimension smooth submanifold of CPn−r−1.

In particular, it is not empty.

The latter and (2.1) proves (2). Finally, let us prove (3). Since O(1) is a very ample holomorphic line
bundle over CPn−r−1, by Bertini Theorem,

• if n− r − 1 < r(n− r), for any s ∈ H3 \∆3, s
−1(0) is empty;

• if n−r−1 ≥ r(n−r), for any s ∈ H3\∆3, s
−1(0) is a r(n−r)-codimension smooth submanifold

of CPn−r−1. In particular, it is not empty.
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Since only the first case can occur, the latter and (2.1) prove (3). �

In the following Lemma, we use the notation above.
Lemma 2.5. Using the above notations, the following holds.

(1) Assume 3r > 2n− 2. Then, for any s ∈ H1,

dist(s,∆1) = (n− r)−1 min
(X,Y )∈(CPn−r−1)2

‖s(X,Y )‖FS.

(2) Assume 3r > 2n− 2. Then, for any s ∈ H2,

dist(s,∆2) = (n− r)−1 min
X∈CPn−r−1

‖s(X)‖FS.

(3) For any s ∈ H3,

dist(s,∆3) = (n− r)−1 min
X∈CPn−r−1

‖s(X)‖FS.

In all three cases, the distance is computed with respect to the L 2-metric induced by the Fubini–Study
metric on O(1), see Equation (1.2) and Example 1.2.

Proof. Let us give the details of proof for the holomorphic bisectional curvature. The formula for the
other curvatures is proved an analogue way. We follow [1, Lemma 3.8], see also [16].

By the hypothesis on (n, r), any section of H1 = H0
(
(CPn−r−1)2, (O(1) �O(1))r

)
cannot vanish

transversely. In other words, the discriminant locus is the subvariety of sections with non-trivial
vanishing locus. For any (x, y) ∈ (CPn−r−1)2, let ∆x,y be the space of sections of H1 that vanish at
(x, y), so that

∆ =
⋃

(x,y)∈(CPn−r−1)2

∆x,y

and for any s ∈ H1,

dist(s,∆) = min
(x,y)∈(CPn−r−1)2

min
s′∈∆x,y

‖s− s′‖L 2 .

Since the metric on H1 is invariant under the isometries of CPn−r−1 ×CPn−r−1, one can assume that
x = [1 : 0 · · · : 0] and y = [1 : 0 · · · : 0]. Besides, since the standard monomials are orthogonal in H1

(see Example 1.2), we have

∆x,y =
(
∆x ⊗ Chom

1 [Y0, . . . , Yn−r−1]⊕ Chom
1 [X0, . . . , Xn−r−1]⊗∆y

)r
,

where

∆x = Vect(Xα)
|α|=1
α=(0,α1,··· ,αn−r−1) and ∆y = Vect(Y α)

|α|=1
α=(0,α1,··· ,αn−r−1).

We then write s in the orthonormal decomposition (see Example 1.2)

s = (n− r)X0Y0 ⊗
r∑
i=1

aiei + τ ∈ ∆⊥x,y ⊕∆x,y.

Then, for any s′ ∈ ∆x,y, we have

(2.2) ‖s− s′‖2L 2 =

r∑
i=1

|ai|2 + ‖τ − s′‖2L 2

so that the minimum of (2.2) is reached for s′ = τ , that is,

min
s′∈∆x,y

‖s− s′‖L 2 =

r∑
i=1

|ai|2.

Finally,
r∑
i=1

|ai|2 = ‖s(x, y)‖2FS(n− r)−2,

hence the result. �
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Proposition 2.6. Using the above notations, the following holds. There exists C > 0 such that for
any ε > 0 small enough,

∀i ∈ {1, 2, 3}, µ {s ∈ Hi, dist(s,∆i) ≤ ε‖s‖L 2} ≤ Cε2 codim ∆i .

Here, µ is the Gaussian probability measure on Hi induced by the Fubini–Study metric on O(1), see
Example 1.2.

Proof. The estimate in the statement is equivalent to the existence of a constant C ′ > 0 such that

(2.3) ∀i ∈ {1, 2, 3}, ν {s ∈ SHi, dist(s,S∆i) ≤ ε} ≤ C ′ε2 codim ∆i

for any ε small enough, where SHi denotes the unit sphere in Hi, S∆i := ∆i ∩ SHi, and ν is the
uniform probability measure on SHi. Now, the discriminant S∆i is a complex algebraic subset of SHi

and its codimension in SHi equals the codimension of ∆i in Hi. Thus, by applying [4, Theorem 1.3],
one obtains (2.3). Hence, the result follows. �

3. A formula for the holomorphic bisectional curvature

The main result of this section is Proposition 3.2, which provides a useful formula for the holomorphic
bisectional curvature of a complex submanifold Z(s) in terms of s.

We begin by recalling some classical Riemannian facts. Let Z be a submanifold of the Riemannian
manifold (M, g), x ∈ Z and let

σ : TxZ × TxZ → NxZ

(X,Y ) 7→ (∇XY )⊥

where NZ ⊂ TM denotes the normal bundle of Z, and ∇ the Levi–Civita connection associated to g.
The Gauss–Codazzi’s equations [9, Theorem 3.6.2] allow us to compute the Riemann curvature RZ of
(Z, g|Z) in terms of RM and σ:

∀X,Y, V,W ∈ TxZ, 〈RZ(X,Y )V,W 〉 = 〈RM (X,Y )V,W 〉+(3.1)

〈σ(Y, V ), σ(X,W )〉 − 〈σ(X,V ), σ(Y,W )〉.
Let E → M be a smooth real vector bundle equipped with a metric h and a metric connection ∇.
Recall that the second covariant derivative ∇2 is defined by

(3.2) ∀x ∈M, ∀V,W ∈ TxM, ∇2
VW = ∇V∇W −∇∇LC

V W .

The following proposition computes the curvature of the zero locus of a transverse section of E in
terms of its derivatives.

Proposition 3.1 ([2]). Let n ≥ 1 and 1 ≤ r ≤ n be integers, (M, g) be a smooth Riemannian manifold
of dimension n, E →M be a rank r smooth real vector bundle equipped with a metric h and a metric
connection ∇. Let s ∈ C∞(M,E) be a smooth section vanishing transversally on Z(s) ⊂ M . Then,
for any x ∈ Z(s),

(3.3) 〈σ(V,W ), σ(X,Y )〉g = (∇sG∇s∗)−1(∇2
V,W s)(∇2

X,Y s)

where G : T ∗M → TM is the isomorphism given by g(G(α), ·) = α, for any α ∈ T ∗M .

The following proposition computes the holomorphic bisectional curvature of a complex submanifold
of a Kähler manifold, in terms of a (not necessarily holomorphic) section s of E that vanishes along it.

Proposition 3.2. Let (M, g, J) be a Kähler manifold, E → M be a complex vector bundle of rank
r, and s ∈ C∞(M,E) vanishing transversely along a J-complex submanifold Z(s). Then, for any
x ∈ Z(s) and any pair of unit vectors X,Y ∈ TxZ(s),

HBCZ(s)(X,Y ) = HBCM (X,Y )− 2(∇EsG(∇Es)∗)−1((∇E)2
X,Y s)((∇E)2

X,Y s),

where everything is computed at x, and where G : T ∗M → TM is the isomorphism given by g(G(α), ·) =
α, for any α ∈ T ∗M .
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Proof. Since (M,J, g) is Kähler, ∇J = 0, so that for any i ∈ {1, · · · , k}, using the symmetry of σ and
the fact that the normal subspace (TxZ(s))⊥ ⊂ TxM is invariant under J , for all i ∈ {1, · · · , n − r},
for all X ∈ TxZ(s),

(3.4) (∇LC
Jei(Jei))

⊥ = −(∇LC
ei ei)

⊥ and (∇LC
Jei(X))⊥ = J(∇LC

ei X)⊥,

where ⊥ denotes the orthogonal projection onto (TxZ(s))⊥. By the Gauss equations,

∀X,Y, V,W ∈ TxZ(s), 〈RZ(s)(X,Y )V,W 〉g = 〈RM (X,Y )V,W 〉g+〈σ(Y, V ), σ(X,W )〉−〈σ(X,V ), σ(Y,W )〉,

where RZ(s) (resp. RM ) denotes the Riemannian curvature of g|Z(s) on Z(s) (resp. g on M). By (3.4)
and (3.1), this implies

HBCZ(s)(X,Y ) = HBCM (X,Y )− 2〈σ(X,Y ), σ(X,Y )〉,
where we used that σ is symmetric. By Proposition 3.1, for any tangent vector X,Y, V,W in TxZ(s),

〈σ(Y, V ), σ(X,W )〉 = (∇sG∇s∗)−1(∇2
Y,V s)(∇2

X,W s),

hence the result. �

Let (T, g) and (E, h) be finite dimensional vector spaces equipped with metrics g and h. Let
G ∈ L(T ∗, T ) be defined by

∀α ∈ T ∗, 〈Gα, ·〉g = α.

The following lemma will allow us to bound the norm of the inverse from above in the latter Proposi-
tion 3.2.

Lemma 3.3. Let E, T as above and f ∈ L(T,E). Then,

• ∀α ∈ E∗, αfGf∗α ≥ 0.
• If f is onto, then, fGf∗ is inversible and

∀v ∈ E, (fGf∗)−1(v)(v) ≥ ‖f‖−2‖v‖2.

Proof. For any α ∈ E∗, w ∈ T , f ∈ L(T,E),

〈Gf∗(α), w〉g = f∗(α)(w) = α(f(w)),

so that for any β ∈ E∗,
β(f(Gf∗(α))) = f∗(β)(Gf∗(α)) = 〈Gf∗(β), Gf∗(α)〉g = 〈f∗(β), f∗(α)〉g∗ ,

where the scalar product on T ∗ is defined by

∀v, w ∈ T ∗, 〈v, w〉g∗ = 〈Gv,Gw〉g.
In particular,

(3.5) 0 ≤ α(fGf∗(α)) = ‖f∗α‖2g∗ ≤ ‖f∗‖2‖α‖2.
This proves the first point. Now, if f is onto, then fGf∗ is inversible. Let

Q = Mat(fGf∗, B∗),

be the matrix of fGf∗ seen as a bilinear form on E∗, and where B∗ is an orthonormal basis B∗ of E∗.
Let B the orthonormal dual basis B of E. Then,

∀v ∈ E, (fGf∗)−1(v)(v) = tV Q−1V,

where V denotes the coordinate vector of v in B. Hence,

∀v ∈ E, |(fGf∗)−1(v)(v)| ≥ (max specQ)−1‖v‖2 ≥ ‖f‖−2‖v‖2,
where we used (3.5) for the last inequality. �

4. Bergman kernel and the Bargmann–Fock field

In this section, we recall the relation between the Bergman kernel associated with E ⊗ Ld and the
Bargmann–Fock field.
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4.1. The Bargmann–Fock field. Recall that the Bargmann–Fock field is defined by

(4.1) ∀z ∈ Cn, f(z) =
∑

(i1,··· ,in)∈Nn
ai0,··· ,in

√
πi1+···+in

i1! · · · in!
zi11 · · · zinn e−

1
2π‖z‖

2

,

where the
√

2aI ’s are independent normal complex Gaussian random variables. The associated covari-
ant function equals

(4.2) ∀z, w ∈ Cn, P(z, w) := E(f(z)f(w)) = exp
(
−π

2
(‖z‖2 + ‖w‖2 − 2〈z, w〉Cn)

)
.

The a priori superfluous presence of π is in fact consistent with the projective situation. Indeed, the
affine Bargmann–Fock is the universal local limit of the projective model, see Theorem 4.5. To unify
the setting of this section with that of the next section and the rest of the paper, we consider here
that M = Cn and L = Cn × C with its standard Hermitian metric. Then P(z, w) ∈ Lz ⊗ L∗w. Let ∇0

be the metric connection on L defined by

(4.3) ∇01 =
1

2
π(∂̄ − ∂)‖z‖2,

whereas the dual connection ∇∗0 on L∗ satisfies ∇∗01∗ = − 1
2π(∂̄ − ∂)‖z‖2, where 1∗ is the dual of 1.

The reason why we fix the connection ∇0 is that the curvature of the trivial connection on L is 0,
while, as we will see below, the curvature of ∇0 is positive.

Note that the constant section 1 is no longer a holomorphic section for the connection ∇, but
the section σ0 := exp(− 1

2π‖z‖
2) is. The connection ∇0 is then the Chern connection for the trivial

metric and this holomorphic structure. This implies that the section P is holomorphic in z, and
antiholomorphic in w. Moreover, the curvature of ∇0 equals

R0 = ∂̄∂ log ‖σ0‖2 = π∂∂̄‖z‖2,

and the curvature form equals i
2πR0 = i

2

∑n
i=1 dzi∧dzi which is the standard symplectic form ω0 over

R2n. Moreover, for any C 2 function f : B(0, ε)→ C,

∀v, w ∈ Cn, (∇0)2
vwf(0) = D2f(v, w) +

1

2
π
∑
i

(viw̄i − wiv̄i)f

= D2f(v, w) +
1

2
R0(v, w)f.

Notice that R0(v, w) = (∇0)2
vw − (∇0)2

wv. Finally, a direct computation shows

∇2
0∇∗20 P(0, 0) = π2

n∑
i,j,k,`=1

(δikδj` + δi`δjk)dzi ⊗ dzj ⊗ dwk ⊗ dw`,

see for example [7, Lemma 4.2].

Remark 4.1. Almost surely the Bargmann–Fock Gaussian field f is a holomorphic section for the
standard complex structure and the connection defined by (4.3).

Let E = Cn×Cr endowed with its trivial metric and let f = (fi)i=1,··· ,r be r independent copies of
the Bargmann–Fock field. Then, f is a random section of E ⊗ L, and its covariance function equals
PIdCr . We use the connection (∇0)r (the r-product of ∇0) acting on sections of E ⊗ L. By an abuse
of notation, we continue to use ∇0 for (∇0)r.

Let ΣGOE be the variance matrix defined by:

ΣGOE = (δikδj` + δi`δjk)1≤i≤j≤n
1≤k≤l≤n

∈Mn(n+1)
2

(C).(4.4)

Remark 4.2. A complex bilinear form T ∈ SymC(Cn,C) writes

T =
∑

1≤i,j≤n

Tijdzi ⊗ dzj ,
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with Tij ∈ C for any 1 ≤ i, j ≤ n. Now, if T is a random Gaussian complex bilinear form and satisfies
Cov(T ) = ΣGOE, then the Tij are independent if i ≤ j, Var(Tij) = 1 is i < j and Var(Tii) = 2.
Equivalently, the Gaussian measure on SymC(Cn,C) equals

(4.5) e−
1
4 Tr(TT∗)

∏
1≤i≤j≤n dTij

(2π)
n(n+1)

2 2n
,

where T is identified with the complex symmetric matrix (Tij)1≤i,j≤n.

Proposition 4.3. [7, Corollary 4.3] Let f : Cn → Cr be r independent copies of the Bargmann–Fock
field. Then,

Cov(f(0),∇0f(0),∇2
0f(0)) = CovBF,

where

(4.6) CovBF :=

1 0 0
0 π IdCn 0
0 0 π2ΣGOE

⊗ IdCr .

Remark 4.4. Proposition 4.3 implies, in particular, that almost surely ∇0f(0) is a complex linear map,
and that ∇2

0f(x) ∈ SymC(Cn,Cr), that is, ∇2
0f(0) is a bilinear complex map with values in Cr.

4.2. The Bergman kernel. In this paragraph we assume that the setting and hypotheses of Theo-
rem 1.3 are satisfied. The covariance function Kd for the Gaussian field generated by the holomorphic
sections s ∈ H0(M,E ⊗ Ld) is defined by

∀z, w ∈M, Kd(z, w) = E [s(z)⊗ (s(w))∗] ∈ (E ⊗ Ld)|z ⊗ (E ⊗ Ld)∗|w,

where the averaging is made for the measure µd given by (1.3), where L∗ is the (complex) dual of L
and

∀w ∈M, ∀s, t ∈ Ldw, s∗(t) = 〈s, t〉hd(w).

The covariance Kd is the Bergman kernel, that is the kernel of the orthogonal projector from L (M,Ld)
onto H0(M,Ld). This fact can be seen through the equations

∀z, w ∈M, Kd(z, w) =

Nd∑
i=1

Si(z)⊗ S∗i (w),

where (Si)i is an orthonormal basis of H0(M,Ld) for the Hermitian product (1.2). Recall that the
metric g is induced by the curvature form ω and the complex structure. It is now classical that the
Bergman kernel has a universal rescaled (at scale 1√

d
) limit, the Bargmann–Fock kernel P, see (4.2)

above. Theorem 4.5 below quantifies this phenomenon. For this, we need to introduce local trivializa-
tions and charts.

Let x ∈ M and R > 0 be such that 2R is less than the radius of injectivity of M at x. Then the
exponential map based at x induces a chart near x with values in BTxM (0, 2R). We identify a point
in M with its coordinates. The parallel transport provides a trivialization

ϕx : BTxM (0, 2R)× (E ⊗ L)x → (E ⊗ L)|BTxM (0,2R)

which induces a trivialization of (E ⊗ Ld � (E ⊗ Ld)∗)|BTxM (0,2R)2 . Under this trivialization, the

Bergman kernel Kd becomes a map from TxM
2 with values into End

(
E ⊗ Ldx

)
.

Theorem 4.5. ([13, Theorem 4.2.1]) Under the hypotheses of Theorem 1.3, let m ∈ N. Then, there
exist C > 0, such that for any k ∈ {0, · · · ,m}, for any x ∈M , ∀z, w ∈ BTxM (0, 1),∥∥∥∥Dk

(z,w)

(
1

dn
Kd(

z√
d
,
w√
d

)− P(z, w) IdE⊗Ldx

)∥∥∥∥ ≤ Cd−1.
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We used in fact [12, Proposition 3.4] which simplifies the original theorem, which is more precise
but takes in account the derivatives of the volume form.

In the sequel, f denotes the trivialization of a section s at scale 1/
√
d, that is

(4.7) fd :=
1
√
d
n f

(
·√
d

)
.

Lemma 4.6. Under the hypotheses of Theorem 1.3, let s ∈ C∞(M,E ⊗ Ld). Let x ∈ M and f =
(fi)i∈{1,··· ,2r} be the trivialization of s in the setting of Section 4.2. Then,

∇f(x) = ∇0f(x) = Df(x) and ∇2fd(x) =
1
√
d
n

(
∇2

0 +
1

d
RE0

)
f,

where ∇0 is defined by (4.3).

Proof. First, recall that [13, Lemma 1.2.4] for any smooth function f : B(x, ε) → Rr and any vector
v ∈ R2n,

(4.8) ∀y ∈ B(x, ε), ∇vf(y) = Df(y)(v) +
1

2

(
(REx + dRLx )(y, v) + dO(|y − x|2|v|)

)
f(y),

where REx (resp. RLx ) denotes the curvature of (E, hE) (resp. (L, hL)) at x. Consequently, for any
v, w ∈ R2n,

∇v∇wf(y) = ∇v
(
Df(y)(w) +

1

2
(RE0 (y, w) + dRL0 (y, w) + dO(|y − x|2))f(y)

)
= D2

v,wf(y)+
1

2
((REx (v, w)+dRLx (v, w)+dO(|y−x|))f(y)+

1

2
(REx (y, w)+dRLx (y, w))+O(d|y−x|2))df(y)(v)

+
1

2

(
(RE0 + dRLx )(y, v) + dO(|y − x|2)

)(
Df(y)(w) +

1

2
(REx (y, w) + dRLx (y, w) + dO(|y − x|2))f(y)

)
,

so that at y = x, using again (4.8),

∇v∇wf(0) = D2
v,wf(0) +

1

2
(REx (v, w) + dRLx (v, w))f(0)).

Now, from (1.1) and since we are in normal coordinates,

RLx = R0

and ∇0 defined by (4.3) satisfies ∇0 = D +R0, we obtain the result. �
Proposition 4.7. [7] Under the hypotheses of Theorem 1.3, let x ∈ M . Under the trivializations
above, in any orthonormal basis of TxM ,

Cov
(
fd,∇fd,∇2fd

)
|x = CovBF +O(

1

d
),

where fd is defined by(4.7) and CovBF is defined by (4.6).

Proof. This is a direct consequence of Proposition 4.3, Theorem 4.5 and (4.6). �

5. Proof of the main results

In this section, we prove Theorem 1.3 and Corollaires 1.4 and 1.5. Let us start by computing the
volume of a submanifold Z(s), where s ∈ H0(X,E ⊗ Ld).

Proposition 5.1. Under the hypotheses of Theorem 1.3, for any d large enough, there exists a positive
constant vold, such that for any smooth transverse section s ∈ H0(X,E ⊗ Ld), one has the equality
vol(Z(s)) = vold . Moreover,

vold =
n!

(n− r)!
dr vol(M) +O(dr−1).
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Proof. By Wirtinger theorem [19], we have that the volume of Z(s) coincides with its symplectic
volume, that is,

vol(Z(s)) =

∫
Z(s)

ωn−r

(n− r)!
.

Remark that the dual of the fundamental class of Z(s) is the Euler class [cr(E ⊗Ld)] ∈ Hr,r(X,C) of
E ⊗ Ld, so that ∫

Z(s)

ωn−r

(n− r)!
=

∫
M

cr(E ⊗ Ld) ∧
ωn−r

(n− r)!
.

Finally, using that

cr(E ⊗ Ld) =

r∑
i=0

ci(E) ∧ (c1(L))d−i

and c0(E) = 1 (see [6, p. 55]) we obtain the asymptotics∫
M

cr(E ⊗ Ld) ∧
ωn−r

(n− r)!
∼d→∞

n!

(n− r)!
dr vol(M).

and hence the result. �

We prove now the main theorem.

Proof of Theorem 1.3. Since the proofs for the four curvatures are similar, we will provide a detailed
proof only for the case of holomorphic bisectional curvature, as it is the most intricate.

Let (ad)d be a sequence of positive real numbers. Without loss of generality, we can assume that
for every sufficiently large d, we have ad < cd, where c > 0 is a constant that depends only on X,L
and E (otherwise, the estimate in the statement of the theorem is vacuous).

We will estimate the expected value of the complement of the event we are interested in, that is,
E[volfrac(HBCZ(s),g|Z(s)

> −ad)]. By the Kac–Rice formula, see for instance [11, Theorem 1.3],

(5.1) E[vol(HBCZ(s),g|Z(s)
> −ad)] =

∫
M

E
[
1hb(ad)(x, s)|det∇sG∇s∗)| 12

∣∣ s(x) = 0
]
ρs(x)(0)dx,

where ρs(x)(0) is the density of s(x) at 0 and for any a ∈ R,

hb(ad) :=

{
(x, s) ∈M ×H0(M,E ⊗ Ld), x ∈ Z(s), sup

X,Y ∈TxZ(s)

HBCZ(s)(X,Y ) > −ad

}
.

Let x ∈M and let us compute the expectation in the latter integral. For this, we use the trivializations
described in Section 4.2. Let

fd :=
1
√
d
n f

(
·√
d

)
.

Let us define the random Gaussian variables

(F, S, T ) :=
(
fd(x),∇fd(x),∇2fd(x)

)
∈ Cr × L(R2n,R2r)× L((R2n)⊗2,R2r).

By Proposition 3.2, for any pair of unit vectors X,Y of kerS = TxZ(s),

(5.2) HBCZ(s)(X,Y ) = HBCM (X,Y )− 2d(SS∗)−1(T 2(X,Y ))(T 2(X,Y )).

Let

L(n, r) := L(R2n,R2r)× L((R2n)⊗2,R2r)

and HB(ad) ⊂ L(n, r) be defined by

HB(ad) :=

(S, T ) ∈ L(n, r), sup
(X,Y )∈(kerS)2

‖X‖=‖Y ‖=1

HBCM (X,Y )− 2d(SS∗)−1(T 2(X,Y ))(T 2(X,Y )) > −ad

 .
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Hence, it is straightforward to check that
(5.3)

E
[
1hb(ad)(x, s)|det∇sG∇s∗)| 12

∣∣ s(x) = 0
]
ρs(x)(0) = drE

[
1HB(ad)(S, T )|detSS∗| 12

∣∣F = 0
]
ρF (0),

where ρF (0) denotes the density of F for the measure induced by µd. Let us define

h = max
M
‖HBCM ‖

and

H̃B(ad) :=

(S, T ) ∈ L(n, r), min
(X,Y )∈(kerS)2

‖X‖=‖Y ‖=1

‖T (X,Y )‖2 < ad + h

2d
‖S‖2

 .

Then, Lemma 3.3 and Equation (5.2) imply that

(5.4) HB(ad) ⊂ H̃B(ad).

By Proposition 4.7,

(5.5) Cov(F, S, T ) = CovBF +O(
1

d
),

so that

Cov((S, T )|F = 0) = CovBF(S, T ) +O(
1

d
).

Note also that

ρF (0)→d→∞ ρBF
F (0).

Since the covariance matrix of ((S, T )|F = 0) is positive, for d large enough, using (5.4), we obtain

(5.6) E
[
1(HB(ad))|detSS∗| 12

∣∣F = 0
]
≤

1

C(n, r)

∫
(S,T )∈L(Cn,Cr)×SymC(n,r)

1
(H̃B(ad))

(S, T ) det(SS∗)e−
1

4π2 ‖S‖
2− 1

8π4 ‖T‖
2

dSdT,

where

C(n, r) := (2π)nr+dimC(SymC(n,r))πnr+2 dimC(SymC(n,r))2nr,

and ‖T‖2 = Tr(TT ∗), see (4.5). Note that in (5.6) we used that for a linear complex S, if SR denotes
its associated linear real operator, then

|detSRS
∗
R|

1
2 = detSS∗,

and that the support of the latter Gaussian measure is included in L(Cn,Cr) × SymC(n, r), that is,
almost surely, S is a complex linear map and T is a complex bilinear map, see Remark 4.4.

By Fubini and since the measure of T is invariant under the symmetries of Cn, in the right hand
side of (5.6), one can assume that

kerS = Cn−r × {0} ⊂ Cn

in H̃B(ad). Moreover by Lemma 2.3 and Proposition 2.5,

min
(X,Y )∈(S2n−2r−1)2

‖T (X,Y )‖2 = (n− r)2 dist2(Φ1(T ),∆1),

where Φ1 and ∆1 are defined at the beginning of Section 2.
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Hence, by Lemma 2.2 and Proposition 2.6, there exist C,C ′, C ′′ > 0 (that are independent of the
sequence (ad)d) such that for d large enough,

(5.7) E
[
1(HB(ad))|detSS∗| 12

∣∣F = 0
]

≤ C
∫

(S,T )∈L(Cn,Cr)×SymC(n−r,r)
dist2(Φ1(T ),∆1)<C

ad+h

2d ‖S‖
2

det(SS∗)e−
1

4π2 ‖S‖
2− 1

8π4 ‖T‖
2

dSdT

≤ C ′
∫
S∈L(Cn,Cr)

det(SS∗)

∫
ρ>0

ρ2N(n−r,r)−1e−ρ
2

(
(ad + h)‖S‖2

ρ2d

)3r−2n+3

e−
1

4π2 ‖S‖
2

dS

≤ C ′′(ad + h

d
)3r−2n+2,

where we identified T and Φ1(T ) through the isometry Φ defined in the proof of Lemma 2.4.
Thus, by (5.1), (5.3) and (5.7), there exists a constant C such that

E[vol(HBCZ(s) > −ad)] ≤ Cdr
(
ad + C

d

)3r−2n+3

.

Now, since by Lemma 5.1 vol(Z(s)) is a deterministic quantity vold of order O(dr). In particular,
for any d large enough and recalling (5.1) and (5.3), we obtain

E[volfrac(HBCZ(s) > −ad)] ≤ C
(
ad + C

d

)3r−2n+3

,

which is equivalent to

E[volfrac(HBCZ(s) < −ad)] ≥ 1− C
(
ad + C

d

)3r−2n+3

.

Hence the result for the holomorphic bisectional curvature.
Similarly, following the same proof and using Lemma 2.2 for the codimensions of ∆2 and ∆3, we

obtain

(1) E[vol(HSC > −ad)] ≤ Cdr
(
ad + C

d

)2r−n+1

(2) E[vol(Ric > −ad)] ≤ Crr
(
ad + C

d

)r(n−r)−(n−r−1)

,

which implies the result for the holomorphic sectional curvature and for the Ricci curvature.
Finally, for the scalar curvature, one can directly compute in an analogous way:

E[vol(ScalZ(s) > −ad)] ≤ Cdr volM

∫
‖S‖−2‖T‖2< ad+h

2d

det(SS∗)e−
1

4π2 ‖S‖
2− 1

4π4 ‖T‖
2

dSdT

≤ Cdr
∫
S

det(SS∗)

(
(ad + h)‖S‖2

d

) 1
2 r(n−r)(n−r+1)

e−
1

4π2 ‖S‖
2

dS

≤ C ′dr(
ad + C

d
)

1
2 r(n−r)(n−r+1).

which implies the result. �

Proof of Corollary 1.4. Let us prove the corollary for the holomorphic bisectional curvature; the proof
for the other curvatures is the same. By Theorem 1.3,

∀d� 1, Eµd [volfrac(HBCZ(s) < −ad)] ≥ 1− C
(
ad + C

d

)3r−2n+2

.

Since for any α > 0,

Eµd [volfrac(HBCZ(s) < −ad)] ≤ αµd[volfrac(HBCZ(s) < −ad) < α]+µd[volfrac(HBCZ(s) < −ad) ≥ α],
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we obtain

µd[volfrac(HBCZ(s) < −ad) ≥ α] ≥ 1− 1

α
C

(
ad + C

d

)3r−2n+2

.

We conclude choosing add = dε and α = αd = 1− d−η. �

Proof of Corollary 1.5. All the assertions are proven in the same way, so we write it only for the scalar
curvature. For any d large enough and any s = (sd)d ∈ H, let

∀d ≥ 1, Yd(s) := 1− volfrac(ScalZ(sd) < −1).

Then, by Theorem 1.3,

0 ≤
∫
s∈H

Yd(s)dµ(s) = O(d−
1
2 r(n−r)(n−r+1)),

so that ∫
s∈H

∞∑
d=1

Yd(s)dµ(s) =

∞∑
d=1

∫
s∈H

Yd(s)dµ(s) <∞,

so that almost surely, Yd(s)→d→∞ 0. �

Remark 5.2. In fact, one can prove a better estimate. For the scalar curvature, let

0 < ε <
1

2
r(n− r)(n− r + 1)− 1.

Then,

0 ≤
∫
s∈H

dεYd(s)dµ(s) = O(dε−
1
2 r(n−r)(n−r+1)),

and the same argument as before shows that, almost surely,

∀d� 1, 1− volfrac(ScalZ(sd) < −1) = o(d−ε).

For the reader’s convenience, Proposition 5.3 below provides a proof of the asymptotic version of
Proposition 5.1 using the Kac–Rice formula.

Proposition 5.3. Under the hypotheses of Theorem 1.3,

E(volZ(s)) ∼d→∞
n!

(n− r)!
dr vol(M).

Proof. By the proof of Theorem 1.3, forgetting the superfluous π in the BF-measure,

E(volZ(s)) ∼d dr vol(M)EBF [det(SS∗)] ρBF
F (0).

The random matrix SS∗ is a Wishart complex matrix and by [15, Theorem 3.1],

EBF [detSS∗)] =
n!

(n− r)!
det(

1

n
Σ),

where, writing SC = (sij)1≤i≤r,1≤j≤n ∈Mn,r(C),

Σ := E(SCS
∗
C) =

(
n∑
k=1

Esiksjk

)
1≤i,j≤r

=

(
n∑
k=1

E2πδi,j

)
1≤i,j≤r

= 2πnIr.

Now, ρBF
F (0) = 1

(2π)r , so that

EBF(volZ(s)) ∼d→∞
n!

(n− r)!
dr vol(M),

which is indeed the asymptotics of vold given by Lemma 5.1. �
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