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Abstract (233 / 250 words) 

Desmoplastic small round cell tumor (DSRCT) is an aggressive sarcoma 

subtype of high unmet need that is driven by the EWS-WT1 chimeric 

transcription factor. To identify novel therapeutic approaches to the targeting of 

DSRCT, we conducted a high-throughput drug sensitivity screening assessing 

chemosensitivity profiles for 79 small-molecule inhibitors on the JN-DSRCT-1 

cell line. We found DSRCT cells to be sensitive to PARP and ATR inhibitors 

(PARPi, ATRi), as a monotherapy and in combination. These effects were 

recapitulated using multiple clinical PARPi and ATRi in three biologically distinct, 

clinically-relevant models of DSRCT, including cell lines, a patient-derived 

xenograft (PDX)-derived organoid, and a cell line-derived xenograft mouse 

model. Mechanistically, exposure to a combination of PARPi and ATRi caused 

increased DNA damage, G2/M checkpoint activation, micronuclei, replication 

stress, and R-loop formation. EWS-WT1 silencing abrogated these phenotypes 

and was epistatic with exogenous expression of the R-loop resolution enzyme 

RNase H1 in reversing the sensitivity to PARPi and ATRi monotherapies, 

suggesting that EWS-WT1-dependent increase in R-loop formation could be a 

mechanistic cause of drug sensitivity in DSRCT cells. Combination of PARPi 

and ATRi further induced an EWS-WT1-dependent cell-autonomous activation 

of the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) 

innate immune pathway and cell surface expression of programmed-death 

ligand-1 (PD-L1). Taken together, our findings point towards a role for EWS-

WT1 in generating R-loop-dependent replication stress and provide a rationale 

for the clinical assessment of PARPi and ATRi in DSRCT. 
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Statement of significance: 29 / 32 Words 

We show that EWS-WT1, the unique oncogenic driver of DSRCT, confers 

sensitivity to PARP and ATR inhibitors, thus providing a rationale for assessing 

these drugs in patients with DSRCT. 
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Introduction  1 

Desmoplastic small round cell tumor (DSRCT) is a rare and aggressive subtype 2 

of sarcoma, affecting predominantly young males (1). DSRCT classically 3 

presents as a large abdominal mass and is most often diagnosed at advanced 4 

or metastatic stages with multiple peritoneal metastatic nodules, and sometimes 5 

distant metastases. Clinical prognosis for advanced DSRCT remains poor with 6 

a 5-year survival rate below 15% (2). No major therapeutic advance has 7 

occurred for DSRCT over the past 20 years, and currently, DSRCT patients 8 

undergo a standard Ewing sarcoma regimen, consisting of highly aggressive 9 

poly-chemotherapy and extensive surgical debulking (1). Therefore, the 10 

development of novel therapeutic strategies is urgently needed.  11 

 12 

DSRCT is molecularly characterized by the t(11;22)(q13;q12) chromosomal 13 

translocation, which fuses the transactivation domain of EWSR1 to the DNA 14 

binding domain of WT1, encoding an aberrant chimeric transcription factor (2,3). 15 

The presence of EWSR1::WT1 rearrangement is pathognomonic of the disease 16 

and provides the diagnosis of DSRCT over other small round cell sarcomas (2). 17 

Recent genomic sequencing identified rare additional secondary mutations, 18 

notably in genes encoding proteins involved in chromatin remodeling and DNA 19 

repair such as ARID1A, KMT2C, and MSH3 (4–7). EWS-WT1 conditional 20 

expression in mesenchymal stem cells – the putative cell-of-origin of DSRCT – 21 

is necessary and sufficient to generate a DSRCT phenotype (8), and EWS-WT1 22 

is considered as the unique driver in this simple-genomics sarcoma (9). As such, 23 

this chimeric aberrant transcription factor represents the most evident 24 
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therapeutic target in DSRCT. However, the direct targeting of transcription 25 

factors is extremely challenging (10), and one of the most promising strategies, 26 

which consists of degrading the target transcription factor, is just entering the 27 

clinic and has not yet been evaluated in transcription factors-driven sarcomas. 28 

Therefore, targeting downstream consequences of EWS-WT1 presence, such 29 

as transcription factor-induced oncogenic programs or replication stress, is an 30 

attractive strategy. 31 

 32 

In this study, we aimed to identify novel actionable targeted dependencies in 33 

DSRCT, using functional genomics and small-molecule inhibitor screening. We 34 

found that two distinct DSRCT cell lines, one newly-established patient-derived 35 

xenograft (PDX)-derived organoid (PDX-O) model and one cell line-derived 36 

xenograft mouse model were selectively sensitive to poly-ADP-ribose 37 

polymerases inhibitors (PARPi) and ataxia-telangectasia and Rad3-related 38 

inhibitors (ATRi). Mechanistically, we found that the presence of EWS-WT1 39 

increased DNA replication stress and R-loop formation, thereby causing 40 

enhanced reliance upon the ATR/CHK1 pathway. Exposure to PARPi and ATRi 41 

further activated the cyclic GMP-AMP synthase/stimulator of interferon genes 42 

(cGAS/STING) pathway and caused PD-L1 upregulation in DSRCT cell lines, 43 

suggesting potential for these drugs as DNA repair-targeted therapies and 44 

immunomodulators in DSRCT.  45 

 46 

 47 

 48 

49 
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Materials and Methods 50 

 51 

Cell lines 52 

The DSRCT JN-DSRCT-1 (JN1) cell line was purchased from American Type 53 

Culture Collection (ATCC). The DSRCT R cell line was created in-house, 54 

derived from a patient-derived xenograft (PDX) shared by Dr. Armelle Logié-55 

Dishington (Champions Oncology, France). Briefly, the PDX was finely minced 56 

into tiny pieces that were subsequently washed in fetal bovine serum (FBS) and 57 

centrifuged. The pellet was resuspended in DMEM/F12 supplemented with 20% 58 

FBS, 1X MEM non-essential amino acids (#11140050, Gibco) and 1X Pen-59 

Strep (#15070063, Gibco), and incubated in a 10 cm² petri dish at 37°C and 5% 60 

CO2. The culture medium was changed every other day with recovery of 61 

suspended cells by centrifugation at 1200rpm. After 6-8 weeks, a partially 62 

homogeneous cell layer was obtained; from this primary culture, cells were 63 

washed with 1X phosphate buffered saline (PBS), dissociated in trypsin-EDTA 64 

solution (#25200056, Gibco), and seeded into a new culture flask for 65 

subsequent cell culture. JN1 and R cells were cultured in DMEM/F12, 66 

supplemented with 10% or 20% of FBS, respectively. A673 and SaOS-2 cells 67 

were cultured in DMEM, supplemented with 10% FBS. All cells were grown at 68 

37°C and 5% CO2. Mycoplasma testing was performed bimonthly using the 69 

MycoAlert Mycoplasma Detection Kit (Lonza). All cell lines were short-tandem-70 

repeat typed using StemElite ID (Promega) to confirm identity.  71 

The JN1 and R cell lines were originally derived from human tumors that were 72 

histopathologically diagnosed as DSRCT (11): the JN1 cell line was established 73 



Kawai-Kawachi et al. Targeting replication stress in DSRCT 

 

 

 

9 

from a 7-year old male metastatic DSRCT patient’s pleural effusion and harbors 74 

the following pathognomonic EWSR1::WT1 fusion 3’-75 

[CCCATGGATGAAGGACCAGATCTTGATCTAG]-[GTGAGAAACCATACCAGT76 

GTGACTTCAAGG]-5’ (Supp Fig. S1); the R cell line was established from a 77 

20-year old male metastatic DSRCT patient’s lymph node and harbors the 78 

following pathognomonic EWSR1::WT1 fusion 3’-79 

[GGAGAGCGAGGTGGCTTCAATAAGCCTGGTG]-[GTGAGAAACCATACCAG80 

TGTGACTTCAAGG]-5’ (Supp Fig. S2). The Ewing sarcoma A673 cell line was 81 

gifted by Dr. Olivier Delattre (Institut Curie, France) and the osteosarcoma 82 

SaOS-2 cell line was gifted by Dr. Olivia Fromigue (Gustave Roussy, France).  83 

 84 

Generation of RNase H1-overexpressing JN1 cells 85 

To generate stable RNase H1-expressing JN1 (JN1-RNaseH1 cell line), the 86 

ppyCAG-RNaseH1-V5 plasmid (Addgene, #111906) was transfected in JN1 87 

cells with Lipofectamine 2000 (Thermo Fisher) according to manufacturer’s 88 

instructions. Stable pools of transfectants were generated by selection with 89 

hygromycin B and the resultant selected populations were submitted to clonal 90 

isolation using the limiting dilution method. Clones were recovered and profiled 91 

for RNase H1 expression by western blot. 92 

 93 

Drugs and chemicals 94 

The PARP inhibitors olaparib (AZD2281), talazoparib (BMN-673) and veliparib 95 

(ABT-888), the ATR inhibitors gartisertib (M4344), ceralasertib (AZD6738) and 96 

berzosertib (M6620), the CHK1 inhibitors prexasertib (LY2606368) and SRA-97 
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737, as well as cisplatin, topotecan, and SN-38, were purchased from Selleck 98 

Chemicals. The ATR inhibitor tuvusertib (M1774) was provided by Merck 99 

(Darmstadt, Germany). Inhibitor stock solutions were prepared in 100 

dimethylsulfoxide (DMSO) and stored in aliquots at -80°C. Mitomycin C (MMC), 101 

thymidine, iodo-deoxyuridine (IdU), and 5-chloro-2′-deoxyuridine (CldU) were 102 

purchased from Sigma-Aldrich. PicoGreen® was purchased from ThermoFisher.  103 

 104 

Small-molecule inhibitor and drug screen 105 

The small-molecule inhibitor and drug screen was performed as described 106 

previously (12). Briefly, small molecules were purchased as solid from suppliers 107 

listed in Supp Table S1 and stored in DMSO. Prior to the 384 well-plate screen, 108 

solid small molecules were resuspended in DMSO as 10 mM stocks, prior to 109 

further dilution in DMSO to create 384 well-plates containing a titration (0.5, 1, 5, 110 

10, 50, 100, 500, 1000 nM). A Hamilton Microlab Star liquid handling platform 111 

was used for this and all subsequent liquid handling steps except for cell 112 

seeding. 113 

JN1 cells growing in log phase were seeded in 384 well-plates at 250 cells per 114 

well in 50 µL of culture medium using a Thermo Fisher Multi-Drop Combi. This 115 

plating density was optimized to ensure that the cells were in growth phase by 116 

the end of the five-day treatment. 24 h after seeding, the medium was removed 117 

and replaced with medium containing the small molecule inhibitor library, as 118 

detailed above. Cells were then continuously cultured in the presence of small 119 

molecule inhibitors for a period of five days, at which point cell viability was 120 

estimated by adding 20 µL of CellTiter Glo® (Promega), diluted 1:4 in PBS to 121 
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the medium. After 10 min incubation at room temperature, the CellTiter Glo®-122 

generated luminescence was captured using a Victor X-Light plate reader. 123 

Luminescence values from each well were normalized to the median of signals 124 

from wells exposed to DMSO only (in absence of small molecule inhibitor) to 125 

generate surviving fractions (SF). In total, the cell line was screened three times, 126 

generating triplicate SF data sets. Surviving fractions were then used to plot 127 

dose-response survival curves, generated using 3-parameter logistic regression 128 

analysis via the drc R-package20. Using drc, Area under the curve (AUC) 129 

values were calculated from dose-response survival curves. AUC values were 130 

expressed as the proportion of the maximum area, representing no response to 131 

a drug. They were further scaled to lie between 0 and 1. AUC values that were 132 

greater than 1 were capped to 1. Unscaled AUC values for each drug were also 133 

standardized, generating robust Z-scores based upon the median AUC effect in 134 

a panel of 92 cancer cell lines (Supp Tables S2-S4) and the median absolute 135 

deviation of these effects. Z-scores were then plotted as a waterfall plot. 136 

 137 

2D cell-based assays 138 

Cells were plated in 96-well plates at 7000 cells per well for JN1 cells and 139 

10000 cells per well for R cells and continuously exposed to the drugs for a 140 

period of 7 days in culture. In the case of siRNA transfection, cells were 141 

transfected in 6-well plates 48 h prior to drug exposure and trypsinized and 142 

reseeded at the density specified above in 96-well plates 24 h prior to drug 143 

exposure. Cell viability was estimated by the addition of 50µL of CellTiter-Glo® 144 

Luminescent Cell Viability Assay (Promega), diluted in 1:4 in PBS. After 10 min 145 
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incubation at room temperature, the CellTiter Glo®-generated luminescence 146 

was captured using a Victor X-Light plate reader. Luminescence values from 147 

each well were normalized to the median signal of wells exposed to DMSO 148 

(vehicle) to generate surviving fractions (SF). Surviving fractions were then 149 

used to plot dose-response survival curves using GraphPad Prism.  150 

For synergy analyses, cells were seeded in 96-well plates and continuously 151 

exposed to increasing concentrations of talazoparib (1:4 serial dilution, range: 152 

0-500nM) and/or M4344 (1:3 serial dilution, range: 0-1000nM) for 7 days in 153 

culture. Cell viability was assessed as described above. The median response 154 

of replicates was normalized per median marginal value (i.e. response in 155 

absence of treatment). Synergy analysis was performed using R package 156 

synergyfinder. Dose-response curves for single drugs were fitted to a four-157 

parameter log-logistic model. Synergy scores were calculated using the Bliss 158 

independence model. 159 

 160 

3D spheroids assay 161 

To form spheroids, 500 JN1 cells in 200 µL of media were plated into each well 162 

of 96-well ultra-low attachment plates (#7007, Corning). Once spheroids 163 

reached an area of ~200,000 µm2, they were subjected to treatment with 164 

increasing concentrations of M6620 or SRA-737, in presence or absence of 165 

SN-38 (at 0.25 or 0.5 nM) for 5 days, with drug-containing media replenishment 166 

after 3 days. At day 5, the media was removed and replaced with fresh media, 167 

and spheroids size was monitored for up to 19 days after treatment start, using 168 

a Celigo™ imaging cytometer (Revvity).   169 
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 170 

Development of patient-derived xenografts (PDXs) 171 

The establishment of PDXs was conducted as previously described (13). All 172 

animal procedures and studies were performed in accordance with the 173 

approved guidelines for animal experimentation by the ethics committee at 174 

University Paris Sud (CEEA 26, project 2014_055_2790) following EU 175 

regulation. Animals were housed under pathogen-free conditions with food and 176 

water ad libitum. At 1–12 h following the patient biopsy, fresh tumors fragments 177 

were implanted under the renal capsule of 6–8-wk-old male NOD scid gamma 178 

(NSG) mice obtained from Charles River Laboratories. 179 

 180 

Derivation of DSRCT 3D organoid cultures from a PDX tumor biopsy  181 

A PDX model was first established from the primary peritoneal tumor of an 11-182 

year-old male patient with DSRCT. From this PDX, a tumor biopsy was taken 183 

and divided into various pieces for downstream processing, including the 184 

derivation of DSRCT 3D primary organoid cultures, referred to as GR_13 PDX-185 

derived organoid (PDX-O). For cell dissociation, a sample of the biopsy (~100 186 

mm3) was preserved in tissue storage solution (#130-100-008, Miltenyi Biotech) 187 

at 4ºC, and processed in less than 1 h. The sample was minced into small 188 

pieces that were subsequently digested in 5 mL of HBSS Hank’s buffer with 189 

calcium and magnesium (#24020091, Gibco), containing 7.4 mg/mL 190 

collagenase type-II (#17101-015, Gibco) for 1 hour at 37ºC. The digestion was 191 

stopped by adding 20 mL of Advanced DMEM/F-12 (#12634028, Gibco) 192 

supplemented with 1X Pen-Strep (#15070063, Gibco) and 10% FBS 193 
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(#SV30160, Hyclone). The homogenate was passed through a 100-µm cell 194 

strainer (#542000, Greiner Bio-one) to remove debris and cell clumps, and the 195 

cell suspension was then centrifuged for 10 min at 450g.  After aspiration of the 196 

supernatant, the cell pellet was re-suspended in 1 mL of the above-mentioned 197 

blocking medium.  198 

To obtain DSRCT human tumor cells and separate them from mouse cells, we 199 

used a cell depletion kit (#130-104-694, Miltenyi Biotech). Briefly, the cell 200 

suspension was centrifuged for 10 min at 450g and re-suspended in 80 µL of 201 

PBS containing 0.5% w/v BSA. Mouse cells were magnetically labeled by 202 

incubating the cell suspension with 20 µL of mouse depletion cocktail for 15 min 203 

in the refrigerator. Human tumor cells were obtained from the flow-through, after 204 

passing the labelled cell suspension using magnetic separation and LS columns 205 

(#130-122-729, Miltenyi Biotec).  206 

 207 

PDX-O culture 208 

The cells were counted and plated in 96-well U-bottom ULA wells (#7007, 209 

Corning; or #650970, Greiner Bio-one) to ensure the formation of organoids in 210 

each well (5,000 viable cells in 100 µL of complete organoid medium per each 211 

well). The medium was refreshed every week by aspirating and adding 50 µL of 212 

complete organoid medium in each well, and the organoids were passaged 213 

every 3-4 weeks. The basal organoid medium formulation consisted of 214 

Advanced DMEM/F12 (#12634028) supplemented with 10 mM HEPES 215 

(#15630049), 1% GlutaMAX (#35050038), 1X B27 supplement (#17504044), 216 

1% penicillin/streptomycin (#15140122), 1X N-2 (#17502048; all from Thermo 217 
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Fisher Scientific); 5% FBS (#F7524, Sigma Aldrich); 50 µg/mL Primocin (#Ant-218 

pm-05, Invivogen) and 10 µg/mL Fungin (#Ant-fn-1, Invivogen). To obtain the 219 

complete organoid medium, the basal medium was supplemented with 1 mM N-220 

acetylcysteine (#A72250, Sigma), 10 mM Nicotinamide (#N0636, Sigma), 10 221 

ng/mL recombinant human RSPO-3 (#120-44, Preprotech), 10 ng/mL 222 

recombinant human Wnt3a (#HZ-1296, Proteintech), 10 ng/mL LIF (#HZ-1292, 223 

Proteintech), 25 ng/mL (#HZ-1325, Proteintech), 10 pg/mL IL6 (#HZ-1019, 224 

Proteintech), 50 ng/mL recombinant human FGF-basic (#100-18B, Preprotech) 225 

and 100 ng/mL recombinant human IGF (#100-11, Preprotech). 10 µM ROCK 226 

Inhibitor Y-27632 (#S1049, Selleckem) was added at the initial culture. The 227 

cells were plated using 8-channel VIAFLO electronic pipettes (#4624 and #4626, 228 

Integra). Finally, the plates were centrifuged for 5 min at 450g. 229 

 230 

PDX-O drug combination survival assay 231 

After 3 weeks of culture, 240 GR_13 organoids were manually collected from 232 

the 96-well plates, transferred into an Eppendorf tube and centrifuged for 5 min 233 

at 450g. The pelleted organoids were washed three times with 1X PBS and 234 

dissociated with TrypLE Express enzyme (#12604-013, Thermo Fisher 235 

Scientific). Next, the cells were filtered using a 70-µm cell strainer (#542070, 236 

Greiner Bio-one) and re-suspended in complete organoid medium. For the drug 237 

combination survival assay, 4,000 cells were seeded in 40 µL of complete 238 

organoid medium per well in U-bottom 96-well plates (#4515, Corning). The 239 

formation of organoids was monitored for 3 days through brightfield acquisition 240 

every 24h using an Incucyte® SX1 (Sartorius), prior to adding the drugs. Serial 241 
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five-fold dilutions of talazoparib or M4344 were prepared to yield final 242 

concentrations ranging from 50 µM to 16 nM (talazoparib) or 10 µM to 64 nM 243 

(M4344) in complete organoid medium. A 7x7 dose-response matrix was 244 

constructed, and each drug was also used alone to generate reference curves 245 

for each individual compound. DMSO at a concentration of 0.3% was included 246 

as a negative control (mock) for normalization purposes. Topotecan at a 247 

concentration of 1 µM was included as a positive control and to evaluate the 248 

quality of the assay. All treatments were prepared at 10X concentration, and 4.4 249 

µL of each mixture were added to the initial 40 µL of organoid culture in the 250 

wells. Three technical replicates were used in each experiment. All plates were 251 

imaged through brightfield acquisition every 24h for 7 days using an Incucyte® 252 

SX1 (Sartorius) to monitor the PDX-Os response to treatments. To visualize the 253 

live/dead nucleated cells in PDX-Os, the dual-fluorescence Cyto3D Live-Dead 254 

assay (#BM01, Tebubio) was applied at 1% v/v in each well, following 255 

manufacturer’s recommendations. Dual-fluorescence viability signal and 256 

brightfield images were acquired with Incucyte SX1 (Sartorius), and correlative 257 

measures of cell viability were subsequently obtained by use of CellTiter Glo® 258 

3D (#G9682, Promega) on the same wells after 7 days, following 259 

manufacturer’s instructions. 260 

 261 

Immunofluorescence and image analysis 262 

For the detection of γH2AX, RAD51 foci and micronuclei, cells were seeded in 263 

black 96-well plates (Greiner Bio-One #655090) at a density of 12,000 cells per 264 

well and exposed to the indicated drugs for 72 h. Cells were then fixed in 4% 265 
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paraformaldehyde for 20 min at RT, washed twice with PBS and permeabilized 266 

with 0.5% Triton X-100 in PBS for 10 min. Cells were then blocked in IFF (2% 267 

BSA, 2% FBS in PBS) for 1 h at RT and incubated with primary antibodies 268 

(RAD51, Abcam ab133534; γH2AX, Millipore 05-636; dilution 1:1000 in IFF) at 269 

4°C overnight. Cells were then washed twice with PBS and incubated with 270 

Alexa Fluor 488-conjugated rabbit (ThermoFisher A-11008, dilution 1:1000) or 271 

Alexa Fluor 647-conjugated mouse secondary antibodies (Thermofisher A-272 

21235, dilution 1:1000) and 1µg/mL DAPI. For micronuclei assessment, cells 273 

were incubated with PicoGreen® (1:400 with IFF). Cells were then washed 274 

twice with PBS, and 100μl PBS was added to each well prior to imaging. Plates 275 

were imaged using ImageXpress Micro Confocal High-Content Imaging System 276 

(Molecular Devices). Nine independent and randomly selected sites were 277 

scanned per well. Quantification of the number of γH2AX foci, RAD51 foci and 278 

micronuclei was performed under identical microscopy settings between 279 

samples, using the MetaExpress image analysis system (MolDev). 280 

 281 

DNA fiber combing 282 

JN1 cells were grown in 100mm dishes and synchronized using a double-283 

thymidine block. Synchronized cells were transfected with EWS-WT1 or CCND1 284 

siRNAs as described above. After 8 h, cells were continuously exposed to either 285 

DMSO control, talazoparib, M4344 or a combination of both for 6 h. For 286 

replication fork labeling, cells received pre-warmed medium containing 100μM 287 

CldU and were incubated at 37°C, 5% CO2 for 30 min. Cells were then rinsed 3 288 

times with pre-chilled PBS and incubated with 100μM IdU for 30 min. Cells were 289 



Kawai-Kawachi et al. Targeting replication stress in DSRCT 

 

 

 

18 

collected in cold PBS, counted and adjusted to 50,000 cells per 50μL PBS on 290 

ice. Plugs were generated by adding 50μL of pre-warmed 1% low-melting point 291 

agarose to the cells. The resulting 100μL mix was gently homogenized and 292 

quickly transferred into a casting mold and incubated for 1 h at 4°C to solidify. 293 

Subsequent steps were performed as previously described (14). For the 294 

analysis, initiation, termination and cluster patterns of replicative forks were 295 

considered to measure fork velocity. 296 

 297 

Statistical analyses  298 

Apart from the mouse xenograft experiment, no statistical methods were used 299 

to predetermine sample size and experiments were not randomized. The 300 

investigators were not blinded during xenograft experiments. Unless otherwise 301 

stated, all graphs show mean values with error bars (standard deviation, SD); 302 

95% confidence intervals were used and significance was considered when * P 303 

< 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001; ns, not significant.  304 

 305 

Data availability 306 

The raw data generated in this study are available upon request from the 307 

corresponding authors. 308 

 309 

Additional methods details are available in Supplementary Information. All 310 

uncropped images of the blots included in this study are also available in 311 

Supplementary Information.  312 
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Results 313 

Small-molecule inhibitor screening identifies PARP and ATR as targetable 314 

vulnerabilities in DSRCT 315 

To identify candidate therapeutic targets for DSRCT, we conducted a high-316 

throughput small molecule inhibitor-sensitivity screen in the JN-DSRCT-1 (JN1) 317 

cell line, using an in-house curated library of 79 anti-tumor agents and small-318 

molecule inhibitors that are either in clinical use or in late-stage clinical 319 

development (12) (Fig. 1A, B; Supp Table S1). We calculated normalized Area 320 

Under the Curve (AUC) Z-scores from dose-response survival curves of each 321 

drug in the JN1 cell line (Supp Table S3) and compared them with those of a 322 

panel of 92 tumor cell lines previously screened with the same library (Supp 323 

Table S4) (12). This identified several DNA repair inhibitors as being highly 324 

toxic to the JN1 cell line, including three clinical PARP inhibitors (PARPi; 325 

talazoparib, olaparib and rucaparib, ranked #6, #7, and #9, with Z-scores of -326 

2.018, -1.828 and -1.762, respectively), and one ATM/ATR inhibitor (ATRi; 327 

KU60019, ranked #18; Z-score -1.2225). Several conventional cytotoxic agents 328 

that are in clinical use for the treatment of DSRCT were also identified, such as 329 

etoposide and doxorubicin (ranked #4 and #18, respectively; Fig. 1B).  330 

 331 

Because PARPi are already approved in solid tumors and are evaluated in 332 

combination with ATRi in multiple clinical trials, including in pediatric populations 333 

(15), these small molecule inhibitor classes harbored a high potential for 334 

immediate clinical translatability and we selected them for further validation. We 335 

conducted validation experiments using several clinical PARPi and ATRi in two 336 
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DSRCT cell lines: the JN1 cell line and a novel cell line, named “R”, which we 337 

created from a patient-derived xenograft (PDX, gift from Champions Oncology). 338 

The A673 (Ewing sarcoma) and SaOS-2 (osteosarcoma) cell lines were used 339 

comparatively as a sensitive and a resistant control sarcoma model, 340 

respectively, based on publicly available PARPi and ATRi sensitivity datasets 341 

(GDSC database and Holme et al. (12)). Dose-response survival assays 342 

confirmed the sensitivity of JN1 cells to two clinical-grade PARPi (talazoparib 343 

and olaparib) and two clinical-grade ATRi (AZD6738 and M4344), with SF50 344 

values similar to that of the PARPi-sensitive A673 cell line (Fig. 1C-F; JN1 vs. 345 

A673: talazoparib, p = 0.0095; olaparib, p < 0.0001; AZD6738, p < 0.0001; 346 

M4344, p < 0.0001; two-way ANOVA). When comparing the SF50 of PARPi 347 

and ATRi found in the JN1 cell line with the corresponding average steady-state 348 

or max single-dose plasma concentrations (Css-mean or Csd-max, respectively) 349 

dosed in patients enrolled in pharmacokinetics studies and treated at the 350 

recommended phase 2 dose (16–18), we observed that the concentrations we 351 

used in vitro seemed clinically achievable (talazoparib, SF50 ≃ 10 nM, Css-mean 352 

= 7 nM; olaparib, SF50 ≃ 1 µM, Css-mean = 1.7 µM; AZD6738, SF50 ≃ 0.5 µM, 353 

Csd-max = 4.5 µM; M4344, SF50 ≃ 7 nM, Csd-max = 750 nM) – though no robust 354 

conclusion could be drawn at this stage considering the difficulties in comparing 355 

in vitro data to exposure in patients. We therefore further compared the 356 

sensitivity to talazoparib or olaparib of the JN1 cell line with that of other 357 

sarcoma cell lines in publicly available datasets (DepMap Broad Institute, Fig. 358 

1G, H; Sarcoma CellMinerCDB (19), Supp Fig. S3A, B), and found that JN1 359 

was at least as sensitive to the PARPi olaparib and talazoparib as Ewing 360 
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sarcoma cell lines, consistent with their previously reported sensitivity to 361 

PARPi(20).  362 

 363 

R cells also showed sensitivity to ATRi but were resistant to PARPi, with an 364 

SF50 similar to that of the PARPi-resistant SaOS-2 cell line (Fig. 1C-F; R vs. 365 

SaOS-2: talazoparib, p < 0.0001; olaparib, ns; AZD6738, p < 0.0001; M4344, p 366 

< 0.0004; two-way ANOVA). This prompted us to explore the known causes of 367 

primary resistance to PARPi, such as the loss of PARP1 expression, which 368 

abrogates the PARP1 trapping-mediated cytotoxicity of PARPi (21). To test this 369 

hypothesis, we first evaluated PARP1 protein expression levels in JN1 and R 370 

cells by western blot and found that R cells displayed a significantly lower 371 

expression of PARP1 compared to JN1 cells (Supp Fig. S4A). To further 372 

establish a causative link between PARP1 expression and sensitivity to PARPi 373 

in DSRCT cells, we then evaluated the effects of silencing PARP1 on the 374 

sensitivity of JN1 and R cells to PARPi. siRNA-mediated knockdown of PARP1 375 

conferred resistance to PARPi in JN1 but not R cells (Supp Fig. S4B, C, E, F). 376 

In addition, we noted that PARP1 silencing did not affect the sensitivity of JN1 377 

cells to veliparib – a PARPi with limited ability to trap PARP1 despite its ability 378 

to inhibit PARylation (22,23) (Supp Fig. S4D, G). Together, these findings 379 

suggest that PARP1 expression is a determinant of PARPi sensitivity in DSRCT 380 

cell lines, and that PARP1 trapping contributes to the cytotoxic effect of PARPi 381 

in DSRCT.  382 

 383 

To next explore the applicability of our findings to patient’s tumors, we analyzed: 384 



Kawai-Kawachi et al. Targeting replication stress in DSRCT 

 

 

 

22 

(i) PARP1 expression by RNA-Seq (29 samples (24)); (ii) PARP1 expression by 385 

immunohistochemistry (IHC, 16 samples); and (iii) PARylation levels by IHC 386 

(i.e., levels of poly-ADP-ribose, the product of PARP1 activity; 16 samples) in 387 

two DSRCT cohorts. This revealed that PARP1 was highly expressed in a large 388 

majority of the cases (24 of 29 samples (82,8%) with PARP1 expression >10 389 

TPM by RNA-Seq, and 14 of 16 samples (87,5%) with PARP1 H-score ≥200 by 390 

IHC; Fig. 2A; Supp Fig. S5A) and active (all samples with PARylation H-score 391 

≥200 by IHC; Fig. 2B) as previously reported (20). Since PARPi are mostly 392 

toxic by trapping PARP1 onto the DNA, we therefore assumed that our 393 

conclusions may be applicable to most DSRCT. We further noted that the 394 

patients whose tumors harbored higher PARP1 transcript levels tended to have 395 

a longer overall survival, although this did not reach significance (Supp Fig. 396 

S5B). 397 

 398 

Combination of PARP and ATR inhibitors shows synergistic effects in 399 

preclinical models that express PARP1 400 

Because several PARPi plus ATRi combinations are currently being 401 

investigated in early-phase clinical trials (e.g. NCT04972110, NCT03462342), 402 

we evaluated this combination in DSRCT cell lines. Synergy scores calculated 403 

according to the Bliss independence method showed a synergistic interaction of 404 

the talazoparib and M4344 combination in JN1 (Bliss synergy score = 15.69; 405 

Fig. 2C, Supp Fig. S6A) but not R cells – where a modest additive effect could 406 

be observed, consistent with the limited sensitivity of the latter cell line to PARPi 407 

monotherapy (Bliss synergy score = 3.96; Fig. 2D, Supp Fig. S6B). Since 408 
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CHK1 inhibitors (CHK1i), which control the same cell cycle checkpoint and 409 

signaling pathway as ATRi, have also been evaluated in DSRCT in combination 410 

with irinotecan (NCT04095221), we further evaluated combination of PARPi 411 

with CHK1i. In our original screen, the evaluated CHK1i displayed limited 412 

cytotoxic effects in monotherapy in the JN1 cell line (SAR-20106, rank #39, Z-413 

score = -0.697; PF-00477736, rank #55, Z-score = -0.197). We therefore used 414 

the clinical-grade CHK1i prexasertib and found additive effects with talazoparib 415 

in the JN1 cell line (Bliss synergy score = 6.00) but not R cell line, again 416 

consistent with the limited sensitivity of the latter to PARPi monotherapy (Supp 417 

Fig. S6C-F). Since PARPi and irinotecan – which is part of the chemotherapy 418 

regimen for patients who suffer from DSRCT – have some partly overlapping 419 

mechanism of action through DNA double-strand breaks formation, we 420 

assessed the combination of SN-38 (the active metabolite of irinotecan) with 421 

two clinical compounds that target the G2/M cell cycle checkpoint: the ATRi 422 

M6620 and the CHK1i SRA-737. Using a 3-dimensional (3D) spheroid model 423 

derived from the JN1 cell line that represents DSRCT cell physiology better than 424 

2D cultures, we found that both inhibitors enhanced the cytotoxic effects of 425 

irinotecan – with M6620 showing potentially the most prolonged anti-426 

proliferative potential (Supp Fig. S7). The concentrations of SN-38, M6620 and 427 

SRA-737 evaluated in these assays were lower than those clinically-achievable 428 

in patients based on the Csd-max described for these compounds (SN-38, Csd-max 429 

= 33 nM (25); SRA-737, Csd-max = 1.440 µM (26); M6620, Csd-max = 740 nM (27)), 430 

altogether supporting the relevance of our observations made with PARPi. 431 

 432 
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To further confirm the sensitivity of DSRCT to PARPi and ATRi, we sought to 433 

use a third, independent, biologically distinct and clinically relevant model. Since 434 

3D and patient-derived models reportedly better recapitulate the clinical reality 435 

than 2D cultures or established cell line models (28–30), we sought to develop 436 

a new primary patient-derived organoid model of DSRCT. To do so, we first 437 

established a patient-derived xenograft (PDX) model from the primary 438 

peritoneal tumor of an 11-year-old male patient with DSRCT, and subsequently 439 

created a PDX-derived organoid (PDX-O), referred to as GR_13, in which we 440 

assessed the sensitivity to PARPi, ATRi and the combination of both agents 441 

(Fig. 2E, Supp Fig. S8). These experiments revealed cytotoxic effects of 442 

PARPi and ATRi monotherapies against GR_13 PDX-Os and confirmed the 443 

synergistic effects of their combination (Bliss independence score = 15.62; Fig. 444 

2F, Supp Fig. S9A-C), albeit at higher concentrations, in line with the known 445 

heightened drug resistance of 3D models compared to 2D models (31). In line 446 

with PARP1 expression confirmed by western blot in GR_13 PDX-O (Supp Fig. 447 

S8C) and previous findings in the JN1 cell line (Fig. 2C, Supp Fig. S6A), this 448 

result confirmed our previous observations and the sensitivity of DSRCT to 449 

PARPi plus ATRi combinatorial strategy. 450 

 451 

We next assessed the therapeutic potential of an ATRi plus PARPi combination 452 

in vivo, and evaluated the antitumor effect of PARPi talazoparib, ATRi M1774 or 453 

a combination of both agents in mice bearing established xenografts from the 454 

JN1 cell line (Supp Fig. S10A). Since JN1 tumors do not grow in nude mice, we 455 

used NOD scid gamma (NSG) mice that carry the Prkdcscid mutation, which 456 
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confers exquisite sensitivity to DNA damaging agents and chronic exposure to 457 

ATRi. This required the use of a minimally toxic schedule of drug administration 458 

for a total maximum duration of 33 days. In this experiment, we found that 459 

compared to the drug vehicle, both talazoparib and M1774 monotherapies 460 

reduced tumor growth of JN1 xenografts (Supp Fig. S10B, C; p < 0.001, two-461 

way ANOVA). The combination therapy further reduced tumor growth and 462 

caused tumor shrinkage (Supp Fig. S10B-E; median tumor volume: 151.5 mm3 463 

in vehicle arm, vs. 62.6 mm3 in combination arm; p < 0.0001, two-way ANOVA). 464 

Altogether, these results suggested that the combination of PARPi and ATRi 465 

could act synergistically in DSRCT that express PARP1, both in vitro and in vivo.  466 

 467 

Combination of PARP and ATR inhibitors elicits DNA damage, replication 468 

stress and genomic instability in DSRCT cells 469 

To understand the molecular mechanisms underlying this vulnerability in 470 

DSRCT cells, we first sought to explore the known causes of PARPi and ATRi 471 

sensitivity, and assessed DNA damage, homologous recombination (HR) 472 

functionality, and replication stress. We found that exposure to PARPi and ATRi 473 

led to increased DNA damage, as assessed by immunofluorescence detection 474 

of γH2AX foci in JN1 and R cells (Fig. 3A, B). This effect was concentration-475 

dependent (Supp Fig. S11A, B) and significantly enhanced in the context of 476 

PARPi plus ATRi combination using several clinical-grade agents, with γH2AX 477 

foci levels being similar to those induced by cisplatin (Fig. 3A, B). We further 478 

noted that γH2AX foci accumulation was (i) overall more pronounced in JN1 479 

cells compared to R cells exposed to the combination therapy, and (ii) limited in 480 
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R cells exposed to PARPi as a monotherapy, consistent with the low PARP1 481 

expression and limited PARPi sensitivity of this cell line. We next assessed HR 482 

function by quantifying the levels of RAD51 foci, and found that these were 483 

significantly increased in response to PARPi (Fig. 3C, D, Supp Fig. S11C, D) – 484 

but not ATRi monotherapy, in line with the current literature suggesting that 485 

ATR promotes RAD51 accumulation at DSBs (32). This effect was enhanced 486 

when both agents were combined, to a higher extent than cisplatin exposure 487 

(Fig. 3C, D). Altogether, these results suggested that DSRCT cells are HR 488 

proficient, and that their sensitivity to PARPi and ATRi does not result from a 489 

HR defect. 490 

 491 

By mediating PARP1 trapping onto DNA, PARPi are known to increase reliance 492 

upon the ATR/CHK1 pathway due to increased stalled replication forks and a 493 

resultant replication stress (33). ATR is a master regulator of the DNA damage 494 

response, which coordinates cell cycle transitions with the DNA replication, 495 

DNA repair and apoptotic machineries to prevent the deleterious effects of 496 

replication stress. ATR activation leads to phosphorylation of CHK1 (p-CHK1) 497 

and other ATR effectors, which ultimately slows down origin firing, induces cell 498 

cycle arrest in response to DNA damage, and promotes stabilization and restart 499 

of stalled replication forks (34,35). We evaluated by western blot the 500 

phosphorylation of ATR and CHK1 and found increased p-CHK1 levels upon 501 

PARPi and ATRi exposure in JN1 and R cells (Fig. 3E, F, Supp Fig. S11E), 502 

suggesting an activation of the replication stress checkpoint. To further 503 

investigate the presence of ongoing replication stress, we evaluated the levels 504 
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of RPA2 phosphorylation (p-RPA2) and found increased p-RPA2 levels upon 505 

PARPi, ATRi and their combination. This was associated with increased DNA 506 

damage and apoptosis (as assessed by γH2AX and PARP1 cleavage, c-PARP, 507 

respectively; Fig. 3E, F, Supp Fig. S11E), consistent with our previous 508 

observations (Fig. 3A, B, Supp Fig. S11A, B).  509 

 510 

To further assess the genomic consequences of PARPi plus ATRi combination 511 

in DSRCT, we measured levels of micronuclei – cytoplasmic chromosome 512 

fragments that arise during mitosis from lagging chromosomal DNA or 513 

chromatin bridges, as a result of unresolved DNA lesions. We found that the 514 

combination of PARPi and ATRi significantly increased the number of 515 

micronuclei in JN1 cells compared to the DMSO control or either of the 516 

corresponding monotherapies (Fig. 3G, H). A similar effect was observed in R 517 

cells (Supp Fig. S11F), although to a lesser extent, in line with their lower level 518 

of PARP1 expression. Altogether, these findings indicate that combined 519 

exposure of PARPi and ATRi elicits high levels of DNA damage, replication 520 

stress and micronuclei in DSRCT cells, in a context of functional HR repair. 521 

 522 

EWS-WT1 is a determinant of sensitivity to PARP and ATR inhibitors in 523 

DSRCT 524 

We next sought to explore whether the EWS-WT1 chimeric transcription factor 525 

was the cause of PARPi and ATRi sensitivity in DSRCT cells. Indeed, although 526 

the EWSR1::WT1 fusion genes is the known driver of DSRCT, it remained 527 

possible that other alterations in DSRCT cells could cause the drug sensitivity 528 
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effects seen. For example, the t(11;22)(q13;q12) chromosomal translocation, 529 

beyond causing EWS-WT1 fusion, also alters the chromosomal location of 530 

genes that flank either EWSR1 or WT1.  531 

To do so, we designed siRNAs targeting the specific breakpoints of the EWS-532 

WT1 fusion in the JN1 and R cell lines, respectively (Fig. 4A; Supp Fig. S1, S2) 533 

and explored the effect of EWS-WT1 silencing on the above-described 534 

phenotypes. We first assessed cell survival upon PARPi or ATRi exposure and 535 

observed that EWS-WT1 silencing conferred increased resistance to both agent 536 

classes (Fig. 4B-E, Supp Fig. S12A-D), suggesting the existence of a common 537 

EWS-WT1-dependent mechanism driving sensitivity to both agents. Of note, 538 

silencing of CCND1 – a direct target of EWS-WT1 (36) – conferred little 539 

increased resistance to PARPi or ATRi compared to EWS-WT1 silencing in the 540 

JN1 cell line (Supp Fig. S13, Supp Fig. S14A-D), suggesting that the 541 

sensitivity to PARPi and ATRi induced by the fusion was, at least in part, 542 

independent from the role of EWS-WT1 in modulating CCND1. Similarly, and in 543 

line with this hypothesis, CDK1i-mediated cell cycle blockade failed to 544 

phenocopy the effects of siRNA-mediated EWS-WT1 silencing towards 545 

increasing the resistance of DSRCT cells to either PARPi or ATRi (Supp Fig. 546 

S14E-F). This overall suggested that the sensitivity to PARPi and ATRi induced 547 

by the fusion was, at least in part, independent from its role in modulating 548 

CCND1 expression and the cell cycle profile (Supp Fig. S13). We further found 549 

that levels of DNA damage induced by PARPi and ATRi were significantly 550 

reduced upon EWS-WT1 silencing, as assessed by immunofluorescence 551 

detection of γH2AX foci (Fig. 4F, G). To confirm the role of EWS-WT1 in PARPi 552 
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and ATRi-mediated effects, we next assessed ATR/CHK1 pathway activity by 553 

western blot and found that: (i) the PARPi-induced p-CHK1 response was 554 

abrogated upon EWS-WT1 silencing; and (ii) the p-RPA2 and γH2AX 555 

responses elicited by PARPi plus ATRi combination were either reversed or 556 

significantly attenuated upon EWS-WT1 silencing (Fig. 4H, I). These findings 557 

suggested that EWS-WT1 is required for the sensitivity of DSRCT cells to 558 

PARPi, ATRi and their combination. 559 

 560 

EWS-WT1 increases endogenous DNA replication stress and R-loops, 561 

which drive sensitivity to PARPi and ATRi 562 

Because we observed that the sensitivity to PARPi and ATRi was EWS-WT1-563 

dependent and since oncogenic transcription factors have been reported to 564 

increase replication stress (37), we next focused on replication forks and their 565 

functionality. 566 

We first investigated replication fork progression upon silencing of EWS-WT1 567 

using the DNA fiber combing assay in the JN1 cell line. We found that EWS-568 

WT1 silencing caused a >30% increase in fork velocity (siCNTRL, 0.82 kb/min 569 

vs. siEWS-WT1, 1.1kb/min; p < 0.0002, Mann-Whitney U test; Fig. 5A) in the 570 

absence of drug exposure. Interestingly, this effect was not observed upon 571 

CCND1 silencing (Fig. 5A), suggesting that EWS-WT1-induced reduction in 572 

replication fork velocity was, at least in part, independent from its effects in 573 

driving cell proliferation through the cell cycle (Supp Fig. S13). We next 574 

assessed replication fork progression upon PARPi and ATRi exposure in the 575 

JN1 cell line, and found that their combination decreased fork velocity (siCNTRL 576 
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DMSO, 0.82 kb/min vs. siCNTRL Tala + M4344, 0.58 kb /min; p < 0.0001, 577 

Mann-Whitney U test; Fig. 5B, Supp Fig. S15A), in line with these agents’ 578 

mechanism of action and increased replication stress. This effect was partially 579 

rescued by EWS-WT1 silencing (siCNTRL Tala + M4344, 0.7 kb/min vs. 580 

siEWS-WT1 Tala + M4344, 1.1 kb/min; p < 0.0001, Mann-Whitney U test; Fig. 581 

5B). Altogether, these results suggested that EWS-WT1 expression in JN1 cells 582 

increases replication stress, which is further exacerbated by PARPi and ATRi 583 

exposure. 584 

 585 

Since aberrant transcription factors not only cause replication stress but also 586 

enhance transcription, we next sought to assess R-loops. R-loops are three-587 

stranded nucleic acid structures consisting of an RNA:DNA hybrid and a 588 

displaced non-hybridized single-stranded DNA, that form in the genome when 589 

an RNA strand invades double-stranded DNA within chromatin. R-loops 590 

naturally occur during replication and transcription, where they have important 591 

roles in regulating gene expression and chromatin structure. Their aberrant 592 

accumulation can also represent a threat to genomic stability, by causing 593 

increased replication stress and subsequent DNA damage (38–42).  594 

We first assessed R-loop levels in DSRCT cells using RNA:DNA hybrid dot 595 

blotting with the S9.6 antibody on genomic DNA extracted from JN1 or R cells. 596 

We found that EWS-WT1 silencing reduced endogenous R-loop levels in both 597 

JN1 and R cells (Fig. 5C, D), while CCND1 silencing had no such effect (Supp 598 

Fig. S15B). We next compared R-loop levels in cells exposed to PARPi, ATRi 599 

or their combination in presence or absence of EWS-WT1 silencing. This 600 
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revealed a significant accumulation of RNase H-sensitive R-loops in response 601 

to the combination, which was (i) enhanced compared to either of the 602 

corresponding monotherapies, and (ii) significantly attenuated in the context of 603 

EWS-WT1 silencing (Fig. 5C, D). To further explore the role of R-loops in 604 

DSRCT cells, we constructed a JN1 cell line that stably expresses an 605 

exogenous cDNA encoding RNASEH1 – the main ribonuclease responsible for 606 

R-loop degradation in humans – herein referred to as JN1-RNaseH1 (Supp Fig. 607 

S15C). In contrast to our previous observations in the JN1 wildtype cell line (Fig. 608 

5A), we noted that EWS-WT1 silencing had no effect on replication fork velocity 609 

in the JN1-RNaseH1 (Fig. 5E), suggesting that RNaseH1 overexpression might 610 

counteract the replication stress resulting from EWS-WT1-driven R-loop burden. 611 

Strikingly, dose-response survival assays of JN1 and JN1-RNaseH1 cells 612 

exposed to various PARPi or ATRi monotherapies showed that RNase H1 613 

overexpression conferred resistance to these inhibitors, supporting a role of R-614 

loops in driving PARPi and ATRi sensitivity in DSRCT cells (Fig. 5F-I; Supp Fig. 615 

S16). Furthermore, we noted that: (i) the magnitude of this effect was similar to 616 

that obtained when silencing EWS-WT1 in JN1 cells, and (ii) silencing EWS-617 

WT1 conferred no further resistance to PARPi or ATRi in JN1-RNaseH1 cells 618 

(Fig. 5F-I; Supp Fig. S17), supporting an epistasis between EWS-WT1 619 

silencing and RNase H1 overexpression in driving resistance to PARPi and 620 

ATRi. Altogether, these findings show that EWS-WT1 drives R-loop formation 621 

and a resultant increased replication stress in DSRCT cells, which underlies 622 

their sensitivity to PARPi and ATRi.    623 

 624 
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Combination of PARP and ATR inhibitors elicits cell-intrinsic immunity in 625 

DSRCT cell lines 626 

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) 627 

pathway is a component of the innate immune response: by acting as a sensor 628 

for cytosolic DNA, cGAS activates a signaling cascade involving STING 629 

trafficking, Tank-binding kinase 1 (TBK1) and interferon regulatory factor 3 630 

(IRF3) phosphorylation, which culminates in a type I interferon response and 631 

the subsequent upregulation of interferon-stimulated genes (ISGs), such as 632 

CCL5 and CXCL10 (43). More recently, pharmacological manipulation of the 633 

cGAS-STING pathway has been proposed as a therapeutic strategy, notably in 634 

cancer to render tumors “immunologically hot” as a way to facilitate response to 635 

immunotherapies (44). 636 

Based on recent reports, including ours, describing that PARPi and ATRi can 637 

trigger a cell-autonomous type I interferon response through activation the 638 

cGAS-STING pathway following micronuclei formation (41,45–50), we decided 639 

to explore the ability of PARPi and ATRi to elicit such response in DSRCT cells. 640 

We first observed a concentration-dependent increase in TBK1 and IRF3 641 

phosphorylation upon PARPi and ATRi exposure in JN1 cells – an effect that 642 

was enhanced in the context of their combination (Fig. 6A). We next assessed 643 

downstream CCL5 and CXCL10 expression by RT-qPCR and found that these 644 

chemokines were increased by more than 20- and 5-fold respectively (Fig. 6B, 645 

C) upon combination therapy. This was further accompanied by a 646 

concentration-dependent increase in programmed death-ligand 1 (PD-L1) cell-647 

surface expression, as assessed by flow cytometry (Fig. 6D). Together with our 648 
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previous observation that the PARPi plus ATRi combination induces micronuclei 649 

formation (Fig. 3G, H; Supp Fig. S11F), this data suggests that a cell-650 

autonomous cGAS-STING-mediated type I interferon response is activated in 651 

DSRCT cells as a result of PARPi and ATRi exposure. We next investigated the 652 

role of EWS-WT1 in such response, and found that EWS-WT1 silencing 653 

attenuated all of the above phenotypes, including TBK1 and IRF3 654 

phosphorylation (Fig. 6E), CCL5 and CXCL10 upregulation (Fig. 6F-G) as well 655 

as PD-L1 cell-surface expression (Fig. 6H). Altogether, these results indicate 656 

that PARPi and ATRi elicit a type I interferon response in DSRCT cells that is 657 

dependent upon EWS-WT1 expression.  658 
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Discussion 659 

DSRCT is an extremely aggressive malignancy with very limited therapeutic 660 

options. Here, we show that preclinical models of DSRCT are selectively 661 

sensitive to clinical PARP and ATR inhibitors (PARPi, ATRi). The use of 662 

functional genomics allowed us to propose a model whereby these genetic 663 

vulnerabilities are mediated by increased EWS-WT1-dependent replication 664 

stress and R-loop formation, which results in cGAS/STING pathway activation 665 

and a cell-autonomous type I interferon response (Fig. 6I), opening new 666 

therapeutic avenues to increase immunogenicity of this genetically simple, 667 

immune-cold disease.  668 

 669 

To our knowledge, our work represents the first report of the selective sensitivity 670 

of DSRCT cells to ATRi, and of the involvement of EWS-WT1-dependent R-671 

loop burden in this vulnerability. Our work specifically underlines the 672 

translational potential of combining PARPi and ATRi in DSRCT, a combination 673 

that is currently evaluated in multiple clinical trials, including in children 674 

(NCT02813135). Previous literature has suggested a sensitivity of DSRCT to 675 

PARPi in combination with the alkylating agent temozolomide, following the 676 

observation of a high level of PARP1 and SLFN11 expression in DSRCT (20). 677 

Our analysis of 29 and 16 tumor samples by RNA-Seq and IHC confirms these 678 

findings, thereby reinforcing the potential of using such DNA damage response 679 

inhibitors in the treatment of patients with DSRCT. Still, our observation that 680 

some tumors do not express PARP1 – a major mechanism of resistance to 681 

PARPi (21,51) – highlights the need for careful molecular selection and 682 



Kawai-Kawachi et al. Targeting replication stress in DSRCT 

 

 

 

35 

verification of adequate PARP1 expression prior to treatment orientation.  683 

 684 

The potential for using CHK1 inhibitors (CHK1i), such as prexasertib, has also 685 

been reported in preclinical models of DSRCT (52), and further evaluated in a 686 

clinical trial in combination with irinotecan (53) (NCT04095221). In that latter, 687 

6/19 (32%) and 9/19 (47%) patients showed partial response and stable 688 

disease as best response, respectively. The trial met its primary endpoint, 689 

supporting further investigation of this combination. Data regarding the PARPi 690 

plus ATRi combination in DSRCT are much scarcer for now: one heavily 691 

pretreated patient, who received the PARPi olaparib plus ATRi AZD6738 692 

combination as part of the eSMART trial (NCT02813135), presented stable 693 

disease for 4 months on study (15). Additional data from this trial are eagerly 694 

awaited, to better evaluate the potential of this combination in patients with 695 

DSRCT. Since CHK1i and ATRi both act on the G2/M cell cycle checkpoint, we 696 

can anticipate that their mechanism of action is partially overlapping. Based on 697 

available clinical data, the PARPi plus ATRi combination may have a better 698 

tolerability profile than the CHK1i plus irinotecan combination, notably with 699 

regards to fatigue and cytopenias (15,53,54). In the former combination, the oral 700 

administration of both drugs also represents an important difference between 701 

the two regimens, which may offer the advantage of a higher flexibility in 702 

scheduling and dosage adaptations. However, it also represents a limitation for 703 

patients who have peritoneal disease – and are therefore at risk of 704 

malabsorption, occlusion, etc. – and PARPi have shown disappointing efficacy 705 

in pediatric malignancies so far. In this context, we can hope that the use of last 706 
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generation potent PARP1-selective inhibitors (e.g. AZD5305) will allow to 707 

enhance PARPi efficacy while limiting hematological toxicity. 708 

 709 

DSRCT is related to the group of small round cell sarcomas (SRCS), of which 710 

Ewing’s sarcoma is the prototypic EWS-FLI1-driven disease. PARP1 inhibition 711 

has initially been proposed as a therapeutic strategy in Ewing’s sarcoma, 712 

following the identification of an interaction between PARP1 and the fusion 713 

transcripts which potentiated DNA damage (55). EWS-FLI1 was subsequently 714 

reported to increase the R-loop burden and disable BRCA1-dependent 715 

homologous recombination. Such “BRCAness” phenotype was not observed in 716 

our study, where we could detect adequate RAD51 foci formation in DSRCT 717 

cells exposed to PARPi. Thus far, PARPi have shown disappointing efficacy in 718 

patients with heavily pre-treated Ewing’s sarcoma (reviewed in Pearson et al 719 

(56)). A few isolated responses have been observed, which deserve further 720 

molecular exploration to identify which clinically-relevant biomarkers drive 721 

sensitivity in this population. Based on these results, the most recent consensus 722 

expert guidelines from the multi-stakeholder Pediatric Strategy Forum on DNA 723 

repair (ACCELERATE and European Medicines Agency, with participation of 724 

the Food and Drug Administration), recommended to assess CHK1i and ATRi 725 

as a high priority, and PARPi only in combination with the latter (56). The 726 

synergy observed preclinically upon combination of PARPi and ATRi in the JN1 727 

cell line (Fig. 2C) and GR_13 PDX-O model (Fig. 2F) also supports the latter 728 

approach. Beyond SRCS, trabectedin – a cytotoxic drug used in routine 729 

sarcoma treatment and which is known to induce R-loops (57) – has been 730 
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combined with PARPi in various soft-tissue sarcomas in the TOMAS trial 731 

(58).Unsurprisingly, these agents could not be used at full dose when 732 

combined, but activity (7/50 patients enrolled with PR) supported the evaluation 733 

of this combination in an ongoing Phase II trial (NCT03838744). Although this 734 

combination is very poorly tolerated as compared to the PARPi plus ATRi 735 

combination, authors identified high PARP1 expression as well as an 8-genes 736 

signature (including DNA damage response genes such as SLFN11, ATM and 737 

BLM) as predictors of better outcome on trabectedin plus PARPi (59). The latter 738 

may also be relevant to the PARPi plus ATRi combination. 739 

 740 

We finally found that PARPi and ATRi trigger a cell-autonomous cGAS-STING / 741 

type I interferon response and PD-L1 upregulation in DSRCT cells. This 742 

immunomodulatory effect of DNA repair inhibitors could be exploited to increase 743 

the immunogenicity of DSRCT – which are traditionally devoid of T-cells in the 744 

tumor microenvironment – by attracting T-cells within the tumor and favoring 745 

sensitivity to anti-PD-1 therapy. Such effect of PARPi and ATRi has been 746 

reported in other preclinical models with high replication stress (reviewed in 747 

Chabanon et al (60)), as well as in clinical studies evaluating ATRi, notably in 748 

non-small cell lung cancer (NSCLC) and melanoma where they can potentiate, 749 

or revert resistance to anti-PD-L1, respectively (61–63). For example, 750 

translational studies performed in the HUDSON phase II trial showed that the 751 

ATRi AZD6738 could both induce inflammatory- and interferon-associated 752 

signatures, and decrease exhausted CD8+ T-cells in the blood of patients with 753 

NSCLC (62). Still, whether such effects are only observed in traditionally 754 
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immunogenic diseases, such as NSCLC or melanoma, or also operate in 755 

DSRCT, remains to be assessed.  756 

 757 

We should still highlight several limitations to our observations. First, we only 758 

had access to a limited number of models. Indeed, DSRCT is an ultra-rare 759 

disease (frequency < 1/1M) and cell lines models are challenging to create, 760 

probably because the desmoplastic microenvironment of this tumor type also 761 

favors cancer cell growth. In this study, we therefore created two previously 762 

unpublished models (one PDX-derived cell line and one PDX-derived organoid), 763 

which complemented the previously established JN1 cell line. Still, revalidation 764 

in additional models would ideally be required. Second, the difference in PARP1 765 

expression between our models led to discrepant observations, notably in terms 766 

of synergistic or additive cytotoxic effects of the PARPi plus ATRi combination, 767 

in which PARP1 expression and trapping plays a crucial role (21,51). Our 768 

characterization of PARP1 expression and PARylation in DSRCT patients’ 769 

tumors shows that PARP1 is expressed and active in the vast majority of cases 770 

– in line with previous independent results (20), thereby supporting clinical 771 

activity of PARPi in this patient population. Still, other determinants of PARPi 772 

and ATRi sensitivity, such as SLFN11 expression and replication stress levels, 773 

should also be considered, and the clinical applicability of our findings therefore 774 

remains unknown. Finally, we faced technical difficulties in assessing long-term 775 

efficacy of the PARPi plus ATRi combination in vivo, owing to the systemic 776 

toxicity of ATRi in NSG mice caused by their constitutive Prkdcscid mutation, and 777 

the impossibility to grow DSRCT xenografts in nude mice, which led us to 778 
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prematurely stop our experiments. If recent clinical trial results show that PARPi 779 

and ATRi can be safely combined in adult and pediatric patients, the efficacy / 780 

toxicity profile of such combination may need to be compared to that of other 781 

regimens that also act on the DNA damage response and replication stress 782 

(e.g., CHK1i and irinotecan combinations; NCT04095221 (52,53)), to better 783 

define its role in the therapeutic armamentarium. Despite these limitations, we 784 

believe our study may have translational utility and clinical impact in DSRCT, a 785 

disease where very few therapeutic options and no precision medicine 786 

approach are available. 787 

 788 

In conclusion, our findings shed light on EWS-WT1-associated genetic 789 

vulnerabilities in DSRCT and provide rationale for evaluating PARPi in 790 

combination with ATRi in this deadly disease. Since the replication stress- and 791 

R-loop-dependency of this phenotype may also operate in other, more frequent, 792 

transcription factor-driven sarcomas – such as Ewing’s sarcoma or synovial 793 

sarcoma, we hope that this will favor the development of basket studies 794 

enrolling multiple biomarker-selected sarcomas and allow patients to access 795 

these therapies despite the rarity of their disease. 796 
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Figure Legends 

 

Figure 1. A small-molecule inhibitor and drug screen identifies PARP and 

ATR inhibitors as candidate therapies for DSRCT. A. Schematic illustration 

of the workflow of small-molecule inhibitor and drug screen performed on the 

JN-DSRCT-1 (JN1) cell line. B. Waterfall plot displaying the difference in AUC 

between the JN1 cell line (AUCJN1) and the panel of 92 cell lines used for 

comparison (AUCmedian) for the 79 evaluated small-molecule inhibitors or drugs. 

PARP inhibitors are highlighted in red, ATR inhibitors in blue, and conventional 

cytotoxic agents in green. AUC, Area Under the Curve. C-F. Dose-response 

survival curves of the DSRCT cell lines JN1 and R, and the A673 (Ewing 

sarcoma) and SaOS-2 (osteosarcoma) cell lines exposed to talazoparib (C), 

M4344 (D), olaparib (E), or AZD6738 (F) for 7 days. Mean ± SD; n = 3. G, H. 

Violin plots showing the relative sensitivity (log2 fold-change of cell viability) of 

cell lines exposed to the PARP inhibitor talazoparib (G) or olaparib (H) after a 

single-dose exposure at 2.5µM for 5 days in the DepMap database (Prism 

Repurposing 23Q2), in comparison with that of the JN1 and R cell lines. JN1 

and R cell lines sensitivities were extrapolated from the survival assays 

presented in C and D; surviving fractions were calculated at 2.5µM and log2 

transformed. Ewing Sarcoma cell lines (n=23): RDES, A673, SKES1, 

CADOES1, EWS502, MHHES1, EW8, A673STAG2KO16, A673STAG2KO45, 

A673STAG2NT14, A673STAG2NT23, CBAGPN, CHLA10, SKNEP1, SKPNDW, 

TC32; Osteosarcoma cell lines (n=5): G292CLONEA141B1, MG63, U2OS, 
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HOS, SJSA1; Soft-tissue sarcoma cell lines (n=7): S117, TE617T, HT1080, 

HS729, RD, RKN, RH30, including  rhabdomyosarcoma (n=4), leiomyosarcoma 

(n=1), fibrosarcoma (n=1) and NOS sarcoma cell lines (n=1), respectively. The 

BRCA1/2-mutant IGROV1 ovarian cancer cell line and BRCA1-mutant MDA-

MB-436 breast cancer cell line were used as positive controls for sensitivity to 

PARP inhibitors. 

 

Figure 2. PARP and ATR inhibitors have synergistic cytotoxic effects in 

models of DSRCT with high PARP1 expression. A, B. PARP1 expression (A) 

and PARylation levels (B) as assessed by immunohistochemistry in a cohort of 

16 DSRCT samples, compared with those of the JN1 and R cell lines (PARP1 

and PAR expression are shown as H-scores). Representative cases (PARP1-

high vs. -low tumors; PAR-high vs. -low tumors) are shown to the right, 

compared with JN1 and R cells. C, D. Surface plots of Bliss independence 

scores calculated for the talazoparib – M4344 combination in JN1 (C) and R (D) 

cell lines at 7 days. E. GR_13-PDX-O model was established from the primary 

peritoneal tumor of a patient with DSRCT, with confirmation of EWS-WT1 fusion 

by FISH and WT1-Cter IHC. F. Surface plot of Bliss independence score 

calculated for the talazoparib – M4344 combination in the GR_13 PDX-O at 7 

days. The associated dose-response matrix is shown to the right. Mean ± SD, 

n=3. Surface plots: the x- and y-axes values indicate drug concentrations, and 

the z-axis values the associated synergy score; score < -10, antagonistic 

interaction; score = 0, absence of interaction; score > 10, synergistic interaction. 
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Figure 3. PARP and ATR inhibitors elicits DNA damage, replication stress 

and genomic instability in DSRCT cells.  

A-D. Quantification of γH2AX (A, B) or RAD51 foci (C, D) in JN1 (A, C) or R 

cells (B, D) exposed to DMSO control, PARPi talazoparib, ATRi M4344, or a 

combination of both for 72 h. Cisplatin was used as a positive control. A 

minimum of 500 nuclei were analyzed per condition. Violin plots show the 

absolute number of foci per nucleus. Thick line, median; thin lines, lower and 

upper quartiles; two-way ANOVA and post hoc Dunn’s test. E, F. Western blot 

of pCHK1, CHK1, pRPA2, RPA2, γH2AX, H2AX, and cleaved-PARP1 (cPARP) 

in JN1 (E) or R (F) cells exposed to DMSO control, PARPi talazoparib or 

olaparib, ATRi M4344 or AZD6738, or a combination of both for 48 h. G, H. 

Representative immunofluorescence images (G) and quantification of 

micronuclei-positive cells (H) in JN1 cells exposed to DMSO control, PARPi 

talazoparib, ATRi M4344, or a combination of both for 72 h. A minimum of 500 

cells were analyzed per condition. Mean ± SD; n = 3; one-way ANOVA and post 

hoc Dunn’s test. Arrows indicate micronuclei. Scale bar, 20μm. 

 

Figure 4. EWS-WT1 is a determinant of DSRCT cells’ sensitivity to PARPi 

and ATRi. A. Western blot of EWS-WT1 in JN1 and R cells transfected with 

either siCNTRL or siEWS-WT1. Whole-cell lysates were generated 48h post-

transfection. B-E. Dose-response survival curves of JN1 or R cells exposed to 

PARPi talazoparib (B, C) or ATRi M4344 (D, E) for 7 days in presence or 

absence of siRNA-mediated silencing of EWS-WT1. Mean ± SD; n = 3. F, G. 
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Quantification of γH2AX in JN1 cells exposed to DMSO control, PARPi 

talazoparib, ATRi M4344, or a combination of both for 72 h, in presence or 

absence of siRNA-mediated silencing of EWS-WT1. Cisplatin was used as a 

positive control. A minimum of 500 nuclei were analyzed per condition. Violin 

plots show the absolute number of foci per nucleus. Thick line, median; thin 

lines, lower and upper quartiles; two-way ANOVA and post hoc Dunn’s test. H, 

I. Western blot of pCHK1, CHK1, pRPA2, RPA2, γH2AX, H2AX, and EWS-WT1 

in JN1 (I) or R cells (J) exposed to DMSO control, PARPi talazoparib, ATRi 

M4344, or a combination of both for 48 h, in presence or absence of siRNA-

mediated silencing of EWS-WT1. 

 

Figure 5. EWS-WT1 drives enhanced DNA replication stress and R-loops, 

which contribute to DSRCT cells’ sensitivity to PARPi and ATRi. A. 

Assessment of replication fork speed (kb/min) in JN1 cells subjected to siRNA-

mediated silencing of EWS-WT1 or CCND1. A minimum of 50 forks were 

analyzed per condition. Mean ± SD, each dot represents a single replication 

fork; n = 2, one-way ANOVA and post hoc Dunnett’s test. B. Assessment of 

replication fork speed (kb/min) in JN1 cells exposed to DMSO control, or a 

combination of PARPi talazoparib and ATRi M4344 for 6 h, in presence or 

absence of siRNA-mediated silencing of EWS-WT1. A minimum of 50 forks 

were analyzed per condition. Mean ± SD, each dot represents a single 

replication fork; n = 2, two-way ANOVA and post hoc Šídák’s test. C, D. 

DNA:RNA hybrid dot blot of genomic DNA extracted from JN1 (C) or R cells (D) 

exposed to PARPi talazoparib, ATRi M4344 or a combination of both in 
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presence or absence of siRNA-mediated silencing of EWS-WT1 as in B. S9.6, 

RNA:DNA hybrids; ssDNA, loading control. E. Assessment of replication fork 

speed (kb/min) in RNaseH1-overexpressing JN1 cells subjected to siRNA-

mediated silencing of EWS-WT1. Synchronized cells were collected 14 h post-

transfection. A minimum of 50 forks were analyzed per condition. Mean ± SD, 

each dot represents a single replication fork; n = 2, unpaired t-test. E. Dose-

response survival curves of JN1 cells exposed to PARPi talazoparib (F) or 

olaparib (G), and ATRi M4344 (H) or AZD6738 (I) for 7 days in presence or 

absence of siRNA-mediated silencing of EWS-WT1 and/or RNaseH1 

overexpression. Mean ± SD; n = 3. Two-way ANOVA. 

 

Figure 6. The combination of PARPi and ATRi elicits a cGAS/STING-

mediated cell-autonomous immune response. A. Western blot of pTBK1, 

TBK, pIRF3, and IRF3 in JN1 cells exposed to DMSO control, PARPi 

talazoparib, ATRi M4344 or a combination of both for 72 h. B, C. RT-qPCR 

analysis of RNA isolated from JN1 cells exposed to DMSO control, PARPi 

talazoparib, ATRi M4344 or a combination of both for 72 h. CCL5 (B) and 

CXCL10 (C) mRNA were analyzed separately relative to RPLP0. Box-and-

whisker plots show arbitrary units of gene expression, normalized to the DMSO 

condition. Boxes indicate median, lower and upper quartiles; whiskers indicate 

the 5th to 95th percentile range; n = 4, two-way ANOVA and post hoc Dunnett’s 

test, relative to the DMSO condition. D. Quantification of PD-L1 cell-surface 

expression by flow cytometry in JN1 cells exposed to DMSO control, PARPi 

talazoparib, ATRi M4344 or a combination of both for 72 h. Scatter plot shows 
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the percentage of PD-L1-positive cells within the DAPI-negative population, 

normalized to the DMSO condition. Mean ± SD; n=3. Kruskal-Wallis test and 

post hoc Dunnett’s test, relative to the DMSO condition. E. Western blot of 

pTBK1, TBK, pIRF3, and IRF3 in JN1 cells exposed to DMSO control, PARPi 

talazoparib, ATRi M4344 or a combination of both for 72 h, in presence or 

absence of siRNA-mediated silencing of EWS-WT1. F, G. RT-qPCR analysis of 

RNA isolated from JN1 cells exposed to DMSO control, PARPi talazoparib, 

ATRi M4344 or a combination of both for 72 h, in presence or absence of 

siRNA-mediated silencing of EWS-WT1. CCL5 (F) and CXCL10 (G) mRNA 

were analyzed separately relative to RPLP0. Box-and-whisker plots show 

arbitrary units of gene expression, normalized to the siCNTRL DMSO condition. 

Boxes indicate median and lower and upper quartiles; whiskers indicate the 5th 

to 95th percentile range; n = 4, two-way ANOVA and post hoc Dunnett’s test, 

relative to the siCNTRL DMSO condition. H. Quantification of PD-L1 cell-

surface expression by flow cytometry in JN1 cells exposed to DMSO control, 

PARPi talazoparib, ATRi M4344 or a combination of both for 72 h, in presence 

or absence of siRNA-mediated silencing of EWS-WT1. Scatter plot shows the 

percentage of PD-L1-positive cells within the DAPI-negative population, 

normalized to the siCNTRL DMSO condition. Mean ± SD; n=3. Kruskal-Wallis 

test and post hoc Dunnett’s test, relative to the siCNTRL DMSO condition. I. 

Model of EWS-WT1-driven DSRCT sensitivity to PARPi and ATRi.  
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