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Abstract Optical image correlation is a powerful method for remotely constraining ground movement from
optical satellite imagery related to natural disasters (e.g., earthquakes, volcanoes, landslides). This approach
enables the characterization, and identification of the causal factors and mechanisms underlying such processes.
By employing sub‐pixel correlation algorithms, one can obtain highly accurate (m‐to‐cm level) displacement
fields at high spatial resolution (dm‐to‐cm) by comparing satellite images acquired before and after a period of
movement. However, this method generally assumes a homogeneous translation of all pixels within a given
correlation window, which will lead to biased estimates of ground displacement if the real case is not well
represented by such a simplification, especially when resolving ground displacements next to sharp gradients in
displacement, such as those found in the near‐field of earthquake surface ruptures. In this paper, we present an
innovative deep learning method estimating sub‐pixel displacement maps from optical satellite images for the
retrieval of ground displacement. From the generation of a realistic simulated database, comprising Landsat‐8
satellite image pairs containing simulated sub‐pixel shifts and sharp discontinuities, we develop a Convolutional
Neural Network able to retrieve sub‐pixel displacements. The comparison to state‐of‐the‐art correlation
methods shows that our pipeline significantly reduces by 32% the estimation bias around fault ruptures, leading
to more accurate characterization of the near‐field strain in surface rupturing earthquakes. Application of our
model to the 2019 Ridgecrest earthquake demonstrates the ability of our model to accurately and quickly resolve
ground displacement using real satellite images. Code is made available at https://gricad‐gitlab.univ‐grenoble‐
alpes.fr/montagtr/cnn4l‐discontinuities.

Plain Language Summary The precise estimation of ground displacement caused by natural
hazards, such as earthquakes, volcanoes, landslides, as well as monitoring of glaciers, can be performed by
comparing two optical satellite images of the same region acquired on different dates. The challenge resides in
the fact that the ground motion is generally smaller than the satellite image resolution: sub‐pixel precision is
therefore critical. One solution, at the core of current optical correlation methods, is to assume a uniform
displacement over a small window (typically between 3 and 100 pixels wide/high). However, this assumption
can lead to wrong estimations, notably close to a sharp discontinuity such as a fault rupture. We present here the
first data‐based method to perform ground displacement estimation, relying on a machine learning model and a
synthetically generated database. This database is used to train a model to retrieve the local displacement for a
given image pair. It includes images containing synthetic sharp displacement boundaries in order to learn a more
realistic machine learning model. Our results shows that we improve the accuracy near fault ruptures compared
to state‐of‐the‐art methods, which is important for studying the mechanics of near‐fault processes.

1. Introduction
1.1. General Context

Precise estimation of ground displacement at regional scales is fundamental for the study of natural hazards, such as
earthquakes, volcanoes, landslides, as well as monitoring of glaciers (Heid & Kääb, 2012; Hollingsworth
et al., 2012; Lacroix et al., 2019; Leprince, Ayoub, et al., 2007; Leprince, Barbot, et al., 2007; Van Puymbroeck
et al., 2000). In the case of earthquakes, an accurate and unbiased estimation of ground deformation, especially in
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the near‐field of surface ruptures, is crucial to address the location, geometry, spatial distribution (on‐ vs. off‐fault)
of slip, and the down‐dip slip distributions of the causative fault. Accurate characterization of the near‐field
displacement around surface ruptures, in turn, provides valuable constraints needed to understand the physics of
earthquake slip (Marchandon et al., 2021), and to anticipate the seismic hazard posed to neighboring infrastructure
and populations (Padilla & Oskin, 2023). Such observations are essential for addressing many areas of earthquake
science, including fault mechanics, seismology, and structural/geological evolution of faulting, as well as earth-
quake engineering, including seismic hazard assessment, and seismic design. Recent observations have shown that
the degree of slip localization may vary along fault ruptures in individual earthquakes, as well as between different
earthquakes, and in different settings (Cheng & Barnhart, 2021; Dolan & Haravitch, 2014; C. Milliner, Dolan,
et al., 2016). The mechanism by which slip localization varies in a surface rupturing earthquake isn't well un-
derstood, although several controlling parameters have been proposed (e.g., lithology, rupture velocity, earthquake
magnitude, fault geometry, topography) (Ajorlou et al., 2021; Barnhart et al., 2020; Zinke et al., 2019). One dif-
ficulty in addressing this issue lies in the relative paucity of observational data currently available, rendering a
comprehensive statistical analysis of the various parameters, and their trade‐offs, challenging. Furthermore, of the
modest number of case studies available, the observations are additionally complicated by the quality of the
displacement maps obtained by image correlation. In particular, our ability to accurately resolve the degree of slip
localization may be limited by the methodology used to generate the displacement map.

1.2. Optical Image Correlation

Optical satellite geodesy has revolutionized how we characterize ground deformation associated with natural
hazards such as earthquakes (Avouac & Leprince, 2015; Marchandon et al., 2022). Optical Image correlation
(OIC) is an imaging technique able to retrieve a full surface displacement field between two optical satellite
images acquired over the same area at different times (separated by hours up to years). The main advantage of
OIC, compared with more precise satellite geodetic techniques such as Interferometric Synthetic Aperture Radar
(InSAR), lies in the ability to resolve large and high‐strain displacements with very high spatial detail and using
images with relatively long temporal baselines (up to many years). OIC has therefore been widely applied to the
study of various sources of ground motion, such as surface rupturing earthquakes, volcanoes, landslides, and
glacial movement (Leprince et al., 2008). In the study of earthquakes, where displacements are generally small
relative to the pixel size, sub‐pixel precision is critical for accurately capturing the displacement field, especially
close to surface ruptures, where the deformation may become complex (e.g., sharp discontinuities, distributed off‐
fault deformation, secondary faulting, along‐strike slip variability.). In this sense, earthquakes can represent a
relatively challenging feature to measure with OIC, compared with large, fast‐moving features such as glaciers.

In recent years, OIC has gained utility in constraining the near‐field displacement around earthquake surface
ruptures (Ajorlou et al., 2021; Antoine et al., 2021; Cheng & Barnhart, 2021; Michel & Avouac, 2002; C. W.
Milliner et al., 2015; Scott et al., 2018; Zinke et al., 2019), in part due to the increasing availability of high
resolution optical satellite data sets, as well as the difficulty in constraining these regions using InSAR (which
typically decorrelates in areas with large strain gradients, e.g. due to cycle skipping and surface changes, (Lasserre
et al., 2005; Pinel‐Puysségur et al., 2022)). OIC can therefore provide valuable constraints on the localization (or
distribution) of slip between the primary fault core and the neighboring (decimeter‐scale) off‐fault damage zone.

Over the past few decades, various OIC methods have been developed to quantify image displacements (Guizar‐
Sicairos et al., 2008; Hirschmuller, 2007; Nefian et al., 2009; Zach et al., 2007). Focusing on the approaches
largely used in the remote sensing community (involving satellite and aerial imagery), these can be broadly
grouped in correlation‐based techniques working in the spatial (C. Milliner & Donnellan, 2020; Rosen
et al., 2004; Rosu et al., 2015; Rupnik et al., 2017) or frequency (Fourier) domain (Leprince, Barbot, et al., 2007;
Rosu et al., 2015; Tong et al., 2015; Van Puymbroeck et al., 2000). Spatial cross‐correlation is a fundamental
technique for estimating ground deformation by comparing reference and target images through a sliding window
approach. This technique has been used (and refined) to efficiently solve the correlation problem (Rosu
et al., 2015; Scambos et al., 1992). Frequency‐based correlation is considered to be more accurate and faster
(given that convolution in the spatial domain is equivalent to multiplication in the frequency domain) than
commonly used spatial correlation methods such as normalized cross correlation (Tong et al., 2019). Both
methods generally employ a block‐based matching scheme, employing a sliding window to capture the local
displacement field over the full image. However, this may lead to high frequency noise in the final displacement
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map (at wavelengths similar to the sliding window dimension). Therefore, some approaches also make use of
multi‐scale regularization schemes to mitigate this effect (Leprince, Barbot, et al., 2007; Rosu et al., 2015).

Satellite images are subject to sources of noise leading to correlation bias or even temporal decorrelation. For
example, the difference in illumination between two acquisitions, typically acquired with a difference of weeks to
months, can introduce topographically correlated artifacts in the resulting estimated displacement map (Hol-
lingsworth et al., 2017; Lacroix et al., 2019; Leprince, Ayoub, et al., 2007; Van Puymbroeck et al., 2000).
Reflectance changes due to vegetation or anthropogenic changes between acquisitions may also hinder the cor-
relation over long time periods (VanPuymbroeck et al., 2000).Noise present in the acquisitions can also be a source
of errors in the correlation results. Low level image pre‐processing carried out by the data providers, such as image
resampling performed in the mosaicking of the raw acquisitions from single arrays for forming an image in stag-
gered pushbroom sensors, or the projection in a geographic reference system can introduce additional errors such as
periodic artifacts appearing at specific spatial frequencies (Leprince, Ayoub, et al., 2007; Tong et al., 2015). Spatial
regularization schemes (Rosu et al., 2015), or frequencymasking (Leprince, Ayoub, et al., 2007) have been used to
helpmitigate high frequency noise in the resulting displacementmaps, although they can result in smoothing of the
spatial detail. However, these approaches do not address limitations in the correlation process, such as the under-
lying assumption of rigid translations over the correlationwindow (Kanade&Okutomi, 1994), or spatial smoothing
associatedwith the correlation kernel (C.W.Milliner et al., 2015), whichmay bias the displacements in the vicinity
of sharp discontinuities typical with earthquake surface ruptures. In particular, smoothing of the displacement field
in the vicinity of a sharp discontinuitywill artificially distribute displacement into the neighboring areas. In the case
of earthquakes, this effect may severely bias our estimates of slip localization, and the partitioning of slip between
the fault plane and the surrounding damage zone, as well as estimates of near‐field strain (Ajorlou et al., 2021).

1.3. Contributions

The main objective of this study is to create a neural network‐based displacement estimation method, which to the
best of our knowledge is the first attempt for the estimation of sub‐pixel displacements in the context of ground
deformation associated with natural hazards. We specifically aim to tackle the challenge of estimating sub‐pixel
displacements in the presence of discontinuities, in particular near fault ruptures, where limitations linked with the
assumption of a rigid translation (Kanade & Okutomi, 1994) or the spatial smoothing (C. W. Milliner et al., 2015)
are not explicitly addressed with literature.

We developed a pipeline using a convolutional neural network (CNN) to solve the sub‐pixel displacement
estimation problem. CNNs have the capability (a) to be robust to variations (noise and lightning for example); (b)
to learn relevant features from the data without manual feature engineering, which simplifies the modeling
process and enhances the ability to capture complex patterns; (c) to generalize well to unseen data with similar
characteristics to the training set, making them suitable for tasks where correlation properties may vary. A novel
aspect of the proposed technique is that we address the specific challenge faced when discontinuities are present
within the sliding window, that is, in the near‐field of fault ruptures. We achieve this by training a sub‐pixel model
on a realistic synthetic data set that includes samples mimicking real fault discontinuities (see Figure 1). Our
implementation includes a two‐step pipeline that can effectively estimate (a) significant displacements exceeding
one pixel by initially employing a coarse model in a pixel‐scale registration step, and subsequently (b) refining the
sub‐pixel details centered around the pixel‐scale displacement using a sub‐pixel model. Our technique is able to
perform efficiently the estimation on a 1024 × 1024 pixels satellite images pair in 15 s, competing with state‐of‐
the‐art methods computation time (details in Section 5).

This paper contributes to the literature in three major aspects:

(1) The creation of large realistic synthetic training sets that allow data‐based techniques to learn how to retrieve
surface deformation with sub‐pixel accuracy and precision.

(2) The development of the first end‐to‐end neural network‐based OIC method, as a 2‐step procedure: first a
coarse estimation (larger than one pixel), then a finer estimation (sub‐pixel refinement).

(3) Comparisons with state‐of‐the‐art correlation methods COSI‐Corr (Leprince, Ayoub, et al., 2007) and
MicMac (Rosu et al., 2015) to quantitatively (with synthetic realistic images) and qualitatively evaluate the
results. The latter case is addressed through a study of the 2019 Ridgecrest earthquake (Antoine et al., 2021;
Ross et al., 2019), where we characterize the co‐seismic displacement field using very high resolution
Pleiades satellite data.
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2. Related Works
OIC is based on image registration principles, in which the goal is to estimate a displacement (or disparity)
between common features (represented by pixels) present within two images (Sutton et al., 2009). These two
images are denoted pre‐image (a reference image) and post‐image (a second image, acquired after the reference),
and we will use this terminology in this study. Sub‐pixel OIC refers to the estimation of the displacement field
between two images with a precision less than the image resolution (i.e., <1 pixel) (Pan et al., 2009). Attaining
sub‐pixel precision requires interpolating into the sub‐pixel domain. In order to solve this problem, one common
approach (in block‐based matching schemes) is to assume a homogeneous displacement between the two images
(i.e., the displacement is smooth enough to consider a locally rigid deformation). In most remote sensing cases,
the transformation between the pre‐ and post‐images is dominated by a simple rigid translation in 2‐dimensions,
and rotations or scale changes, etc., are assumed to be small. In these cases, we can thus simplify our registration
problem to just 2 degrees of freedom.

2.1. Spatial Correlation Methods

A correlation measurement between two images of scalar values I1 (reference) and I2 (template) of same size
consists of retrieving a similarity score, that indicates how well the content of the two images match and is
typically used in template matching problems (Lewis, 1995). The cross‐correlation CI1,I2 between image I1 and I2
is computed by integrating within the image domain the pixel‐wise product between the two images for each 2D
spatial shift, represented by a translation vector of components (x,y):

CI1,I2(x,y) =∑
n
∑
m
I1(x + n,y + m) ⋅ I2(n,m). (1)

The estimation of the integer 2D shift between the two images can be performed by finding the couple (x,y),
denoted by (x∗,y∗) , that maximises the correlation score:

(x∗,y∗) = argmax
x,y

C(x,y). (2)

We recall that (x∗,y∗) might not be unique and corresponds to a global translation of the two images, meaning that
all pixels in the template image will get shifted by the same amount.

Traditional methods (Leprince, Ayoub, et al., 2007; Rosu et al., 2015) use the principle of cross‐correlation to
retrieve displacement maps that describe the surface displacement field between two satellite images in two
directions: East‐West (horizontal) and North‐South (vertical). Let us assume we have two images I1 and I2, and

Figure 1. From left to right: A pair of input images (pre‐event and post‐event images) are acquired on two different dates. The sub‐pixel displacement field between the
two images is retrieved using first a coarse model registering every pair of windows pixel‐wise, followed by the sub‐pixel model that extract the sub‐pixel shift;
displacements is given in the row (North‐South) and column (East‐West) direction. Our sub‐pixel model is trained with data containing discontinuities.
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we want to retrieve the 2D displacement field between them. To produce a map of the displacement field based on
cross‐correlation, we consider a spatially local approach consisting of splitting the template image I2 into a set of
rectangular windows of a given size. Each window {Wk,l} corresponds to the set of pixels of the image I2 included
by the window when centered at the I2 coordinates (k, l). We first compute the correlation coefficient map
(function of (x,y)) for every W with origin (e.g., the window center) at coordinates (k, l), named CI1,W(k, l,x,y):

CI1,W(k, l,x,y) =∑
n
∑
m
I1(x + n,y + m) ⋅Wk,l(n,m). (3)

Note that in practise, we do not compute the correlation coefficient map on the whole reference image I1, but
restrict the (x,y) to a search area around the coordinates ofW. Then, fromC(k,l,x,y), that is a 4‐way tensor, we can
compute (x∗

k,l, x∗
k,l), which correspond to the displacement vector maximizing the correlation score for every (k, l):

( x∗
k,l,y

∗
k,l) = argmax

x,y
CI1,W(k, l,x,y). (4)

From this, we are able to retrieve the displacement field Δ(k,l):

Δ(k,l) = ( k − x∗
k,l,l − y∗

k,l). (5)

In the state‐of‐the‐art sub‐pixel spatial correlation approach of MicMac (Rosu et al., 2015), the displacement
estimation is based on normalized cross correlation, in which the displacement precision is refined iteratively
using a progressively smaller search space with each iteration. MicMac can be less sensitive to image noise, and to
large spatial heterogeneities due to large time differences between the acquisitions (Rosu et al., 2015) than
frequency methods. However, spatial correlation can be computationally expensive, as it involves a convolution
process involving many computations. Working with high resolution data containing large displacements also
necessitates the use of larger search spaces, further increasing the computation time. The correlation can also fail,
or be heavily biased under particular noise conditions (e.g., changes in atmospheric conditions, sensor artifacts,
radiometric differences, geometric distortions, stereoscopic artifacts, aliasing, color saturation) or very close to
the fault, by the nature of the assumptions made.

2.2. Frequency‐Based Correlation Methods

Another way to retrieve displacement between two images is to work in the frequency domain. The general
principle of frequency‐based correlation is to compute the normalized cross‐power spectrum QI1,I2 (i.e., the
complex conjugate of the Fourier transform F{ ⋅ } of an image multiplied element‐wise by the Fourier transform of
a second image), and retrieve its inverse Fourier transform F− 1{ ⋅ }, that will give us the normalized cross‐
correlation matrix RI1,I2(x,y) for a specific template image I2 compared with I1:

RI1,I2(x,y) = F− 1{F{I1}F
∗ {I2}

|F{I1}F{I2}|
}. (6)

The relative displacement between the two images is then determined spatially from the position of the peak in
this correlation matrix (Guizar‐Sicairos et al., 2008). To estimate a displacement field over the full image space,
we split I1 and I2 into a set of template windowsW1 andW2 of coordinates (k, l)which are used to obtain the local
displacement values Δ(k, l) from the local correlation coefficient maps RW1,W2

(k, l,x,y).

RW1,W2
(k, l,x,y) = F− 1{

F{W1k,l }F
∗ {W2k,l }

|F{W1k,l }F{W2k,l }|
}. (7)

Alternatively, for every set of windows, Δ(k,l) may be estimated directly in the frequency domain (Leprince,
Ayoub, et al., 2007; Tong et al., 2015; Van Puymbroeck et al., 2000) from the 2‐D slope of the normalized cross‐
spectrum's unwrapped phase.
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In the sate‐of‐the‐art frequency‐based correlator, COSI‐Corr (Leprince, Ayoub, et al., 2007), the displacement is
estimated purely in the frequency domain. Iterative adaptive frequency masking helps to mitigate the impact of
noisy (high) frequencies, while maintaining a reasonable computational cost (Leprince, Barbot, et al., 2007). As
with all frequency‐based methods, the technique gives increasingly robust results with larger correlation windows
(Leprince, Ayoub, et al., 2007; Rosu et al., 2015), albeit at the expense of spatial detail. Therefore, correlation
windows of ∼32‐by‐32 (equivalent to an effective width of 16‐by‐16, accounting for the windowing function
applied to reduce spectral leakage when computing the FFT) often represent the optimum trade‐off between ac-
curacy, acceptable noise levels, and spatial detail. Nevertheless, the assumption of a homogenous translation over
this correlation window results in bias around sharp discontinuities or regions where the true displacement is more
complex.

2.3. Data‐Driven Image Registration

Convolutional neural networks (CNNs) (Krizhevsky et al., 2012; LeCun et al., 1989) have emerged as a powerful
tool in all image processing fields. A CNN is able to learn a task from a set of training images in order to then
estimate a prediction for new test images. The architecture of a CNN consists of a succession of different layers.
First, the input layer takes as input one or more images. Convolutional layers apply a set of learnable convolution
filters (known as kernels) to the input. Each filter scans over the input and computes a weighted sum of pixel
values within its receptive field. Then, an activation function (commonly Rectified Linear Unit, or ReLU) is
applied element‐wise to introduce non‐linearity into the network. Optional pooling layers reduce the spatial
dimensions of the feature maps produced by the convolutional layers. Max‐pooling layers retain the maximum
value within a sliding window, effectively downsampling the outputs of convolutional layers (feature maps). The
output layer produces the final estimations by linearly combining the outputs of the last layer. Training a CNN for
a specific task such as image registration consists in updating the network's weights (convolution filters) itera-
tively with a specific gradient descent optimization algorithm to minimize the loss function, here measuring the
dissimilarity between the network's predictions and the ground truth transformations. Therefore, training requires
labeled data, which consists here of source and target image pairs (input) with known transformations (output, i.e.
label). The data is typically split in 3 sets: training set for model learning, validation set for monitoring the
performance during the training phase, and test set to assess the model's performance on unseen examples once
the model is trained. We call hyper‐parameters the set of variables controlling the deep learning model archi-
tecture and algorithm, as opposed to the parameters, or weights, which are optimized during training. The hyper‐
parameters are the number and size of layers, the optimization algorithm (e.g., Adam, SGD), the learning rate
(step size at each gradient descent iteration), etc.

Image registration and displacement field estimation from optical images has been successfully addressed by
recent data‐driven approaches, and in particular CNNs, for example, in medical‐imaging (Simonovsky
et al., 2016; X. Yang et al., 2017), and remote sensing (Wang et al., 2018). In the domain of satellite images
registration, CNNs have been shown to improve global image registration performance (Wang et al., 2018; Ye
et al., 2018). Displacement field estimation between two images can also be efficiently solved by deep learning,
for example, treating optical flow estimation as a learning task (Dosovitskiy et al., 2015). However, the large
majority of registration problems focus on the estimation of large displacements (>1 pixel) from temporally
dense data sets, while the estimation of sub‐pixel shifts from temporally limited and distant acquisitions has
been little studied. Several recent studies have demonstrated the potential of data‐driven approaches to retrieve
sub‐pixel displacements (Boukhtache et al., 2021; Ilg et al., 2017; Montagnon et al., 2022; R. Yang
et al., 2022). However, to the best of our knowledge, no application in remote sensing has yet been proposed for
resolving sub‐pixel displacements, particularly in the presence of local complexities such as sharp disconti-
nuities, from optical satellite data, which are fundamental features for automatic slip characterization
techniques.

3. Methodology
3.1. Approach and Pipeline of the Proposed Framework

Our proposed approach relies on the same principle as state‐of‐the‐art OIC approaches. First, we work at the local
scale with two small windows, W1 and W2, of size k × k (with k the size of the sliding window in pixels; we use
k = 16, as it has been demonstrated to be an effective window size from previous OIC studies of earthquake
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deformation, and allows us to compare with state‐of‐the‐art approaches; k could be adapted). We also make the
assumption of a locally rigid and non‐rotating transformation, by evaluating the translational displacements Δ
between the two windows. We develop an integrated 2‐step pipeline able to estimate (a) the large scale dis-
placements (>1 pixel) with a coarse model in a pixel‐scale co‐registration step, followed by (b) sub‐pixel
refinement centered on the pixel‐scale displacement with a sub‐pixel model. Both steps are implemented using
a sliding window procedure. Figure 1 summarizes the full pipeline, taking two satellite images (global scale) as
input.

3.2. Coarse Model and Sub‐Pixel Model Architecture

Our approach consists of a two‐step process to estimate shifts between image patches: a coarse estimation fol-
lowed by a sub‐pixel estimation.

First, estimating a shift at a pixel‐level requires a larger patch window. For this initial step, we developed a model
called cnn3l, which performs the first‐step coarse co‐registration of the sliding windows. The cnn3l model
consists of 3 convolutional layers with 16, 32, and 64 kernels, respectively, each of size 5 × 5, and takes two
32 × 32 pixel patches, W1 and W2, as input.

After the coarse estimation, we refine the shift estimation to a sub‐pixel level. For this purpose, we developed a 4
convolutional layer CNN architecture called cnn4l, which takes two 16 × 16 pixel patches,W1 and W2, as input.
The model outputs a vector of two displacement values, representing the estimated shift (in fraction of pixels)
between the two input windows, in the row and column directions (corresponding to north‐south and east‐west
directions for UTM‐projected imagery). The architecture of our network can be summarized as follows: the
input is passed through four convolutional layers, with an increasing number of small kernels (64, 128, 256, and
256). The size of the kernels (3 × 3)was selected to extract small features in already small (16 × 16)windows and
is well‐suited to work on small displacements (Ilg et al., 2017). The output of each convolution is processed by the
Rectified Linear Unit (ReLU) activation function. After the convolutions, two fully connected layers reduce the
size of the data (from 16,384 to 64 to 2) and output the estimated shift. The structure and its parameters are
summarized in Figure 2. Pooling operations are not used here; as the input images are already very small, the size
reduction caused by the convolution operations without padding is sufficient to extract multi‐scale features (the
last feature maps shape is 8 × 8, thus, two times smaller than the input). The proposed architecture is generic and
could be used with other window sizes than k = 16.

3.3. Generation of the Training Database

In the Earth Science community, no suitable archive of synthetic earthquake displacements currently exists for the
purposes of training a Convolutional Neural Network. Furthermore, the lack of precise, spatially dense ground
displacement measurements in real earthquake cases hinders the creation of a relevant database of suitable ground

Figure 2. Architecture of the model used to achieve the sub‐pixel estimation (cnn4l). The model takes the pre‐ and post‐windows as input, and outputs the estimated shift
(EW and NS displacements between the two windows).
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truth data. Consequently, we generate our own synthetic satellite imagery with known displacements, to train and
validate our network. This training data set contains pairs of patches (input windows), together with the rigid
deformation values linking them (targets). In order to create samples containing realistic reflectance noise
(resulting from variations in illumination, changes in vegetation, etc.), we use real Landsat‐8 acquisitions ac-
quired over the same region, but on different dates. We select satellite images from areas which are stable between
the two acquisitions (i.e., no ground displacement is present). Additionally, we globally co‐register the two ac-
quisitions using phase correlation (a Python implementation of the matrix‐multiply DFT method of Guizar‐
Sicairos et al. (2008) available in the Scikit‐image library), to reduce global mis‐registrations that might
remain after processing by the USGS.

We extract two windows,W1 andW2, respectively, from two large satellite images, I1 and I2, which are acquired
over the same area on two different dates, t1 and t2. We build a synthetic displacement field, Δ, used to warpW2 to
obtainW2s, the distorted version ofW2. One sample of the training data set is the standardized pair (W1,W2s) (re‐
scaled with a 0‐mean and a unit variance), with the target deformation Δ associated. A re‐sampling algorithm is
necessary during the warping process, because the shift applied is sub‐pixel: we use Lanczos interpolation, with a
kernel size of 6 × 6.

This can be summarized as follows:

W2s(x,y) = fΔ (eδt (W1(x,y)))(x,y) (8)

with e the natural evolution of the ground during δt, and f the distortion operation associated to Δ. This process is
repeated many times (with random Δ, random window extraction location, random pair (I1,I2) , following a
uniform distribution), to create a large number of unique samples. The procedure is summarized on Figure 3.

3.3.1. UNI Data Set

The first database that was generated assumes a perfectly uniform shift between the two patches, similar to the
traditional correlation implementations. This uniform training data set is called “UNI.” Let's fix: Δ = (Δx,Δy),
where − 1<Δx,Δy < 1. Here, Δ simulates a uniform sub‐pixel shift inW2s. The UNI Data set is created with this
uniform distribution of displacement fields, and is made of 125,000 samples for training (80% for training; 20%
for validation) and 25,000 for testing.

3.3.2. DIS Data Set

A second training database was created in order to address the incorrect assumption of a uniform shift in cases
where a displacement discontinuity is present within the sliding window. Here, Δ used to warpW2 is not uniform,
but contains a discontinuity (see Figure 3). This discontinuity data set is called “DIS.” Formally,

Figure 3. Creation of our two training sets, UNI (left) and DIS (right). For the UNI data set, the displacement incorporated inW2 is uniform, when for the DIS data set,
the deformation includes a discontinuity.
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Δ(x,y) = {
Δa(x,y) = (Δxa,Δya) if (x,y)∈A

Δb(x,y) = (Δxb,Δyb) if (x,y)∈B
(9)

where A and B are the two areas (green and pink on Figure 3) created by intersecting a random line with the
window square, with area(A)> 1.05 × area(B), and (x,y) are the coordinates of the pixels inW2. This means that
the center pixel is always contained in A. Therefore, the target deformation for this sample is Δa. With this
simulated fault discontinuity, the model needs to identify the displacement of the largest area A in a given pair of
windows, while some smaller area B is allowed to move in a different direction. Again, 125,000 samples are
created for training (80% for training; 20% for validation) and 25,000 for testing.

We separately trained the cnn4l model with both UNI and DIS data sets, respectively giving two models: cnn4l‐
uni16 and cnn4l‐dis16, both made to do the sub‐pixel estimation. Two other training data sets were tested: (a)
using eδt (W1) = Id(W1) , that is, t = 0 using exactly the same acquisition forW1 andW2 (W1 =W2), and (b) using
eδt (W1) = Id(W1) + n with n a uniform random noise to train the model (adding artificial noise to replace the
natural noise). However, the accuracy reached on our realistic synthetic data set (explained in the Section 4) and
on real data (Ridgecrest study case) were unsatisfactory.

3.4. Sensitivity Study

In order to select the best hyperparameters, we evaluated our models on the test set (25,000 Landsat‐8 16 × 16
patches, acquired on different dates and locations, to guarantee that there is no common data used in both training
and evaluation stages).

3.4.1. The Sub‐Pixel Model Architecture

We evaluated the sensitivity of our model with respect to the twomain parameters controlling the architecture: the
number of convolutional layers, and the number of filters in each convolutional layer. We evaluated the mean
absolute error when using 1, 2, 3, and 4 convolutional layers, and with three different levels of filters per layer
(small, medium and large). Table 1 gives details on the architectures tested, and quantitative precision on the
evaluations. We trained the different architectures with the UNI training set, and tested on the UNI test set four
times for each architecture, so every evaluation is a mean of four runs.

We see that the main precision gain is obtained with a depth of at least 2 convolutional layers. The best precision is
reached with the most complex architecture: 4 layers with the largest number of filters. With this architecture, the
model is complex enough to be able to use all the information of the training samples. Accuracy gain with more
layers (+4 layers) was insufficient to justify the complexity and computational cost associated with a heavier
CNN structure. This architecture was developed using the UNI data set, although the same trends are observed for
the DIS data set, reaching 0.172, 0.132, 0.131, and 0.130 of MAE respectively for cnn‐1l, cnn‐2l, cnn‐3l, cnn‐4l,
all with large number of filters. We thus retain this architecture for the rest of our study. However, future studies
may explore broader architectures.

Table 1
Architectures Details (Number of Layers and Number of Feature Maps for Each Layer) and Mean Absolute Error (MAE) of
the UNI Test Set (in Pixels, Mean Over Four Runs) for the Different Models Using 16 × 16 Input Patches

Model name:

cnn‐1l cnn‐2l cnn‐3l cnn‐4l

s m l s m l s m l s m l

conv1 (filters) 16 48 128 16 24 64 16 24 64 16 24 64

conv2 (filters) x x x 20 48 128 20 48 128 20 48 128

conv3 (filters) x x x x x x 24 72 256 24 72 96

conv4 (filters) x x x x x x x x x 28 256 256

MAE (in pixels) 0.127 0.137 0.133 0.107 0.106 0.106 0.110 0.110 0.106 0.114 0.111 0.105

Note. Notation: s: small; m: medium; l: large. The best number for the MAE is highlighted in bold.
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To have a first sense of the performance of our two models cnn4l‐uni16 and
cnn4l‐dis16, we can evaluate their accuracy on our DIS test set. Evidently,
cnn4l‐uni16 with a MAE of 0.163 performs worse than cnn4l‐dis16 with a
MAE of 0.130, that trained on the training set of DIS. Note that the MAE
reached is lower than the MAE of cnn4l‐uni16 on the UNI test set, due to the
higher complexity of the DIS data set.

3.4.2. The Window Size

The largest the images, the more information the model has to estimate the displacement. Therefore, on our
synthetics (that have a uniform displacement), the best precision is achieved for the largest window size (Table 2).
However, for real cases where the displacement is heterogeneous within an image, using large windows will bias
the estimation. It is thus preferable to use a window size as small as possible. All trained models perform well
(Table 2); however, for size: 8 pixels, the accuracy drops by 30% compared to size: 16 pixels. We will focus the
rest of our study on the 16 × 16 window size, known to be more accurate than larger resolutions on real (i.e., not
uniform) deformations.

3.5. Training the Pixel‐Scale Co‐Registration Model

The above trained cnn4l model captures shifts that are smaller than 1 pixel in each direction. Even though Earth
deformations are contained in this range for the majority of remote images acquired, larger shifts can happen. We
thus trained our cnn3l model, called cnn3l‐5px, with another data set UNI‐5px, very similar to UNI, but with
− 5<Δx,Δy < 5 and k = 32. With this model, we co‐register pixel‐wise the sliding windows as a pixel‐scale co‐
registration step (with a maximum estimation of 5 pixels), and then apply our sub‐pixel model to refine our
estimation. While the results of cnn3l‐5px are more than satisfactory for estimating the rounded pixel‐level shift
(MAE= 0.37 pixels, notably smaller than 0.5 pixel), there is a clear advantage to perform the refinement with the
specific sub‐pixel cnn4l model. This procedure is detailed on Figure 1, and allows an estimation of large and small
displacements. If we want to process images containing larger displacements (≫5 pixels) with our cnn3l model,
another training data should be built, with |(Δx,Δy)|> 5. Another solution would be to use a faster external
existing method to perform the first step, that is, the less challenging pixel‐size registration, and then refine the
estimation with our sub‐pixel model. Our pipeline will incorporate this flexibility.

3.6. Implementation Details

Our cnn4l‐uni16 and cnn4l‐dis16 models were implemented using PyTorch library in Python. The cnn4l‐dis16
has reached convergence in 200 epochs (see Figure S1 in Supporting Information S1), while for cnn4l‐uni16
only 99 epochs were needed to reach convergence (see Figure S2 in Supporting Information S1). We used
early stopping, with a patience (i.e., the number of epochs to wait before early stop if no progress on the validation
set) of 12, with an initial learning rate of 1 × 10− 3, decaying every 10 epochs with a factor of 0.8. We used the
Adam optimizer with a weight decay of 5 × 10− 4, and the Mean Squared Error (MSE) loss. We chose a batch size
of 128, averaging 10 min of computing per epoch for both models. Computations were performed on a GPU
NVIDIA Tesla V100 NVLink. The pipeline is implemented in Python (a combination of Numpy and PyTorch).

We also make use of custom transforms (horizontal and vertical flips and n × 90° rotations) during the training to
augment the data set.

4. Experiments
4.1. Evaluation on Realistic Synthetic Earthquake Images

In the absence of substantial ground truth data from real earthquakes, we first generate realistic synthetic
earthquake images using Landsat‐8 satellite acquisitions re‐sampled to include realistic synthetic displacement
fields; we then quantitatively validate our model and compare with existing state‐of‐the‐art correlators using these
synthetic satellite images. This evaluation data set is distinctly different from our training data set. First, it features
a larger scale, with images of 1024 × 1024 pixels instead of 16 × 16 pixels. Additionally, the synthetic dis-
placements included in this data set are significantly more complex and realistic (see Section 4.1.1 for details).

Table 2
Mean Absolute Error (MAE) on the UNI Test Sets (in Pixels) for the Different
CNN Models Taking as Input Different Window Sizes

cnn4l‐uni8 cnn4l‐uni16 cnn4l‐uni32 cnn4l‐uni64

MAE (in pixels) 0,130 0,105 0,0960 0,0884
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4.1.1. Generation of Realistic Synthetic Earthquake Images

We first develop a pipeline that randomly generates realistic fault discontinuities with rough geometries and slip
distributions embedded in a homogeneous elastic half‐space (assumed to behave in a linear elastic fashion). Using
analytical expressions, relating slip on triangular fault patches (in the elastic material) to displacement at the
surface, we then compute the resulting surface displacement field produced by the prescribed fault geometry and
associated earthquake slip distribution (Meade, 2007; Nikkhoo & Walter, 2015). The faults obey a length‐
displacement scaling consistent with natural earthquake faults (Scholz, 1982), rupturing only the seismogenic
part of the crust, with geometric roughness consistent with natural faults (self‐affine scaling, with a Hurst
exponent of ∼0.8, (Candela et al., 2012)), fractal slip distributions (Amey et al., 2017; C. Milliner, Sammis,
et al., 2016), and the potential for reduced slip in the uppermost crust (shallow slip deficit, (Fialko et al., 2005)).
The length of the fault can range from 5 to 150 km, with a downdip width of 5–17 km and a strike of 0–360°. The
fault dip varies between 30 and 90°. The fault models are discretized with an unstructured meshing approach
(Mesh2D, (Engwirda, 2014)) using triangular displacement elements (TDEs), with sub‐pixel resolution at the
surface, which increases to several kilometers at depth; this depth‐dependent spatial sampling accounts for the
rapid decay of static displacements with distance to the source (1/ r2), which prevents fine spatial details at depth
to be resolved by surface measurements alone (i.e., through inverse modeling—see Page et al., 2009), while also
significantly reducing the number of TDEs when computing the surface displacement field (generated using
cutde, a GPU‐accelerated implementation of Nikkhoo andWalter (2015)). Nevertheless, the high resolution of the
fault model near the surface allows us to produce realistic displacements at the resolution of the satellite imagery.
Finally, we also generate observation points (locations where we calculate a surface displacement) using an
unstructured mesh, densifying points with proximity to the surface rupture, thereby concentrating the number of
observation points to where there is significant variation in the displacement, further reducing redundant cal-
culations with cutde; the irregular grid of output displacements are subsequently resampled onto a regular grid
using the griddata function within the Python library: SciPy.

We then extract 1024 × 1024 patches from 15 m resolution Landsat‐8 satellite images acquired on two different
dates, but for a stable region in which no ground deformation has occurred. We perform an initial global co‐
registration step (using phase correlation), to ensure there is no mis‐registration between the two images. The
displacement field Δ is then used to warp the second (post) satellite image using a quintic‐order spline re‐
sampling algorithm (Wiemker, 1996), to simulate an earthquake where the displacement field is fully known.
The precision of this resampling approach (∼1/100th to 1/100th pixel) is significantly higher than the precision of
state‐of‐the‐art correlators (<1/10th pixel). Three different 1024 × 1024 images were created for evaluation; the
creation of the input images is summarized on Figure 4.

4.1.2. Comparisons With MicMac and COSI‐Corr

The pre‐ and post‐images are then compared using our new deep learning approach, COSI‐Corr, and MicMac, to
retrieve the displacement map. We then compute the absolute residual maps (using the ground truth displace-
ment). In these examples, all displacements are kept in the range [‐1,1], so we just focus on sub‐pixel
performance.

Using a sliding k × k pixels window with a stride of 1 pixel to have the best spatial resolution as possible, we
compute the full displacementmaps for the three evaluation examples using our two sub‐pixelmodels, cnn4l‐uni16
and cnn4l‐dis16, as well as MicMac and COSI‐Corr. For consistency, COSI‐Corr was applied with a 32 × 32
window, because the effective correlation window width is reduced ∼half due to the windowing function applied
(Heid & Kääb, 2012). MicMac typically uses smaller window sizes (the default is 9 × 9). However, we increase
this to 15 × 15 to allow amoremeaningful comparisonwith COSI‐Corr and our pipeline (AlthoughCOSI‐Corr can
use 16 × 16windows, thus yielding an effectivewindow of 8 × 8, the displacements start to be biased too low).We
also remove the spatial regularization option in MicMac, to keep consistency with our model and COSI‐Corr
(however, noise is still mitigated in MicMac by using a non‐linear cost function, and in COSI‐Corr by using
adaptive frequency masking). Thus, we focus on the core sub‐pixel performance of the various algorithms.

On Figure 5, the four EW and NS displacement maps are presented for three different realistic earthquake ex-
amples. To first order, the four models have similar results, with some small differences in texture, and in the
sharpness of the fault boundary. Stacked displacement profiles spanning the fault in the first earthquake example
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(Figure 7, computed for the EW component of example 1) highlight a much sharper discontinuity (i.e., narrower
displacement width) for our cnn4l‐dis16 model, which compares most accurately to the ground truth of all the
models (see Figure 7b); even compared to the default MicMac parameters (9 × 9 with 0.3 regularization) or
MicMac using the smallest available window size (3 × 3 with 0.3 regularization, Figure 6; note that such pa-
rameters yield noisier correlation maps than we obtain with our CNN approach). MicMac without regularization
(not represented here) is virtually identical to MicMac with regularization, because the stacked profiles suppress
the high frequency noise, which would reflect the difference between the two profiles. This sharper, more accurate
representation of the fault trace is also clear from the 2‐D residual maps (Figure 8, computed for a portion of the
EW component of example 1).

The mean residuals (MAE) for each of the 4 methods over the full extent (1024 × 1024) of the displacement map,
as well as a narrow zone extending 16 pixels from the fault trace are given in Table 3. The global mean errors of
the four models are similar, ranging from 6.89e − 2 to 9.19e − 2 pixel. Our models perform slightly worse than
MicMac and COSI‐Corr (MAE increases by up to 2.30e − 2 pixel). This can be seen visually in the displacement
maps (Figure 5): our cnn4l‐uni16 and cnn4l‐dis16 models yield displacement maps with slightly more high
frequency noise. This is in part because we have made no effort to mitigate high frequency noise, unlike MicMac
and COSI‐Corr (simple post‐processing such as Total Variation—L1 smoothing (weight 0.2)) (see Cham-
bolle, 2004) allows our results to attain comparable level of smoothness with MicMac, while preserving sharper
fault discontinuity (see Figure 6). Nevertheless, the stacked displacement maps spanning the fault displacement
yield very similar displacements (Figure 7).

The error in the near‐field of the fault trace is higher than the global residuals in each case. However, for cnn4l‐
dis16, the mean residual is reduced by 32% compared to the other methods (MAE drops by∼8.1e − 2 compared to
MicMac and ∼6.1e − 2 compared to COSI‐Corr), reflecting a substantial improvement in resolving the
displacement close to the fault rupture. The standard deviation and median around fault shows also a drop
compared to MicMac and COSI‐Corr. Also, we observe patches of 4 × 4 pixels around the discontinuity in
MicMac results, due to the iterative refinement algorithm, that ultimately biases the precision close fault.

4.2. Evaluation on Real Case: Ridgecrest

On 4th and 7th July 2019, a large foreshock‐mainshock earthquake sequence struck the town of Ridgecrest, in the
Mojave desert region of southern California (Barnhart et al., 2019; Magen et al., 2020; Ross et al., 2019). The

Figure 4. Creation of a pair of realistic synthetic earthquake images. Here, the warped post‐image (bottom right) contains
natural differences in reflectance due to the different acquisition time of pre‐image (top left), and carries the synthetic
displacement map (bottom center), that our model should retrieve. The values are in intensity (standardized) for the satellite
images, and in pixels for the displacement map (E‐W shown here).
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Figure 5. EW and NS displacement maps computed for 3 synthetic examples, for the four models cnn4l‐uni16, cnn4l‐dis16, MicMac, and COSI‐Corr. On the left, the
synthetic displacement maps used to warp the two satellite images. Results are expressed in pixels.
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foreshock broke a NE‐SW‐striking left‐lateral fault, while the subsequent mainshock broke a conjugate NW‐SE‐
striking right‐lateral fault. Using very high resolution satellite imagery spanning both earthquakes, various studies
used OIC to characterize the near‐field displacements close to the surface rupture, and assess the extent of off‐
fault deformation associated with the event (Antoine et al., 2021; Barnhart et al., 2020; Magen et al., 2020; C.
Milliner et al., 2021). These displacement maps also allowed an assessment of the local strain field, which turn
helps to provide new constraints on the mechanics of fault slip in surface rupturing earthquake, and the distri-
bution of slip between the fault core and neighboring damage zones.

Comparisons of our model with COSI‐Corr and MicMac for optical data spanning the Ridgecrest earthquake is
valuable for two reasons: (a) to test our model on satellite images containing real earthquake displacements, and
(b) to test our model on different imagery to that used to train our model. In this case, our models are trained with
Landsat‐8 imagery (15 m), while we test on pre‐ and post‐event Pleiades satellite images (from Antoine
et al. (2021); resampled here from 0.5 to 1.5 m for memory constraints); thus, we assess the performance of our
model on data acquired with a different sensor (with different characteristics, e.g. sensitive to different spatial
wavelengths), different incidence angles (Pleiades imagery is typically acquired off‐nadir, unlike Landsat‐8), and
at highly different resolutions (spanning ∼1 order of magnitude). Furthermore, we avoid any artifacts potentially
introduced by warping the satellite imagery, and we are not constrained by an artificial synthetic earthquake
displacement model (however realistic we attempt to make it). Finally, the displacements involved during the
earthquake can reach a magnitude of ∼6 m, while the input imagery is 1.5 m resolution; therefore, we can test our
full pipeline, which solves for displacements at the pixel‐scale and then the sub‐pixel scale (Figure 1). These
comparisons therefore allow us to assess the generalizability of our technique. However, we note that for real
cases of earthquakes, like Ridgecrest, we do not have a ground truth map of known displacements of similar
density. Comparing different techniques is nevertheless useful to check consistency with existing and more
established OIC methods. Furthermore, visual inspection of the displacement field close to the fault rupture can
often reveal errors or bias which are identifiable from their spatial distribution, and which offer another means for
comparison.

We compute displacement maps in 3 different areas using (a) our CNN‐framework (step‐1: pixel‐scale regis-
tration with cnn3l‐5px using 32 × 32 windows, followed by step‐2: sub‐pixel refinement with cnn4l‐dis16 using

Figure 6. EW displacement maps and residuals for the (a) ground truth, (b) cnn4l‐dis16, (c) cnn4l‐dis16 with TVL1 smoothing (skimage.restoration.denoisetvbregman,
weight 5.0), (d) MicMac (9 × 9 window, 0.3 reg), (e) MicMac (3 × 3 window, 0.3 reg), and (f) MicMac (3 × 3 window, 0 reg). Inclusion of simple TVL1 smoothing on
our cnn4l‐dis16 model highlights the potential of fast and simple post‐processing approaches that may be used to reduce high frequency noise, giving smooth
displacement maps comparable to default MicMac parameters, yet retaining a lower near‐field bias. Lower panels show the absolute displacement residuals (relative to
the ground truth).
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16 × 16 pixels windows), (b) COSI‐Corr (32 × 32 windows), and MicMac (15 × 15 windows). A stride/step of 4
pixels is used for the CNN‐pipeline and COSI‐Corr at large scales (Figures 9a and 9c), and a stride of 1 for finer
scales (Figures 9band 9d); MicMac (Figures 9e and 9f) can only stride at 1 pixel increments. The displacement
maps for the first area are shown in Figure 9; the pre‐image of this example was acquired on 23rd June 2012, and
the post‐image on 8th September 2019 (Antoine et al., 2021). Two additional results for other areas are shown in
Figure S3 of the Supporting Information S1.

Figure 7. Stacked displacement profile on a portion of the fault for (a) the synthetic ground truth displacement field, the
cnn4l‐dis16 and cnn4l‐uni16 models, COSI‐Corr, and Mic‐Mac (15 × 15, no regularization), and (b) MicMac (9 × 9 and
3 × 3 with 0.3 regularization, i.e. default parameters), and cnn4l‐dis16 with TV‐L1 smoothing
(skimage.restoration.denoisetvbregman, weight 5.0). The fault zone width (FZW) is estimated in each case (colored bars, width
given in), based on the approximate inflection points of the horizontal displacements each side of the fault. Note, a profile for
MicMac with 0 reg (3 × 3 window) is virtually indistinguishable from the 0.3 reg case. The similarity results from the stacking,
which reduces the impact of high frequency noise in 0 reg case; however, the higher level of noise is clearly visible in the 2D
displacement maps (i.e., compare Figure 6e vs. Figure 6f). Inset in (a) shows the location of the stacked profile (stack width: 180
pixels; profile length: 30 pixels), relative to the EW displacement component (same as Figure 6a).
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All four methods give very similar displacement values globally, with small differences in the high frequency
content (Figure 9). Both MicMac (and to a lesser extent COSI‐Corr) give slightly smoother results, and in several
small areas smooth over high frequency noise or regions of decorrelation (e.g., associated with buildings or
roads), compared with our CNN pipeline. Nevertheless, globally the displacements are consistent with each other
at medium and long wavelengths (Figure 9).

Close to the fault rupture (Figures 9b, 9d, 9f, and 10), where displacements are dominated by high‐frequency
components (i.e., sharp discontinuities), we see more significant differences between the various methods,
consistent with our observations for the synthetic earthquake cases (e.g., Figure 8 bottom panel). MicMac yields a
relatively clean, albeit slightly pixelated displacement map (Figure 9d), which is generally consistent with our
CNN‐pipeline result (Figure 9b). COSI‐Corr yields a slightly smoother, lower resolution displacement map
(Figure 9f), with occasional outliers, and apparent fattening/adhesion artifacts (Blanchet et al., 2011) along the
rupture trace, indicating an artificially induced component of geometric roughness (which may result both from
the frequency masking approach used to mitigate noisy frequencies, and the failure of a uniform translation to

Figure 8. Residual maps of the displacements from Figure 5 (EW component of example 1) for cnn4l‐uni16 model (uniform),
cnn4l‐dis16 (with discontinuities), MicMac and COSI‐Corr.

Table 3
Mean (Mean Absolute Error), Standard Deviations and Medians of cnn4l‐uni16, cnn4l‐dis16, Mic‐Mac and COSI‐Corr
Residuals on the Three Synthetic Simulated 1024 × 1024 Maps Global and Around Fault

cnn4l‐uni16 cnn4l‐dis16 MicMac COSI‐Corr

Mean residual 0.0919 0.0909 0.0716 0.0689

Standard Deviation 0.0915 0.0875 0.0681 0.106

Median 0.0675 0.0678 0.0578 0.0487

Mean residual around fault 0.208 0.150 0.231 0.211

Standard Deviation around fault 0.181 0.153 0.215 0.237

Median around fault 0.157 0.104 0.163 0.140

Note. The best number for each category is highlighted in bold.
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describe a displacement field containing a discontinuity). Therefore, in real case examples, our CNN‐pipeline
seems to feature less bias in the near‐field of the fault rupture.

Displacement profiles at three separate locations (Figure 10) all show a sharper displacement gradient more
accurately located across the fault rupture (centered on 0 pixels along the x‐axis) for the CNN‐pipeline, high-
lighting the ability of our approach to capture sharp displacements and minimizing smoothing across the fault.
MicMac (using both a 15 × 15 window with no regularization, and the default settings of 9 × 9 window 0.3

Figure 9. EW component of the displacement maps from Pleiades images for the Ridgecrest earthquake. (left‐column) (a) Our 2‐step CNN‐pipeline, (c) MicMac, and
(e) COSI‐Corr. Positive pixel values indicates movement to the south and negative to the north. (right‐column) Close‐up region immediately around the fault rupture for
(b) CNN‐pipeline, (d) MicMac, and (f) COSI‐Corr. Inset shows a further zoom of the rupture details. Orange lines in (b) show the stacked displacement profile locations
in Figure 10.
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regularization) gives similar results to our CNN‐pipeline, albeit with slightly more smoothed discontinuities.
Meanwhile, COSI‐Corr gives apparently very sharp displacements, although the location is often far from those
of MicMac and the CNN‐pipeline, and not centered on the true fault location at 0 pixels, which is based on
mapping by the USGS using field and remote sensing data (Ponti et al., 2020), and thus reflects the best inde-
pendent ground truth we have regarding the location of the rupture. Therefore, the details of the COSI‐Corr result
in the near‐field, especially the sharp displacement gradients, are not robust. This is also reflected visually in the
wavy fault trace, and high frequency noise visible along the rupture in Figure 9 and inset figures of Figure 10. The
distance over which COSI‐Corr is inaccurate lies within ±8 pixels of the true rupture location (thus, a biased
region of 16 pixels); this distance is consistent with the effective window size of 16 × 16 pixels for a 32 × 32
window (once the windowing function is applied). The larger correlation window of COSI‐Corr thus increases the
distance over which near‐field displacements are corrupted.

The main interest of these figures are to demonstrate that we are very similar to state‐of‐the‐art methods. Future
efforts will re‐examine the near‐field displacements for the Ridgecrest earthquake using more comprehensive
analysis combining existing satellite imagery with our CNN‐pipeline approach.

5. Discussion
5.1. CNN‐Based OIC Performance

In our experiments, we demonstrate that a CNN‐based optical registration scheme can achieve similar perfor-
mance to existing state‐of‐the‐art optical sub‐pixel correlators, and in the case of sub‐pixel displacements
characterized by sharp discontinuities, we exceed it. Reduction of near‐field displacement bias in the proximity of
sharp discontinuities represents a significant break‐through in the characterization of ground displacements using
satellite images. Recent applications of OIC in the study of earthquake surface ruptures using high resolution
(<1 m) satellite data have tended to focus on (a) characterizing the fault zone width (from the spatial width of the
displacement step, e.g. see Figure 7), (b) examining the near‐field strain components (e.g., shear and dilatation), to
spatially assess the transition between elastic and inelastic deformation (e.g., a yield strength of 0.5% is often
assumed), and (c) to quantify the total (on‐ and off‐fault) displacement, which can then be compared with highly
localized field‐based measurements of slip (assumed to represent purely on‐fault displacement), in order to
quantify the extent of off‐fault displacement. All of these applications require an unbiased correlator, able to
accurately and precisely resolve the near‐field displacement, which has so far remained elusive (though perhaps
not well appreciated by the community). Therefore, potentially all previous studies investigating near‐field strain
and off‐fault deformation based on optical correlation may be biased by to some degree by limitations of the
correlation process used to retrieve the displacements. This will be especially apparent when sharp discontinuities
become artificially smoothed over a wider zone by the correlation kernel, thereby artificially attributing on‐fault
slip to the off‐fault region. Consequently, estimates of near‐field strain will be biased too high, leading to incorrect
interpretations about the mechanical behavior of fault zones.

Figure 10. Fault‐parallel displacement profiles across 3 sections (a–c) of the Ridgecrest rupture shown in Figure 9. In each case, the rupture is located at 0 pixels along
the x‐axis, and is constrained by field mapping by the USGS (Ponti et al., 2020). Each profile is a stack of 40 profiles. The approximate zone of near‐field bias for each
correlation approach, estimated from the correlation window size, is shown by the colored bars. Inset figure shows a zoom of the EW displacement data for the COSI‐
Corr approach used in the stack; high frequency noise close to the rupture is clearly visible in each case (compare with CNN‐pipeline and MicMac, where this is not the
case—see Figure 9).

JGR: Machine Learning and Computation 10.1029/2024JH000174

MONTAGNON ET AL. 18 of 25

 29935210, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000174 by C
ochrane France, W

iley O
nline L

ibrary on [22/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Our approach helps to address this issue, and will lead to more accurate estimates of near‐fault displacement in the
future; this is the primary value of OIC methods for the study of earthquakes, where the medium and far‐field
displacements can be more precisely characterized using InSAR techniques.

Additionally, our pipeline, although trained with Landsat‐8 satellite imagery, is shown to have general appli-
cability to other optical data sets (e.g., Pleiades). This is likely due to the scale‐invariant nature of very small (e.g.,
16‐by‐16 pixel) image windows, which look similar regardless of the sensor used to acquire the data. Never-
theless, our simple pipeline represents a first step toward using data‐drive approaches to retrieve sub‐pixel
displacement maps using optical satellite data.

5.2. Implications for Ridgecrest Earthquake Rupture

In the case of the 2019 Ridgecrest earthquake, displacement profiles spanning the fault rupture do not reveal a
perfectly sharp displacement. This reflects some degree of smoothing across the discontinuity produced by the
sliding correlation window (which considers a larger region of pixels). In addition, we also observe bias/noise
related to the inability of a simple translational model to capture a more complex displacement (e.g., a discon-
tinuity) present within a single correlation window.

Recent studies (Antoine et al., 2021; Barnhart et al., 2020; C. Milliner et al., 2021) have made use of traditional
correlation approaches using a range of satellite data (WorldView, SPOT6/7, and Pleiades) to constrain the near‐
field displacement for the Ridgecrest earthquake. Using displacement gradients to compute the 2D strain field,
these studies then quantify the fault zone width by measuring the distance over which the fault‐perpendicular
strain exceeds 0.5% each side of the fault. However, clearly smoothing across a displacement discontinuity
will also give a smoothed strain field, thus artificially widening any estimates of fault zone width, and potentially
producing incorrect signals of inelastic off‐fault deformation. Several factors contribute to this bias, which can be
estimated based on the correlation parameters and imagery used. (a) Any displacement estimates within ±0.5
effective correlation window size of the rupture will be biased. (b) In the case where the fault runs diagonal to the
window boundaries (as is the case with Ridgecrest) this distance will be larger (0.707 eff. window size), given the
square shape of the correlation window. (c) Any smoothing applied to reduce noise in the displacement map
(either non‐local means, TVL1, or spatial regularization) will also further widen the discontinuity. (d) When
computing the displacement gradients (needed to compute the strain), central difference approaches will further
spatially smooth the discontinuity. Finally, downsampling the displacement maps will increase the minimum
threshold for which we can estimate fault zone width. Ultimately, the fault zone widths determined from ex-
ceedance of any inelastic strain threshold may be biased too large, while the absolute strain values will be biased
too low.

In the case of Barnhart et al. (2020), the authors found a fault zone width of ∼30 m along‐strike, using ampcor
(correlation window of 64 × 64) and WorldView imagery (0.5 m). However, the smoothing effects of such a
correlator on WorldView data will result in a minimum detection limit for fault zone width of 32 m (45 m for a
45°‐striking rupture); thus potentially all the slip could have been completely localized, but it would appear as a
distributed zone of 30 m wide, thereby leading to incorrect interpretations about the mechanics of slip and off‐
fault deformation.

In the case of (C. Milliner et al., 2021), the authors document many fault zone widths in the range 10–30 m along‐
strike, using COSI‐Corr (correlation window of 32 × 32, stride of 4 pixels, followed by additional non‐local
means filtering) and SPOT6/7 imagery (1.5 m). The smoothing effects of such a correlator on SPOT6/7 data
will result in a minimum detection limit for fault zone width of 24 m (34 m for a 45°‐striking rupture). Therefore,
it is unclear how reliable such measurements are for inferring details on the mechanics of fault slip, especially in
relation to the localization or distribution of slip into the off‐fault region.

Finally, in the case of Antoine et al. (2021), the authors correlate 0.5 m Pleaides orthoimages using MicMac. Few
details are given regarding the correlation parameters used, so we assume the default settings of 9× 9 window and
0.3 regularization, thus yielding a minimum detection limit of 4.5 m (although it is likely to be somewhat higher,
as the spatial regularization results in additional spatial smoothing, as we see in Figure 7). Additional post‐
processing was applied, to reduce outliers, albeit with few details. The authors downsample their displacement
maps (to 2 and 5 m) using a nearest neighborhood approach, before computing the strain. Therefore, the degree of
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artificial widening of fault zone width (measured from the 0.5% strain contour) may easily be enhanced by these
processing steps, although perhaps not to the degree of Barnhart et al. (2020) or C. Milliner et al. (2021).

The improved performance of our CNN‐pipeline in resolving less‐biased discontinuities (e.g., Figure 10) could
perhaps further reduce any bias associated with the measurements of Antoine et al. (2021) for the Ridgecrest (and
other) earthquakes. Future studies will further utilize approaches such as ours to provide more accurate de-
scriptions of near‐field displacements needed for addressing how slip is partitioned between the fault plane and
the neighboring damage zone.

5.3. Computation Time

Our CNN‐pipeline is developed within a GPU environment, which offers the potential for significant speed
improvements in generating displacement maps from optical data. Our method executes a 1024 × 1024 pixels
satellite images pair in 15 s on a single NVIDIA V100 Tensor Core GPU. As COSI‐Corr andMicMac run on CPU
cores only (Intel Xeon Gold 6342 CPU), we acknowledge the complexity of comparing computation speeds for
methods running on either CPU or GPU. On 1024 × 1024 pixels evaluations, using 1 GPU and three different
CPU configurations, that is, number of CPU cores (8 is the typical amount of cores available on a powerful
laptop), the number displacement estimations (processed window pairs) per second is given in Table 4. First, our
2‐step approach is twice as slow as our 1‐step sub‐pixel model pipeline, as it processes the data twice. Also,
MicMac does not seem to gain from using a large number of cores. Our method is already comparable with COSI‐
Corr in terms of computation time and surpasses MicMac in all configurations, despite our minimal efforts in
speed optimization. For example, our CNN approach could be faster with an implementation tuned for GPU‐
parallel processing (as COSI‐Corr makes use of parallel computation on multi‐CPU). Furthermore, we
currently solve the pixel‐scale problem using a similar approach to the sub‐pixel refinement, more to demonstrate
the potential of these approaches for retrieving complex and large ground displacements. However, the pixel‐
scale problem is much simpler, and may be better solved using alternative GPU‐accelerated disparity estima-
tion techniques (with lower sub‐pixel accuracy, but good pixel‐scale accuracy, e.g. SGM, (Hernandez‐Juarez
et al., 2016)). Alternatively, we could instead employ a pyramid‐based multi‐scale correlation scheme extending
from highly downsampled images to the penultimate scale, then upsample the displacement map to seed the sub‐
pixel refinement stage; this would reduce the computational burden for the pixel‐scale correlation step, while also
allowing displacements larger than 5 pixels (at the finest scale) to be captured with no additional cost.

We note that a GPU‐accelerated implementation of COSI‐Corr (or similar frequency‐based correlators) will
likely give the fastest possible computation times, since the calculation made at each sliding window position is
much simpler than with our CNN‐model, while also taking advantage of the speed gain from working in the
frequency domain. In fact, CNN‐based correlation is generally more complex in terms of algorithmic complexity
and implementation due to the depth and number of operations, when frequency‐based correlation might be
simpler but relies heavily on FFT operations. However, such an approach would still be limited by the various
assumptions and limitations of traditional local‐scale correlation (i.e., homogenous translations within each
sliding window), and thus it would not take advantage of the power of data driven approaches to resolve the
displacement field with greater accuracy, precision, or superior robustness to noise. Future efforts should explore
multi‐scale deep learning architectures (e.g., U‐Net), which offer the best potential for speed gain and robustness

Table 4
Computation Time of the CNN‐Pipeline, COSI‐Corr and MicMac: Number of Displacement Estimations (Processed Window
Pairs) in 1 s

Number of displacement estimations per sec.

1 GPU 32 CPU cores 8 CPU cores 1 CPU core

Sub‐pixel CNN alone 78.3 ×103 x x x

2‐step CNN‐pipeline 39.2 ×103 x x x

COSI‐Corr x 141 ×103 42.9 ×103 6.49 ×103

MicMac x 23.2 ×103 23.2 ×103 5.66 ×103

Note. The window size is similar to previous experiments: 16 × 16 for the sub‐pixel CNN, 32 × 32 for the coarse first‐step
CNN, 15 × 15 for MicMac, 32 × 32 for COSI‐Corr, for consistency (see Section 4.1.2).
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to high frequency noise; such approaches work with much larger image windows, thereby reducing the
computational burden associated with processing many correlation windows. Furthermore, given the deeper
architectures and larger image sizes associated with such approaches, they may also benefit from working in the
frequency domain, by leveraging the benefits of the FFT for speeding up the convolutional steps.

5.4. Limitations

Several limitations remain in our approach, which will be addressed in future studies. First, to create the training
data sets, we used the Lanczos resampling algorithm to incorporate sub‐pixel shifts, which can ultimately can add
sub‐pixel bias resulting from high‐frequency ringing artifacts. The magnitude of these artifacts varies (in part) as a
function of spatial contrasts between image pixels, and which, in turn, may correlate with topography; the
magnitude of this bias is typically <1/10th pixel. We also have to keep in mind that when training with synthetic
data, we aim to describe a real‐world scenario (sliding window crossing a discontinuity) with a simplified rep-
resentation (see Figure 3 on the right). This representation may lack details in specific configurations, such as
multiple discontinuities within the sliding window, high distributed faulting, or a more complex fault pattern, but
allows a good generalization and a fast process for the training.

When evaluating the error over larger synthetic displacement maps, we are also subject to interpolation bias
introduced by our warping procedure, used to create synthetically displaced satellite images; the magnitude of
these resampling errors on the resulting displacement map is generally substantially less than 1/50th pixel. We are
also subject to initial mis‐registration of the satellite images used to general our training data, which can add bias
to our synthetic displacements. We try to mitigate this error by applying a global mis‐registration correction to the
full pre‐ and post‐ images (i.e., not just on the two windows), based on sub‐pixel phase correlation, to bring the
two images into better alignment; by aligning the two images over a large area, we obtain a more accurate global
alignment exceeding 1/10th pixel. Nevertheless, this global alignment step may become less accurate if the
illumination conditions between the two images are strongly different.

In addition, we also face the same basic problem of solving for an overly simplistic displacement transform.
Although we can now solve for a displacement step function contained within a sliding window, we still ignore
higher order terms, rotations, scale changes, etc., which may be important in characterizing the displacement
(especially close to sharp discontinuities). Furthermore, insufficient calibration of the CCD sensors, and
resampling errors introduced during the ortho‐rectification process (prominent in topographically rough regions,
and when the DEM is of lower resolution than the image) both introduce sub‐pixel bias in the training data.
Therefore, the sub‐pixel precision of our CNN‐approach is likely limited to∼1/10th pixel, reflecting the combined
contribution of all these error sources.

5.5. Future Developments

First, an upcoming improvement would make our pipeline more flexible by using an external method for the
initial pixel‐size registration. Additional development of our CNN‐based registration approach will likely further
enhance performance, particularly in mitigating high frequency noise in the final estimated displacement map.
Numerous tests were performed in tuning the model parameters; however, further investigation may lead to
improved sub‐pixel capability. We also limit the amount of training data to 100k samples (based on sensitivity
studies for this parameter, striking a balance between accuracy and computation time); nevertheless, increasing
the number of samples may also lead to additional improvements. Our sub‐pixel CNN‐based model is fixed to
window sizes of 16 × 16 pixels, thus restricting the level of spatial detail we can resolve; it could be possible to
further reduce the window size to obtain additional spatial detail, while relying on multi‐scale spatial regulari-
zation techniques to mitigate increased noise associated with smaller sliding windows.

The reduction of noise introduced during the generation of training data will also directly enhance the sub‐pixel
accuracy and precision which we can obtain (and consequently the high frequency spatial noise in the output
displacement maps). A significant component of the high frequency noise is likely related to systematic bias
resulting from variations in surface reflectance related to differing illumination conditions between the two
images. In the case of widespread and freely available optical data sets, such as Landsat‐8 or Sentinel‐2, where
images are acquired at approximately the same time of day (∼10a.m. local time), these sources of noise should
vary in a predictable manner, thereby enabling this source of bias to be learned and potentially removed using
data‐driven approaches (Lacroix et al., 2019). On this aspect of topography correlated noise in the images, further
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study could incorporate Digital Elevation Models (DEMs) along with the illumination conditions in the
displacement estimation process, in the aim of tackling such a source of error. Here we make no effort to apply
spatial regularization techniques to smooth high frequency noise; therefore, the fact that our simple data‐driven
approach already performs on a par with state‐of‐the‐art OIC approaches is encouraging for future development of
CNN‐based optical registration techniques. One obvious direction for future development will be in the use of
multi‐scale approaches, such those offered by U‐Net architectures, and which have been shown to achieve sub‐
pixel performance in particular cases (Boukhtache et al., 2021; Ilg et al., 2017). In the case of earthquake, the
displacement fields are generally smooth over longer wavelengths, and thus should benefit from multi‐scale
spatial regularization techniques.

From another perspective, it would be valuable to assess the performance of our model across different natural
events, such as landslides and glacier motions. Although beyond the scope of this study, it would be valuable to
explore and develop the generalizability of our model, even if these processes are very different from earthquake
ruptures. In addition, we only evaluated one real case of Ridgecrest, and we acknowledge the importance of
evaluating its performance on other types of faults and geological settings. Future work will include testing the
method on real diverse earthquake scenarios.

Finally, a careful benchmarking of our new CNN‐based technique against existing techniques will be the subject
of a forthcoming paper.

6. Conclusion
Our paper presents a complete deep learning framework that extracts ground motion, from pairs of optical satellite
images (OIC), with sub‐pixel accuracy. By addressing the presence of sharp discontinuities within sliding
windows, we propose a new approach that mitigates displacement estimation bias, exceeding the performance of
state‐of‐the‐art methods, in the near‐field of earthquakes. Our approach therefore reduces the artificial spreading
of localized displacement into the near‐field region, thus reducing potential estimates of Off‐Fault Deformation
(made from the difference between localized on‐fault slip and accumulated total slip away from the rupture), and
Fault Zone Width (e.g., from the fault‐normal distance characterized by strains larger than 0.5%; a commonly
used threshold assumed to represent the onset of inelastic failure in rocks), compared with displacement maps
generated using traditional techniques. We demonstrate this improvement quantitatively using evaluations on
high quality synthetic data generated using realistic fault slip models. We also demonstrate that our technique is
transferable, achieving state‐of‐the‐art performance on satellite images acquired with different sensors and res-
olutions; which is not trivial for such data‐driven approaches. Several critical challenges must be addressed to
advance CNN‐based Optical Image Correlation (OIC) for earthquake deformation studies. Sub‐pixel bias from
the Lanczos resampling algorithm is one limitation of using synthetic data. Initial mis‐registration of satellite
images introduces additional biases, mitigated but not eliminated by global alignment corrections. Additionally,
errors from insufficient CCD sensor calibration and ortho‐rectification, especially in topographically rough re-
gions, limit sub‐pixel precision. Other sources of errors, such as topography correlated noise, and de‐correlation
due to a large difference in the acquisition time, are still a great challenge for the estimation of accurate and
unbiased displacement fields. Finally, our model's simplistic assumptions overlook rotations, and scale changes,
which are likely important features near sharp discontinuities. Future work will focus on leveraging multi‐scale
deep learning approaches to improve accuracy (including reduction of high frequency noise, and systematic bias),
and speed.

Data Availability Statement
The numerical experiments can be reproduced with Pytorch code available (Montagnon, 2024). The generated
training databases, as well as the comparisons with state‐of‐the‐art are publicly available (Montagnon, 2023).
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