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Living tissues display fluctuations—random spatial and temporal variations of tissue
properties around their reference values—at multiple scales. It is believed that such
fluctuations may enable tissues to sense their state or their size. Recent theoretical
studies developed specific models of fluctuations in growing tissues and predicted that
fluctuations of growth show long-range correlations. Here, we elaborated upon these
predictions and we tested them using experimental data. We first introduced a minimal
model for the fluctuations of any quantity that has some level of temporal persistence or
memory, such as concentration of a molecule, local growth rate, or mechanical property.
We found that long-range correlations are generic, applying to any such quantity, and
that growth couples temporal and spatial fluctuations, through a mechanism that we
call “fluctuation stretching”—growth enlarges the length scale of variation of this
quantity. We then analyzed growth data from sepals of the model plant Arabidopsis
and we quantified spatial and temporal fluctuations of cell growth using the previously
developed cellular Fourier transform. Growth appears to have long-range correlations.
We compared different genotypes and growth conditions: mutants with lower or higher
response to mechanical stress have lower temporal correlations and longer-range spatial
correlations than wild-type plants. Finally, we used theoretical predictions to merge
experimental data from all conditions and developmental stages into a unifying curve,
validating the notion that temporal and spatial fluctuations are coupled by growth.
Altogether, our work reveals kinematic constraints on spatiotemporal fluctuations that
have an impact on the robustness of morphogenesis.

morphogenesis | growth variability | multiscale | robustness | living tissues

The impact of noisy perturbations on organism development is the subject of active
research (1). Fluctuations—the random spatial and temporal variations of tissue
properties around their reference values—have been observed at multiple scales, from
cytoskeleton (2) to cell (3) and tissue (4). In the fruit fly, for example, actomyosin pulses
were shown to cause fluctuations of cell shape (5–7), while fluctuations of the position of
cell junctions were found to favor cell rearrangements during tissue extension (8, 9). It
was proposed that fluctuations are required for symmetry breaking and pattern formation
during development (10, 11) or for cells and tissues to sense their neighborhood (12).
Fluctuations in gene expression or morphogens seem particularly important for cell
differentiation. Fluctuations in gene transcription seem required for the maintenance
of pluripotency (13, 14), and specific properties of fluctuations are a signature of
cell differentiation (15–18). Nevertheless, the robustness of tissue patterning appears
sensitive to fluctuations in molecule concentrations (19, 20). Growth variability induces
mechanical stress (12, 21–23) because, for instance, cells with higher growth rate exert
forces on neighboring cells, which may sense and respond to such mechanical stress.
Robust development of the fruit fly wing partially relies on cell competition, i.e., on
mismatch of growth rates between cells, and on the ensuing modulation of proliferation
and apoptosis (24, 25). In this context, it is important to understand whether fluctuations
of a cell affect its local neighborhood or the whole tissue. Here, we analyzed the spatial
structure of fluctuations in experimental data from growing tissues.

Recent models of tissue mechanics and growth accounted for temporal and spatial
fluctuations of growth and investigated their role in robustness of morphogenesis (26–28).
Temporal fluctuations are characterized by their degree of persistence, quantified with
the persistence time (or correlation time), the characteristic time over which memory of
previous fluctuations is lost. It could be the time needed for remodeling of the cytoskeleton
or of the extracellular matrix (in animals)/the cell wall (in plants). Spatial fluctuations are
characterized by their degree of spatial consistency, quantified by the correlation length,
the characteristic length over which cells (or subcellular domains) behave similarly, or by
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cell-to-cell variability over a small neighborhood. For instance,
the shape of a plant organ was found to be less robust in
a mutant with lower cell-to-cell variability (26). However,
spatial fluctuations may have a more complex structure. Indeed,
theoretical models of the expanding universe (29, 30) and of
growing tissues (27, 28) predicted long-range spatial correlations,
i.e., a significant level of correlations between fluctuations of
two distant parts of the system; accordingly, growing systems
are expected to exhibit fluctuations at multiple scales. Here, we
focus on the underlying mechanism, which we call fluctuation
stretching—the increase in the length scale of fluctuations of a
tissue property or of the concentration of a molecule, due to
tissue expansion.

To assess the experimental relevance of this mechanism, we
analyzed growth fluctuations in the model plant Arabidopsis
thaliana. We considered the sepal, the green leaf-like organ that
protects a flower prior to its opening. We characterized sepals
from wild-type individuals in different culture conditions as well
as mutant plants. We considered spiral2 and katanin mutant
plants since they were found to be less robust to variability in
the number of trichomes (epidermal hair-like cells) than wild-
type plants (31), suggesting a greater impact of cellular scales on
organ ones. The lack of SPIRAL2 and KATANIN function led
respectively to stronger (31–33) and weaker (31, 32, 34) cor-
tical microtubule coalignment and reorientation in response to
mechanical stress (35, 36). Microtubules guide the deposition of
cellulose fibers in the cell wall (the plant extracellular matrix) (37).
Cellulose fibers being the main load-bearing component of the
cell wall, the response of microtubules to mechanical stress is
generally considered as a mechanical feedback on growth and
spiral2 and katanin as mutants with altered feedback.

In this article, we first present a simple model for fluctuation
stretching. We estimate spatial and temporal correlations of
tissue growth fluctuations in Arabidopsis sepals using previous
live imaging data (31, 32) and the cellular Fourier transform
(CFT) (38). We investigate how correlations vary within and
between datasets, and we test the relevance of fluctuation
stretching.

Results

A Minimal Models Predicts the Stretching of Fluctuations in
Growing Tissues. Fluctuation stretching, the enlargement of the
length scales of fluctuations by medium expansion, was predicted
by different models of expanding media, the early universe (29,
30) and living tissues (27, 28). Here, we introduce a minimal
model for fluctuation stretching. For a reader primarily interested
in experimental data, Eq. 2 is the main theoretical result that we
test in growing sepals.

We consider a variable property Φ that is defined on a tissue
growing isotropically at average rate G and that depends on
position vector x and time t. This variable Φ could reflect gene
expression, signaling, metabolism, cell size, or cell growth, for
instance. We assume that i) Φ is inherited during tissue growth,
so that it is advected (transported) by the average growth velocity
Gx/D (D is the space dimension: D = 1 in Figs. 1 and 2 and
D = 2 for a thin organ like the sepal), ii) Φ relaxes to its average
value 〈Φ〉 with a characteristic memory (persistence/correlation)
time �, and iii) Φ is subject to a source of noise �(x, t) that is
random in space and time. As a consequence,

∂Φ
∂t

+
G x
D
·
∂Φ
∂x

= −
1
�

(Φ(x, t)− 〈Φ〉) + �(x, t). [1]
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Fig. 1. Distinct effects of tissue expansion, time relaxation (loss of memory),
and noise source on the spatial pattern of a tissue property. The figure
shows initial spatial patterns and their temporal evolution under the three
mechanisms. The variable property Φ(x) is plotted as a function of position x
and shown in colorscale (blue and yellow for low and high values, respectively)
along a strip standing for the growing tissue. (A) Tissue expansion induces
fluctuation stretching, defined as the enlargement of the length scales of
fluctuations. (B) Relaxation associated with loss of memory induces a decay in
the amplitude of fluctuations (depicted by green arrows). (C) Noise causes the
superimposition of new fluctuations on the preceding pattern (represented
by a dashed line in the Lower panel). We schematically represent stretching,
relaxation, and noise superimposition by function block diagrams containing
horizontal red arrows, vertical green arrows, and a noisy signal, respectively.
These block diagrams are used in Fig. 2.

In this equation, the first term is the temporal derivative of
Φ(x, t). The second term (on the right-hand side) represents the
effect of tissue expansion, i.e., advection by growth, and contains
the spatial derivative of Φ (the dot · stands for the vectorial
product, which reduces to a multiplication for D = 1). The third
term (left-hand side) describes relaxation (loss of memory) of Φ.

The consequences of tissue expansion, loss of memory (time
persistence), and noise on the variations of Φ are schematized in
Fig. 1, for one time step. Tissue expansion induces “fluctuation
stretching,” i.e., enlarges the length scales of spatial variations
(panel A). Time persistence determines how fast fluctuations
relax toward their reference level (B). Noise superimposes new
fluctuations on the preceding pattern (C).

When iterated over time, fluctuation stretching and noise give
rise to multiscale fluctuations, while the degree of time persistence
(or memory level) controls how far fluctuations extend toward
large space-scales. This is illustrated in Fig. 2A. In three regimes:
for full, intermediate, and vanishing time persistence. For full-
time persistence (�G = +∞), the pattern is stretched, increasing
the length scale of variations of Φ, and fluctuations are added at
small scale. For intermediate time persistence (�G ∼ 1), the same
process occurs but the preexisting pattern is attenuated due to
relaxation. In the absence of temporal persistence (� = 0), the
preceding pattern disappears and only the newly superimposed
noise remains. Mathematically, the solutions to Eq. 1 take the
form Φ(x, t) = 〈Φ〉 +

∫+∞
0 ds e−s/��(x e−s G/D, t − s) (see SI

Appendix, Supplementary Note for details). The integral indicates
the superimposition while the exponential factor e−s/� accounts
for time relaxation or loss of memory. Fluctuation stretching
corresponds to the exponential factor es G/D applied to the spatial
variation of the noise.

The space correlation function, C(l), is the pairwise correla-
tion between the values Φ(x) and Φ(x + l) of the variable Φ
at positions distant of length l , as illustrated in Fig. 2B. C(l)
generally decreases with the distance l : For l = 0, Φ(x) =
Φ(x + l) and so the correlation is complete, C(0) = 1, while at
large distance l , Φ(x + l) is expected to be independent of Φ(x)
and the correlation vanishes as illustrated in the plot on the Right
of panel B. In our minimal model, the correlation function takes
the form C(l) =

∫+∞
0 (2 ds/�) e−2 s/�g(|l | e−s G/D), assuming
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Fig. 2. Multiscale fluctuations as a consequence of fluctuation stretching.
Spatial correlations of tissue properties depend on the level of temporal
persistence of fluctuations. Three levels of temporal persistence are consid-
ered: full (no time relaxation), intermediate (moderate relaxation), and none
(instantaneous relaxation). (A) Spatial pattern resulting from the iteration
of fluctuation stretching, relaxation, and noise, schematically represented
by function block diagrams in series, as defined in Fig. 1; patterns are
represented under the form of plots and color stripes as in Fig. 1. Top:
patterns after n iterations; Middle: patterns after one additional iteration
of stretching and (if appropriate) relaxation; Bottom: patterns after one
additional superimposition of noise. (B) Quantification of spatial correlations.
Top: This involves comparing the values of the variable at positions x and x+ l,
as illustrated in the colored strip. Left: Typical scatter plot showing Φ(x + l)
as a function of Φ(x) for multiple values of x. Middle: C(l) is defined as the
correlation coefficient between Φ(x+ l) and Φ(x); 〈〉 stands for the statistical
average of the expression between brackets and the fluctuation around
average ΔΦ(x) = Φ(x) − 〈Φ(x)〉. Right: the correlation C(l) as a function of
the distance l. (C) Spatial correlation function C(l) for full, partial, and no time
persistent fluctuations. Models predict that the space correlation function is
a power-law of l, C(l) ∝ l−� .

the permanent noise source 〈�(x, t)〉 = 0 has zero mean
and correlation function 〈�(x, t)�(x + l, t + s)〉 proportional
to �(s)g(l) (� is the Dirac distribution; see SI Appendix,
Supplementary Note for details). Here again C(l) appears as
a weighted sum of the space correlation function g of the
noise source stretched at different spatial scales. The correlation
function g is assumed to have a correlation length ` that sets the
reference scale for spatial variations of Φ; ` cannot be assumed to
be zero without causing issues of mathematical convergence. In
practice, we took g(l) = e−|l |

2/(2`2)(2�`2)−D/2. Because of fluc-
tuation stretching, space correlations functions for time persistent
fluctuations are predicted to be long-ranged, i.e., to have their
tails which follow a power law ∝ l−� . As shown in SI Appendix,
Supplementary Note, this can be made explicit by rewriting
the space correlation function C(l) = |l |−2D/(�G)h(|l |), where

the increasing function h(|l |) =
∫
|l |

0 du u2D/(�G)−1g(u) reaches
an asymptotic value when |l | becomes large compared to the
correlation length ` of �. Therefore, the correlation function
C(l) of the variable of interest Φ mostly behaves as a power-law
C(l) ∼ l−� of exponent

� =
2D
�G

. [2]

This scaling law indicates that the values of the variable Φ
considered in two distant points decorrelate slowly as their
distance is increased, which reflects the fact that fluctuations
are a superimposition of patterns with different spatial length
scales. � estimates this spatial decrease in correlations, the higher
the memory (the larger �G), the higher correlations between
distant regions. Fig. 2C show the space correlation functions
for full, partial, and no memory. Full temporal persistence is
simply the limit where the persistence time is infinite, leading
to an accumulation of fluctuations at large length scales. The
weight of large-scale fluctuations continuously increases so that
the correlation function tends toward a constant. In contrast, in
the absence of temporal persistence, spatial correlations vanish
beyond the correlation length of the noise. Hereafter, we tested
this prediction using previous experimental data about growing
plant organs.

Live Imaging and Spectral Analysis Provide Estimates for Spa-
tiotemporal Correlations of Cell Growth. Next, we aimed at a
quantitative description of spatial and temporal correlations of
growth fluctuations in expanding tissues. We used experimental
data where sepals were imaged live to track morphogenesis over
time, with similar culture and imaging conditions (31, 32). We
examined whether fluctuations stretching applies to cell areal
growth rate. Each sepal was imaged at multiple times, labeled
t = 0, 1, 2, ... and separated by 24 h intervals as illustrated by
Fig. 3A, which shows an example of cells segmented in a sepal, at
three successive time steps t, t+1, and t+2. Growth was defined
from cell surface area at successive time steps. Fig. 3B shows cell
areal relative growth rate Gi,t and Gi,t+1 from t to t + 1 and
from t + 1 to t + 2, respectively, deduced from segmentation
of sepals into cells, as showed in panel A and mapped on the
reference tissues at t and t + 1, respectively. When a cell has
divided between t and t + 1, we used the total surface area of its
daughter cells at t +1 to define Gi,t ; see Datasets and Methods for
details.

To dissect spatial variations of growth in the tissue, we used
the CFT (38). The CFT consists of decomposing the signal into
a linear combination of ad hoc harmonics that account for the
subdivision of the tissue into cells of variable size and shape. These
harmonics are the equivalent of sinusoidal waves in an infinite
continuous medium. The k-th harmonic, ek, has wavenumber
qk, and varies on a length scale that decreases with the rank
k. The CFT coefficients Ĝk,t give the weights with which cell
relative areal growth is decomposed into the harmonics ek. The
Fourier spectrum is obtained by plotting the amplitude |Ĝk,t | as
a function of the corresponding wave number qk. This spectrum
is well suited to describe fluctuations of G at multiple scales.

We investigated spatial correlations from Fourier spectra such
as those shown in Fig. 3D. The amplitudes of spectra appear
significantly higher for low wave numbers, suggesting long-
range correlations. To further test this, we sought a characteristic
length scale for fluctuations and we considered the smallest index
K for which

∑K
k=1 Ĝ

2
k ≥ 1/2

∑N−1
k=1 Ĝ2

k , so as to quantify
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A B C1 D1 E

C2 D2

Fig. 3. Quantification of spatial and temporal fluctuations in cell growth. Day (d) is used as a unit of time. (A) Three snapshots of a plant tissue (abaxial sepal
epidermis from wild-type plant) taken at one-day intervals. Black lines represent cell contours. (B) Heatmaps of relative areal growth rate between times t and
t + 1, Gi,t , and between t + 1 and t + 2, Gi,t+1 for cell #i. A growth rate of 1d−1 corresponds to a relative increase of area of 100% in 1 d. Growth rate of
white cells could not be computed because they were not imaged at t + 2. (C1 and C2) The first four harmonics ek (k = 0,1,2, and 3) of the CFT of the tissue
at t and t + 1 (the white cells in (B) are not included), represented by a cyan (low value) to magenta (high values) color scheme. The harmonics ek generalize
sinusoidal waves and can be used to decompose the growth fields Gi,t and Gi,t+1 into their respective CFTs Ĝk,t and Ĝk,t+1. (D1 and D2) Fourier spectra (blue
dots) correspond to the absolute values |Ĝk,t | and |Ĝk,t+1| of the CFTs and are shown as function of the wavenumber qk of the harmonics ek . Wavenumbers
were nondimensionalized using mean cell size lc . A representative power-law (solid line) ΔGtq

−�t
k

/(∑
k q
−2�t
k

)1/2 was obtained as explained in the text. Each
spectrum is then characterized by two numbers, the SD of cell growth ΔGt and the spatial exponent of spatial correlations, �t . Here, �t = 0.54 ± 0.08 (±SE
of the mean), �t+1 = 0.71 ± 0.08, ΔGt = 0.157 ± 0.012d−1 and ΔGt+1 = 0.134 ± 0.012d−1. (E) For temporal analyses, detrended areal growth rate �Gi,t was
computed as the excess areal growth rate of a cell with respect to a local neighborhood. The coordinates of each blue dot are the detrended growth �Gi,t of a
cell i between t and t+1 (horizontal axis) and the detrended growth �GJi,t ,t+1 of the set Ji,t of its daughters between t+1 and t+2 (horizontal axis). The degree
of growth temporal correlation is quantified by the value of the Kendall correlation coefficient; here, Γt = 0.400± 0.052 (±SE). Two outliers were excluded from
the plot to improve the readability of the figure.

the repartition of fluctuations between low and large scales.
If fluctuations were short-ranged, then the ratio of largest to
characteristic wavenumbers, q1/qK , would be a good estimate
of the ratio of correlation length to sample size, and would
therefore be small compared to 1. In contrast, we found the ratio
q1/qK to be 0.54 on average (SD 0.29 and range 0.086 to 1,
over all study samples), indicating long-range correlations. This
qualitative agreement with the predictions of the minimal model
prompted us to use power-laws to represent Fourier spectra. We
note that the prediction C(l) ∼ l−� corresponds to a spectrum
scaling like q−� , with � = 1 − �/2 (Datasets and Methods).
Although the limited range of wavenumbers did not allow us
to test the power-law behavior, we obtained a representative
power-law as follows. As the CFTs can be positive or negative,
we assumed each CFT to follow a Gaussian distribution of
zero mean and of SD �k,t , which was fitted to the equation
ΔGtq

−�t
k
/(∑

k q
−2�t
k

)1/2. Each spectrum is then characterized
by two numbers, its amplitude ΔGt and its exponent, �t . The
specific choice made for the fit is such that, following the Parseval
theorem, ΔGt measures the SD of growth while �t measures its
spatial correlations. We used statistical inference to estimate �t
and ΔGt . The scaling exponent, �t , is expected to vary between
0 and 1, which correspond to short-range and to extremely long-
range correlations, respectively. We found �t to approximately
range between 0.1 and 0.9, indicating large differences between
samples and time points in terms of range of correlations (but
see below for the comparison between genotypes). We found the
SD of growth ΔGt to range between 0.1 and 0.6 d−1, values

that are of the order of half the growth rate of a sample averaged
over all cells between two time points, indicating relatively strong
fluctuations of cell growth rate.

The temporal resolution (1d ) and the number of consecutive
images of a sample (3 to 7) were in general too low to compute
persistence time from experimental data. We therefore estimated
temporal persistence of growth using correlation coefficients. We
considered the correlations between relative areal cell growth Gi,t
from t to t + 1 and GJi,t ,t+1 from t + 1 to t + 2, where the
set Ji,t in subscript contains the labels of all daughters of cell i
at time t and GJi,t ,t+1 is their areal growth rate; see Datasets and
Methods for details. To avoid any bias due to overall gradients in
growth rate (32), we computed detrended cell growth �Gi,t by
subtracting from the areal growth rate of a cell the average areal
growth in a local neighborhood; see SI Appendix, Supplementary
Note. The scatter plot in Fig. 3E of �GJi,t ,t+1 as a function
of �Gi,t shows that growth is relatively persistent in time: For
instance, cells that grow more than their neighbors between
t and t + 1 tend to remain so between t + 1 and t + 2.
We quantified temporal correlations of growth using Kendall’s
correlation coefficient, Γt , because it is based on the rank of data
and is less sensitive to outliers than the more classical rank-based
Spearman correlation coefficient (39). Over all sepals and time
points considered, Γt approximately ranges from −0.1 to 0.6.
Almost all values of Γt were positive, while the negative values
of Γt were not significantly different from zero (see below),
indicating that, in general, growth is persistent over a time
comparable to experimental time resolution (1d ).
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We thus obtained a minimal set of parameters to describe
growth fields and their fluctuations: average growth rate, Gt ,
extent (exponent) of spatial correlations, �t , amplitude of spatial
correlations, ΔGt , and temporal correlation coefficient Γt . Next,
we analyzed differences and common features between sepals
based on this minimal set of parameters.

Temporal and Spatial Correlations of Cell Growth Vary Across
Genotypes and Culture Conditions. We analyzed growth fluctu-
ations in several genotypes and culture conditions. As explained
in the introduction, we chose to focus on mutants affected in
responses to mechanical stress, spiral2 (spr2) and katanin (two
alleles, bot1 and mad5), in addition to wild-type plants. We
analyzed sepals from four genotypes in two culture conditions
and at different developmental stages. In order to enable the
comparison between several sepals that were imaged starting from
different stages, we temporally aligned live imaging sequences
along a common time frame using sepal width, building upon
the approach developed in ref. 40; see Datasets and Methods. The
parameters that characterize growth fields in all these sequences
are shown in Fig. 4.

We first noticed a significant variability within and between
genotypes/conditions and trajectories that seem heterogeneous
in time. Some of this variability might be due to experimental
constraints; for instance, the imaged regions of sepals varied
in time and between individuals. We nevertheless observed
a few trends that hold for several genotypes and conditions.
Mean growth rate (panel A) decreases in time for trajectories
that are long enough (spr2, mad5, and wild-type in dataset 2),

A B

C D

Fig. 4. Parameters that characterize growth fields in sepals from wild-type
and mutant plants. The sequences were temporally aligned and parameters
are shown as a function of the synchronized time Tt . (A) Growth rate averaged
over the tissue Gt . (B) Temporal correlation coefficient Γt . (C) Dimensionless
amplitude of the CFT ΔGt/Gt (also coefficient of variation of growth). (D)
Scaling exponent of the CFT �t . The two datasets correspond to two slightly
different culture conditions. Black, blue, orange, and red symbols/lines
correspond respectively to wild-type, spr2 mutant, mad5 mutant, and bot1
mutant from the first dataset, while gray symbols/lines correspond to wild-
type plants from the second set. Error bars indicate the 90% CI; error bars
are not shown in A because they are comparable to symbol size.

which is a general trend in organ morphogenesis. Temporal
correlations (panel B) decrease between the first and the second
time point, possibly associated with the strong decrease in growth
anisotropy observed after the second time interval (32). The
relative amplitude of growth fluctuations (panel C) decreases for
the first stages in mutants before stabilizing around 0.4. The
extent of spatial correlations (panel D) tends to decrease with
time in dataset 1.

In order to quantify differences induced by mutations or
culture conditions, we used wild-type plants from dataset 1 as
a reference and we estimated the shift in growth parameters
between the reference and other genotypes or culture condition;
see Fig. 5. As the amount of information available varied with
genotype, culture condition, or temporal stage, we developed
a method that enables a consistent comparison of differences
by taking into account developmental stages; see Datasets and
Methods for details. Briefly, we considered all pairs formed by a
reference sepal (wild-type from dataset 1) and another sepal. We
computed the shift between a reference sepal to another sepal at
a given temporal stage and we averaged shifts over time and sepal
pairs to obtain a mean shift, shown in Fig. 5 for all comparisons.
This mean shift can be understood as the representative vertical
difference between reference wild-type curves and mutant or
dataset 2 curves from Fig. 4. We then estimated the SE of these
shifts, which results from the uncertainties of both reference
sepals (wild-type from dataset 1) and sepals of the condition of
interest.

In wild type, datasets 1 and 2 do not differ in temporal
correlations (panel B) and amplitude of fluctuations (Fig. 5C)
within the range of uncertainty on these parameters. Average
growth rate (Fig. 5A) and extent of spatial correlations (Fig. 5D)
are lower in dataset 2, indicating that these two parameters
are more sensitive to culture conditions. Average growth Gt
is higher in mutants than in wild-type (Fig. 5A) over the
temporal window considered; this might be compensated by
lower growth in mutants at later stages or by earlier growth arrest
in mutants, because mutant sepals are about 20% smaller in
area than wild-type sepals (31). The amplitude of fluctuations
ΔGt is smaller in spiral2, but it is not possible to conclude
about katanin, because the two alleles (bot1 and mad5) show
different trends (Fig. 5C). When comparing mutants to wild-
type plants, temporal correlations are lower (Fig. 5B), suggesting
lower persistence time in mutants. The changes in temporal
correlations Γt are lower than in growth rates, so that the changes
in nondimensional persistence time �tGt are expected to be
dominated by those in growth Gt , with higher �tGt in mutants.
This might be ascribed to differences in mechanical responses
in these mutants—assuming wild-type plants to have optimal
mechanical responses, both overreaction and underreaction to
mechanical stress would increase the timescale of changes in
growth rates (27). Based on our minimal model of fluctuation
stretching (Eq. 2), smaller nondimensional persistence time �tGt
would yield higher extent �t of spatial correlations. Indeed, the
exponent of the Fourier spectrum appears higher in mutants
(Fig. 5D), although the level of uncertainty makes it difficult to
draw a firm conclusion. In the following section, we further test
whether fluctuations stretching applies to cell growth in sepals.

A Conserved Relation between Growth Parameters Supports
Fluctuation Stretching. We sought relations between growth
parameters that would hold across genotypes, datasets, and
developmental stages. We first considered the pairwise relations
between the growth parameters defined for each sepal: mean
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A B

C D

Fig. 5. Differences in growth parameters due to mutations or to change in
culture conditions. Data are shown for mutants from dataset 1 and wild-type
(WT) from dataset 2; wild-type from dataset 1 was used as a reference in all
cases. Symbols show the mean shiftsDG ,DΓ,DΔG/G , andD� of : (A), growth
rates averaged over sepals, Gt , (B), temporal correlation coefficients, Γt , (C),
dimensionless amplitudes of growth fluctuations, ΔGt/Gt , and (D), exponents
quantifying spatial extents of growth fluctuations, �t , respectively. Symbols
and error bars correspond to the mean and SE of the difference, respectively;
error bars combine the errors on the shiftsDΦ computed from the error on
the data of interest (mutants or WT dataset 2) and on the reference one (WT
dataset 1).

growth rate, Gt , temporal correlation coefficient, Γt , normalized
amplitude of spatial fluctuations,ΔGt/Gt , and extent (exponent)
of spatial fluctuations, �t . The corresponding scatter plots
are shown in Fig. 6 A–F. To assess these pairwise relations,
we computed Kendall’s correlation coefficient between pairs
of parameters. We found rather weak trends overall. The
strongest trends were between the exponent, �t , and the temporal
correlation coefficient,Γt , and between �t and the average growth
Gt . Interestingly, these trends are consistent with fluctuation
stretching: larger spatial extent of fluctuations is favored by
higher growth rate and by higher temporal persistence; see Eq. 2.
We therefore tested more directly the predictions of fluctuation
stretching.

Fluctuation stretching does not reduce to a pairwise relation
between growth parameters because it relates spatial correlations
to time persistence and growth rate. If this phenomenon is at play
in sepals, then Eq. 2 and the relation � = 1− �/2 (Datasets and
Methods) imply �t = 1 − 2/(�tGt), where �t is the persistence
time. We could measure all parameters of this relation but �t .
Nevertheless the temporal correlation coefficient, Γt , should be
a decreasing function of Δt/�t , Γt = f (Δt/�t), where f is an
unknown function and Δt = 1d is the time delay between
two steps of live imaging, because correlations between states of
the sepal at consecutive time steps are higher if the time delay
is small compared to the persistence time. By eliminating �t
from the preceding equations, we found that the time correlation
coefficient depends on a combination of the other parameters,

Γt = f
(
Δt Gt(1− �t)/2

)
. [3]

We plotted in Fig. 6G the time correlation coefficient Γt as a
function ofΔt Gt(1−�t)/2. The trend is much clearer than in all
other panels of Fig. 6 (Kendall’s coefficient � = −0.48) and the
data seem to collapse along a line. We used statistical inference to
perform a linear fit of the data, Γt = �0 +�1ΔtGt(1−�t)/2; see
SI Appendix, Supplementary Note. We obtained fit parameters
�0 = 0.596 ± 0.024 and �1 = −1.87 ± 0.15, with relatively
small SDs. We then confirmed with a Kolmogorov–Smirnov test
that the residuals (the spread of the data around the fit) could
be explained by the uncertainty on the estimates of �t and Γt
(SI Appendix, Supplementary Note), while the same analysis for
the other plots (Fig. 6 A–F ) confirmed that none of these plots
was consistent with a linear behavior. Altogether these results
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Fig. 6. Relations between parameters of growth (fluctuations). (A–F ) Pair-
wise scatter plots of all growth parameters. (A–C) Temporal correlation coef-
ficient Γt , exponent of spatial fluctuations �t , and dimensionless amplitude of
spatial fluctuations, ΔGt/Gt , respectively, as function of average growth Gt . (D
and E) Temporal correlation coefficient, Γt , as function of exponent of spatial
fluctuations, �t , and dimensionless amplitude of spatial fluctuations, ΔGt/Gt ,
respectively. (F ) Exponent of spatial fluctuations, �t , as function of their
dimensionless amplitude, ΔGt/Gt . (G) Test of the coupling between temporal
and spatial fluctuations, as resulting from fluctuation stretching. Temporal
correlation coefficient Γt as a function of the combination ΔtGt(1 − �t)/2
where Δt = 1d is the time step of live imaging. The dashed line corresponds
to a linear fit, Γt = �0 + �1ΔtGt(1 − �t)/2, with fit parameters �0 =
0.596±0.024 and �1 = −1.87±0.15. The analysis of the fit residuals supports
a deterministic relation between the two; see SI Appendix, Supplementary
Note. In all panels, error bars show the 90% CI; black, blue, orange, and red
symbols correspond to wild-type, spr2,mad5, and bot1 sepals from dataset 1,
respectively, while gray symbols correspond to wild-type sepals from dataset
2. Kendall’s correlation coefficient, �, is shown above each plot.
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support the hypothesis of a deterministic relation between Γt
and Δt Gt(1 − �t)/2 and therefore indicate that fluctuation
stretching is at play in growing sepals.

Discussion

Our analysis provides evidence that growth stretches temporally
persistent fluctuations: While no clear pairwise relation could
be made among the different growth parameters (Fig. 6 A–F ),
the clear trend of panel G suggests that the persistence time
can be deduced from space correlations and tissue growth.
This phenomenon explains why higher correlation between cells
(higher spatial correlations) may induce more variable organ
shape and size (26). Fluctuation stretching gives a prominent
role to the persistence time (correlation time) in controlling
spatial correlations in the tissue. Any mechanism that would
decrease persistence time would reduce spatial correlations and,
as a consequence, variability of organ contours. Accordingly,
reducing persistence time would yield robust morphogenesis.

Surprisingly, we found that the temporal correlation coeffi-
cient, Γt , is generally not much smaller than unity, implying
that the persistence time, �t , is not much smaller than the time
scale of growth 1/Gt . This might be specific to plants. The
cell wall sets the local growth rate, and, at the same time, is
remodeled at the pace of growth, so that the persistence time of
fluctuations of cell wall properties is related to the time scale of
growth. It would be worthwhile to extend our study to expanding
animal tissues imaged live such as the imaginal disc of the fruit
fly (41). In animal tissues that undergo convergent extension,
we would expect fluctuation stretching to operate only in the
direction of extension, and so spatial correlations to be highly
anisotropic.

As a consequence of fluctuation stretching, the level of time
persistence, or more rigorously its product with average growth
rate �G, has a strong impact on variability of organ shape and
size variability. Indeed, the shape and size of an organ result from
the growth of its cells (or of its subcellular elements) integrated
over time. If cell growth has a random component, well-defined
shape and size may still be obtained through spatiotemporal
averaging (26), the cancelation of random effects over large
samples (number of cells or time points)—a local excess of
growth may be compensated by lower growth later or elsewhere
in the tissue. Higher temporal or spatial correlations reduce
spatiotemporal averaging since an excess of growth is less likely to
be compensated. Accordingly, higher temporal persistence (scaled
with growth rate) reduces the robustness of organ shape and
size.

We found a higher spatial extent of correlations (higher �t )
in mutant genotypes, suggesting higher �G. This means that
these mutants potentially have more variable shapes or are less
robust to perturbations, consistent with the observation that the
width of sepals in bot1 and spr2 varies more with trichome
number in WT plants (31). We previously predicted that
variability of organ contours is minimal for a well-defined level
of feedback from mechanical stress to cellulose synthesis (27),
leading to the hypothesis that in wild-type sepals the level of
mechanical feedback is optimized so as to reduce variability of
sepal shape, compared to mutants with lower (bot1) or with
higher (spr2) mechanical feedback. This level of mechanical
feedback also corresponds to a minimum of the persistence time
of fluctuations (scaled with average growth rate), �G, highlighting
the importance of this factor in setting the robustness of organ
shape and size.

Fluctuation stretching is a kinematic phenomenon: Properties
of cells or of regions of cells are carried (advected) by tissue growth
and deformation; the persistence time of these properties sets how
they are carried to larger or smaller spatial scales, in the case of
tissue expansion or tissue shrinkage, respectively. This kinematic
phenomenon applies to any type of property or field as long as
it is carried by tissue growth and deformation, such as protein
concentrations in cells. Although fluctuation stretching not only
applies to scalar quantities but also to vector fields (e.g., cell
polarity) or tensorial fields (e.g., organization of cytoskeleton),
we limited our study to a scalar (areal growth) and did not
consider growth anisotropy to avoid the difficulty of taking into
account the curved geometry of sepals. Mathematical formalisms
such as quasiconformal transforms (42) may nevertheless help to
circumvent this difficulty. In the case of complex advective flows,
effects associated with corotation may arise for nonscalar fields.
Advection also applies to nonrandom properties, in line with
theoretical models of polarity fields showing that a combination
of morphogens, advection, and time persistence can reproduce
the shapes of leaves (43), or with models of leaf vasculature that
show that areole (region delimited by veins) shape is advected by
leaf growth (44).

Altogether, our work sheds light on the role of persistence time,
that is the memory of previous states of a given property, in the
robustness of morphogenesis. The investigation of spatiotempo-
ral fluctuations may provide a broad avenue to characterize organ
development.

Datasets and Methods

Model for Fluctuation Stretching. We introduced a simple model for
the dynamics of a quantity Φ(x, t) that varies with position vector, x, in
D-dimensional Cartesian space and with time, t. We assumed Φ to be advected
by tissue growth at rate G, to have a persistence time � , relaxing toward its
reference value 〈Φ〉, and to be driven by a stochastic source �(x, t), so that

∂tΦ(x, t) + G/D x · ∂xΦ(x, t) = −(Φ(x, t)− 〈Φ〉)/� + �(x, t). [4]

This equation can be solved as shown in SI Appendix, Supplementary Note.

Experimental Datasets. In order to reliably analyze fluctuations of growth rate,
we chose datasets of sepals imaged with the highest spatial resolution possible
among those published. We used live imaging sequences from ref. 32 (dataset
1) and from ref. 31 (dataset 2). Voxel size was 0.12 × 0.12 × 0.50 μm3.
All plant lines in these sequences were crosses between Ws-4 and Col-0
ecotypes, harboring respectively the microtubule reporter p35S::GFP-MBD and
the membrane reporter pUQ10::Lti6b-2xmCherry (32). The two datasets had
slightly different culture conditions (type of lighting). Dataset 1 contained wild-
type plants, the spr2-2 allele of SPIRAL2 that was originally obtained in a
Col-0 background, the bot1-7 allele of Katanin that was originally obtained
in a Ws-4 background, and the mad5 allele of Katanin that was originally
obtained in a Col-0 background. For mad5, addition sequences were obtained
in parallel to those already published in ref. 32. All data can be found here:
https://doi.org/10.5281/zenodo.11105905.

Segmentation. For sepals not already processed in refs. 31 and 32, cells
of the abaxial epidermis were segmented and tracked in time using Mor-
phoGraphX (45). A triangular mesh was obtained for the outer organ surface in
which cells were identified and well-delimited.

Computation of Growth Rates. We aimed at analyzing fluctuations of cell
relative areal growth rates tangentially to the sepal and therefore to get rid of
the curvature of the outer surface of cells. To do so, we redefined the surface
of cells from the linear interpolation of their contours by a flat surface. Areal
growth rate was computed from the cell surface area at successive time steps.
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At time t, each cell is labeled by an index i and has surface area Si,t . Cell i may
divide between t and t + 1; the set Ji,t contains the labels of all daughters of
cell i at time t + 1 (Ji,t is reduced to a single label if cell i has not divided).
We only consider cells which or whose daughters remain in the segmented
region from t to t + 1. The areal growth rate of the cell i at a time t is then
defined as

Gi,t =
(∑

j∈Ji,t

Sj,t+1

)
/Si,t − 1. [5]

Average (tissular) growth is in turn defined as Gt =
(
∑

i
∑

j∈Ji,t
Sj,t+1)/(

∑
i Si,t)− 1.

CFTs. The Fourier harmonics are built from a coarse and discrete version of
the Laplace operator. To compute this operator we triangularized cell surfaces
using the “MESH2D” matlab algorithm (46, 47). More details can be found
in SI Appendix, Supplementary Note. The CFT Ĝk,t of cell relative areal growth
gives the weights by which growth is decomposed over the harmonics ek of
the CFT. In this paper, the definition of the CFT differs from the one in ref. 38
by a prefactor 1/

√
St where St is the total surface area. This change simplifies

the interpretation of Fourier spectra: The coefficients have the same physical
dimension as the original signal and the first coefficient is the average of the
signal.

Scaling Exponent and Amplitude of Fluctuations. We quantified spatial
correlations in the tissue by fitting the spectral density with a power law. To do
so, we assumed a Gaussian distribution for the CFT, centered around 0 with a
SD verifying,

�k,t = ΔGtq− �t
k /

√∑
l

q−2 �t
l , [6]

where ΔGt and the scaling exponent �t are the fit parameters characterizing
respectively the amplitude and the extent of spatial correlation of growth
fluctuations. For the fit, we used statistical inference as detailed in SI Appendix,
Supplementary Note. Doing so, we estimated a probability for the parameters
ΔGt and�t , their expected value, their SE, and median values. We also estimated
the 90% CI, from the fifth to the ninety-fifth percentiles.

Temporal Correlations. We estimated temporal correlations of relative areal
growth in considering cell growth Gi,t from t to t + 1 and cell growth GJi,t ,t+1
from t + 1 to t + 2. GJi,t ,t+1 is simply the areal growth rate from t to t + 1 of
the descendants of the cell i in the segmentation at t:

GJi,t ,t+1 =

∑
j∈Ji,t

∑
l∈Jj,t+1

Sl,t+2∑
j∈Ji,t

Sj,t+1
− 1. [7]

To avoid any bias due to systematic variation of growth at organ scale (32),
we used the detrended cell growth �Gi,t , which can be defined by subtracting
average growth in a local neighborhood from cell growth; see SI Appendix,
Supplementary Note. Temporal correlations were computed as Kendall’s
correlation coefficientΓt of �Gi,t and �GJi,t ,t+1. Kendall’s correlation coefficient
is rank-based and so is less sensitive to outliers (39). We used bootstrapping to
obtain CI and uncertainties.

We note thatΓt tends to be underestimated: A positive error on SJi,t ,t+1 leads
to an overestimation of �Gi,t and an underestimation of �GJi,t ,t+1, inducing
a negative correlation between �Gi,t and �GJi,t ,t+1. This may explain the few
negativevaluesofΓt . Wefoundthisnegativebias tobestrongerwhenwedefined
growth from the cell’s outer surface area, leading us to use the interpolation of
cell contours instead (see above).

Comparing Genotypes. To describe the impact of mutations or culture condi-
tions on growth parameters, we compared tissues at equivalent developmental
stages. We first synchronized all the live imaging sequences from a dataset by
building upon the approach developed in ref. 40. We considered the curves
representing organ width vs. time for every sepal and determined the time
delays ensuring the best superposition between width vs. time curves, leading
to a corrected time Tt . We checked that this temporal alignment was consistent
with stages of guard cell differentiation, indicating that sepal width is a good
proxy of developmental stage in the genotypes/conditions that we studied. We
defined the mean shift of a quantity Φt as

DΦ =

∑
n′ ,t′

∑
n,t W(n′ ,n)

t′ ,t (Φ(n′)
t′ −Φ(n)

t )∑
n′ ,t′

∑
n,t W(n′ ,n)

t′ ,t

, [8]

where n′ and n label the pair of sepals compared (e.g., one mutant and the
reference wild-type) and t′ and t correspond to the time in the sequence of live-
imaging of those two sepals. The sums

∑
n′ ,t′ and

∑
n,t are over all sequences

of the mutant and the WT, respectively. W(n′ ,n)
t′ ,t gives the weights at which each

pair is considered. A weight differs from 0 only if the values of synchronized
times Tt of the pair are close; see SI Appendix, Supplementary Note for details.
DΦ quantifies how much, in average, the quantities Φt for the mutants (or for
WT in dataset 2) are shifted from the reference WT.

Data, Materials, and Software Availability. Matlab code and segmented
live imaging data and results have been deposited in Zenodo (48). Previously
published data were used for this work (31, 32).
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