
HAL Id: hal-04798334
https://hal.science/hal-04798334v1

Submitted on 22 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Overview of Continuous Querying in (Modern) Data
Systems

Angela Bonifati, Riccardo Tommasini

To cite this version:
Angela Bonifati, Riccardo Tommasini. An Overview of Continuous Querying in (Modern) Data Sys-
tems. 2024, pp.605 - 612. �10.1145/3626246.3654679�. �hal-04798334�

https://hal.science/hal-04798334v1
https://hal.archives-ouvertes.fr

An Overview of ContinuousQuerying in (Modern) Data Systems
Angela Bonifati

Lyon 1 University, CNRS LIRIS & IUF
France

angela.bonifati@univ-lyon1.fr

Riccardo Tommasini
LIRIS - INSA de Lyon, France

riccardo.tommasini@insa-lyon.fr

ABSTRACT
Continuous queries, also known as standing or streaming queries,
are a class of queries that continuously monitor data sources over
time, remaining active until explicitly terminated. This concept was
introduced in 1992 by Terry and colleagues to address the need
to access data that changes over time. Since then, the domain of
continuous queries has seen significant development, research, and
application in various data systems, including multiple Database
Management Systems (DBMS). Notably, the past five years have
marked the rise of Streaming Databases (SDS), and DBMSs that
integrate continuous queries with traditional query responses.This
growth reflects both industrial and academic interest in the field. Ini-
tially, continuous queries were primarily focused on the relational
model, with their semantics expressed through extended algebras,
calculi, or denotational semantics. However, more recently, there
has been a shift towards applying continuous queries in the context
of connected data. This includes exploration and abstraction in
Graph DBMS, Knowledge Graphs, and Knowledge Evolution, ex-
panding beyond the initial focus on relational models. This tutorial
delves into a comprehensive survey of Continuous Queries in past
and modern data systems. In addition to the historical perspective,
the tutorial will focus on the latest developments in Streaming
Databases and the continuous processing of streaming graphs.

CCS CONCEPTS
• Information systems→ Data management systems; Data-
base management system engines; Online analytical process-
ing engines; Query languages for non-relational engines;
Stream management.

KEYWORDS
Continuous Queries; Streaming Databases; Streaming Systems;
Streaming Graphs

ACM Reference Format:
Angela Bonifati and Riccardo Tommasini. 2024. An Overview of Contin-
uous Querying in (Modern) Data Systems. In Companion of the 2024 In-
ternational Conference on Management of Data (SIGMOD-Companion ’24),
June 9–15, 2024, Santiago, AA, Chile. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3626246.3654679

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
Request permissions from owner/author(s).
SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0422-2/24/06
https://doi.org/10.1145/3626246.3654679

1 INTRODUCTION
Continuous queries (CQ), also known as Standing or Streaming
Queries, belong to a specific class of queries that perpetually moni-
tors some data sources over time until they are terminated explic-
itly [46]. Such a class of query was initially introduced by Terry et
al. [82] to capture the need for access data that change over time.

Since Terry et al.’s seminal work, continuous queries have been
studied [16, 17], prototyped [4, 29–31], and used in various produc-
tion data systems [14, 20, 26, 53]. In particular, the last five years
have witnessed the emergence of Streaming Databases (SDS), e.g.,
Materialize1, RisingWave2, as well as traditional Database Manage-
ment Systems (DBMS) that combine CQs with traditional query
answers [24], e.g., Meteor3 or InvaliDB [90]. Such an increase in
offer signals the industrial and academic interest in the topic.

Additionally, initial CQs formulations [68, 82] focused on the
relational model, expressing the query semantics in terms of alge-
bras [40], calculi [79], or denotational semantics [13] that extend the
existing relational ones [52]. It is not until recently 4, with the rise of
graphs as an abstraction for data exploration and management [76],
that CQs were studied and applied in the context of connected data,
e.g., Graph DBMS [66, 75], Knowledge Graphs [50, 83], and recently
to study Knowledge Evolution [72].

This tutorial presents an in-depth literature survey of Continuous
Queries in existing data systems. In particular, we start the tutorial
by presenting the background on Continuous Queries (Section 2),
followed by their application and design in preliminary DBMS
(Section 3). Then, we move to Stream Systems in the context of
Big Data Management (Section 4) and analyse their support for
CQs. Finally, we present the recent works on Streaming Databases
and continuous processing of streaming graphs (Section 5). We end
the paper by positioning this survey in the literature Section 6 and
discussing the open challenges in the field ,(Section 7).

2 PRELIMINARIES
This section goes through the foundational notions required to
discuss Continuous Queries (CQ). Figure 1 presents a high-level
view of how a data system for continuous query looks like from the
seminal survey on Stream Processing by Cugola et Margara [32].
The figure highlights the paradigm shift introduced by continuous
queries vs traditional data-based queries. Indeed, CQs are meant to
be issued once and produce results until they are explicitly stopped.
Such characteristics make CQs ideal for stream processing applica-
tions [38], as in such cases are the data that keep changing while

1https://materialize.com
2https://www.risingwave-labs.com/
3https://www.meteor.com/
4it is worth noticing some prominent work on XML was done [56] focusing on stream-
ing algorithms for filtering

605

https://doi.org/10.1145/3626246.3654679
https://doi.org/10.1145/3626246.3654679
https://materialize.com
https://www.risingwave-labs.com/
https://www.meteor.com/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626246.3654679&domain=pdf&date_stamp=2024-06-09

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Angela Bonifati and Riccardo Tommasini

Figure 1: A Data System for Continuous Querying from [32].

the analytical task is constant. Thus, the temporal dimension is
essential to their characterisation.

To the best of our knowledge, the first appearance dates back
to the work of Terry et al. [82]. Terry et al. introduce the notion
of Continuous Semantics in their seminal work on append-only
databases. Such types of databases do not allow deletion and is
theoretically meant to retain the whole data history. According to
the authors, CQs, unlike standard database queries, are set up once
and operate repeatedly on such databases. Such a shift impacts the
query semantics, execution, and query optimisation and planning.
Most importantly, CQs imply the processing of an infinite input,
which yields, in turn, an infinite output. Therefore, a query’s result
is the cumulative set of outcomes that would emerge if the query were
executed at each moment. Several proposals followed the one Terry
et al. [12, 16, 18, 19, 58, 69] and they all share a few preliminary
notions that we indicate below.

Definition 2.1. The Time Domain T is an ordered, infinite set
of discrete time instants 𝜏 ∈ T.

In practice, two possible time domains are relevant [9], i.e., pro-
cessing time that represent the time at which the data systems
receive data, and event time, the time when data are produced in
the real world. Intuitively, the former imposes a strictly monotonic
time domain, while the latter allows contemporary data.

Assume T is the ordered time domain, such as the set of nat-
ural numbers N. A data stream, (relational) is our second shared
abstraction.

Definition 2.2. A Data Stream 𝑆 is a mapping 𝑆 : T ← 2𝑅 that
at each instant 𝜏 ∈ T returns a finite subset from the set 𝑅 of
tuples with a schema 𝐸. An additional attribute is designated as the
timestamp of tuples and takes increasing values from T.

Such definition allows modelling 𝑆 as a potentially infinite col-
lection of elements ⟨𝑜, 𝜏⟩, where o represents a data item, like a
tuple with a schema 𝐸, and 𝜏 ∈ T is a timestamp. Moreover, it poses
the basis for an informal definition of Continuous Query.

Definition 2.3. A continuous query 𝑄𝑐𝑜𝑛𝑡 submitted at time in-
stant 𝜏 on data stream S shall provide the results as if the non-
continuous query 𝑄 was executed for all the possible 𝜏 ∈ T. Hence,
it is evaluated under continuous semantics.

Key to the implementation of continuous query is the window
operation. Indeed, although windowless continuous querying is

possible, user-defined windowing is currently the most common
approach for dealing with data unboundedness. Thus, we introduce
the general idea here and will discuss the various notions in detail
later. In the literature, several different window operators have been
proposed [41, 88]. However, we will limit the scope of this tutorial
by focusing on time-based window operators.

Definition 2.4. Given a time domain T, windows are defined as
functions𝑊 : T ← T × T where T is a set of timestamps, e.g.,
Natural Numbers.

3 CONTINUOUS QUERIES AND DBMS
The Database community initially focused on defining query mod-
els, highlighting issues of approximate execution [16], and solving
algorithmic limitations [36]. Moreover, the research drew the re-
quirements for systems architecture [81] that ultimately pushed
the conception Data Stream Management System (DSMS) [32].

3.1 Continuous Query Languages
The seminal work of Arasu et al.[12] defines the bases of rela-
tional continuous querying; the continuous query language (CQL)
builds on the relational data model and relational algebra to address
append-only ordered data streams. CQL, whose syntax is shown
in Listing 1 as an example, assigns abstract semantics to continu-
ous queries via two data types: Streams, as per Definition 2.2, and
Time-Varying Relations, i.e., a time-aware functional extension of
relational data (cf Definition 3.1).

1 S e l e c t count (P . ID)
2 From Person P , RoomObservat ion O [Range 15 min]
3 Where P . i d = O . i d

Listing 1: Example Query using CQL.

Definition 3.1. A time-varying relation R maps each time instant
𝜏 ∈ 𝑇 to a finite yet unbounded group of tuples from a set schema
with named attributes.

Moreover, CQL introduces three operator classes for writing
continuous queries over data streams:
• Stream-to-Relation (S2R) operators, converting a stream into
a time-varying relation,
• Relation-to-Relation (R2R) operators, deriving a new time-
varying relation from one or more other relations, and
• Relation-to-Stream (R2S) operators generate a stream from
a time-varying relation.

S2R operators in CQL are designed to segment a stream S into
Windows. A window, denoted W(S), comprises elements selected
from a stream by a window operator. CQL encompasses time-based,

Figure 2: CQL data abstractions from [12].

606

An Overview of ContinuousQuerying in (Modern) Data Systems SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

tuple-based, and partitioned window operators. However, the no-
table aspect of CQL semantics comes from the duality between R2R
and R2S. A CQL query does not necessarily have to return to the
streaming abstraction. Indeed, the results of a continuous query
Q𝑐𝑜𝑛𝑡 at a time 𝜏 , which denotes the result of Q once all inputs up
to 𝜏 are available, are defined according to two cases:
• When the outermost (topmost) operator in Q is of relation-
to-stream type, the result of Q at time 𝜏 is a stream 𝑆 up to 𝜏 ,
produced by recursively applying the operators comprising
Q to streams S1 , . . . , S𝑛 up to 𝜏 and relations R1 , . . . , R𝑚
up to 𝜏 .
• When the outermost (topmost) operator in Q is of stream-to-
relation or relation-to-relation type, the result of Q at time
𝜏 is R(𝜏), produced by recursively applying the operators
comprising Q to streams S1 , . . . , S𝑛 up to 𝜏 and relations R1
, . . . , R𝑚 up to 𝜏 .

This approach substantially differs from what was proposed by
Babcock and Sellis [16, 69]. Indeed, their definition of continuous
semantics has an interpretation closer to sets: the result of Q𝑐𝑜𝑛𝑡

concerns the results Q𝑟 that would be obtained at 𝜏𝑖 ∈ T are the
union of the subsets of tuples produced by a series of one-time
queries 𝑄 on successive stream contents S(𝜏), i.e.,

∀𝜏𝑖 ∈ T, 𝜏𝑖 ≥ 𝜏0, 𝑄
𝑐𝑜𝑛𝑡𝑆 (𝜏𝑖)) =

⋃
𝜏0≤𝜏≤𝜏𝑖

𝑄 (𝑆 (𝜏))

The approach adopted by Kramer et al. [58] differs even further,
bridging streaming and temporal data. Indeed, they introduce the
timeslice operation that generates snapshots from a logical stream.
Then, they redefine the notion of Snapshot Reducibility, a well-
known concept in temporal databases, for query operators over
streams. Indeed, Kramer et al. focus on proving that a particular
operation, hence query execution, can be evaluated over a finite
subset of the data without losing generality. Although operationally
similar to windows, timeslice is a global property of the streams,
and Snapshot Reducibility can be proved for each operator individ-
ually. Revealing interesting properties of streaming algebras and
semantics.

Definition 3.2. (Snapshot-Reducibility. [58]) A logical stream op-
erator op𝑇 is snapshot reducible to its non-temporal counterpart
𝑜𝑝 over multisets if for any point in time 𝜏 ∈ T and for all logical
input streams 𝑆𝑙1, . . . , 𝑆

𝑙
𝑛 ∈ S𝑙 , the snapshot at 𝜏 of the results of

applying 𝑜𝑝𝑇 to 𝑆𝑙1, . . . , 𝑆
𝑙
𝑛 is equal to the results of applying 𝑜𝑝 to

the snapshot 𝑅1, . . . , 𝑅𝑛 of 𝑆𝑙1, . . . , 𝑆
𝑙
𝑛 at time 𝜏 .

3.2 Queries Optimisation and System Overview
Continuous query optimisation is an essential topic to explore. We
will initially focus on theoretical results for continuous queries that
led to the definition of optimisation techniques [42]. In particular, it
is worth noting the role of rewriting for monotonicity [18], which
paves the road to incremental execution.

In their work on characterising continuous queries, Barbara et
al. highlighted how the equality of Babcock and Sellis holds only
for monotonic continuous queries. Intuitively, a continuous query
is non-monotonic when a result that is calculated in the stream at
some point may cease to qualify because a new value is added to

Figure 3: High Level Architecture of a Data Stream Manage-
ment System from [32]

the database, or more formally: A query is monotonic if for two
instances of the data stream S(𝜏1) and S(𝜏2) such that 𝑆 (𝜏1) ⊆ 𝑆 (𝜏2)
then𝑄 (𝑆 (𝜏1)) ⊆ 𝑄 (𝑆 (𝜏2)). Unfortunately, most continuous queries
one would like to write are non-monotonic. However, if the stream
is append-only, Barbara et al. show that there exists a rewriting
that can allow an incremental evaluation.

Conversely, the role of planning, especially in relation to adap-
tive cost models [92], links directly with more non-functional re-
quirements that concern the system level as much as the query
language [61]. In these regards, DSMS, as opposed to DBMSs, can
handle stream unboundedness and answer the new class of queries
meant to last endlessly until explicitly cancelled.

Figure 3 depicts one of the initial architectural proposals for
DSMS. The notion of Stream (cd Definition 2.2) denotes both input
and main output. Store aligns with the CQL’s time-varying relation
abstraction (cf Definition 3.1. Finally, Scratch and Throw respec-
tively represent the system’s working memory, where intermediate
results are saved, and the logical recycle bin is used to throw away
unneeded tuples.

Early DSMS prototypes, which are no longer available, like Stan-
ford’s STREAM [11], TelegraphCQ [29], NiagaraCQ [30], Auroral/-
Borealis [4], and Gigascope [31], were developed to validate the
feasibility of continuous query approaches. Indeed, they have simi-
lar data models but distinct querying semantics. This era of research
introduced critical challenges in systems like sliding window aggre-
gation, fault tolerance, high availability, and load balancing. This
initial wave of research, influential from 2004 to 2010, paved the
way for commercial stream processing systems like IBM System S,
Esper, Oracle CQL/CEP, and TIBCO.

4 CONTINUOUS QUERIES AND BIG DATA
The advent of Big Data has witnessed the growing availability of
sensor networks, microservices, and cloud-edge infrastructures,
which has pushed, in turn, the emergence of data streams as a
unifying abstraction [33, 55] that could support the integration of
naturally (geo)-distributed and decentralised systems. The adoption
of stream shifted the computational paradigm from data at rest and
post-hoc analyses to data in motion and continuous processing [47].

Streaming Systems [9] (SPS) emerged to support a large class of
applications in which data are generated from multiple sources and
are pushed asynchronously to servers responsible for processing
them [9]. Notably, aspects like scalability, state management, and
out-of-order processing were research priorities for SPS [26].

607

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Angela Bonifati and Riccardo Tommasini

4.1 Declarative Query Interfaces
Streaming Systems exhibit a stack of programming interfaces with
different primitives and programming abstractions. Figure 4 de-
picts such an abstraction, distinguishing between 3 levels, i.e., the
architectural level where the Actor exchanged messages to coor-
dinate the computation in real-time; the dataflow level where the
streaming computation is expressed in terms of nodes and edges,
and the highest declarative layer where Streaming Systems users
can specify continuous queries either using SQL-like Dialects or
functional DSL (Domain Specific Languages).

It is worth noticing how the Streaming Systems approach con-
tinuous query answering from a distributed system perspective.
Limiting the computations to simple data transformation that can
be expressed using programming primitives and APIs, and substan-
tially avoiding the definition of abstract semantics.

4.1.1 Dataflow Languages. The initial query interfaces provided
by Streaming Systems were based on the dataflow abstractions,
i.e., nodes of the operators to implement procedurally using an
Objected-Oriented Turing-complete programming language (Cf
Figure 4, mid-level and Figure 5 computational nodes).

Languages designed for dataflow, such as Lustre [43] and Sig-
nal [60], were created to simplify the development process of real-
time embedded systems. These languages enable developers to
articulate a precise and deterministic specification of the system’s
behaviour as time progresses through discrete logical steps. During
each step, the program calculates the value of each data stream
based on its inputs and potentially previously computed values.
Due to their low level of abstraction, these programs can be thor-
oughly tested and verified [21]. Hirtzel et al. elaborate on dataflow
languages’ broader utility for Stream Processing in [48].

In relation to continuous querying, the most prominent of such
languages is the Dataflow Model [8], derived from FlumeJava [28],
which presented a fundamental shift in the approach of stream
processing, allowing the user to make a trade-off between correct-
ness, latency, and cost. The Dataflow Model introduces triggers to
provide multiple answers for any given window. Windows and
triggers are complementary operations. The former determines
when data are grouped together for processing using event time;
the latter determines where the results of groupings are emitted in
processing time. In particular, the Dataflow Model operates a with
two primitives using streams of (key, value) pairs: (a) ParDo for

Figure 4: Streaming System Stack: describing the different
abstraction levels in Streaming Systems, inspired by [84].

generic element-wise parallel processing producing zero or more
output elements per input. (b) GroupByKey for collecting data for a
given key before forwarding them for reduction.

Despite its efficiency, dataflow-based approaches for continu-
ous query programming are extremely sophisticated and require
low-level programming skills. Thus, new approaches emerged as
described in the next section.

4.1.2 Functional Domain Specific Languages. A functional DSL
for stream processing is a specialized programming language de-
signed to facilitate the development and execution of operations
on continuous data streams. Such a DSL incorporates functional
programming paradigms [62], emphasizing immutability, stateless
functions, and higher-order functions.

Streaming Systems started providing embedded DSLs to facilitate
the description of streaming computations [48]. Figure 4 position
such DSL at the highest level since they are declarative, but more
complex computations still require users to interact with low-level
APIs. At the data model level, existing Streaming Systems allow
a combination of Object-Oriented Programming and functional
operations like map, flatmaps, or aggregates. Lately, such APIs
started converging towards a standardised set of operations typical
from the DSMS vision, e.g., filter and join. The Stream and Table
Duality Model [77] explains such data transformations. It includes
two notions: the record stream and the changelog stream (also known
as “table”). Stream processing operators, divided into stateless and
stateful, describe the transformation of one abstraction to the other.
In essence, the model is a blueprint for designing stream-processing
applications. Listing 2 shows an example of Flink [27] DSL in java.

1 t r a n s a c t i o n s . f i l t e r (t −> t . getAmount () > 1 0 0)
2 . map (t −> " TID : " + t . g e t I d () + " , Amount : " + t . g e t ()) ;

Listing 2: Example Flink’s Functional.

4.1.3 SQL-like Dialects. One aspect of Streaming Systems is the
adoption of SQL-like query interfaces to offer a fully declarative ap-
proach to application design [48] instead of the original embedded
DSLs (Cf Figure 4, highest level). The initial vision for a Streaming
SQL standard dates around 2008: Stonebraker et al. [81] discussed
the requirements analysis for an industrial-grade stream process-
ing engine to satisfy. Among other timely proposals, adopting SQL
as a language for real-time data management is highly relevant.
Similarly, Jain et al. combined and discussed different proposals
from the industry that may converge into a so-called standard [54].
Recently, the discussion reopened thanks to a renovated proposal:
Bengoli et al. [19] present the opportunities and challenges for a
streaming-first SQL standard that builds upon the lessons learned
while building Streaming Systems.

In the past, we compared the SQL interfaces of prominent Stream-
ing Systems [85, 86]. Instead, this tutorial focuses on the fundamen-
tal aspects of the relation between Streaming Systems and Contin-
uous Querying. In particular, Window Operators are probably the
most delicate contact between Continuous Querying and Streaming
Systems. Having a significant impact on the operational semantics
of Streaming Systems [23], window operators have been exten-
sively studied [88], including their richer variants [41, 87]. This
digs deeper into the relationship between Windows, and Streaming
Systems, always observing existing systems.

608

An Overview of ContinuousQuerying in (Modern) Data Systems SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

4.2 Optimisations and Systems Overview
Streaming Systems likeMillWheel [7], Storm, Flink [25], and Spark [15],
have emerged directly from industrial needs left unsolved by the
MapReduce framework. Therefore, as mentioned above, the re-
search agenda behind them addresses open problems of scalability,
state management, and out-of-order processing and supports a
larger class of data analytics tasks than before. Unlike DSMS, it still
lacks an accepted abstract architecture. Figure 5 presents an abstract
architecture that highlights some essential aspects related to the
deployment and optimisation of SPS. Streaming data are typically
accessed by consuming a distributed queue (e.g., Kafka [1] or Pul-
sar [2]). The output streams are directly pushed to similar systems.
Operators, organised in directed acyclic graphs, exchanged inter-
mediate results in parallel, leveraging source-based partitioning.
Stateful operations like aggregation and Windows exploit embed-
ded key-value stores (e.g., RocksDB [3]), to persist intermediate
results. As described by Figure 4, at the core of these systems, there
is some variation of the actor model [45], that used message passing
to coordinate parallel and distributed continuous computation [74].

Optimization techniques for Streaming Systems were surveyed
by Hirzel et al. [49]. In particular, they focused on static optimisa-
tions such as (i) operator reordering [35] , which attempts to an-
ticipate the execution of more selective operators; (ii) redundancy
elimination, [39] which tries to remove operators without violating
the query correctness; (iii) operator placement [70] , (iv) separation
and (v) fusion [51], which respectively attempt to position the op-
erator to reduce the network latency as well as to split or combine
operators to leverage parallelisms or distribution better. Notably,
optimisation for CQs in Streaming Systems focuses mostly on sys-
tem aspects and the low-level APIS/DSL. Two notable exceptions
are Spark Structured Streaming and Flink (via Apache Calcite [20]),
which use volcano-based planning to optimise window-based con-
tinuous queries but with customised rules.

5 CONTINUOUS QUERIES AND THE MODERN
DATA LANDSCAPE

In the contemporary data landscape, continuous queries reshape
how we process and interact with real-time data across various
sectors. Streaming databases (e.g., Materialize and Risingwave)
emerged as a significant evolution, enabling dynamic query updates
as new data streams in, thus facilitating immediate insights. The
innovation extends alto to in-database stream processing, which
integrates CQs capabilities directly within DBMS systems, allowing

Figure 5: Abstract Architecture of a Streaming System.

for complex analytics and transformations without the need to
export data, thereby enhancing efficiency and reducing latency.

On the other hand, the central role of graphs in modern data
has also impacted the continuous querying area, with specialised
systems emerging to handle streaming graphs and graph streams,
offering the ability to analyze relationships and patterns dynam-
ically as data evolves, which is vital for applications in network
security, social media analysis, and more.

5.1 Streaming Databases
Novel solutions like Materialize5, RisingWave6 HStream7, and par-
tially also KSQL DB [53] mark a distinct shift in the landscape of
stream processing, setting themselves apart from traditional Big
Data streaming systems like Flink or Spark Structured Streaming.
These solutions are not merely tools for real-time analysis but com-
prehensive streaming database management systems with support
for continuous queries. Their programming stack is SQL-first, and
users can manage data and metadata directly throughout the declar-
ative interface. Last but not least, partial support to constraints is
given, with a limited focus on primary and foreign keys.

Moreover, continuous queries also appear within traditional
DBMS as additional support for high-velocity workloads. In par-
ticular, InvaliDB [90] follows the vision of Real-Time databases,
offering a push-based query interface on top of a pull-based data
store. On the other hand, Winter et al [91] recently proposed an
alternative approach for answering queries that require high in-
gestion throughput. The approach called continuous view, relies
on a novel maintenance strategy, which splits the work between
insertions and queries. The approach was compared to PipelineDB
and DBToaster [57], two similar solutions for Incremental View
Maintenance on top traditional DBMSs.

5.2 Streaming Graphs
Streaming data are also rich in terms of variety [33]: e.g., sensor net-
works, transaction logs from block-chains, news or social network
streams and customer-retail streams, are far more sophisticated
and call for more expressive data models and query models and
the relational one. NoSQL systems have left an impact on CQs,
with Streaming Systems being naively object-oriented and, thus,
welcoming towards nested relations and even [5, 73] (Cf Figure 4).

In the Database community, graph streams study dates are ex-
tensive [22]. Recently, the investigation has covered the recent
property graphs standard [76] with a focus on frameworks and
algorithms for complex continuous queries [10, 65, 65, 66, 75]. In
particular, given the high expressiveness of the property graph data
model, exhibiting multiple edge and node labels as well as sets of
properties, continuous property graph queries can tackle highly
complex streaming data.

Navigational property graph queries with user-specified con-
straints in a streaming fashion must adhere to different query se-
mantics, such as simple and arbitrary path semantics [65], while
still preserving low latency and high throughput. Subsequently,
recursive continuous graph queries as opposed to non-recursive

5https://materialize.com
6https://www.risingwave-labs.com/
7https://hstream.io/

609

https://materialize.com
https://www.risingwave-labs.com/
https://hstream.io/

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Angela Bonifati and Riccardo Tommasini

SQL counterparts, require subgraph queries and paths as first-class
citizens. Pacaci et al. [66] focus on the above problem by defining
a full-fledged continuous query model, based on a streaming path
algebra, query formulation and path generation.

As a natural complementary extension of the above works, Rost
et al. [75] focus on openCypher, the query language at the core
of Neo4j, as a basis for the streaming extension for continuous
property graph queries defining its formal semantics precisely. Such
an approach has reached the commercial landscape, with solutions
like Raphtory [80], Quine 8, and MemGraph 9 emerging to address
the problem of continuous queries over graphs. We will discuss
complex graph data and query models in streaming and dynamic
environments and, focusing on the property graph data model [75]
and complex recursive graph continuous queries [65, 66].

In the Semantic Web community, several languages and sys-
tems for streaming knowledge graphs have emerged in the last
decade to accommodate the need to process heterogeneous data
streams on the Web [84]. Dell’Aglio et al. introduced RSP-QL [34],
a language that includes new families of operators based on CQL’s
S2R and R2S, as well as SPARQL 1.1 algebra, allowing continu-
ous SPARQL queries on RDF (Resource Description Framework)
streams. RDF Stream Processing developed under the Stream Rea-
soning umbrella [33], paving the road for the application and study
of Continuous Queries for knowledge graphs and evolution [72].
From RSP-QL emerged additional APIs like RSP4J [83], which tried
to generalise the computational approach by borrowing concepts
from Streaming Systems and CQL.

6 RELATEDWORK
This paper focuses on the theoretical and practical impact of con-
tinuous queries in the literature, covering 20 years of research.

Directly related to this is a series of tutorials on Stream Process-
ing foundations10. The first two tutorials in the cycle focused on the
role of declarative languages and SQL, mainly how they translate to
the internals of the underlying Streaming Systems. However, this
tutorial focuses on continuous queries spanning different types of
systems (not just big data) and data models.

"Beyond Analytics: the Evolution of Stream Processing Sys-
tems" [26] is a relevant complementary view on the role of stream
processing for Big Data. Unlike this tutorial, Carbone et al. focus on
analytics rather than continuous querying, drawing a line from the
original DSMS vision to modern Streaming Systems. Like us, they
discuss the prominence of complex workloads on top of Stream
Processing Engines, e.g., graph computations, but they don’t focus
on high-level querying aspects. Instead, they envision the future of
steam processing systems beyond analytical workload.

"Complex Event Recognition in the Big Data Era" is also related [37].
The tutorial gives a step-by-step guide on how to realise CER on top
of Streaming Systems for BigData. While there is an overlap in the
theoretical foundations, being CER a form of continuous querying,
Giatrakos et al. discuss how CER state-of-the-art maps on top of
Streaming Systems rather than provide a general overview of their
querying capabilities.

8http://quine.io
9https://memgraph.com/
10https://streaminglangs.io

7 CONCLUSION AND OPEN CHALLENGES
The original DSMS vision, which aimed to manage all aspects of
stream data in a completely declarative way [81], has been pushed
aside by the advent of the Big Data initiative. In its place, Stream-
ing Systems rose and prospered, satisfying the need for scalable
real-time analytics. Lately, Streaming Systems evolved for more
sophisticated workloads requiring transactional continuous pro-
cessing, more complex data models like graphs and documents, and
even iterative continuous queries [26]. While the DSMS vision is
still unrealised, and the Streaming Systems are evolving towards
more sophisticated workloads, a new kind of Streaming Database,
with native support to CQs and even more complex data models
like RDF or Property graphs, is emerging.

This paper has delineated the extensive scope of related liter-
ature, encompassing diverse languages, formalisms, prototypes,
production-grade systems, and models, all instrumental in defining
the operational semantics of streaming databases. Following such
a picture of the state of the art and the state of practice, we pro-
pose three main areas that necessitate further exploration within
Continuous Queries: ’Linguistic Maturity’, ’Query Portability’ and
’Data Governance’.
Linguistic Maturity. The literature evidences a linguistic maturity
adequate for industrial development and standardization. How-
ever, a notable gap remains in the absence of a consensus on the
fundamental abstractions a database and data systems should of-
fer to support continuous queries. This is particularly critical in a
multi-model environment where users may employ various query
languages. Establishing a unified set of abstractions for streaming
data manipulation is essential to address this complexity.
Query Portability. The diversity of existing solutions significantly
complicates the porting of queryworkloads across different systems,
which can hinder the adoption of streaming solutions. A primary
challenge in this domain is the varied semantics of windowing
across languages, leading to distinct operational semantics at the
system level [6]. A potential avenue for simplification might be to
explore continuous querying independent of windowing concepts,
as seen in industrial applications like graph processing in Quine.
Nevertheless, a combined theory for continuous semantics is still
required to derive compatibility across languages. Several proposals
for intermediate representations emerged [40, 44, 59, 63, 64, 78, 79,
89], but none was adopted regardless of the industrial traction.
StreamingDataGovernance. In Continuous Queries, the research
on data provenance in streaming contexts is nascent [67] and is
currently limited to why and how-provenance [71] within stream-
ing pipelines framed in functional languages. Furthermore, the
issue of ensuring data consistency in the context of continuous
queries remains unaddressed. Data cleansing poses a significant
challenge, given the stringent latency demands in streaming data.
Thus, integrating consistency measures directly into continuous
query frameworks might offer a viable pathway forward.

ACKNOWLEDGMENTS
R. Tommasini is supported by the French Research Agency under
grant agreement nr. ANR-22-CE23-0001 Polyflow.
A. Bonifati is supported by the French Research Agency under grant
agreement nr. ANR-22-CE92-0025 HyGraph.

610

http://quine.io
https://memgraph.com/
https://streaminglangs.io

An Overview of ContinuousQuerying in (Modern) Data Systems SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

REFERENCES
[1] Apache Kafka — kafka.apache.org. https://kafka.apache.org/. [Accessed 13-04-

2024].
[2] Apache Pulsar | Apache Pulsar — pulsar.apache.org. https://pulsar.apache.org/.

[Accessed 13-04-2024].
[3] RocksDB | A persistent key-value store — rocksdb.org. https://rocksdb.org/.

[Accessed 13-04-2024].
[4] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J. Hwang,

W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik.
The design of the borealis stream processing engine. In Second Biennial Conference
on Innovative Data Systems Research, CIDR 2005, Asilomar, CA, USA, January 4-7,
2005, Online Proceedings, pages 277–289. www.cidrdb.org, 2005.

[5] K. Abakumov. JSQ: distributed querying of JSON stream data. In N. Vassilieva,
D. Turdakov, and V. Ivanov, editors, Proceedings of the Ninth Spring Researchers
Colloquium on Databases and Information Systems, Kazan, Russia, May 31, 2013,
volume 1031 of CEUR Workshop Proceedings, pages 35–38. CEUR-WS.org, 2013.

[6] L. Affetti, R. Tommasini, A. Margara, G. Cugola, and E. Della Valle. Defining the
execution semantics of stream processing engines. J. Big Data, 4:12, 2017.

[7] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,
D.Mills, P. Nordstrom, and S.Whittle. Millwheel: Fault-tolerant stream processing
at internet scale. Proc. VLDB Endow., 6(11):1033–1044, 2013.

[8] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernández-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The dataflow
model: A practical approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. PVLDB, 8(12):1792–1803, 2015.

[9] T. Akidau, S. Chernyak, and R. Lax. Streaming systems: the what, where, when,
and how of large-scale data processing. " O’Reilly Media, Inc.", 2018.

[10] K. Ammar, S. Sahu, S. Salihoglu, and M. T. Özsu. Optimizing differentially-
maintained recursive queries on dynamic graphs. Proc. VLDB Endow., 2022.

[11] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Sri-
vastava, and J. Widom. STREAM: the stanford data stream management system.
In M. N. Garofalakis, J. Gehrke, and R. Rastogi, editors, Data Stream Management
- Processing High-Speed Data Streams, Data-Centric Systems and Applications,
pages 317–336. Springer, 2016.

[12] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic
foundations and query execution. VLDB J., 15(2):121–142, 2006.

[13] A. Arasu and J. Widom. A denotational semantics for continuous queries over
streams and relations. SIGMOD Rec., 33(3):6–12, 2004.

[14] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, and
M. Zaharia. Structured streaming: A declarative api for real-time applications in
apache spark. In Proceedings of the 2018 International Conference on Management
of Data, pages 601–613, 2018.

[15] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, and
M. Zaharia. Structured streaming: A declarative API for real-time applications in
apache spark. In SIGMOD, 2018.

[16] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In PODS, pages 1–16. ACM, 2002.

[17] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD Rec.,
30(3):109–120, 2001.

[18] D. Barbará. The characterization of continuous queries. Int. J. Cooperative Inf.
Syst., 8(4):295, 1999.

[19] E. Begoli, T. Akidau, F. Hueske, J. Hyde, K. Knight, and K. L. Knowles. One SQL to
rule them all - an efficient and syntactically idiomatic approach to management of
streams and tables. In P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande, and
T. Kraska, editors, Proceedings of the 2019 International Conference on Management
of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5,
2019, pages 1757–1772. ACM, 2019.

[20] E. Begoli, J. Camacho-Rodríguez, J. Hyde,M. J. Mior, andD. Lemire. Apache calcite:
A foundational framework for optimized query processing over heterogeneous
data sources. In SIGMOD Conference, pages 221–230. ACM, 2018.

[21] I. E. Bennour. Formal verification of timed synchronous dataflow graphs using
lustre. J. Log. Algebraic Methods Program., 121:100678, 2021.

[22] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler. Practice of streaming
processing of dynamic graphs: Concepts, models, and systems. IEEE Trans. Parallel
Distributed Syst., 34(6):1860–1876, 2023.

[23] I. Botan, R. Derakhshan, N. Dindar, L. M. Haas, R. J. Miller, and N. Tatbul. SECRET:
A model for analysis of the execution semantics of stream processing systems.
PVLDB, 3(1):232–243, 2010.

[24] L. Carafoli, F. Mandreoli, R. Martoglia, and W. Penzo. Streaming tables: Na-
tive support to streaming data in dbmss. IEEE Trans. Syst. Man Cybern. Syst.,
47(10):2768–2782, 2017.

[25] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and K. Tzoumas. State manage-
ment in apache flink®: Consistent stateful distributed stream processing. Proc.
VLDB Endow., 10(12):1718–1729, 2017.

[26] P. Carbone, M. Fragkoulis, V. Kalavri, and A. Katsifodimos. Beyond analytics:
The evolution of stream processing systems. In SIGMOD. ACM, 2020.

[27] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache
flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, 36(4), 2015.
[28] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw, and

N. Weizenbaum. Flumejava: easy, efficient data-parallel pipelines. In B. G. Zorn
and A. Aiken, editors, Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2010, Toronto, Ontario,
Canada, June 5-10, 2010, pages 363–375. ACM, 2010.

[29] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, F. Reiss, and M. A. Shah. Telegraphcq:
Continuous dataflow processing. In A. Y. Halevy, Z. G. Ives, and A. Doan, editors,
Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data, San Diego, California, USA, June 9-12, 2003, page 668. ACM, 2003.

[30] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous
query system for internet databases. In W. Chen, J. F. Naughton, and P. A.
Bernstein, editors, Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, May 16-18, 2000, Dallas, Texas, USA, pages 379–390. ACM,
2000.

[31] C. D. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. The gigascope
stream database. IEEE Data Eng. Bull., 26(1):27–32, 2003.

[32] G. Cugola and A. Margara. Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv., 44(3):15:1–15:62, 2012.

[33] E. Della Valle, S. Ceri, F. van Harmelen, and D. Fensel. It’s a streaming world!
reasoning upon rapidly changing information. IEEE Intelligent Systems, 24(6):83–
89, 2009.

[34] D. Dell’Aglio, E. Della Valle, J. Calbimonte, and Ó. Corcho. RSP-QL semantics: A
unifying query model to explain heterogeneity of RDF stream processing systems.
Int. J. Semantic Web Inf. Syst., 10(4):17–44, 2014.

[35] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems - the complete
book (2. ed.). Pearson Education, 2009.

[36] M. N. Garofalakis, J. Gehrke, and R. Rastogi, editors. Data Stream Management
- Processing High-Speed Data Streams. Data-Centric Systems and Applications.
Springer, 2016.

[37] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis, and M. N. Garofalakis.
Complex event recognition in the big data era: a survey. VLDB J., 29(1):313–352,
2020.

[38] L. Golab and M. T. Özsu. Issues in data stream management. SIGMOD Rec.,
32(2):5–14, 2003.

[39] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb, C. Leger,
J. Wong, H. Hoffmann, D. Maze, and S. P. Amarasinghe. A stream compiler for
communication-exposed architectures. In K. Gharachorloo and D. A. Wood, edi-
tors, Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-X), San Jose, California,
USA, October 5-9, 2002, pages 291–303. ACM Press, 2002.

[40] F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo. Unleashing the power
of querying streaming data in a temporal database world: A relational algebra
approach. 103:101872, 2022. https://doi.org/10.1016/j.is.2021.101872.

[41] M. Grossniklaus, D. Maier, J. Miller, S. Moorthy, and K. Tufte. Frames: data-driven
windows. In A. Gal, M. Weidlich, V. Kalogeraki, and N. Venkasubramanian,
editors, Proceedings of the 10th ACM DEBS ’16, Irvine, CA, USA 2016. ACM, 2016.

[42] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Optimized pro-
cessing of multiple aggregate continuous queries. In C. Macdonald, I. Ounis, and
I. Ruthven, editors, Proceedings of the 20th ACM Conference on Information and
Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October 24-28,
2011, pages 1515–1524. ACM, 2011.

[43] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language LUSTRE. Proc. IEEE, 79(9):1305–1320, 1991.

[44] S. Herbst, N. Pollner, J. Tenschert, F. Lauterwald, G. Endler, and K. Meyer-
Wegener. An algebra for pattern matching, time-aware aggregates and partitions
on relational data streams. In F. Eliassen and R. Vitenberg, editors, Proceed-
ings of the 9th ACM International Conference on Distributed Event-Based Sys-
tems, DEBS ’15, Oslo, Norway, June 29 - July 3, 2015, pages 140–149. ACM, 2015.
https://doi.org/10.1145/2675743.2771830.

[45] C. Hewitt. Actor model of computation: scalable robust information systems.
arXiv preprint arXiv:1008.1459, 2010.

[46] M. Hirzel. Continuous queries. In S. Sakr and A. Y. Zomaya, editors, Encyclopedia
of Big Data Technologies. Springer, 2019.

[47] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V. Kumar, M. P.
Mendell, H. Nasgaard, S. Schneider, R. Soulé, and K. Wu. IBM streams processing
language: Analyzing big data in motion. IBM J. Res. Dev., 57(3/4):7, 2013.

[48] M. Hirzel, G. Baudart, A. Bonifati, E. Della Valle, S. Sakr, and A. Vlachou. Stream
processing languages in the big data era. SIGMOD Record, 47(2):29–40, 2018.

[49] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A catalog of stream
processing optimizations. ACM Comput. Surv., 46(4):46:1–46:34, 2013.

[50] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, S. Kir-
rane, J. E. L. Gayo, R. Navigli, S. Neumaier, A. N. Ngomo, A. Polleres, S. M. Rashid,
A. Rula, L. Schmelzeisen, J. F. Sequeda, S. Staab, and A. Zimmermann. Knowledge
graphs. ACM Comput. Surv., 54(4):71:1–71:37, 2022.

[51] F. Hueske, M. Peters, M. Sax, A. Rheinländer, R. Bergmann, A. Krettek, and
K. Tzoumas. Opening the black boxes in data flow optimization. Proc. VLDB

611

https://kafka.apache.org/
https://pulsar.apache.org/
https://rocksdb.org/
https://doi.org/10.1016/j.is.2021.101872
https://doi.org/10.1145/2675743.2771830

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Angela Bonifati and Riccardo Tommasini

Endow., 5(11):1256–1267, 2012.
[52] T. Imielinski and W. L. Jr. The relational model of data and cylindric algebras. J.

Comput. Syst. Sci., 28(1):80–102, 1984.
[53] H. Jafarpour and R. Desai. KSQL: streaming SQL engine for apache kafka. In

EDBT, pages 524–533. OpenProceedings.org, 2019.
[54] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrishnan, U. Çet-

intemel, M. Cherniack, R. Tibbetts, and S. B. Zdonik. Towards a streaming SQL
standard. Proc. VLDB Endow., 1(2):1379–1390, 2008.

[55] M. Kleppmann. Designing Data-Intensive Applications: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems. O’Reilly, 2016.

[56] C. Koch. XML stream processing. In L. Liu and M. T. Özsu, editors, Encyclopedia
of Database Systems, Second Edition. Springer, 2018.

[57] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli, D. Lupei, and A. Shaikhha.
Dbtoaster: higher-order delta processing for dynamic, frequently fresh views.
VLDB J., 23(2):253–278, 2014.

[58] J. Krämer and B. Seeger. A temporal foundation for continuous queries over
data streams. In J. R. Haritsa and T. M. Vijayaraman, editors, Advances in Data
Management 2005, Proceedings of the Eleventh International Conference on Man-
agement of Data, January 6, 7, and 8, 2005, Goa, India, pages 70–82. Computer
Society of India, 2005.

[59] L. Kroll, K. Segeljakt, P. Carbone, C. Schulte, and S. Haridi. Arc: An IR for batch
and stream programming. In A. Cheung and K. Nguyen, editors, Proceedings
of the 17th ACM SIGPLAN International Symposium on Database Programming
Languages, DBPL 2019, Phoenix, AZ, USA, June 23, 2019, pages 53–58. ACM, 2019.
https://doi.org/10.1145/3315507.3330199.

[60] P. Le Guernic, T. Gautier, M. L. Borgne, and C. L. Maire. Programming real-time
applications with SIGNAL. Proc. IEEE, 79(9):1321–1336, 1991.

[61] H. Lim and S. Babu. Execution and optimization of continuous windowed ag-
gregation queries. In Workshops Proceedings of the 30th International Conference
on Data Engineering Workshops, ICDE 2014, Chicago, IL, USA, March 31 - April 4,
2014, pages 303–309. IEEE Computer Society, 2014.

[62] J. MacCormick. Functional programming and streams. CoRR, abs/2302.09403,
2023.

[63] M. Meldrum, K. Segeljakt, L. Kroll, P. Carbone, C. Schulte, and S. Haridi. Arcon:
Continuous and deep data stream analytics. In Proceedings of the International
Workshop on Real-Time Business Intelligence and Analytics, BIRTE 2019, Los Angeles,
CA, USA, August 26, 2019, pages 3:1–3:3. ACM, 2019. https://doi.org/10.1145/
3350489.3350492.

[64] C. Miranda, A. Pop, P. Dumont, A. Cohen, and M. Duranton. Erbium: A determin-
istic, concurrent intermediate representation to map data-flow tasks to scalable,
persistent streaming processes. In V. Kathail, R. Tatge, and R. Barua, editors,
Proceedings of the 2010 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, CASES 2010, Scottsdale, AZ, USA, October 24-29,
2010, pages 11–20. ACM, 2010. https://doi.org/10.1145/1878921.1878924.

[65] A. Pacaci, A. Bonifati, andM. T. Özsu. Regular path query evaluation on streaming
graphs. In SIGMOD, pages 1415–1430. ACM, 2020.

[66] A. Pacaci, A. Bonifati, and M. T. Özsu. Evaluating complex queries on streaming
graphs. In ICDE, pages 272–285. IEEE, 2022.

[67] D. Palyvos-Giannas, K. Tzompanaki, M. Papatriantafilou, and V. Gulisano. Erebus:
Explaining the outputs of data streaming queries. Proc. VLDB Endow., 16(2):230–
242, 2022.

[68] K. Patroumpas and T. K. Sellis. Window specification over data streams. In
T. Grust, H. Höpfner, A. Illarramendi, S. Jablonski, M. Mesiti, S. Müller, P. Patran-
jan, K. Sattler, M. Spiliopoulou, and J. Wijsen, editors, Current Trends in Database
Technology - EDBT 2006, EDBT 2006 Workshops PhD, DataX, IIDB, IIHA, ICSNW,
QLQP, PIM, PaRMA, and Reactivity on the Web, Munich, Germany, March 26-31,
2006, Revised Selected Papers, volume 4254 of Lecture Notes in Computer Science,
pages 445–464. Springer, 2006.

[69] K. Patroumpas and T. K. Sellis. Maintaining consistent results of continuous
queries under diverse window specifications. Inf. Syst., 36(1):42–61, 2011.

[70] P. R. Pietzuch, J. Ledlie, J. Shneidman,M. Roussopoulos, M.Welsh, andM. I. Seltzer.
Network-aware operator placement for stream-processing systems. In L. Liu,
A. Reuter, K. Whang, and J. Zhang, editors, Proceedings of the 22nd International
Conference on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA,
page 49. IEEE Computer Society, 2006.

[71] P. Pintor, R. L. de Carvalho Costa, and J. M. Moreira. Why- and how-provenance
in distributed environments. In C. Strauss, A. Cuzzocrea, G. Kotsis, A. M. Tjoa,
and I. Khalil, editors,Database and Expert Systems Applications - 33rd International
Conference, DEXA 2022, Vienna, Austria, August 22-24, 2022, Proceedings, Part I,
volume 13426 of Lecture Notes in Computer Science, pages 103–115. Springer, 2022.

[72] A. Polleres, R. Pernisch, A. Bonifati, D. Dell’Aglio, D. Dobriy, S. Dumbrava,
L. Etcheverry, N. Ferranti, K. Hose, E. Jiménez-Ruiz, M. Lissandrini, A. Scherp,
R. Tommasini, and J. Wachs. How does knowledge evolve in open knowledge
graphs? TGDK, 1(1):11:1–11:59, 2023.

[73] W. Rao, L. Chen, S. Chen, and S. Tarkoma. Evaluating continuous top-k queries
over document streams. World Wide Web, 17(1):59–83, 2014.

[74] L. Rinaldi, M. Torquati, G. Mencagli, and M. Danelutto. High-throughput stream
processing with actors. In E. Castegren, J. D. Koster, and T. C. Schmidt, editors,
AGERE 2020: Proceedings of the 10th ACM SIGPLAN International Workshop on
Programming Based on Actors, Agents, and Decentralized Control, Virtual Event,
USA, November 17, 2020, pages 1–10. ACM, 2020.

[75] C. Rost, R. Tommasini, A. Bonifati, E. Della Valle, E. Rahm, K. W. Hare, S. Plan-
tikow, P. Selmer, and H. Voigt. Seraph: Continuous queries on property graph
streams. 2024.

[76] S. Sakr, A. Bonifati, H. Voigt, and A. I. et al. The future is big graphs: a community
view on graph processing systems. Commun. ACM, 2021.

[77] M. J. Sax, G. Wang, M. Weidlich, and J. Freytag. Streams and tables: Two sides of
the same coin. In BIRTE, pages 1:1–1:10. ACM, 2018.

[78] R. Soulé, M. Hirzel, B. Gedik, and R. Grimm. River: An intermediate language for
stream processing. 46(7):891–929, 2016. https://doi.org/10.1002/spe.2338.

[79] R. Soulé, M. Hirzel, R. Grimm, B. Gedik, H. Andrade, V. Kumar, and K.-L. Wu.
A universal calculus for stream processing languages. In A. D. Gordon, editor,
Programming Languages and Systems, 19th European Symposium on Programming,
ESOP 2010, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume
6012 of Lecture Notes in Computer Science, pages 507–528. Springer, 2010. https:
//doi.org/10.1007/978-3-642-11957-6_27.

[80] B. A. Steer, N. A. Arnold, C. T. Ba, R. Lambiotte, H. Yousaf, L. Jeub, F. Murariu,
S. Kapoor, P. Rico, R. Chan, L. Chan, J. Alford, R. G. Clegg, F. Cuadrado, M. R.
Barnes, P. Zhong, J. N. Pougué-Biyong, and A. Alnaimi. Raphtory: The temporal
graph engine for rust and python. CoRR, abs/2306.16309, 2023.

[81] M. Stonebraker, U. Çetintemel, and S. B. Zdonik. The 8 requirements of real-time
stream processing. SIGMOD Record, 34(4):42–47, 2005.

[82] D. B. Terry, D. Goldberg, D. A. Nichols, and B. M. Oki. Continuous queries over
append-only databases. In M. Stonebraker, editor, Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data, San Diego, California,
USA, June 2-5, 1992, pages 321–330. ACM Press, 1992.

[83] R. Tommasini, P. Bonte, F. Ongenae, and E. Della Valle. RSP4J: an API for
RDF stream processing. In R. Verborgh, K. Hose, H. Paulheim, P. Champin,
M. Maleshkova, Ó. Corcho, P. Ristoski, and M. Alam, editors, The Semantic
Web - 18th International Conference, ESWC 2021, Virtual Event, June 6-10, 2021,
Proceedings, volume 12731 of Lecture Notes in Computer Science, pages 565–581.
Springer, 2021.

[84] R. Tommasini, P. Bonte, F. Spiga, and E. Della Valle. Streaming Linked Data: From
Vision to Practice. Springer Nature, 2023.

[85] R. Tommasini, S. Sakr, M. Balduini, and E. Della Valle. An outlook to declarative
languages for big streaming data. In DEBS, pages 199–202. ACM, 2019.

[86] R. Tommasini, S. Sakr, E. Della Valle, and H. Jafarpour. Declarative languages for
big streaming data. In A. Bonifati, Y. Zhou, M. A. V. Salles, A. Böhm, D. Olteanu,
G. H. L. Fletcher, A. Khan, and B. Yang, editors, Proceedings of the 23rd International
Conference on Extending Database Technology, EDBT 2020, Copenhagen, Denmark,
March 30 - April 02, 2020, pages 643–646. OpenProceedings.org, 2020.

[87] J. Traub, P. M. Grulich, A. R. Cuellar, S. Breß, A. Katsifodimos, T. Rabl, and
V. Markl. Scotty: General and efficient open-source window aggregation for
stream processing systems. ACM Trans. Database Syst., 46(1):1:1–1:46, 2021.

[88] J. Verwiebe, P. M. Grulich, J. Traub, and V. Markl. Survey of window types for
aggregation in stream processing systems. The VLDB Journal, 2023.

[89] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu. RStream: Marrying
relational algebra with streaming for efficient graph mining on A single machine.
In A. C. Arpaci-Dusseau and G. Voelker, editors, 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018, pages 763–782. USENIX Association, 2018. https://www.
usenix.org/conference/osdi18/presentation/wang.

[90] W. Wingerath, F. Gessert, and N. Ritter. Invalidb: Scalable push-based real-time
queries on top of pull-based databases (extended). Proc. VLDB Endow., 13(12):3032–
3045, 2020.

[91] C. Winter, T. Schmidt, T. Neumann, and A. Kemper. Meet me halfway: Split
maintenance of continuous views. Proc. VLDB Endow., 13(11):2620–2633, 2020.

[92] Q. Xie, X. Zhang, Z. Li, and X. Zhou. Optimizing cost of continuous overlapping
queries over data streams by filter adaption. IEEE Trans. Knowl. Data Eng.,
28(5):1258–1271, 2016.

612

https://doi.org/10.1145/3315507.3330199
https://doi.org/10.1145/3350489.3350492
https://doi.org/10.1145/3350489.3350492
https://doi.org/10.1145/1878921.1878924
https://doi.org/10.1002/spe.2338
https://doi.org/10.1007/978-3-642-11957-6_27
https://doi.org/10.1007/978-3-642-11957-6_27
https://www.usenix.org/conference/osdi18/presentation/wang
https://www.usenix.org/conference/osdi18/presentation/wang

	Abstract
	1 Introduction
	2 Preliminaries
	3 Continuous Queries and DBMS
	3.1 Continuous Query Languages
	3.2 Queries Optimisation and System Overview

	4 Continuous Queries and Big Data
	4.1 Declarative Query Interfaces
	4.2 Optimisations and Systems Overview

	5 Continuous Queries and the Modern Data Landscape
	5.1 Streaming Databases
	5.2 Streaming Graphs

	6 Related Work
	7 Conclusion and Open Challenges
	Acknowledgments
	References

