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THE ASYMPTOTIC DISTRIBUTION OF ELKIES PRIMES FOR

REDUCTIONS OF ABELIAN VARIETIES IS GAUSSIAN

ALEXANDRE BENOIST AND JEAN KIEFFER

Abstract. We generalize the notion of Elkies primes for elliptic curves to the setting
of abelian varieties with real multiplication (RM), and prove the following. Let A be an
abelian variety with RM over a number field whose attached Galois representation has
large image. Then the number of Elkies primes (in a suitable range) for reductions of A
modulo primes converges weakly to a Gaussian distribution around its expected value.
This refines and generalizes results obtained by Shparlinski and Sutherland in the case of
non-CM elliptic curves, and has implications for the complexity of the SEA point counting
algorithm for abelian surfaces over finite fields.

1. Introduction

1.1. Setup. Let E be an elliptic curve over a finite field Fq. We say that a prime number ℓ
is Elkies for E if there exists an ℓ-isogeny with domain E defined over Fq. This terminology
stems from the Schoof–Elkies–Atkin (SEA) algorithm for determining #E(Fq) [Sch95]; this
algorithm is faster if E has many small Elkies primes ℓ, as Elkies’s method can then be
applied to determine #E(Fq) mod ℓ. In order to assess the overall complexity of the
SEA algorithm, Shparlinski and Sutherland proved that there are enough Elkies primes
on average, either when considering all elliptic curves over a fixed Fq [SS14] or when
considering reductions of a fixed, non-CM elliptic curve over Q modulo primes in a large
interval [SS15]. For further results in a non-average setting, see [Shp15].

We may also consider Elkies primes for abelian varieties of higher dimensions. Let A be
a polarized abelian variety of dimension g over Fq. We say that a prime ℓ, coprime to q
and the degree of the polarization, is Elkies for A if there exists an Fq-rational subgroup
G ⊂ A[ℓ] which is maximal isotropic for the Weil pairing; in that case, the quotient A/G
is also equipped with a polarization of the same degree. More generally, if A has real
multiplication (RM) by an order O in a totally real number field, i.e. if A is equipped
with a primitive embedding O ↪→EndFq(A) such that every x ∈ O is invariant under the
Rosati involution, we say that a prime ideal l of O is Elkies for A if A[l] admits a maximal
isotropic subgroup G defined over Fq and stable under O, or in other words, if there exists
an Fq-rational l-isogeny from A, as defined in [BJW17]. This notion of Elkies primes
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is a suitable analogue of the classical definition in the context of the SEA algorithm on
principally polarized abelian surfaces with or without RM [Kie22].

1.2. Main results. In this paper, we show that the number of Elkies primes in certain
ranges for reductions of a fixed abelian variety A with RM over a number field asymp-
totically follows a Gaussian distribution, provided that the Galois representation attached
to A has a large enough adelic image.

To formulate this last condition precisely, we introduce the following notation. Let F
be the field of definition of A and let GF be its absolute Galois group. If ℓ is a large
enough prime, the ℓ-adic Tate module Tℓ(A) of A is a free O⊗Zℓ-module of rank 2h where
h = g/d, endowed with an nondegenerate alternating form with values in O ⊗ Zℓ, as we
review in Section 2. If n is a sufficiently large integer, we can therefore consider the global
Galois representation

ρ̂n : GF → GSp2h(O ⊗ Ẑ≥n), where Ẑ≥n :=
∏

ℓ prime, ℓ≥n

Zℓ.

We say that A has large Galois image if ρ̂n(GF ) contains Sp2h(O⊗Ẑ≥n) for large enough n.

Assuming that O is the whole endomorphism ring of A over Q (a necessary condition), one
can sometimes guarantee that A has large Galois image, as in Serre’s open image theorem
in the case d = 1 [Ser85]: we review this theorem and its RM analogues in Section 2.

Our main result on the distribution of Elkies primes is then the following.

Theorem 1.1. Assume the generalized Riemann hypothesis (GRH). Let O be an order
in a totally real number field K of degree d, and let A be a polarized abelian variety of
dimension g ≥ 1 defined over a number field F with RM by O with large Galois image.

For a real number L, denote by PK(L, 2L) the set of prime ideals l of K such that
NK/Q(l) ∈ [L, 2L], and define PF (P, 2P ) similarly. For a prime p of F of good reduction
for A and L ≥ 1, let Ne(p, L) be the number of Elkies primes l ∈ PK(L, 2L) for Ap. Further
define αh ∈ (0, 1) by the formula

αh =
∑

(d1,...,dr)∈Σh

1

2r
·

r∏
i=1

1

di
·

h∏
k=1

1

#{j : dj = k}!

where Σh denotes the set of unordered partitions of the integer h = g/d.
Then, as L,P → ∞ with P ≫ Ln for every positive integer n, the random variable

XP,L : PF (P, 2P ) −→ R

p 7−→ Ne(p, L)− αh#PK(L, 2L)√
αh(1− αh)#PK(L, 2L)

converges weakly to the standard Gaussian distribution with mean value 0 and variance 1.

Intuitively, αh is the probability that l will be Elkies for Ap for random l and p; weak
convergence to the Gaussian distribution of Theorem 1.1 is what we would obtain from the
central limit theorem in the naive probabilistic model where the events “l is Elkies for Ap”
are all independent. We list the first few values of αh in Table 1.
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h 1 2 3 4 5 6 7 8

αh (exact value) 1
2

3
8

5
16

35
128

63
256

231
1024

429
2048

6435
32768

αh (approximate value) 0.5 0.375 0.3125 0.2734 0.2461 0.2256 0.2095 0.1964

Table 1. Values of αh

We prove Theorem 1.1 by analyzing the moments E(Xk
P,L) of XP,L when PF (P, 2P ) is

equipped with the uniform probability measure. In fact, Theorem 1.1 follows directly from
the following result: see for instance [Bil95, Theorem 30.2].

Theorem 1.2. Assume GRH, and keep notation from Theorem 1.1. Let k ≥ 0 be any
integer, and let mk be the moment of order k of the standard Gaussian distribution (thus
mk = 0 for odd k.) Then E(Xk

P,L) converges to mk as P,L → ∞ with P ≫ Ln for every
positive integer n. More precisely, we have

E(Xk
P,L) = mk +OA,k

(
1

L1/2 log(L)1/2
+
Lk(2h2+h+3/2) log(P )2

log(L)k/2P 1/2

)
.

Here the notation OA,k means that the implicit constants in Landau’s notation are
allowed to depend on A (hence on F , O, and h) and k.

In the case of elliptic curves, Theorem 1.2 refines [SS15] as we consider moments of all
orders and provide an asymptotic equivalent of the even moments rather than an upper
bound. To the best of our knowledge, Theorem 1.2 is also the first quantitative result on
the distribution of Elkies primes in higher dimensions. In particular, a consequence of this
theorem is that there are enough Elkies primes to run the SEA algorithm in dimension 2
on average over reductions of a fixed abelian variety: see [Kie22, Def. 3.7].

The proof of Theorem 1.2 is inspired from [SS15]: we apply an explicit version of the
Čebotarev density theorem (which relies on GRH) to number field extensions of F cut out
by torsion subgroups of A, and count how many elements in their Galois groups corresponds
to l being Elkies for Ap. The result then follows from rearranging the summations and from
a combinatorial argument to determine the leading term in the moments of XP,L.

We also provide numerical experiments on the distribution of Elkies primes in large
ranges in the case of elliptic curves: it was actually the very smooth aspect of the data
which prompted us to try and prove Theorem 1.1.

One might wonder if this convergence result to a Gaussian distribution also holds when
considering all elliptic curves (or more generally abelian varieties) over a fixed Fq as in
[SS14]. To answer this, it seems that one would need careful control on the class numbers
appearing in the distribution of traces of Frobenius for elliptic curves over Fq.

1.3. Organization. In Section 2, we review the properties of Galois representations at-
tached to abelian varieties with RM, characterize Elkies primes both in terms of Frobenius
elements in the Galois representation and in terms of the existence of isogenies, and re-
call results from the literature on large Galois images. In Section 3, we count matrices
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in GSp2h(O/lO) (and related groups) corresponding to Elkies primes, a key input to the
Čebotarev density theorem. We prove Theorem 1.2 in Section 4, and report on our numer-
ical experiments in Section 5.

1.4. Acknowledgements. The first author was supported by the Agence Nationale de la
Recherche/France 2030 grant CRYPTANALYSE (reference 22-PECY-0010.)

1.5. Statements. The authors declare no competing interests. The source code used to
generate the data presented in Section 5 is available as a supplementary file to the paper.

2. Galois representations and Elkies primes

In this section, we review basic facts on the structure of torsion subgroups of abelian
varieties with RM over any field (§2.1). Then we characterize Elkies primes for such
abelian varieties in terms of the existence of isogenies (§2.2) and, in the case of finite fields
or reductions of abelian varieties over number fields, in terms of the action of Frobenius on
torsion subgroups (§2.3). Finally, we review deeper results on large Galois images (§2.4).

2.1. Torsion subgroups of abelian varieties with RM. Throughout, we use the nota-
tion listed in Table 2. For the reader’s convenience, the table also includes symbols defined
later in this section. For now, F is any field, and A is an abelian variety over F with real
multiplication by an order O as in the introduction.

Recall that whenever ℓ is prime to p, the Tate module Tℓ(A) is a free Zℓ-module of
rank 2g on which the Weil pairing eℓ is nondegenerate. If further ℓ is prime to dA, then
eℓ also gives a nondegenerate alternating form on A[ℓ]. We may also view Tℓ(A) as an
O ⊗ Zℓ-module, using the action of O as endomorphisms of A.

Lemma 2.1. Assume that ℓ is coprime to p, dA and cO, so that O ⊗ Zℓ = OK ⊗ Zℓ.

(1) Tℓ(A) is a free O ⊗ Zℓ-module of rank 2h.
(2) There exists a unique O⊗Zℓ-bilinear alternating form ψℓ : Tℓ(A)×Tℓ(A) → O⊗Zℓ

with the following property: for every x, y ∈ Tℓ(A), eℓ(x, y) = TrK/Q(ψℓ(x, y)).

Proof. (1) This is [Rib76, Prop. 2.1.1].
(2) The existence and uniqueness of ψℓ after tensoring with Qℓ is [Chi92, Lemma 1.2.1].

In fact, ψℓ exists at the level of O ⊗ Zℓ-modules by [BGK06, Lemma 3.1]. □

Under the assumptions of Lemma 2.1, we also consider the decomposition of O/ℓO as a
product of fields:

O/ℓO =
∏
l|ℓ

O/lO.

Then for each l|ℓ, we define the l-torsion subgroup A[l] ⊂ A[ℓ] as

(1) A[l] =
⋂
f∈l

ker(f) = {x ∈ A[ℓ] : f(x) = 0 for every f ∈ l}.
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K a totally real number field
d the degree of K over Q
O an order of K
OK the ring of integers in K
cO the conductor of O, an ideal supported at primes dividing [OK : O]
NK/Q the norm map for ideals or elements of K/Q
TrK/Q the trace map for elements of K/Q
ℓ a prime number in Z≥1

l a prime ideal of O above ℓ
e the inertia degree of l, i.e. the integer e such that NK/Q(l) = ℓe

F a field
p the characteristic of F (either positive or 0)
GF the absolute Galois group of F
χℓ the cyclotomic character GF → Z×

ℓ

A a polarized abelian variety over F with RM by O, i.e. endowed with a
primitive embedding O ↪→EndF (A) whose image consists of elements that
are invariant under the Rosati involution

g the dimension of A; in particular d|g
h the integer g/d
dA the degree of the polarization of A
πA the Frobenius endomorphism of A (if F is finite)
Tℓ(A) the ℓ-adic Tate module of A
eℓ the Weil pairing on Tℓ(A), with values in Zℓ

A[ℓ] the ℓ-torsion subgroup of A
ψℓ the O-linear alternating form on A[ℓ] defined in Lemma 2.1
A[l] the l-torsion subgroup of A, as defined in (1) below
ρℓ the ℓ-adic Galois representation with target GSp2h(O⊗Zℓ), cf. (2) below
ρℓ, ρl the Galois representations modulo ℓ and l as in (3), (4) below

λ the multiplier character GSp2h → Gm, as in Definition 2.3
GSp2h(R;U) the subset of GSp2h(R) given by λ−1(U), as in Definition 2.3
S2h,Fq(λ0) the split matrices in GSp2h(Fq) with multiplier λ0, as in Definition 2.8.

Table 2. List of notations

Lemma 2.2. Assume that ℓ is coprime to p, dA and cO. Then we have a direct sum
decomposition

A[ℓ] =
⊕
l|ℓ

A[l]
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where for each l|ℓ, the summand A[l] is an (O/lO)-vector space of dimension 2h. This direct
sum is orthogonal with respect to ψℓ, and the restriction of ψℓ to each A[l] is nondegenerate.

Proof. The decomposition of A[ℓ] as a direct sum is a consequence of Lemma 2.1(1). Let us
check that this decomposition is orthogonal with respect to ψℓ. Let l ̸= l′ be prime ideals
above ℓ, and fix an element f ∈ l which is invertible modulo l′. If x ∈ A[l] and y ∈ A[l′],
then there exists y′ ∈ A[l′] such that y = f(y′). By O-linearity of ψℓ, we get

ψℓ(x, y) = ψℓ(x, f(y
′)) = ψℓ(f(x), y

′) = ψℓ(0, y
′) = 0.

Finally, each piece is nondegenerate by [BGK06, Lemma 3.2]. □

We now include the action of the Galois group GF in the picture. Let ℓ be coprime to p,
dA and cO. By equivariance of the Weil pairing (see for instance [BGK06, Lemma 4.7]),
we have for all σ ∈ GF and x, y ∈ Tℓ(A):

eℓ(σ(x), σ(y)) = χℓ(σ)eℓ(x, y).

The action of σ on A[ℓ] is also O-linear because the elements of O, seen as endomorphisms,
are defined over F by assumption. By nondegeneracy of TrK/Q, we have for all x, y ∈ Tℓ(A):

ψℓ(σ(x), σ(y)) = χℓ(σ)ψℓ(x, y).

In other words, σ preserves ψℓ up to multiplication by the scalar χℓ(σ) ∈ Z×
ℓ .

In order to identify the action of σ on A[ℓ] as an element in a standard symplectic group,
we choose once and for all a symplectic basis (v1, . . . , v2h) of Tℓ(A) as an O ⊗ Zℓ-module.
This means that the alternating form ψℓ in this basis takes the standard form

J2h =

(
0 Ih

−Ih 0

)
,

where Ih denotes the h× h identity matrix. We summarize our notation for the attached
symplectic group in the following definition.

Definition 2.3. We denote by GSp2h the general symplectic group with respect to the
standard form J2h: for any commutative ring R, we have

GSp2h(R) = {m ∈ GL2h(R) : m
⊺J2hm = λ(m)J2h for some λ(m) ∈ R×}.

We call the character λ : GSp → Gm appearing in this equation the multiplier. The kernel
of λ is Sp2h, the usual symplectic group. If U is a subset of R×, we also write

GSp2h(R;U) = {m ∈ GSp2h(R) : λ(m) ∈ U}.

Assuming that ℓ is coprime to dA and cO, the same vectors v1, . . . , v2h also form a
symplectic basis of A[ℓ] as an O/ℓO-module, and for every prime l|ℓ of O, a symplectic
basis of A[l] as an (O/lO)-vector space.

Summarizing, we identify the action of σ ∈ GF on Tℓ(A) with an element of the general
symplectic group,

(2) ρℓ(σ) ∈ GSp2h(O ⊗ Zℓ;Z×
ℓ ) ⊂ GSp2h(O ⊗ Zℓ)
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such that
λ(ρℓ(σ)) = χℓ(σ) ∈ Z×

ℓ ⊂ (O ⊗ Zℓ)
×.

We identify the action of σ on the ℓ-torsion subgroup A[ℓ] with the image of σ under the
reduced representation

(3) ρℓ(σ) ∈ GSp2h(O/ℓO; (Z/ℓZ)×).
For each prime l of O, we also identify the action of σ on A[l] with an element

(4) ρl(σ) ∈ GSp2h(O/lO).

with the same multiplier χℓ(σ). We call ρℓ the ℓ-adic Galois representation, and ρℓ
(resp. ρl) the Galois representation modulo ℓ (resp l), attached to A. By Lemma 2.1(1)
and Lemma 2.2, the decompositions

A[ℓ] =
⊕
l|ℓ

A[l] and GSp2h(O/ℓO) =
∏
l|ℓ

GSp2h(O/lO)

are compatible in the sense that the following diagram commutes:

GF GSp2h(O/ℓO; (Z/ℓZ)×) GSp2h(O/lO).
ρℓ

ρl

In particular, if ℓ splits completely in O, then ρℓ(GF ) is a subgroup of GSp2h(Z/ℓZ)d
consisting of tuples of matrices (m1, . . . ,md) such that λ(m1) = · · · = λ(md). At the other
extreme, if ℓ is inert in O, then ρℓ(GF ) is a subgroup of GSp2h(Fℓd ; (Z/ℓZ)×).

The representation ρl can be seen as the restriction modulo l of the l-adic representation
considered in [Chi92, §1.1].

2.2. Elkies primes for abelian varieties with RM. Let us restate the definition of
Elkies primes given in the introduction. We are mainly interested in finite fields, but for
now, our discussion remains valid over any field. We keep the notation from Table 2, and
assume throughout that the prime ideals l we consider are coprime with p, dA, and cO.

Definition 2.4. We say that l is Elkies for A if there exists an F -rational subgroup of A[l]
that is maximal isotropic for the Weil pairing eℓ and stable under O. Note that this last
condition is automatic when e = 1, as O/lO only consists of scalars.

We can equivalently phrase this definition in terms of isotropic subspaces for ψℓ.

Lemma 2.5. The prime l is Elkies for A if and only if there exists a maximal isotropic
sub-(O/lO)-vector space of A[l] that is maximal isotropic for ψℓ and F -rational.

Proof. Suppose l is Elkies for A, i.e. there exists an Fq-rational Fℓ-vector space G ⊂ A[l]
which is maximal isotropic for the Weil pairing and stable under O. We may also view
G ⊂ A[l] as an F -rational sub-O/ℓO-vector space of dimension h. By Lemma 2.1(2), the
trace of ψℓ vanishes on G×G, so ψℓ vanishes on G×G as well as the trace is nondegenerate.

Conversely, if G ⊂ A[l] be a maximal isotropic subspace for ψℓ in A[l]. Seen as an Fℓ-
vector space, G has dimension eh while A[l] has dimension 2eh. Moreover G is isotropic
for the Weil pairing by Lemma 2.1(2). Therefore, ℓ is Elkies for A. □
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Definition 2.4 is a suitable generalization of the notion of Elkies primes for elliptic
curves [SS14], abelian surfaces without RM [Kie22, §3.2], and abelian surfaces with RM in
the case of split primes [Kie22, §4.1]. Moreover, there is still a close link between Elkies
primes and the existence of F -rational isogenies compatible with the RM structure and the
polarization of A. Let us specify this link in more detail, for motivation only, as it will not
be used in the rest of the paper.

First we introduce the following notation. The Néron–Severi group NS(A) of A (the
group of line bundles on A up to algebraic equivalence) is related to the endomorphisms
of A, as follows. The Q-algebra End0(A) = EndF (A) ⊗ Q is endowed with the Rosati

involution † coming from our choice of polarization on A. Let End0(A)† denote the sub-
vector space of elements invariant under †, and End(A)† = End0(A)† ∩ End(A). There is
an isomorphism NS(A) ⊗ Q ≃ End0(A)†, which depends on the chosen polarization of A
[Mum70, (3) p. 190]. Given α ∈ End(A)† and two abelian varieties A,B with RM by O,
we say that an isogeny ϕ : A → B is an α-isogeny if the RM structures of A and B are
compatible via ϕ, and if the pullback of the polarization of B via ϕ (seen as an element of
NS(A)) corresponds to α via the previous isomorphism. The element α is then necessarily
totally positive [Mum70, (IV) p. 209]. Equivalently, we ask that the diagram

A A A∨

B B∨

α

ϕ ϕ∨

commutes, where ∨ denotes duals and the unlabeled arrows are the polarizations. This
implies that ker(ϕ) is maximal isotropic in A[α] for its canonical nondegenerate pairing;
conversely, if K ⊂ A[α] is a maximal isotropic subspace, then A/K carries a unique po-
larization of degree dA such that the quotient isogeny A→ A/K is an α-isogeny [Mum70,
Cor. p. 231]. Recall that our Elkies primes are prime to p, dA and cO.

Proposition 2.6. (1) The prime l is Elkies if and only if there exists an abelian vari-
ety B over k with RM by O and an F -rational l-isogeny ϕ : A→ B in the sense of
[BJW17, Def. 4.1].

(2) Let l1, . . . , lr be distinct Elkies primes for A, and let k1, . . . , kr ≥ 0 be integers such

that lk11 · · · lkrr is trivial in the narrow class group of O. Let α ∈ O be a totally
positive generator of this product. Then there exists an abelian variety B over F
with RM by O and endowed with a polarization of degree dA, and an F -rational
α-isogeny ϕ : A→ B.

Proof of Proposition 2.6. (1) directly comes from the definition of l-isogenies.
We now prove (2). For 1 ≤ i ≤ r, let Ki ⊂ A[li] be F -rational, maximal isotropic, and

O-stable subgroups as in Definition 2.4. Define now K ′
i = A[lmi

i ] if ki = 2mi is even, and

K ′
i = A[lmi+1

i ]∩η−1(Ki), where η ∈ O is any element whose li-adic valuation is exactly mi,
when ki = 2mi + 1 is odd. We can check that K ′

i is independent of the choice of η, and

that it is an F -rational, O-stable, maximal isotropic subspace in A[lkii ]. By Lemma 2.1 and
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the Chinese remainder theorem, we have

A[α] =
r⊕

i=1

A[lkii ].

Moreover, the restriction of the pairing on A[α] to each subgroup A[lkii ] is precisely the

Weil pairing eℓi (mod ℓkii ), where ℓi ∈ Z denotes the prime below li, and the direct sum is
orthogonal, as can be seen from the functorial properties of those pairings [Mum70, p. 228].
Therefore K = K ′

1⊕· · ·⊕K ′
r is maximal isotropic in A[α], and is the kernel of the isogeny ϕ

we are looking for. □

2.3. Elkies primes and the action of Frobenius. We keep the notation of Table 2, and
assume first that F = Fq is a finite field. Let πA denote the Frobenius endomorphism
of A. We continue to assume that l is prime to p, dA and cO. We can also view the
Frobenius map as an element π ∈ GF .

Lemma 2.7. Let A be an abelian variety over F = Fq with RM by O. The prime l is
Elkies for A if and only if πA admits a maximal isotropic stable subspace in A[l], if and
only if ρl(π) ∈ GSp2h(O/lO) admits a maximal isotropic stable subspace in (O/lO)2h.

Proof. This is a restatement of Lemma 2.5, using the fact that a subspace of A[l] is Fq-
rational if and only if it is stable under πA. □

Lemma 2.7 prompts us to make the following definition.

Definition 2.8. Let k be a finite field. We say that a matrix m ∈ GSp2h(k) is split if it
leaves some maximal isotropic subspace of k2h stable. We denote by S2h,k ⊂ GSp2h(k) the
subset of split matrices, and for λ0 ∈ k×, we write

S2h,k(λ0) := {m ∈ S2h,k : λ(m) = λ0}.
We note that S2h,k(λ0) is a conjugacy-invariant subset of GSp2h(k).

Since χℓ(π) = q, another restatement of Lemma 2.5 is the following.

Lemma 2.9. The prime l is Elkies for A if and only if ρl(π) ∈ S2h,O/lO(q).

We now switch gears and assume that F is a number field. We fix a polarized abelian
variety A over F with RM by O. For every prime p of F with residue field Fp of good
reduction for A, the reduction Ap of Amodulo p is a polarized abelian variety of dimension g
over Fp with RM by O. Indeed, the listed properties can all be formulated in terms of
isogenies between abelian varieties and their duals, and such isogenies lift uniquely to Néron
models at p by [BLR90, §1.4, Prop. 4]. We can characterize Elkies primes for Ap in terms
of the Galois representations ρl evaluated at Frobenius elements in GF .

Proposition 2.10. Let p be a prime of good reduction for A above p ∈ Z, and let l be a
prime of O that is coprime to p, dA and cO. Then l is Elkies for the reduction Ap if and
only if ρl(σp) ∈ S2h,O/lO(NF/Q(p)), where σp ∈ GF is any Frobenius element at p (unique
up to conjugation in GF ).
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Proof. Denote by F ′ the field of definition of A[l], i.e. the smallest number field such that
the representation ρl : GF → GSp2h(O/lO) factors through Gal(F ′/F ). Let P be a prime
of F ′ above p, and let σp ∈ GF be a Frobenius element stabilizing P; we can consider σp
as a (uniquely specified) element of Gal(F ′/F ). Reduction modulo P defines a bijection
A[l] → Ap[l] by [ST68, §1, Lemma 2], so our choice of fixed symplectic basis of Tℓ(A) also
fixes a symplectic basis of Ap[l] as an (O/lO)-vector space. By definition, σp induces the
Frobenius map of the extension of residue fields F ′

P/Fp. Therefore, ρl(σp) is precisely the

matrix of the Frobenius endomorphism πAp in the symplectic basis of Ap[l] specified above.
We now apply Lemma 2.9, using the fact that χℓ(σp) = NF/Q(p) mod ℓ. □

Proposition 2.10 indicates that the Čebotarev density theorem in F ′/F will provide
information on how often a fixed prime l is Elkies for the reduced abelian varieties Ap as p
grows. In order to apply this theorem, we need to know what the Galois group Gal(F ′/F )
is: this is the purpose of the “large Galois image” hypothesis in Theorem 1.1.

2.4. Large Galois images. We keep notation from Table 2; here, F is a number field.
To formalize the definition of large Galois images used in the introduction, we introduce
the following notation. If n is an integer, we write

Ẑ≥n =
∏

ℓ prime, ℓ≥n

Zℓ.

The ℓ-adic Galois representations ρℓ : GF → GSp2h(O⊗Zℓ) can be combined into a global
representation

ρ̂n : GF → GSp2h(O ⊗ Ẑ≥n)

Definition 2.11. We say that A has large Galois image if for some integer n ≥ 1, the

image of ρ̂n contains Sp2h(O⊗ Ẑ≥n). Because the cyclotomic character χℓ is surjective for
large enough ℓ, an equivalent condition is that for some large enough n,

ρ̂n(GF ) = GSp2h(O ⊗ Ẑ≥n; (Ẑ≥n)
×).

In the main results of this paper, Theorems 1.1 and 1.2, we only consider abelian varieties
with RM that have large Galois images. In this subsection, we gather some necessary and
sufficient conditions for this to happen.

Proposition 2.12. If A has large Galois image, then EndQ(A) = O. In particular A is
simple of type I in Albert’s classification.

Proof. Since we assumed the RM embedding O ↪→End(A) to be primitive, it is sufficient
to prove that EndQ(A)⊗Q = K. Let F ′ be a number field over which all endomorphisms
of A are defined. Since GF ′ is an open subgroup of finite index in GF , there exists a prime ℓ
such that ρℓ(GF ′) still contains Sp2h(O ⊗ Zℓ). By Faltings [Fal83], EndF ′(A) ⊗ Qℓ is the
commutant of ρℓ(GF ′) in End(Tℓ(A)⊗Qℓ).

We claim that the commutant of Sp2h(O ⊗ Zℓ) in End(Tℓ(A) ⊗ Qℓ) is precisely given
by the action of elements of O ⊗ Qℓ on Tℓ(A). This would prove that EndF ′(A) ⊗ Qℓ is
contained in O ⊗Qℓ, hence EndQ(A)⊗Q = K as required.
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To show that the claim holds, choose an element γ ∈ End(Tℓ(A) ⊗ Qℓ) commuting
with Sp2h(O ⊗ Zℓ). In particular, considering scalar matrices in Sp2h, we see that γ acts
O-linearly: we can therefore consider γ as a 2h × 2h matrix with coefficients in O ⊗ Qℓ.
Since O ⊗ Qℓ is a product of fields, it is now sufficient to show that for any field k, the
commutant of Sp2h(k) consists of scalar matrices only.

This last fact well-known (the Lie algebra representation of sp2h on sl2h is irreducible),
but for completeness, we include a short proof when k is infinite. Let γ be a 2h×2h matrix
over k commuting with Sp2h(k). Consider any symplectic basis (v1, . . . , v2h) of k2h, and
let x1, . . . , xh ∈ k× be such that x1, . . . , xh, x

−1
1 , . . . , x−1

h are distinct. The endomorphism

whose matrix in the basis (v1, . . . , v2h) is Diag(x1, . . . , xr, x
−1
1 , . . . , x−1

r ) is symplectic, so
v1, . . . , v2h are eigenvectors of γ. As each nonzero element of k2h is part of some symplectic
basis, we deduce that each nonzero vector is an eigenvector for γ, hence γ is a scalar. □

Conversely, we have the following theorem, after results of Serre [Ser85], Ribet [Rib76],
Chi [Chi92] and Banaszak–Gajda–Krasoń [BGK06].

Theorem 2.13. Assume that EndQ(A) = O and either:

• d = 1 and g ∈ {2, 6}, or
• h = g/d is odd.

Then A has large Galois image.

Proof. After making a finite extension of F , which only shrinks the image of the Galois
representation, we may assume that the Zariski closure Gℓ of ρℓ(GF ) inside GSp2h(Qℓ)
is connected for all ℓ [Ser85, §2.5]. After taking another finite extension of F , we may
also assume that the ℓ-adic Galois representations of A are all independent in the sense
of [Ser85, §2.1]. The goal is then to prove that ρℓ(GF ) contains Sp2h(O ⊗ Zℓ) for large
enough ℓ. The case d = 1 is Serre’s open image theorem [Ser85, Thm. 3], while [BGK06,
Thm. 6.16] covers the cases where h is odd (and can be applied as Gℓ is connected.) □

In particular, if EndQ(A) = O and A is either an abelian surface or has odd dimension,
then A has large Galois image.

3. Counting split matrices in GSp2h(Fq)

Our goal here is to provide estimates for the cardinality of S2h,Fq(λ0) for λ0 ∈ F×
q . In

Section 4, we will use them with Fq = O/lO when applying the Čebotarev density theorem.
Since S2h,Fq(λ0) is conjugacy-invariant, it is a reunion of conjugacy classes of GSp2h(Fq),

and those have been classified: see for instance [Wil12, Section 6.2]. One key element of the
classification is the characteristic polynomial, so we start by studying its link with Elkies
primes in §3.1. We use this to count elements in S2h,Fq(λ0), up to negligible terms, in §3.2.
If h = 2, one can actually get an exact count, as we review in §3.3.

3.1. Characteristic polynomials and Elkies primes.
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Lemma 3.1. Let m ∈ GSp2h(Fq). Then m leaves a maximal isotropic subspace of F2h
q

stable if and only if m is conjugate in GSp2h(Fq) to a matrix of the form(
M ⋆
0 λ(m)M−⊺

)
for some M ∈ GLh(Fq), where M

−⊺ denotes the inverse transpose of M .

Proof. Assume that m admits a maximal isotropic stable subspace V ⊂ F2h
q . Then we can

find a symplectic basis of F2h
q whose first h vectors generate V , i.e. we can find Q ∈ Sp2h(Fq)

such that

QmQ−1 =

(
M ⋆
0 M ′

)
where M,M ′ ∈ GLh(Fq). Because λ(QmQ

−1) = λ(m), we must have M ′ = λ(m)M−⊺.
Conversely, assume that QmQ−1 has the specified form for some Q ∈ GSp2h(Fq). Let V

be the span of the first h vectors of the canonical basis of F2h
q . Then Q(V ) is a maximal

isotropic subspace of F2h
q that is stable under m. □

Definition 3.2. For a monic polynomial P ∈ Fq[X] of degree r with constant coefficient
a0 ∈ F×

q and λ0 ∈ F×
q , we define the λ0-reciprocal polynomial of P to be the monic

polynomial

P̃ λ0(X) =
1

a0
XrP

(
λ0
X

)
.

Proposition 3.3. Let m ∈ GSp2h(Fq), let λ0 = λ(m), and let χm be the characteristic

polynomial of m. If m is split, then there exists P ∈ Fq[X] such that χm = PP̃ λ0.

Proof. We may assume m is block-triangular as in Lemma 3.1. Let P denote the charac-

teristic polynomial of M . Then the characteristic polynomial of λ(m)M−⊺ is P̃ λ0 . □

Our next aim is to prove a partial converse to Proposition 3.3 assuming that χm is
separable, i.e. has only simple roots over an algebraic closure of Fq. For a monic polynomial
P (X) = Xn + an−1X

n−1 + . . . + a0 of Fq[X] of degree n, we denote by cP its companion
matrix:

cP =



0 . . . . . . 0 −a0
1

. . .
... −a1

0 1
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 1 −an−1

 .

Proposition 3.4. Let χ ∈ Fq[X] be a monic separable polynomial of degree 2h of the form

χ(X) = PP̃ λ0 with P ∈ Fq[X] and λ0 ∈ F×
q . Factor P = P1 · · ·Pr ∈ Fq[X] into irreducible
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polynomials in Fq[X]. Then all the elements of GSp2h(Fq) whose characteristic polynomial
is χ and multiplier is λ0 are conjugated to the matrix

Diag
(
cP1 , . . . , cPr , λ0c

−⊺
P1
, . . . , λ0c

−⊺
Pr

)
=



cP1

. . .

cPr

λ0c
−⊺
P1

. . .

λ0c
−⊺
Pr


.

In particular, they form a single conjugacy class in GSp2h(Fq).

Proof. Let m be an element of GSp2h(Fq) whose characteristic polynomial is χ and mul-
tiplier is λ0. Assume that m is the matrix of an endomorphism u in a symplectic ba-

sis (ei)1≤i≤2h. For every i, we write Vi = ker(Pi(u)) and Ṽi = ker(P̃i
λ0
(u)). By adapting

directly Lemma 3.1 of [Mil69] in the case where t ∈ GSp2h(Fq), we see that the sub-

spaces Vi and Ṽi are totally isotropic because Pi ̸= P̃i
λ0
, and that there is an orthogonal

decomposition
r⊕

i=1

(Vi ⊕ Ṽi).

For every i, let (αi, βi) be a symplectic basis of Vi⊕ Ṽi; both αi and βi have length deg(Pi).
The concatenation (α1, . . . , αr, β1, . . . , βr) is a symplectic basis of F2h

q . CallingQ ∈ Sp2h(Fq)
the base change matrix from (ei) to (α1, . . . , αr, β1, . . . , βr), we have

m = Q ·Diag(m1, . . . ,mr,m
′
1, . . . ,m

′
r) ·Q−1

where mi,m
′
i ∈ GLdeg(Pi)(Fq) for all i. For every i, the characteristic polynomial of mi

is Pi, so mi is conjugated to cPi in GLdeg(Pi)(Fq): there is Ri ∈ GLdeg(Pi)(Fq) such that

mi = RicPiR
−1
i . We define

R = Diag
(
R1, . . . , Rr, R

−⊺
1 , . . . , R−⊺

r

)
∈ Sp2h(Fq)

and we have

m = QR ·Diag
(
cP1 , . . . , cPr , R

⊺
1m

′
1R

−⊺
1 , . . . , R⊺

rmrR
−⊺
r

)
·R−1Q−1.

Because

Diag
(
cP1 , . . . , cPr , R

⊺
1m

′
1R

−⊺
1 , . . . , R⊺

rmrR
−⊺
r

)
is in GSp2h(Fq) with multiplier λ0, we have R

⊺
im

′
iR

−⊺
i = λ0c

−⊺
Pi

for every i, som is conjugate
to the block-diagonal matrix specified in the lemma. □

A direct consequence of Proposition 3.4, noting that the block-diagonal matrix specified
there is of the form required by Lemma 3.1, is now:
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Proposition 3.5. Let m ∈ GSp2h(Fq), let λ0 = λ(m). If the characteristic polynomial χm

of m is separable and of the form PP̃ λ0 for some P ∈ Fq[X], then m is split.

3.2. Estimating the size of S2h,Fq(λ0). We recall that

#GSp2h(Fq) = (q − 1) ·#Sp2h(Fq) = (q − 1) · qh2 ·
h∏

i=1

(q2i − 1) = q2h
2+h+1 +O(q2h

2+h).

In the following, we will write f(h) = 2h2 + h+ 1. As in Theorem 1.1, we set

αh =
∑

(d1,...,dr)∈Σh

1

2r
·

r∏
i=1

1

di
·

h∏
k=1

1

#{j : dj = k}!
.

The main result in this subsection is the following. Recall that the notation Oh means that
the implied constants are allowed to depend on h, but not on λ0.

Proposition 3.6. We have #S2h,Fq(λ0) = αhq
f(h)−1 +Oh

(
qf(h)−2

)
.

Proposition 3.5 suggests that split matrices m with separable characteristic polynomial

are easier to count. Let Ssep
2h,Fq

(λ0) (resp. Sinsep
2h,Fq

(λ0)) be the set of elements m ∈ S2h,Fq(λ0)

such that χm is separable (resp. inseparable). We obviously have

S2h,Fq(λ0) = S2h,Fq(λ0)
sep ⊔ S2h,Fq(λ0)

insep,

and we will count elements in each piece, beginning with the inseparable part.

Lemma 3.7. We have #Sinsep
2h,Fq

(λ0) = Oh(q
f(h)−2).

Proof. Define GSpinsep2h (Fq; {λ0}) as the set of elements of GSp2h(Fq) of multiplier λ0 and
whose characteristic polynomial is inseparable. We will in fact prove the stronger claim

#GSpinsep2h (Fq; {λ0}) = Oh(q
f(h)−2).

To this end, we wish to view GSpinsep2h (Fq; {λ0}) as the set of Fq-points of a certain va-
riety. Let ∆ : GSp2h → A1 be the morphism which maps m to the discriminant of its
characteristic polynomial. The points m ∈ GSp2h for which ∆(m) = 0 are precisely the
elements whose characteristic polynomial is inseparable. Moreover, the restriction of the
morphism λ : GSp2h → Gm to elements m for which ∆(m) = 0 is surjective: indeed, if λ1
is a point of Gm, then λ(

√
λ1 Id2h) = λ1. Thus, the set of points of GSp2h of multiplier λ0

and whose characteristic polynomial is inseparable is a subvariety of GSp2h of dimension
dim(GSp2h)− 2, defined by polynomial equations whose degrees are independent of λ0.

In [LW54], Lang and Weil proved that the number of points defined over Fq of a variety
of dimension r is O(qr), where the implicit constant only depends on the dimension and the
degree of the variety. The order of GSp2h(Fq) is a polynomial expression in q of degree f(h),

thus the dimension of GSp2h is f(h) and #GSpinsep2h (Fq;λ0) = Oh(q
f(h)−2). □
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We now estimate the size of Ssep
2h,Fq

(λ0). For a partition (d1, . . . , dr) of the integer h

such that d1 ≤ . . . ≤ dr, we denote by D(d1,...,dr)(λ0) the set of conjugacy classes in
GSp2h(Fq)(λ0) whose characteristic polynomial is separable and factors as

P1 · · ·Pr · P̃1
λ0 · · · P̃r

λ0

where Pi is irreducible of degree di for every i ∈ {1, . . . , r}. By Proposition 3.5, there is a
one-to-one correspondence between D(d1,...,dr)(λ0) and a set of characteristic polynomials.

Moreover, Ssep
2h,Fp

(λ0) is the reunion of all elements of D(d1,...,dr)(λ0) as (d1, . . . , dr) runs

through partitions of h.
We first show that the conjugacy classes of D(d1,...,dr)(λ0) all have the same size. Re-

call that for a element m ∈ GSp2h(Fq), the number of elements conjugated to m is
#GSp2h(Fq)/#C(m) where C(m) is the centralizer of m.

Lemma 3.8. Let P (X) = Xn + an−1X
n−1 + . . . + a0 be a monic irreducible polynomial

of Fq[X] of degree n. The number of elements m ∈ GLn(Fq) which commute with the
companion matrix cP is equal to qn − 1.

Proof. Let u be the endomorphism of Fn
q associated to the matrix cP . Then, for every

nonzero x ∈ Fn
q , the family (x, u(x), . . . , un−1(x)) is a basis of Fn

q because P is irreducible.
An element v in C(u) is determined by v(x) since for every i ∈ {0, . . . , n − 1}, we have
v(ui(x)) = ui(v(x)). If v(x) ̸= 0, then v maps the basis (x, u(x), . . . , un−1(x)) to the basis
(v(x), u(v(x)), . . . , un−1(u(x))), so v is invertible. Therefore, the elements m ∈ GLn(Fq)
commuting with cP are in one-to-one correspondence with the nonzero elements of Fn

q . □

Lemma 3.9. With the above notation, the cardinality of each element of D(d1,...,dr)(λ0) is

#GSp2h(Fq)

(q − 1)
r∏

i=1
(qdi − 1)

.

Proof. By Proposition 3.5, a representative of the class is the block-diagonal matrix

m = Diag
(
cP1 , . . . , cPr , λ0c

−⊺
P1
, . . . , λ0c

−⊺
Pr

)
.

Matrices in C(m) preserve the invariant subspaces of m, so they are also block-diagonal of
the form

Diag
(
N1, . . . , Nr, λ

′N−⊺
1 , . . . , λ′N−⊺

r

)
where Ni commutes with cPi for every i. By Lemma 3.8, the number of elements Ni

in GLdi(Fq) which commute with cPi is q
di − 1. Hence,

#C(m) = (q − 1)

r∏
i=1

(qdi − 1),

where the first factor (q − 1) corresponds to the choice of the multiplier λ′. □
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Second, we estimate the size ofD(d1,...,dr)(λ0).We denote by I(d1,...,dr)(λ0) the set of tuples
of irreducible polynomials (P1, . . . , Pr) ∈ Fq[X]r such that Pi is irreducible of degree di for

all i and the product P1 · · ·Pr · P̃1
λ0 · · · P̃r

λ0
is separable. In the next lemma, we identify

D(d1,...,dr)(λ0) with a set of characteristic polynomials.

Lemma 3.10. Consider the map

H :

{
I(d1,...,dr)(λ0) → D(d1,...,dr)(λ0)

(P1, . . . , Pr) 7→ P1 · · ·Pr · P̃1
λ0 · · · P̃r

λ0
.

Then, for every χ ∈ D(d1,...,dr)(λ0), we have

#H−1(χ) = 2r ·
h∏

k=1

#{j : dj = k}!.

Proof. Fix an element (P1, . . . , Pr) ∈ H−1(χ). Then, because χ is separable, choosing

another element of H−1(χ) consists in choosing one element of the pair {Pi, P̃i
λ0} for every

i ∈ {1, . . . , r}, as well as a permutation of the tuple (Pik,1 , . . . , Pik,s) where Pik,1 , . . . , Pik,s

are the polynomials of degree k, for every k ∈ {1, . . . , h}. □

Proof of Proposition 3.6. By Lemma 3.9, the number of elements in Ssep
2h,Fq

(λ0) is

#Ssep
2h,Fq

(λ0) =
∑

(d1,...,dr)∈Σh

#D(d1,...,dr)(λ0) ·
#GSp2h(Fq)

(q − 1)
r∏

i=1
(qdi − 1)

.

For a partition (d1, . . . , dr) of h with d1 ≤ . . . ≤ dr, we estimate the size of D(d1,...,dr)(λ0)
by determining the size of I(d1,...,dr)(λ0) and using Lemma 3.10.

The last coefficients of a monic polynomial P of degree d such that P = P̃ λ0 are de-
termined by the first coefficients, so the number of irreducible polynomials P such that

P = P̃ λ0 is O(qd−1). For every i, one has to choose Pi such that Pi ̸= P̃i
λ0

and Pi ̸= Pj , P̃j
λ0

for indices j < i. Then, according to a formula from Gauss for the number of irreducible
polynomials of Fq[X] of given degree (see [CM11] for a proof), the number of choices for Pi

is 1
di
qdi +O(qdi−1). Hence

#I(d1,...,dr)(λ0) =

(
r∏

i=1

1

di

)
qh +Oh(q

h−1).

Therefore,

#D(d1,...,dr)(λ0) =

(
1

2r
·

r∏
i=1

1

di
·

h∏
k=1

1

#{j : dj = k}!

)
qh +Oh(q

h−1)

and consequently
#Ssep

2h,Fq
(λ0) = αhq

f(h)−1 +O(qf(h)−2).

Combining this with Lemma 3.7 ends the proof. □
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3.3. The special case h = 2. When h = 2 and q = ℓ is an odd prime, we are able to
determine the exact cardinality of S2h,Fℓ

, through the classification of the conjugacy classes
of GSp4(Fℓ) and the computation of the cardinality of the classes in [Bre11].

Proposition 3.11. We have

#S4,Fℓ
=

(3ℓ3 + 7ℓ2 + 7ℓ+ 11)(ℓ+ 1)(ℓ− 1)3ℓ4

8
.

Proof. Conjugacy classes of GSp4(Fℓ) have been sorted in different types [Wil12, Section
6.2] according to the factorization of the characteristic polynomial, and the number of
classes of each type is known. We also notice that for each class whose characteristic

polynomial χ splits as PP̃ λ0 , there exists a representative of the form

m =

(
M ⋆
0 λ(m)M−⊺

)
,

so the converse of Proposition 3.3 is true in GSp4(Fℓ) even if χm is not separable. Thus,
we have to count the number of elements which belong to a class whose characteristic

polynomial splits as PP̃ λ0 . The order of each center has been computed in [Bre11, Table
1] (beware that the antisymmetric matrix used to define GSp2h there is not J2h, so notation
differs from [Wil12]). Thus we can deduce the size of each conjugacy class. □

The proof of Proposition 3.11 suggests the following question: does the converse of
Proposition 3.5 hold true in GSp2h(Fq) for all h, even if χm is not separable?

4. The distribution of Elkies primes

In this Section, we prove Theorem 1.2. We introduce the character sum Uk, similar to
the sum U in [SS15, eq. (4)], in §4.1. We control the small terms in this sum in §4.2 and
we estimate the dominant term in §4.3. Finally, we conclude the proof in §4.4.

4.1. Setup. We keep the notation from Theorem 1.1. We may suppose that P and L are
sufficiently large, so that Ap is well-defined for every p ∈ PF (P, 2P ), and if L = l1 · · · lr is
the product of r distinct primes of PK(L, 2L), then

GL := Gal(F (A[L])/F )
is contained between Sp2h (O/LO) and GSp2h (O/LO). This is harmless since we want to
establish an asymptotic result.

The Landau prime ideal theorem [Lan03] for the fields K and F asserts that

#PK(L, 2L) ∼ L

log(L)
and #PF (P, 2P ) ∼

P

log(P )
.

Let

δp,l =

{
(1− αh) if l is Elkies for Ap,

−αh otherwise

For a product l1 · · · lr, we define

δp,l1···lr = δp,l1 · · · δp,lr .
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We further set

µ = αh#PK(L, 2L) and σ =
√
αh(1− αh)#PK(L, 2L).

By definition,

Ne(p, L)− µ = (1− αh)Ne(p, L)− αh(#PK(L, 2L)−Ne(p, L))

=
∑

l∈PK(L,2L)

δp,l.

For any integer k ≥ 1, the k-th moment of XP,L is

E(Xk
P,L) =

1

#PF (P, 2P )

∑
p∈PF (P,2P )

(
Ne(p, L)− µ

σ

)k

=
1

#PF (P, 2P ) · σk
∑

p∈PF (P,2P )

 ∑
l∈PK(L,2L)

δp,l

k

=
1

#PF (P, 2P ) · σk
∑

p∈PF (P,2P )

∑
l1,...,lk

∈PK(L,2L)

δp,l1···lk .

Hence, we are led to considering the sums

Uk :=
∑

p∈PF (P,2P )

∑
l1,...,lk

∈PK(L,2L)

δp,l1···lk .

We expect compensations in the sum Uk when some primes among l1, . . . , lk appear an
odd number of times, and we will sort terms according to the number of distinct primes.
In the spirit of the proof of [SS15, Theorem 1], for 0 ≤ j ≤ k, let Qk,j be the set of tuples
(l1, . . . , lk) of primes in PK(L, 2L) such that l1 · · · lk = a2b where b is a squarefree product

of j prime ideals and a is the product of k−j
2 prime ideals (Qk,j is empty if k − j is odd).

If k = 2ν is even, we also define Q′
k,0 to be the set of tuples (l1, . . . , lk) such that the li’s

can be grouped in ν distinct pairs. We will see that the dominant term comes from the
contribution of the terms of Q′

k,0. We begin by estimating the other terms.

4.2. Small terms. We want to prove the following result, which generalizes the lemmas 5
and 6 in [SS15]. As in Theorem 1.1, the dependency on A in Landau’s notation includes
the dependency on F , O and h.

Proposition 4.1. Assume GRH. For P > 2L and a product L = l1 . . . lr of r distinct
primes of PK(L, 2L), we have∑

p∈PF (P,2P )

δp,L = OA,r

(
P

log(P )Lr
+ Lf(h)rP 1/2 log(P )

)
.
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The proof of this proposition is based on the Čebotarev density theorem in the Galois
group GL, which is a subgroup of

GSp2h

(
r∏

i=1

O/liO

)
∼=

r∏
i=1

GSp2h(O/liO).

Thus, an element m ∈ GL can be identified with an element

(m1, . . . ,mr) ∈
r∏

i=1

GSp2h(O/liO)

and its multiplier λ(m) with an element

(λ1, . . . , λr) ∈
r∏

i=1

(O/liO)×.

For (λ1, . . . , λr) ∈ λ(GL), we define

GL(λ1, . . . , λr) := {m ∈ GL : λ(m) = (λ1, . . . , λr)}

which can be identified with
r∏

i=1

GSp2h(O/liO, {λi}).

In particular, by the large Galois image assumption,

#GL(λ1, . . . , λr) =
r∏

i=1

#Sp2h(O/liO) and #GL = #λ(GL) ·
r∏

i=1

#Sp2h(O/liO).

Let us now construct the conjugacy classes in GL we are interested in. Given a tuple
(ε1, . . . , εr) ∈ {±1}r, we denote by

Cl1,...,lr(ε1, . . . , εr) ⊂ GL

the set of elements m = (m1, . . . ,mr) of GL such that mi ∈ S2h,O/liO if εi = 1 and
mi /∈ S2h,O/liO if εi = −1. This set is stable by conjugation in GL. For a given prime p of
good reduction for A, if we set

εp,li =

{
1 if li is Elkies for Ap,

−1 otherwise.

then by Proposition 2.10, the Frobenius element σp at p in GL satisfies

(ρl1(σp), . . . , ρlr(σp)) ∈ Cl1,...,lr(ε1, . . . , εr)

if and only if εp,li = εi for all i.
We also need to determine the size of this conjugacy class. For λi ∈ (O/liO)×, we define{

C1
li
(λi) = #S2h,O/liO(λi),

C−1
li

(λi) = #(GSp2h(O/liO; {λi})− S2h,O/liO(λi)).
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Considering the preimage of each multiplier (λ1, . . . , λr) ∈ λ(GL) separately, we immedi-
ately obtain

#Cl1,...,lr(ε1, . . . , εr) =
∑

(λ1,...,λr)∈λ(GL)

r∏
i=1

Cεi
li
(λi).

Lemma 4.2. Let L = l1 · · · lr be a product of distinct primes of PK(L, 2L) and (ε1, . . . , εr)
be an element of {±1}r. Then, for x > 2L, we have

#{p : N(p) ≤ x and εp,li = εi for all i} =

∑
(λ1,...,λr)∈λ(GL)

r∏
i=1

Cεi
li
(λi)

#GL

x

log(x)

+OA,r

(
N(l1)

f(h) · · ·N(lr)
f(h)x1/2 log(x)

)
.

Proof. This follows from an effective version of the Čebotarev density theorem in GL [Ser81,
§2, Equation (20R)] for the set Cl1,...,lr(ε1, . . . , εr). In the left-hand side of (20R), an upper

bound on #Cl1,...,lr(ε1, . . . , εr) is the order of GL, which is Or

(
N(l1)

f(h) · · ·N(lr)
f(h)
)
. The

degree n of the extension F (A[L])/F is equal to the order of GL. Since x > 2L, we have
log(n) = Or,h(log(x)). For every i ∈ {1, . . . , r}, let ℓi be the prime number below li. The
ramified primes in the extension F (A[L])/F lie among the divisors of ℓ1, . . . , ℓr and the
primes of bad reduction of A (this follows from the Néron-Ogg-Shafarevich criterion), so

log

(
r∏

i=1

ℓi

)
= Or(log(x))

under the assumption x > 2L. □

Proof of Proposition 4.1. We have∑
p∈PF (P,2P )

δp,L =
∑

(γ1,...,γr)
∈{1−αh,−αh}r

γ1 · · · γr ·#{p : N(p) ≤ x and εp,li = εi for all i}

where εi = 1 if γi = 1− αh and εi = −1 if γi = −αh. Write

S(λ1,...,λr)(l1, . . . , lr) =
∑

(γ1,...,γr)
∈{1−αh,−αh}r

γ1 · · · γr ·
r∏

i=1

Cεi
li
(λi).

By the previous lemma,

(5)

∑
p∈PF (P,2P )

δp,L =

∑
(λ1,...,λr)∈λ(GL)

S(λ1,...,λr)(l1, . . . , lr)

#GL
· P

log(P )

+OA,r

(
N(l1)

f(h) · · ·N(lr)
f(h)P 1/2 log(P )

)
.
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Fix (λ1, . . . , λr) ∈ λ(GL). Then,

S(λ1,...,λr)(l1, . . . , lr) =

r∏
i=1

Sλi
(li)

where Sλi
(li) := (1−αh)C

1
li
(λi)−αhC

−1
li

(λi). We have Sλi
(li) = Oh(N(li)

f(h)−2) according
to Proposition 3.6. Thus,

S(λ1,...,λr)(l1, . . . , lr) = OA,r

(
N(l1)

f(h)−2 · · ·N(lr)
f(h)−2

)
.

In this equality, the implicit constant is independent of (λ1, . . . , λr). Therefore,∑
(λ1,...,λr)∈λ(GL)

S(λ1,...,λr)(l1, . . . , lr) = OA,r

(
#λ(GL) ·N(l1)

f(h)−2 · · ·N(lr)
f(h)−2

)
.

Consequently, ∑
(λ1,...,λr)∈λ(GL)

S(λ1,...,λr)(l1, . . . , lr)

#GL
= OA,r

(
1

Lr

)
.

Inserting this upper bound and writing N(li) ≤ 2L in (5) ends the proof. □

4.3. The dominant term. When k is even, the dominant term of Uk corresponds to
the contribution of elements of Q′

k,0. We begin by estimating the size of this set. For a
positive integer ν, we recall that m2ν is the moment of order 2ν of the standard Gaussian
distribution. Its value is

m2ν = (2ν − 1) · (2ν − 3) · · · 3 · 1.

Lemma 4.3. Let ν be a positive integer. Then,

#Q′
2ν,0 = m2ν

Lν

log(L)ν
+Oν

(
Lν−1

log(L)ν−1

)
, and

#(Q2ν,0 −Q′
2ν,0) = Oν

(
Lν−1

log(L)ν−1

)
.

Proof. For n ∈ {1, . . . , ν}, let An be the set of tuples (A1, . . . , An) of disjoint subsets of
{1, . . . , 2ν} such that:

• for every i ∈ {1, . . . , n}, Ai ̸= ∅,
• for every (i, j) ∈ {1, . . . , n}2, Ai ∩Aj = ∅,
• for every i ∈ {1, . . . , n}, #Ai is even,

•
n⊔

i=1
Ai = {1, . . . , 2ν}.

We equip PK(L, 2L) with an arbitrary total order <. We also define Bn
L to be the set of

ordered n-tuples of distinct prime ideals of PK(L, 2L). Let s = (l1, . . . , l2ν) be an element
of Q2ν,0 such that lcm(l1 · · · l2ν) has n distinct prime factors, and l′1 < . . . < l′n be the
primes such that

{l1, ...l2ν} = {l′1, . . . , l′n}.
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Then, we define bs = (l′1, . . . , l
′
n). For j ∈ {1, . . . , n}, we set

As
j = {i ∈ {1, . . . , 2ν} : li = l′j}

and as = (As
1, . . . , A

s
n).

With this notation, the set Q2ν,0 is in one-to-one correspondence with⊔
1≤n≤ν

An × Bn
L

via s 7→ (as, bs), and Q′
2ν,0 is in one-to-one correspondence with Aν × Bν

L.
If n is fixed, we have

#Bn
L =

(
#PK(L, 2L)

n

)
∼ Ln

n! log(L)n

as L goes to infinity. For n = ν, we have

#Aν =

(
2ν

2

)
·
(
2ν − 2

2

)
· · ·
(
2

2

)
= ν! ·m2ν ,

so #(Aν × Bν
L) ∼ m2ν

Lν

log(L)ν . On the other hand, for n ≤ ν − 1, we have

#Bn
L = O

(
Lν−1

log(L)ν−1

)
.

Since #An is a constant independent of L, we obtain

ν−1∑
n=1

#An ·#Bn
L = Oν

(
Lν−1

log(L)ν−1

)
. □

We are able to prove a more precise statement than Proposition 4.1 for elements of Q′
2ν,0.

Proposition 4.4. Let (l1, . . . , l2ν) ∈ Q′
2ν,0. Then,∑

p∈PF (P,2P )

δp,l1···l2ν = (αh(1− αh))
ν P

log(P )
+OA,ν

(
P

log(P )L
+ Lf(h)νP 1/2 log(P )

)
.

Proof. Assume that {l1, . . . , l2ν} = {l′1, . . . , l′ν} where l′1 < . . . < l′ν . Given (γ1, . . . , γν) in
{1−αh,−αh}ν , denote by Dl′1,...,l

′
ν
(γ1, . . . , γν) the set of primes p ∈ PF (P, 2P ) such that for

every i, the prime l′i is Elkies for Ap if γi = 1− αh, and l′i is not Elkies for Ap if γi = −αh.

As in Lemma 4.2, the Čebotarev density theorem yields:

#Dl′1,...,l
′
ν
(γ1, . . . , γν) =

∑
(λ1,...,λν)∈λ(Gl′1···l

′
ν
)

ν∏
i=1

Cεi
l′i
(λi)

#Gl′1···l′ν

P

log(P )
+OA,ν

(
Lνf(h)P 1/2 log(P )

)
= (αh)

k1(1− αh)
ν−k1 P

log(P )
+OA,ν

(
P

log(P )L
+ Lνf(h)P 1/2 log(P )

)
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where k1 is the number of entries γi equal to 1− αh. Then,∑
p∈PF (P,2P )

δp,l1···l2ν =
∑

(γ1,...,γν)
∈{1−αh,−αh}ν

(1− αh)
2k1(αh)

2(ν−k1) ·#Dl′1,...,l
′
ν
(γ1, . . . , γν)

=
ν∑

k1=0

(
ν

k1

)
(1− αh)

2k1 (αh)
2(ν−k1) (αh)

k1 (1− αh)
ν−k1 P

log(P )

+OA,ν

(
P

log(P ) · L
+ Lf(h)νP 1/2 log(P )

)
= (αh(1− αh))

ν P

log(P )
+OA,ν

(
P

log(P ) · L
+ Lf(h)νP 1/2 log(P )

)
. □

4.4. Conclusion of the proof. We go back to estimating the moments of XP,L. First,
assume that k is odd, and write k = 2ν + 1. Then

Uk =
ν∑

j=0

∑
(l1,...,l2ν+1)
∈Q2ν+1,2j+1

∑
p∈PF (P,2P )

δp,l1...l2ν+1 .

For j ∈ {0, . . . , ν}, we have

#Q2ν+1,2j+1 = Oν

(
Lν+j+1

log(L)ν+j+1

)
,

so by Proposition 4.1,∑
(l1,...,l2ν+1)
∈Q2ν+1,2j+1

∑
p∈PF (P,2P )

δp,l1···l2ν+1

= OA,ν

(
Lν+j+1

log(L)ν+j+1

(
P

L2j+1 log(P )
+ Lf(h)(2j+1)P 1/2 log(P )

))
.

The dominant terms occur for j = 0 and j = ν. By getting rid of the non-dominant terms,
we obtain

Uk = OA,k

(
LνP

log(L)ν+1 log(P )
+
L(2ν+1)(f(h)+1)P 1/2 log(P )

log(L)2ν+1

)
.

We finally plug this upper bound into the expression for E(Xk
P,L) in §4.1. We have

σk ·#PF (P, 2P ) ∼
P,L→+∞

(αh(1− αh))
ν+1/2 P

log(P )
· Lν+1/2

log(L)ν+1/2
.
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Hence,

E(Xk
P,L) =

Uk

#PF (P, 2P )σk

= OA,k

(
1

L1/2 log(L)1/2
+
L(2ν+1)(f(h)+1)−ν−1/2 log(P )2

log(L)ν+1/2P 1/2

)
,

proving Theorem 1.2 for odd k.
Second, assume that k = 2ν is even. We also write

U2ν =

ν∑
j=0

∑
(l1,...,l2ν)∈Q2ν,2j

∑
p∈PF (P,2P )

δp,l1···l2ν .

For j ∈ {1, . . . , ν}, we obtain as above∑
(l1,...,l2ν)∈Q2ν,2j

∑
p∈PF (P,2P )

δp,l1···l2ν = OA,ν

(
Lν+j

log(L)ν+j

(
P

L2j log(P )
+ L2f(h)jP 1/2 log(P )

))
.

Now assume that j = 0. By Lemma 4.3 and Proposition 4.4, the contribution of elements
of Q′

2ν,0 to Uk is

m2ν
Lν

log(L)ν
(αh · (1− αh))

ν P

log(P )

+OA,ν

(
P

log(P )L
+

PLν−1

log(P ) log(L)ν−1
+
L(f(h)+1)νP 1/2 log(P )

log(L)ν

)
.

while the contribution of elements from Q2ν,0 −Q′
2ν,0 is

Oν

(
P log(L)ν−1

log(P ) log(L)ν−1

)
.

The dominant terms in the above upper bounds occur for j = 0 and j = ν, and we have

U2ν = m2ν
Lν

log(L)ν
(αh · (1− αh))

ν P

log(P )

+OA,ν

(
P

log(P )

Lν−1

log(L)ν−1
+
L(2f(h)+2)νP 1/2 log(P )

log(L)2ν

)
.

Therefore,

E(Xk
P,L) = mk +OA,k

(
log(L)

L
+
L(2f(h)+1)ν log(P )2

log(L)νP 1/2

)
.

This concludes the proof of Theorem 1.2; Theorem 1.1 is a consequence of this theorem
and [Bil95, Theorem 30.2].
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5. Numerical experiments

At the beginning of this project, we performed numerical experiments with SageMath
[Sag24] in order to confirm experimentally the estimate of [SS15, Theorem 1]. All the
experiments presented in this section were made with the non-CM elliptic curve E given
by the Weierstrass equation y2 + y = x3 − x2 defined over Q (Cremona label 11a3). We
began by computing some values of the left-hand side of [SS15, Theorem 1] by fixing one
of the variable L or P and by letting the other one vary. Fig. 1 shows the evolution of
the left-hand side for ν = 1 for three values of L (namely 25, 100 and 250) and P varying
between 103 and 5 · 106.

Figure 1. Moment of order 2 for P ∈ [103, 5 · 106]

This graph suggests that the left-hand side has a finite limit (which depends on L) as P
goes to infinity. To go further, we analyzed the distribution of Ne(p, L), i.e. the number of
primes p ∈ PQ(P, 2P ) such that Ne(p, L) = n as n varies between 0 and π(2L)− π(L) + 1.
We observed that this distribution has a Gaussian shape when P is much larger than L as
in Fig. 2.

We then tried to predict the mean value and the standard deviation as a function of L
through a naive probabilistic model, relying on the fact that the standard hypothesis that
50% of prime numbers are Elkies is correct. In other words, for every p ∈ PQ(P, 2P ), a
prime ℓ ∈ [L, 2L] has a probability 1/2 to be Elkies for the reduced curve Ep, and those
events are independent. Then, the number of Elkies primes for Ep in [L, 2L] follows a
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binomial distribution B(π(2L)− π(L), 1/2), whose expected value µ and deviation σ are

µ =
π(2L)− π(L)

2
and σ =

√
π(2L)− π(L)

2
.

Therefore, when P is much larger than L, we expect the actual distribution of Elkies primes
to look like a Gaussian function with those parameters. In Fig. 2, we plot the distribution
for L = 250 and P = 107 in blue and the associated Gaussian red; we see that the naive
model fits very well with the reality.

Figure 2. Distribution with L = 250 and P = 107

The predicted value of the left-hand side of [SS15, Theorem 1] for ν = 1 is the moment
of order 2 of the binomial distribution B(π(2L) − π(L), 1/2), which is (π(2L) − π(L))/4.
On Fig. 3, we fix P = 105 and we let L vary in [20, 500]. We plot the evolution of the
left-hand side for in blue and the predicted value in red. We see that the model is accurate
for small values of L, but when L is larger than

√
P , a gap between the model and the

reality starts appearing.
All in all, these numerical experiments gave us the idea that the distribution of Elkies

primes converges to a Gaussian function when P and L go to infinity with P growing quickly
compared with L. The naive model allowed us to predict the parameters of this Gaussian
function in the setting of elliptic curves, setting us on the path towards Theorem 1.1.
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Figure 3. Evolution of the moment of order 2, with P = 105 and L ∈ [20, 500]
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