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Solving non-causal schemes for anisotropic eikonal equations,

with quasi-linear complexity

Jean-Marie Mirebeau∗, Rawane Mansour†

November 18, 2024

Abstract

We introduce a numerical algorithm for solving anisotropic eikonal equations, whose com-
plexity is quasi-linear O(N ln2(N/ε)) with respect to the number N of discretization points,
and logarithmic w.r.t. the numerical tolerance ε > 0, with explicit constants depending on
the metric defining the PDE geometry. In contrast with the fast-marching method, our al-
gorithm does not rely on the causality property, and for this reason it can be applied to a
variety of discretization schemes: semi-Lagrangian, Eulerian, or based on a Lax-Friedrichs
relaxation of the eikonal PDE. Our method uses a narrow band to compute the eikonal
front propagation, whose width is tuned depending on the properties of the discretization
scheme and of the metric. Numerical experiments, involving anisotropic metrics arising in
seismology, image segmentation and motion planning, illustrate the efficiency of the method.

1 Introduction

The eikonal equation is a first order non-linear PDE, characterizing the distance map defined by
a local metric. It is a simple model of front propagation, whose numerical solution plays a funda-
mental role in numerous applications such as motion planning, geometry processing, or seismic
traveltime tomography, see e.g. [PPKC10]. Discretizations of the eikonal equation can be split
into two categories, depending on whether they do or do not satisfy the causality property, see (9)
below. Causal schemes can be solved using the Fast Marching Method (FMM) which is a gen-
eralization of Dijkstra’s algorithms on graphs, with complexity O(N lnN) where N denotes the
number of discretization points1, following the seminal work [Tsi95, Set96]. Unfortunately, the
design of a causal numerical scheme becomes complex when the metric is (strongly) anisotropic
[KS98, SV03, Mir14a, Mir14a], i.e. when the front propagates faster in some directions than oth-
ers, and one cannot avoid using a wide discretization stencil [Mir16] which is a serious drawback.
Non-causal schemes can on the other hand be solved up to an arbitrary tolerance ε > 0 using
a variety of iterative methods [Zha05, BR06, CCF11, JW08], for a cost Cost(N, ε,F) - which
strikingly is not known for any of these algorithms - depending on the number of points N , the
error tolerance ε on the residue of the numerical scheme, and the properties of the metric hence-
forth denoted F describing the geometry of the PDE. In this paper, we introduce a narrow band
method for solving non-causal discretizations of the eikonal equation, in the spirit of [CCF11], see
algorithm 1, and perform a thorough analysis of its numerical complexity Cost(N, ε,F) which is

∗University Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France.
†University Paris-Saclay, Laboratoire de Mathématiques d’Orsay, 91405 Orsay, France
1A even stricter condition, referred to as strict causality, allows solving the scheme in O(N) time using a

variant of Dial’s algorithm [Tsi95].
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quasi-linear O(N ln2(N/ε)) with explicit constants depending on the metric F , see theorem 1.3.
The proof applies to semi-Lagrangian, Eulerian, or Lax-Friedrichs discretizations of the eikonal
equation, associated with Riemannian or Finslerian anisotropic metrics, and relies on a new
geometrical concept referred to as α-acuteness.

In order to describe our results in more detail, we need to introduce some notations. Let
Ω ⊂ Rd be a bounded open domain with Lipschitz boundary, equipped with a Finslerian metric2

F : Ω×Rd → R denoted (x, v) 7→ Fx(v). Then there exists a unique viscosity solution [BCD97]
denoted U : Ω→ R to the anisotropic eikonal PDE:

∀x ∈ Ω, F∗
x

(
−∇U(x)

)
= 1, where F∗

x(η) := max
Fx(ξ)≤1

⟨η, ξ⟩ (1)

denotes the dual metric, with null Dirichlet boundary conditions U = 0 on ∂Ω for simplicity. In
fact, this PDE characterizes the Finslerian distance to the boundary:

U(x) = inf
γ

∫ 1

0
Fγ(t)(γ

′(t))dt, subject to γ ∈ Lip([0, 1],Ω), γ(0) = x, γ(1) ∈ ∂Ω. (2)

In other words, U(x) is the minimal time needed to reach ∂Ω when starting from x ∈ Ω. In this
introduction, we discretize the eikonal equation using a semi-Lagrangian approach similar to
[Tsi95, BR06], but let us emphasize that our results also apply to Eulerian discretizations such
as [Set96, Mir19], and to a Lax-Friedrichs relaxation inspired by [KOQ04], see appendices A
and B. Let X̊ ⊂ Ω and ∂X ⊂ Rd be disjoint finite sets, referred to as the discrete interior and
boundary, and let X := X̊ ⊔ ∂X. For all x ∈ X̊ we consider a stencil V(x) which is a finite and
non-empty collection of tuples (v1, · · · , vd) ∈ (Rd)d such that x+ vi ∈ X for all 1 ≤ i ≤ d. The
semi-lagrangian update operator Λ : RX → RX is defined as

Λu(x) := min
(v1,··· ,vd)∈V(x)

min
(ξ1,··· ,ξd)∈Ξd

Fx

( ∑
1≤i≤d

ξivi

)
+

∑
1≤i≤d

ξiu(x+ vi), (3)

for any discrete map u ∈ RX and any interior vertex x ∈ X̊. By convention Λu(x) = 0 for all
x ∈ ∂X. We have ξ1, · · · , ξd ≥ 0 and ξ1 + · · ·+ ξd = 1 in (3). Indeed, Ξd henceforth denotes the
collection of d-plets of barycentric coordinates, defined as

Ξd := {ξ ∈ [0,∞[d| ⟨ξ,1⟩ = 1}, where 1 := (1, · · · , 1) ∈ Rd. (4)

Under suitable assumptions, the operator Λ admits a fixed point, which approximates the
solution to the eikonal equation (1), see remark 1.7. The update operator (3) has a clear
geometrical interpretation (5) when the stencils arise from a triangulation, yet in practice many
other constructions have been proposed [Tsi95, KS98, Set96, Mir14b, Mir14a], and for our
purposes we only require assumption 1.2 below.

Remark 1.1 (Stencil arising from a triangulation). Assume that X̊ and ∂X denote the interior
and boundary vertices, respectively, of a triangulation T of Ω. For any interior vertex x ∈ X̊
define V(x) as the collection of all tuples (v1, · · · , vd) ∈ (Rd)d (up to permutation) such that
the simplex [x, x + v1, · · · , x + vd] ∈ T , following [BR06]. Denote by V(x) the union of these
simplices, which is a neighborhood of x. Then (3) can be reformulated as

Λu(x) = min
y∈∂V(x)

Fx(y − x) + IT u(y), (5)

2I.e. (x, v) 7→ Fx(v) is jointly continuous w.r.t. the position x ∈ Ω and the velocity v ∈ Rd, and Fx is a
(possibly asymmetric) norm w.r.t. the velocity v for any fixed position x ∈ Ω.
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where IT denotes piecewise linear interpolation on the triangulation T . The fixed point equation
Λu = u is thus a discrete counterpart of Bellman’s optimality principle U(x) = miny∈∂V(x) dF (x, y)+
U(y) which is satisfied by the distance map U to the boundary (2), where dF denotes the travel-
time (or path-length) distance associated with the metric F .

Let us introduce the collection of outward offsets from an interior vertex x ∈ X̊

E(x) := {vi | (v1, · · · , vd) ∈ V(x), 1 ≤ i ≤ d}, (6)

and denote by dE : X × X → [0,∞] the (asymmetric and possibly infinite) distance on the
positively weighted oriented graph with an edge (x, x + v) traversed in time Fx(v) > 0, for all
x ∈ X̊ and all v ∈ E(x).

In algorithm 1 below, the narrow band Bn+1 is defined in terms of the distance dE to a set
of points denoted Yn. In practice, this distance is computed using Dijkstra’s algorithm on the
graph defined by E with null boundary conditions on the set Yn, see algorithm 2 page 17.

Assumption 1.2. (Connectedness to the boundary) For all x ∈ X̊, there exists y ∈ ∂X such
that dE(x, y) <∞. (Non-degeneracy of simplices) For all x ∈ X̊ and all (v1, · · · , vd) ∈ V(x) one
has det(v1, · · · , vd) ̸= 0.

Algorithm 1 Narrow band solver of Λu = u, with guaranteed complexity

Inputs: X = X̊ ⊔ ∂X the discretized domain, Λ the update operator, parameters τ , r, T , K.
Initialization: Initialize a mutable u : X → [0,∞] to the value ∞ identically.
For n = 0, 1, · · · until u ≤ (n− r)τ identically on X do

Construct Yn := {y ∈ X | u(y) ≤ (n− 1)τ} ∪ ∂X
Construct Bn+1 := {x ∈ X | u(x) ≥ (n− r + 1)τ and dE(x, Yn) ≤ T}
For k = 1, · · · ,K do

For all x ∈ Bn+1 do u(x)← Λu(x) in parallel

The main result of this paper is a complete convergence and complexity analysis of algo-
rithm 1, which is a numerical solver of the fixed point problem Λu = u discretizing the eikonal
equation, based on a carefully designed narrow band B along which the values of the computed
solution are repeatedly updated. In the related literature [Tsi95, CCF11], points within the
narrow band are usually referred to as Active, points which leave the narrow band are tagged as
Frozen afterwards, and other points are Far. The complexity of algorithm 1 is dominated by the
update operations u(x)← Λu(x) in the last line, which are regarded as elementary operations.
The narrow band B itself is obtained using Dijkstra’s method, see algorithm 2, which has a
non-dominant cost. In practice, the minimization over Ξd in (3) has a closed form in the case of
a Riemannian metric [Tsi95, SV03], but for more complicated metrics it needs to be addressed
using iterative convex optimization methods [DCC+21].

We denote equivalently V ∈ V(x) or (x, V ) ∈ V, and we regard the stencil element V =
(v1, · · · , vd) ∈ (Rd)d as a matrix defined column-wise. In the next result we let ln+ := max{1, ln},
and for any point x ∈ Ω, vector ξ ∈ Rd, and asymmetric norm F , we denote

FV
x (ξ) := Fx(V ξ) Fmax := max

∥ξ∥=1
F (ξ), Fmin := min

∥ξ∥=1
F (ξ). (7)

Theorem 1.3. Under assumption 1.2, there exists a unique u∗ ∈ RX such that Λu∗ = u∗.
Given a tolerance ε > 0, and using the parameters τ, r, T,K of proposition 2.14 and lemma 3.7,
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algorithm 1 produces an approximate solution u ∈ RX such that u − ε ≤ u∗ ≤ u. It uses
O(Nκ2 ln+(Nhκ2/ε)(κ+ ln+(Nh/ε))) elementary solution updates (of the form u(x)← Λu(x)),
where the constant only depends on the space dimension d, with N := #(X) and

h := max
(x,V )∈V

(FV
x )max, hmin := min

(x,V )∈V
(FV

x )min, κ := h/hmin. (8)

Algorithm 1 has purposely a simple structure, which makes it amenable to the complexity
analysis of theorem 1.3. In the numerical experiments section 4, we show that the parameter K
is in practice advantageously replaced with an adaptive stopping criterion in the corresponding
loop. We also provide simple and efficient heuristics for setting the parameters τ , r and T -
indeed, the parameters used in the proof of theorem 1.3 are not sharp enough to provide good
performance.

For comparison, the FMM can solve the fixed point system Λu∗ = u∗ exactly (up to ma-
chine precision) using at most M :=

∑
x∈X̊ #(E(x)) elementary solution updates, each coming

with a logarithmic overhead cost for maintaining a heap structure, resulting in the overall cost
O(M lnN) which is similarly quasi-linear. However, the FMM needs the update operator Λ to
obey the following causality property [Mir19, Appendix A]: for all u, v ∈ RX , and all t ∈ R

u<t = v<t ⇒ (Λu)≤t = (Λv)≤t, where u<t(x) :=

{
u(x) if u(x) < t,

∞ otherwise,
(9)

and likewise for u≤t. In other words, any update value Λu(x) can be expressed in terms of
strictly smaller values of u (compare with (37) page 22). The celebrated “acuteness implies
causality” principle [Tsi95, KS98, SV03, GV23] states that (9), in the case of the semi-Lagrangian
update operator (3), is equivalent to assuming that the norm FV

x satisfies the classical acuteness
condition of definition 1.4 below, for each x ∈ X̊ and V ∈ V(x). A line of works has been
devoted to the construction of stencils V(x), depending on the local metric Fx, such that this
condition is satisfied [KS98, SV03, Mir14b, Mir14a]; however, when the anisotropy of F increases
the obtained stencils V inevitably become wide [Mir16] and may contain many elements, which
negatively affects accuracy and complexity.

We recall below the classical acuteness condition and introduce, as announced, a relaxation
referred to as α-acuteness where α > 0 is regarded as a timescale, which is sufficient for the
proof of theorem 1.3. The α-acuteness condition is always satisfied for sufficiently large α,
see proposition 1.5 below, in contrast with the classical acuteness condition which puts severe
constraints on the norm FV

x and thus on the scheme design.

Definition 1.4. Let F : Rd → R be a differentiable asymmetric norm, and let α > 0. The
α-acuteness condition (resp. classical acuteness condition) requires that for all ξ ∈ Ξd〈

ξ, exp(− 1
α∇F (ξ))

〉
< 1,

(
resp. ∇F (ξ) ∈ [0,∞[d

)
, (10)

where exp is applied componentwise. We denote ρF (α) := max{⟨ξ, exp(− 1
α∇F (ξ))

〉
| ξ ∈ Ξd}.

In the special case where F = FV
x and Fx is proportional to the Euclidean norm, the classical

acuteness condition is equivalent to ⟨vi, vj⟩ ≥ 0 for all 1 ≤ i < j ≤ d, where V = (v1, · · · , vd).
Hence the name, see [KS98, SV03, Mir14b, Mir14a, GV23] a proof and various generalizations.
Definition 1.4 has a straightforward extension to non-differentiable norms, see proposition 2.23.
Propositions 1.5 and 1.6 below are key ingredients of the proof of theorem 1.3, and are established
in section 2.3.
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Proposition 1.5. Let F : Rd → R be an asymmetric norm. If α > F 2
max/Fmin (resp. if α > 0

and F satisfies the classical acuteness condition) then ρF (α) < 1, and more precisely

ρF (α) ≤ 1− Fmin

α
√
d

(
1− F 2

max

αFmin

)
,

[
resp. ρF (α) ≤ 1− Fmin

Fmax

√
d

(
1− exp

(
− Fmax

α

))]
. (11)

The eikonal equation, and the corresponding numerical schemes, are often reformulated using
an exponential change of coordinates - known as the Kružkov3 transform - which introduces a
timescale α > 0 in the problem. The next result implies that the exponentially transformed
update operator is contracting iff the α-acuteness condition is satisfied.

Proposition 1.6. Let F be an asymmetric norm on Rd, and let α > 0. Define for any u ∈ Rd

λF (u) := min
ξ∈Ξd

F (ξ) + ⟨ξ, u⟩, ϕF := EαλFE
−1
α , with Eα(u) := − exp(−u/α). (12)

If F is uniformly convex and continuously differentiable on Rd \ {0}, and ξ ∈ Ξd minimizes (12,
left), then

∇λF (u) = ξ,
[ d

dt
ϕF (v + t)

]
t=0

= ⟨ξ, exp(− 1
α∇F (ξ))⟩,

where v := Eαu. As a result one has ϕF (v + t) ≤ ϕF (v) + ρF (α) t, for all v ∈ Rd and t ≥ 0.

Comparison with the state of the art. A variety of numerical methods already allow solv-
ing non-causal discretizations of the eikonal equation, known as Fast Sweeping (FS), Adaptive
Gauss-Siedel Iteration (AGSI), Fast Iterative Method (FIM), or Banded Fast Marching (BFM)
[Zha05, BR06, JW08, CCF11]. These methods usually work well in applications, and their nu-
merical complexity has been estimated to O(N), O(N lnN), or O(N1+1/d) based on heuristic
considerations and empirical observations, see [Zha05, CCF11, BR06] and section 4. However,
no complete complexity analysis has been published to the knowledge of the authors. In contrast
with our result theorem 1.3, these empirical estimates also do not take into account the fixed
point tolerance ε > 0, or the anisotropy of the metric F .

Limitations. A large body of work has been devoted to the numerical solution of the eikonal
equation. Important topics of interest include parallelization and GPU acceleration [JW08],
linear formulations using Varadhan’s asymptotic expansion of the heat kernel, methods with
high order of accuracy, inverse problems known as traveltime tomography, avoiding the curse of
dimensionality in high dimensional problems, and many more. They all are outside the scope
of this paper, see the survey article [CLPQ20] for some discussion.

Contributions. We establish a quasi-linear complexity guarantee for a numerical method
solving anisotropic eikonal equations, see theorem 1.3, which is based on a carefully designed
narrow band and applies to semi-Lagrangian, Eulerian or Lax-Friedrichs discretizations of the
PDE. The proof relies on a new geometrical property referred to as α-acuteness, see definition 1.4.

Outline. We study in section 2 a simplified algorithm, in order to illustrate the main geometri-
cal concepts while avoiding some technical difficulties, in which the narrow band is defined using
the exact solution and provided by an oracle. Our main result theorem 1.3 is established in sec-
tion 3. It is illustrated by numerics in section 4, and extended to to Eulerian and Lax-Friedrichs
schemes in appendices A and B.

3Kružkov also shifts the solution by 1, but this was not convenient for our purposes.
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Remark 1.7 (Convergence to the viscosity solution). Standard techniques for the convergence
analysis of monotone discretization schemes show that the fixed point uh of the update operator
(3) with discretization scale (8, left) denoted h, converges uniformly uh → U as h → 0 to the
viscosity solution U of (1), under mild assumptions. See for instance [BR06, Mir14a] in the
semi-Lagrangian setting, [Mir19] in the Eulerian setting, [KOQ04] in the Lax-Friedrichs setting,
or [AL24] for optimal convergence rates. Such convergence results to the continuum limit are
however not within the scope of this paper.

Notations: The space Rd is equipped with the Euclidean norm ∥ · ∥ and scalar product ⟨·, ·⟩.
The operator norm of a matrix A is also denoted ∥A∥ := max{∥Ax∥ | ∥x∥ ≤ 1}. The collection
of d × d matrices which are invertible (resp. symmetric, resp. symmetric positive definite) is
denoted GL(Rd) (resp. Sd, resp. S++

d ).
The letter F always refers to an asymmetric norm, i.e. a mapping F : Rd → R+ satisfying

F (λx) = λF (x) for all λ > 0, F (x+y) ≤ F (x)+F (y) and
(
F (x) = 0⇔ x = 0

)
, for all x, y ∈ Rd;

for readability, the word asymmetric is often dropped in the following.
The notation X = Y̊ ⊔ ∂Y means that the set X is the union of two disjoint sets Y̊ and

∂Y . By RX we denote the collection of all maps u : X → R. When the set X is clear
from context, we denote {u ≤ t} := {x ∈ X | u(x) ≤ t}, for any t ∈ R. We denote by
max(u) := max{u(x) | x ∈ X} the largest value attained by u ∈ RX , and by max{u, t} ∈ RX

the map defined pointwise by max{u(x), t} for all x ∈ X, where t ∈ R.

2 Proof in a simplified setting

In this section, we establish a variant of the algorithmic complexity result theorem 1.3 in a
simplified setting, where the narrow band needs to be provided by an oracle, since its definition
involves the exact solution of the problem interest. We present in section 2.1 some basic results
on discrete monotone operators, used in section 2.2 to evaluate the accuracy and complexity
of the simplified algorithm in an abstract axiomatic setting. We study in section 2.3 the α-
acuteness geometrical property, proving propositions 1.5 and 1.6 from the introduction, and we
show that the semi-Lagrangian scheme (3) satisfies the required axioms.

2.1 Discrete monotone operators

Throughout this section we fix a finite setX, and denote by RX the collection of maps u : X → R.
The set RX is equipped with the following partial order, and strict partial order

u ⪯ u′
def⇔

(
∀x ∈ X, u(x) ≤ u′(x)

)
, u ≺ u′

def⇔
(
∀x ∈ X, u(x) < u′(x)

)
.

A (discrete) operator on the set X is an arbitrary mapping Λ : RX → RX . The notations Λu
and Λ(u) are used interchangeably, with the aim to improve readability; for instance we usually
write Λu(x) rather than Λ(u)(x), for all u ∈ RX and x ∈ X. Operators which are monotone4,
i.e. non-decreasing w.r.t. the partial order ⪯, are a classical tool in the study the of discretization
schemes for degenerate elliptic equations in general [BBM23], and eikonal equations in particular
[BR06]. We gather below some basic results needed for our analysis, see [BR06, BBM23] and
references therein for more discussion. In order to alleviate notations, we often identify a real
t ∈ R with a constant mapping in RX .

4Note to be confused with monotone operators in Hilbert spaces, which is an unrelated concept.
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Definition 2.1. An operator Λ : RX → RX is said:

• monotone if ∀u, u′ ∈ RX , u ⪯ u′ ⇒ Λu ⪯ Λu′.

• ρ-sub-additive if ∀u ∈ RX , ∀t ∈ [0,∞[, Λ(u+ t) ⪯ Λu+ ρt.

• super-multiplicative if ∀u ∈ RX , ∀γ ≥ 1, Λ(γu) ⪰ γΛu.

We usually assume ρ ∈ [0, 1]. By convention, a 1-sub-additive operator is said sub-additive.

Lemma 2.2. (a) If Λ is ρ-sub-additive, then ∀u ∈ RX , ∀t ∈ [0,∞[, Λ(u− t) ⪰ Λu− ρt.

(b) If Λ is super-multiplicative, then ∀u ∈ RX , ∀γ ∈ [0, 1], Λ(γu) ⪯ γΛu. (Thus Λ(0) ⪯ 0.)

Proof. (a) Apply the ρ-sub-additivity axiom to u′ := u − t and t′ := t. (b) If γ ∈]0, 1], then
apply the super-multiplicativity axiom to u′ := γu and γ′ := 1/γ. In the special case γ = 0, note
that Λ(2× 0) ⪰ 2Λ(0), hence Λ(0) ⪯ 0 as announced, and therefore Λ(0× u) ⪯ 0× Λ(u).

In order to avoid any confusion, let us immediately mention that the semi-Lagrangian update
operator (3) is neither ρ-sub-additive for any ρ < 1, nor super-multiplicative; these properties
are instead satisfied by the exponentially transformed operator, see proposition 2.24 below.

As an illustration, two of these axioms imply a contraction property in the L∞ norm.

Corollary 2.3. Let Λ : RX → RX be a monotone and ρ-sub-additive operator. Then ∥Λu −
Λu′∥∞ ≤ ρ∥u − u′∥∞ for all u, u′ ∈ RX . If ρ < 1 then Λ admits a unique fixed point u∗ ∈ RX ,
and ∥Λnu− u∗∥∞ ≤ ρn∥Λu− u∥∞/(1− ρ) for all u ∈ RX .

Proof. Observe that u− t ⪯ u′ ⪯ u+ t with t := ∥u− u′∥∞, and thus Λu− ρt ⪯ Λu′ ⪯ Λu+ ρt
by monotony and ρ-sub-additivity, as announced. The second part directly follows from the
Picard-Lindelöf fixed point theorem.

Proposition 2.4. Consider a family of operators (Λi)i∈I on the set X, and assume that
Λu(x) := infi∈I Λiu(x) (resp. Λu(x) := supi∈I Λiu(x)) is finite for all u ∈ RX , x ∈ X. If
Λi is monotone, or ρ-sub-additive, or super-multiplicative, for each i ∈ I, then so is Λ.

Proof. Assume that Λi is monotone for all i ∈ I, and let x ∈ X be arbitrary. If u, u′ ∈ RX are
such that u ⪯ u′, then Λiu(x) ≤ Λiu

′(x) for all i ∈ I, and thus infi∈I Λiu(x) ≤ infi∈I u
′(x), which

proves that Λ is monotone as announced. Proceed likewise for the sup, and other properties.

Sub- and super-solutions. To any operator Λ : RX → RX is associated a fixed point
problem, already considered in corollary 2.3 : find u∗ ∈ Rd such that Λu∗ = u∗. Sub- and
super-solutions of Λ (the operator name is omitted when it is clear from context), which obey a
one-sided inequality instead, play a fundamental for role in the theory of monotone operators.

Definition 2.5. Let Λ : RX → RX be an operator. A super-solution is any map u ∈ RX such
that Λu ⪯ u; it is said strict if Λu ≺ u. A sub-solution is any map u ∈ RX such that Λu ⪰ u;
likewise it is said strict if Λu ≻ u.

Proposition 2.6. Let Λ : RX → RX be a ρ-sub-additive operator, for some ρ < 1. Let u ∈ RX

and c, c ≥ 0 be such that u − c ⪯ Λu ⪯ u + c. Then u := u − c/(1 − ρ) and u := u + c/(1 − ρ)
are a sub-solution and a super-solution respectively (both strict if u− c ≺ Λu ≺ u+ c).

Proof. For any t ≥ 0 one has Λ(u + t) ⪯ Λu + ρt ⪯ u + c + ρt = (u + t) + c − (1 − ρ)t, hence
u := u+ t is a super-solution provided t ≥ c/(1− ρ), as announced, and likewise for u.
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Proposition 2.7. Let Λ : RX → RX be a monotone operator on a finite set X = Y̊ ⊔ ∂Y .

• (Weak comparison principle) If Λ is sub-additive, then for any u, u′ ∈ RX

(u ≺ u′ on ∂Y, and u− Λu ≺ u′ − Λu′ on Y̊ ) ⇒ u ≺ u′.

• (Comparison principle) If Λ is ρ-sub-additive, for some ρ < 1, then for any u, u′ ∈ RX

(u ⪯ u′ on ∂Y, and u− Λu ⪯ u′ − Λu′ on Y̊ ) ⇒ u ⪯ u′.

Proof. Assume 1-sub-additivity of Λ, u ≺ u′ on ∂Y and u−Λu ≺ u′ −Λu′ on Y̊ . Let x ∈ X be
such that t := u(x)−u′(x) is maximal, and assume for contradiction that t ≥ 0. By assumption
this implies x ∈ Y̊ . Then t = u(x)− u′(x) < Λu(x)− Λu′(x) ≤ Λ(u′ + t)(x)− Λu′(x) ≤ t, using
successively the assumption, monotony, and sub-additivity, which is the desired contradiction.

Assume now ρ-sub-additivity for some ρ < 1, u ⪯ u′ on ∂Y and u−Λu ⪯ u′−Λu′ on Y̊ . Then
for any ε > 0 one has u ≺ u′+ε on ∂Y , and u′+ε−Λ(u′+ε) ⪰ u′−Λu′+(1−ρ)ε ≻ u′−Λu′ ⪰ u−Λu
on Y̊ . Thus u ≺ u′+ε by the previous argument, ∀ε > 0, and therefore u ⪯ u′ as announced.

Exponential change of variables. This transformation of the unknowns is common in the
study of eikonal equations and minimal time optimal control problems [BCD97], and attributed
to Kružkov. In the continuous setting, it turns the degenerate elliptic operator ∥∇u∥ − 1 into
the elliptic operator u/α + ∥∇u∥, where α > 0. In the discrete setting, in a similar spirit,
the sub-additive semi-Lagrangian update operator becomes ρ-sub-additive in the exponential
coordinates, for some ρ < 1, see proposition 1.6.

In the following, we denote by R∞ :=]−∞,∞] the real line extended to the right only, and
equipped with the topology of ]0, 1]. We fix a parameter α > 0, and define Eα : R∞ → R and
E−1
α : R→ R∞ by

Eα(u) :=

{
− exp(−u/α), if u ∈ R,
0 if u =∞,

E−1
α (v) :=

{
−α ln(−v) if v ∈]−∞, 0[,

∞ if v ≥ 0.
(13)

Note that E−1
α (Eα(u)) = u and Eα(E

−1
α (v)) = min{v, 0}. By convention, the maps Eα and E−1

α

are applied pointwise to elements of RX
∞ and RX respectively.

Proposition 2.8. Let Λ : RX → RX be an operator which extends to a continuous function
Λ : RX

∞ → RX
∞ (with the same notation). Let α > 0 and Φ := EαΛE

−1
α : RX → RX . The

following holds: (a) Φ is a continuous operator, (b) if Λ is monotone, then Φ is monotone, (c)
if Λ is sub-additive, then Φ is super-multiplicative.

Proof. (a) The continuity of Φ follows by composition from the continuity of Eα, Λ and E−1
α .

(b) Likewise, the monotony of Φ follows by composition from the monotony of Eα, Λ and E−1
α .

(c) Assume that Λ is ρ-sub-additive, for some ρ ∈ [0, 1]. Let γ ≥ 1 and v ∈ RX . Then

Φ[γv] = − exp(−α−1Λ(u− α ln γ)) ⪰ − exp(−α−1(Λu− ρα ln γ)) = γρΦ(v),

with u = E−1
α (v). We used successively (i) E−1

α (γv) = E−1
α (v) − α ln γ, and (ii) the ρ-sub-

additivity of Λ as in lemma 2.2 (a), and the monotony of Eα. Choosing ρ = 1 we conclude the
proof.
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Partial application of monotone operators. Given an operator Λ : RX → RX , and a
subset B ⊂ X, we denote for all u ∈ RX

ΛBu(x) :=

{
Λu(x) if x ∈ B,

u(x) else.

Such a restricted operator implicitly appears in the last line of algorithm 1, choosing B as the
narrow band.

Proposition 2.9 (Partial application preserves sub- and super-solutions). Let Λ : RX → RX

be a monotone operator, and let B ⊂ X be a subset. Let u ∈ RX and u′ := ΛBu. If Λu ⪯ u then
Λu′ ⪯ u′. Likewise if Λu ⪰ u then Λu′ ⪰ u′.

Proof. Consider the case Λu ⪯ u of a super-solution. Then Λu ⪯ u′ ⪯ u by assumption, thus
Λu′ ⪯ Λu by monotony, and therefore Λu′ ⪯ u′ as announced. The case Λu ⪰ u is similar.

Lemma 2.10 (ρ-sub-additivity in a subdomain). Let Λ : RX → RX be a monotone and ρ-sub-
additive operator, let u ∈ RX and t ≥ 0. If u− ΛBu ⪯ t, then Λk

Bu− Λk+1
B u ⪯ ρkt, ∀k ≥ 0.

Proof. By an immediate induction argument, it suffices to prove the case k = 1. Denoting
u′ := ΛBu we have u ⪯ u′ + t, hence Λu ⪯ Λ(u′ + t) ⪯ Λu′ + ρt by monotony and ρ-sub-
additivity. Recalling that u = u′ outside B, we obtain ΛBu ⪯ ΛBu

′ + ρt, which concludes.

2.2 Convergence analysis, when the narrow band is provided by an oracle

We estimate the complexity and the numerical error of a simplified and hypothetical variant of
algorithm 1, whose narrow band is defined in terms of the exact problem solution (hence the
need for an oracle providing this data). The analysis builds on the results of section 2.1, and
requires the following assumptions.

Assumption 2.11. We denote by X a finite set, and by Φ : RX → RX an operator which is
monotone, ρ-sub-additive for some ρ < 1, and super-multiplicative. We denote by v∗ ∈ RX the
fixed point of Φ, see corollary 2.3, and assume that −1 ⪯ v∗ ≺ 0 on X.

Finally and most importantly, we assume that the following level sets of v∗ are known, and use
them in the construction of our simplified algorithm, see proposition 2.13 below. For all n ∈ Z

X−
n := {x ∈ X | v∗(x) ≤ −2−n}, X+

n := {x ∈ X | v∗(x) ≥ −2−n}.

Lemma 2.12 (A family of super-solutions). Under assumption 2.11. Fix an integer r > 0,
define for all 0 ≤ n ≤ 2r−1

vn := (1− n2−r+1)v∗ + 2−n. (14)

The following holds, restricting to n > 0 for (c)

(a) Φvn ⪯ vn − (1− ρ)2−n, (b) vn ⪰ 0 on X+
n , (c) vn ⪰ vn−1 + 2−n on X−

n−r.

Choose 0 < δ ≤ 1/2, and assume that 2−n ≤ δ|max(v∗)| and 0 ≤ n ≤ δ2r. Then

(d) v∗ ⪯ vn ⪯ (1− 3δ)v∗, (e) u∗ ⪯ un ⪯ u∗ − α ln(1− 3δ),

where u∗ := E−1
α v∗ and un := E−1

α vn, for some α > 0, see the exponential transformation (13).
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Proof. (a) Follows from the super-multiplicativity, used as in lemma 2.2 (b), and the ρ-sub-
additivity of Φ. (b) Holds by definition of X+

n . (c) One has vn− vn−1 = −2−r+1v∗− 2−n ⪰ 2−n

on X−
n−r. (d) One has 0 ⪯ vn − v∗ ⪯ −2δv∗ + 2−n ≤ 3δ|v∗|, since v∗ ≺ 0, as announced. (e)

Immediate in view of the logarithmic expression of E−1
α on ]−∞, 0[.

Proposition 2.13 (Narrow band iterative algorithm, with oracle). Under assumption 2.11 and
with the notation (14). Define v0 := 0, and for all 1 ≤ n ≤ 2r−1 let

vn := ΦK
B∗

n
(vn−1), where B∗

n := X+
n−r ∩X−

n , (15)

where K is s.t. ρK ≤ (1− ρ)2−r. Then vn is a super-solution, and v∗ ⪯ vn ⪯ vn, 0 ≤ n ≤ 2r−1.

Proof. One has Φ(0) ⪯ 0 by super-multiplicativity, see lemma 2.2 (b), hence v0 is a super-
solution. Since vn is obtained by repeated partial applications of the monotone operator Φ
to v0, it is a super-solution by proposition 2.9, as announced. By the comparison principle
proposition 2.7, we obtain that vn ⪰ v∗. The monotony of Φ also implies that vn ≤ vn−1 for all
0 < n ≤ 2r−1.

One has v0 := 0 ⪯ 1+ v∗ = v0, recalling that v∗ ⪰ −1 by assumption 2.11. We then proceed
by induction and assume that vn−1 ⪯ vn−1 for some n ≥ 1. Recall that vn−1 is a super-solution,
hence so is ΦB∗

n
(vn−1) by proposition 2.9, and therefore v∗ ⪯ ΦB∗

n
(vn−1) by the comparison

principle proposition 2.7. We thus have on the set B∗
n

vn−1 − ΦB∗
n
(vn−1) ⪯ vn−1 − v∗ = (n− 1)2−r+1|v∗|+ 2−n+1 ⪯ n2−n+1.

Therefore, successively using lemma 2.10, noting that 2nρK ≤ 1− ρ, and using lemma 2.12 (a),
we obtain on the set B∗

n

vn − ΦB∗
n
(vn) = ΦK

B∗
n
(vn−1)− ΦK+1

B∗
n

(vn−1) ⪯ ρKn2−n+1 ≤ (1− ρ)2−n ⪯ vn − ΦB∗
n
(vn). (16)

In addition, we have vn ⪯ v0 = 0 ⪯ vn on X+
n , and vn = vn−1 ⪯ vn−1 ⪯ vn on X−

n−r. By the

comparison principle proposition 2.7, applied to Y̊ := B∗
n and ∂Y := X \B∗

n ⊂ X+
n ∪X−

n−r, we
obtain vn ⪯ vn, which concludes.

The algorithm (15) is not practical, because the sets (B∗
n)0≤n≤2r−1 depend on the exact fixed

point v∗, and thus need to be provided by a oracle. Nevertheless, let us examine the complexity
of this hypothetical method, which is a straightforward consequence of the preceding two results.
We denote by ⌈s⌉ ∈ Z the ceiling of a real number s ∈ R.
Proposition 2.14. Under assumption 2.11 and using the notations of lemma 2.12 and propo-
sition 2.13. Let ε > 0, let vn be defined by (15) with the parameters n, r,K below, and let
un := E−1

α vn and u∗ := E−1
α v∗. Then u∗ ⪯ un ⪯ u∗ + ε, and at most NK(r + 1) elementary

solution updates are used in the iterations of (15), where N := #(X) is the discrete domain
cardinality. The parameters are defined in terms of N := max(u∗)/α and p = 1− ρ > 0 as

δ :=
1− exp(−ε/α)

3
≥ min{ε/α, 1}

6
n :=

⌈ | ln δ|+max(u∗)/α

ln 2

⌉
= O(N + | ln δ|),

r :=
⌈ ln(n/δ)

ln 2

⌉
= O(lnN + | ln δ|), K :=

⌈r ln 2 + | ln(1− ρ)|
| ln ρ|

⌉
= O

( lnN + | ln δ|+ | ln p|
p

)
.

Proof. By construction, 0 ≤ δ ≤ 1/3 and ε = −α ln(1 − 3δ), 2−n ≤ δ|max(v∗)|, n2−r ≤ δ, and
ρK ≤ (1−ρ)2−r, as required by lemma 2.12 and proposition 2.13. (The lower bound for δ follows
from the inequality 1 − exp(−x) ≥ min{1, x}/2, for all x ≥ 0.) Thus u∗ ⪯ un ⪯ un ⪯ u∗ + ε,
as announced. Finally, for any given x ∈ X, one has x ∈ B∗

n iff −2n−r ≤ v∗(x) ≤ −2−n iff
n∗(x) ≤ n ≤ n∗(x) + r where n∗(x) := − ln(−v∗(x))/ ln 2, thus the elementary solution update
“v(x)← Φv(x)” is used at most K(r + 1) times overall in (15).
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2.3 Properties of an elementary update

We study in this subsection the convex optimization problem (17), which is the elementary
building block of the semi-Lagrangian update operator (1). The α-acuteness condition of defini-
tion 1.4 plays a central role, and propositions 1.5 and 1.6 from the introduction are established
as a consequence of propositions 2.19 and 2.21 to 2.23. For any u, v ∈ RI define

λF (u) := min
ξ∈ΞI

F (ξ) + ⟨u, ξ⟩, ϕF (v) := EαλFE
−1
α v. (17)

Assumption 2.15. We fix throughout this subsection a timescale α > 0 and a norm F : RI →
R+ (always possibly asymmetric, by convention), where I > 0 is the space dimension. We assume
that F is continuously differentiable on RI \ {0}, and uniformly convex (i.e. F − ε∥ · ∥ is also a
norm for some ε > 0). This simplifying assumption is eventually removed in proposition 2.23.

Our estimates depend on upper and lower bounds for F , and often involve the dual norm
F ∗. We introduce the corresponding notations below, and gather classical elementary relations
between these quantities in lemma 2.16.

Fmax := max
∥ξ∥=1

F (ξ), Fmin := min
∥ξ∥=1

F (ξ), F ∗(η) := max
F (ξ)≤1

⟨η, ξ⟩. (18)

Recall that any norm is its own bi-dual: F ∗∗ = F . Also, since F is positively 1-homogeneous,
its gradient is positively 0-homogeneous, and it satisfies Euler’s identity: ∀ξ ∈ RI \ {0},

⟨∇F (ξ), ξ⟩ = F (ξ). (19)

Lemma 2.16. For any norm F , any ξ, η ∈ RI in (20, ii), and ξ ̸= 0 in (20, iv), one has

max
ξ ̸=0
∥∇F (ξ)∥ = Fmax, ⟨η, ξ⟩ ≤ F (ξ)F ∗(η), F ∗

max = F−1
min, F ∗(∇F (ξ)) = 1. (20)

Proof of (20, i): One has Fmax ≤ max∥ξ∥=1 ∥∇F (ξ)∥ = maxξ ̸=0 ∥∇F (ξ)∥ using successively (19)
and the 0-homogeneity of ∇F ; conversely choose ξ such that ∥ξ∥ = 1 and F (ξ) = Fmax is
maximal, note that ξ is proportional with ∇F (ξ) by Lagrange’s optimality conditions, and
thus F (ξ) = ⟨ξ,∇F (ξ)⟩ = ∥∇F (ξ)∥ using successively Euler’s identity and the equality case
in Cauchy-Schwartz’s inequality. Proof of (20, ii): Clear if ξ = 0, and otherwise note that
F ∗(η) ≥ ⟨η, ξ/F (ξ)⟩ by (18, iii). Proof of (20, iii): Choosing ξ such that ∥ξ∥ = 1 and F (ξ) =
Fmin is minimal, and letting η := ξ in (20, ii) we obtain 1 = ⟨ξ, ξ⟩ ≤ F (ξ)F ∗(ξ) ≤ FminF

∗
max.

Conversely, choose η such that ∥η∥ = 1 and F ∗(η) = F ∗
max is maximal; note that ξ := ∇F ∗(η)

satisfies F (ξ) ≤ 1, by (18, iii) and the envelope theorem, which is also discussed in the next
point. Thus F ∗

max = F (η) = ⟨η,∇F ∗(η)⟩ = ⟨η, ξ⟩ ≤ ∥ξ∥ ≤ F (ξ)/Fmin ≤ 1/Fmin. Proof of (20,
iv): We establish that F (∇F ∗(η)) = 1 for any η ̸= 0, which is equivalent to the announced
property up to exchanging the roles of F and F ∗. Denote B := {ξ ∈ RI | F (ξ) ≤ 1}, which is
compact and convex. For any η ̸= 0, the maximum (18, iii) defining F ∗(η) is attained at some
ξ ∈ B. By positive homogeneity and uniform convexity of F , this maximizer is unique and
satisfies F (ξ) = 1. By the envelope theorem, one has ∇F ∗(η) = ξ, and therefore F (∇F ∗(η)) = 1
as announced.

The function λF : RI → R is not an operator in the sense of section 2.1, but it nevertheless
satisfies properties that are clearly counterparts of those of definition 2.1.

Proposition 2.17. • (Monotonicity) ∀u, u′ ∈ RI , u ⪯ u′ ⇒ λF (u) ≤ λF (u
′).
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• (Sub-additivity) ∀u ∈ RI , ∀t ≥ 0, λF (u+ t) ≤ λF (u) + t.

Proof. These properties are clear for any linearized mapping λξ
F (u) := F (ξ) + ⟨ξ, u⟩, where

ξ ∈ ΞI is fixed, hence they hold for the minimal envelope λF similarly to proposition 2.4.

The last key property for our analysis, the ρ-sub-additivity of ϕF , cannot be proved by
linearization in contrast with proposition 2.17. Instead, a more careful analysis is needed, using
the optimality conditions of the optimization problem (17, left), and the α-acuteness condition.
We recall the notation 1 := (1, · · · , 1) ∈ RI .

Lemma 2.18 (Karush-Kuhn-Tucker relation). For any u ∈ RI , the convex optimization problem
(17, left) admits a unique minimizer ξ ∈ ΞI , and one has the optimality relation:

∇F (ξ) + u = λF (u)1+ ν, for some ν ∈ [0,∞[I satisfying ⟨ν, ξ⟩ = 0. (21)

Proof. Since F is a uniformly convex norm, and since the convex set ΞI does not contain any
pair of collinear points, the restriction F|ΞI

is a strictly convex function. Therefore (17, left) is
the minimization of a strictly convex functional over a compact convex and non-empty set, and
thus admits a unique minimizer ξ ∈ ΞI .

In view of the state constraints ⟨ξ,1⟩ = 1 and ξ ⪰ 0 defining ΞI , the KKT relations for the
minimization problem (17, left) state that ∇F (ξ) + u = λ1 + ν for some λ ∈ R, and some ν
obeying (21, right). Taking the inner product with ξ we obtain λ = ⟨λ1+ν, ξ⟩ = ⟨∇F (ξ)+u, ξ⟩ =
F (ξ) + ⟨u, ξ⟩ = λF (ξ), using Euler’s identity (19), which concludes.

The exponential and the inverse function are applied componentwise to vectors in the fol-
lowing, similarly to definition 1.4, e.g. 1/v := (1/vi)1≤i≤I for any v = (vi)1≤i≤I ∈ (R \ {0})I .

Proposition 2.19. The mapping λF is concave and continuously differentiable, and ϕF is dif-
ferentiable on RI \ {0}. Furthermore for any u ∈ RI , denoting by ξ ∈ ΞI the minimizer of (17,
left), one has

∇λF (u) = ξ,
[ d

dt
ϕF (v + t)

]
|t=0

= ⟨ξ, exp(−∇F (ξ)/α)⟩, (22)

with v := Eαu. As a result, ϕF (v + t) ≤ ϕF (v) + ρF (α)t, for all v ∈ RX and t ≥ 0.

Proof. The function λF : RI → R is concave, since it is defined as the minimum of the family of
(affine hence) concave functions λξ

F (u) := F (ξ) + ⟨u, ξ⟩, ξ ∈ ΞI . Note that ∇λξ
F (u) = ξ, for any

u ∈ RI . By the envelope theorem [Car01, Theorem 6.1], one has ∇λF (u) = ∇λξ
F (u) = ξ where

ξ ∈ ΞI is the unique minimizer in (17, left), see lemma 2.18, which establishes (22, left). Then[ d

dt
ϕF (v + t)

]
|t=0

= E′
α(λF (u)) ⟨∇λF (u), (E

−1
α )′(v)⟩ = − 1

α
exp

(
− λF (u)

α

)〈
ξ,

α

v

〉
= ϕF (v)

〈
ξ,

1

v

〉
,

−
〈
ξ,

1

v

〉
=

〈
ξ, exp

(u
α

)〉
=

〈
ξ, exp

(−∇F (ξ) + λF (u) + ν

α

)〉
=
−1

ϕF (v)

〈
ξ, exp

(
− ∇F (ξ)

α

)〉
(23)

using the composition rule for derivatives in the first line, and the KKT relation (21) in the
second line. Together these two lines yield (22, right). The KKT multiplier ν disappears from
(23, r.h.s.) thanks to the complementary condition (21, right) (componentwise, one has ξi = 0
whenever νi ̸= 0, for each 1 ≤ i ≤ I).

In order to establish the final statement, we need to generalize (22) to the case where v =
(v1, · · · , vI) ∈ RX is arbitrary, rather than negative as previously assumed. Denote J := {1 ≤
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i ≤ I | vi ≥ 0}, so that ui := E−1
α vi = ∞ for all i ∈ J . In the degenerate case where

J = {1, · · · , I}, one has u = (∞)1≤i≤I , thus λF (u) = ∞ and ϕF (v + t) = 0 for all t ≥ 0.
Otherwise, the optimization problem (17) defining λF (u) remains well posed with the convention
0×∞ = 0 in the inner product ⟨ξ, u⟩. It has a finite value λF (u) <∞ and a minimizer ξ ∈ ΞI

such that ξj = 0 for all j ∈ J . This effectively amounts to consider a similar optimization
problem posed on Ξd−#(J) where the variables (ξi)i∈J are eliminated, and thus (22) still holds.
The estimate of ϕF (v+ t) follows by integration, recalling that ⟨ξ, exp(−∇F (ξ)/α)⟩ ≤ ρF (α) by
definition 1.4.

The next two propositions together establish proposition 1.5, announced in the introduction,
under the assumption 2.15 which is then removed in proposition 2.23. For sharpness, we write
the obtained estimates of ρF (α) in terms of

FΞmin := min
ξ∈ΞI

F (ξ), FΞ∞ := max
ξΞI

∥∇F (ξ)∥. (24)

Observing that FΞmin ≥ Fmin/
√
I (since ∥ξ∥ ≥ 1/

√
I for all ξ ∈ ΞI) and FΞ∞ ≤ Fmax (by (20,

i)), we obtain (11, left and right) from propositions 2.21 and 2.22 respectively.

Lemma 2.20. The function r(x) := exp(x)− 1− x satisfies 0 ≤ r(x) ≤ x2 for all x ≤ 1.

Proof. Differentiating twice we find that the function r is convex on R, and r(0) = r′(0) = 0,
hence r ≥ 0. Likewise the function s(x) := x2−r(x) is convex on ]−∞, ln 2], and s(0) = s′(0) = 0,
hence s ≥ 0 on this interval. Finally, s is concave on [ln 2, 1] and takes positive values at the
endpoints of this interval, hence it is positive on this interval.

Proposition 2.21. One has ρF (α) ≤ 1− FΞmin
α (1− F 2

Ξ∞
αFmin

), for all α ≥ F 2
Ξ∞/Fmin.

Proof. Denote η := −∇F (ξ)/α, for some ξ ∈ ΞI , and observe that ∥η∥ ≤ ∥∇F (ξ)∥/α ≤
FΞ∞/α ≤ Fmin/FΞ∞ ≤ 1. We have the estimates

⟨ξ, exp(η)⟩ = ⟨ξ,1+ η + r(η)⟩ = 1 + ⟨η, ξ⟩+ ⟨ξ, r(η)⟩ ≤ 1− F (ξ)/α+ F (ξ)F ∗(r(η)),

F ∗(r(η)) ≤ F ∗
max∥r(η)∥ ≤ ∥η∥2/Fmin = α−2∥∇F (ξ)∥2/Fmin ≤ α−2F 2

Ξ∞/Fmin,

using Euler’s identity and (20, ii) in the first line, and (20, iii) in the second line. Combining the
two lines we obtain ⟨ξ, exp(−∇F (ξ)/α)⟩ ≤ 1− α−1F (ξ)(1− α−1F 2

Ξ∞/Fmin). The result follows
by definition 1.4 of ρF (α), and definition (24) of FΞmin.

Proposition 2.22. Assume the classical acuteness condition, see definition 1.4, namely that
∇F (ξ) ⪰ 0 for all ξ ∈ ΞI . Then ρF (α) ≤ 1− FΞmin

FΞ∞
(1− exp(−FΞ∞

α )), for all α > 0.

Proof. By convexity, one has exp(−t) ≤ (1 − t/M) + (t/M) exp(−M) for all 0 ≤ t ≤ M . We
choose M := FΞ∞/α, let η := ∇F (ξ)/α for some ξ ∈ ΞI , and obtain using Euler’s identity (19)

⟨ξ, exp(−η)⟩ ≤ ⟨ξ, (1− η/M) + (η/M) exp(−M)⟩ = 1− α−1F (ξ)(1− exp(−M))/M.

Proposition 2.23 (Extension to non-uniformly convex and non-differentiable norms). Let F
be an arbitrary asymmetric norm on RI (removing assumption 2.15). Define the subgradient set

∂F (ξ) := {η ∈ RI | ∀ξ̇ ∈ RI , F (ξ + ξ̇) ≥ F (ξ) + ⟨η, ξ̇⟩},
ρF (α) := max{⟨ξ, exp(−η/α)⟩ | ξ ∈ ΞI , η ∈ ∂F (ξ)}.

Likewise the classical acuteness condition becomes ∂F (ξ) ⊂ [0,∞[I for all ξ ∈ ΞI , and FΞ∞ :=
max{∥η∥ | ξ ∈ ΞI , η ∈ ∂F (ξ)}. The estimates of propositions 2.21 and 2.22 still hold, and
ϕF (v + t) ≤ ϕF (v) + ρF (α)t and for all v ∈ RI and t ≥ 0.
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Proof. The proofs of propositions 2.21 and 2.22 do not rely on continuous differentiability or
uniform convexity, and thus immediately extend to this setting by replacing ∇F (ξ) with an
arbitrary element of ∂F (ξ).

Define Fn := (F ∗ + F0/n)
∗ + F0/n for all n ∈ N∗, where F0 denotes the Euclidean norm.

Since F ∗ + F0/n is a uniformly convex norm, its dual norm is continuously differentiable on
RI \ {0}, and therefore Fn is both continuously differentiable and uniformly convex, thus fitting
assumption 2.15. In addition, Fn converges uniformly to F on bounded subsets of RI as n→∞,
hence λFn → λF uniformly, and thus ϕFn → ϕF locally uniformly. Finally, since all cluster points
of ∇Fn(ξ) as n → ∞ belong to ∂F (ξ), for any ξ ∈ Rd \ {0}, we obtain lim supn→∞ ρFn(α) ≤
ρF (α). We conclude by passing ϕFn(v + t) ≤ ϕFn(v) + ρFn(α)t to the limit as n→∞.

Axioms verification for the semi-Lagrangian scheme We show in the conclusion of this
subsection that the semi-Lagrangian update operator (3), denoted Λ and acting on X = X̊⊔∂X,
obeys the axioms of the simplified convergence analysis presented in section 2.2.

Proposition 2.24. For any u ∈ RX , and any interior vertex x ∈ X̊, one has

Λu(x) = min
V ∈V(x)

λFV
x
(uVx ) (25)

where for V = (v1, · · · , vd) ∈ V(x) we denoted uVx := (u(x + v1), · · · , u(x + vd)) ∈ Rd, and
FV
x (ξ) := Fx(V ξ). As a result Λ is monotone and sub-additive. The operator Φ := EαΛ

T E−1
α is

monotone, super-multiplicative, and ρ-sub-additive, with the following parameters

α := max
(x,V )∈V

2(FV
x )2max

(FV
x )min

, ρ := 1− σ

2α
, where σ := min

(x,V )∈V
(FV

x )Ξmin. (26)

Thus σ ≥ h/(κ
√
d), 2h ≤ α ≤ 2κh, and ρ ≤ 1− (4κ2

√
d)−1 using the notations (8).

Proof. The expression of Λ immediately follows from its definition (3), and from the defini-
tion (17) of an elementary update λF . The monotonocity and sub-additivity of Λ follow from
the counterparts of these properties for λF established in proposition 2.17, and from propo-
sition 2.4 on the properties of the minimum of several schemes. The monotony and super-
multiplicativity of Φ follow from proposition 2.8 on the exponential change of coordinates, and
the ρ-sub-additivity from propositions 2.19 and 2.21. The final estimates of σ and α immediately
follow from the definitions (8) of h and κ, and imply the estimate of ρ.

The parameter σ, defined in (26, right) can be interpreted geometrically, in the setting of
remark 1.1, as the minimal distance from any interior point x ∈ X̊ to the boundary of its stencil
V(x). The parameters (α, ρ) of proposition 2.24 can be replaced with any other pair such that

α > 0 and 1 > ρ ≥ maxx∈X̊V ∈V(x) ρFV
x
(α), as in the following example.

Remark 2.25. Assume that FV
x satisfies the classical acuteness condition, for all x ∈ X̊ and

all V ∈ V(x). Then Φ := EαΛE
−1
α is ρ-sub-additive for any α > 0, with

ρ := 1− min
(x,V )∈V

(F V
x )Ξmin

(F V
x )Ξ∞

(
1− exp

(
− (F V

x )Ξ∞
α

))
. (27)

Choosing a very small α > 0 yields a thin narrow band B∗
n = {x ∈ X | (n− r)τ ≤ u∗(x) ≤ nτ}

in the simplified algorithm of proposition 2.13, where u∗ is the fixed point of Λ and τ := α ln 2.
Thus B∗

n contains few points, possibly a single one. This is reminiscent of the FMM solver which
accepts points one by one, ordered by increasing values of the exact solution u∗. The FMM indeed
also applies under these assumptions, see the discussion surrounding the causality property (9).
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3 Proof of the main result

This section is devoted to the convergence and complexity analysis of algorithm 1, including the
construction of the narrow band using an oriented graph distance, which was avoided in section 2.
We study this construction in section 3.1 in an axiomatic setting, and use the obtained properties
in section 3.2 for the convergence analysis of algorithm 1. Finally, we verify in section 3.3 that
the operators of interest obey the required axioms, thus completing the proof of theorem 1.3.

3.1 Comparison of sublevel sets

The main result of this section, proposition 3.5, compares the sublevel sets of the fixed points of
to two operators; it is eventually applied in section 3.3 to the semi-Lagrangian update operator
(3) discretizing the eikonal equation, and to a graph based approximation (33) whose fixed point
is trivially computed using the classical Dijkstra algorithm 2. For that purpose, we introduce
new axioms, which are more specific to our setting than those of definition 2.1, and distinguish
between interior and boundary points.

Definition 3.1. An operator Λ : RX → RX on a set X = X̊ ⊔ ∂X satisfies the property:

• Additive invariance if ∀u ∈ RX , ∀t ∈ R, Λ(u+ t) = Λu+ t on X̊.

• σ-sub-multiplicativity if ∀u ∈ RX , ∀t ∈ [0,∞[, Λ
[
(1 + t)u] ⪯ (1 + t)Λu− σt on X̊.

• Cpast-memory if ∀u ∈ RX , ∀x ∈ X̊, one has

Λmax{u, t}(x) = Λu(x), for any t ≤Λu(x)− Cpast.

We usually assume σ > 0 and Cpast ≥ 0.

The axiom of σ-sub-multiplicativity, for some σ > 0, allows perturbing weak sub- and super-
solutions of Λ into strict ones in proposition 3.4, similarly to ρ-sub-additivity in proposition 2.6.
The axiom of Cpast-memory means, in the context of (3), that the arrival time at a given point
only depends on recent arrival times, which eases the construction of the narrow band in our
method. We prove below a reflected axiom, the stability of the properties of interest upon taking
the maximum or minimum of a family of operators, and a version of the comparison principle.

Lemma 3.2. If Λ is σ-sub-multiplicative then ∀t ∈ [0, 1], Λ
[
(1− t)u] ⪰ (1− t)Λu+ σt on X̊.

Proof. If 0 ≤ t < 1, then apply the σ-sub-multiplicativity axiom to u′ := (1 − t)u and t′ :=
t/(1− t). If t = 1, then observe that Λ(2× 0) ≤ 2Λ(0)− σ, using u′ = 0 and t′ = 1.

Lemma 3.3. Consider a family of operators (Λi)i∈I on a set X = X̊ ⊔ ∂X, and assume that
Λu(x) := infi∈I Λiu(x) (resp. Λu(x) := supi∈I Λiu(x)) is finite for all u ∈ RX , x ∈ X. If
Λi is additively invariant, or σ-sub-multiplicative, or has Cpast-memory (resp. assuming also
monotony and sub-additivity), for each i ∈ I, then so is Λ.

Proof. We only prove the case of Cpast-memory in the sup case, where the additional monotony
and sub-additivity axioms are needed as announced. The other announced properties are proved
similarly to proposition 2.4, and are essentially trivial. In the following, we fix x ∈ X̊ and assume
that t ≤ Λu(x)−Cpast. Then Λmax{u, t}(x) ≥ Λu(x) since Λ is monotone, see proposition 2.4.
On the other hand, one has for any i ∈ I denoting δ := Λu(x)− Λiu(x)

Λimax{u, t}(x) ≤ Λi[max{u, t− δ}+ δ](x) ≤ Λimax{u, t− δ}(x) + δ = Λiu(x) + δ = Λu(x)

using successively (i) monotony, (ii) sub-additivity, and (iii) Cpast-memory, which concludes.
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Proposition 3.4. Let Λ : RX → RX be an operator on a finite set X = X̊ ⊔ ∂X which is
monotone, sub-additive, and σ-sub-multiplicative for some σ > 0. Consider a partition X =
Y̊ ⊔ ∂Y such that ∂X ⊂ ∂Y . For any u, u ∈ RX ,

if u ⪯ u on ∂Y, and max{0, u− Λu} ⪯ u− Λu on Y̊ , then u ⪯ u.

Proof. Let C ≥ 0 be such that C + min∂Y u > 0, and let uε := (1 + ε)u + Cε for some ε > 0.
Then uε ≻ u on ∂Y by choice of C. In addition, one has Λuε ⪯ (1+ε)Λu+Cε−σε on Y̊ by sub-
additivity and σ-sub-multiplicativity, which shows that uε−Λuε ⪰ (1+ε)(u−Λu)+σε ≻ u−Λu
on Y̊ . By the weak comparison principle proposition 2.7, we obtain that u ≺ uε for any ε > 0,
and thus u ⪯ u as announced.

As announced, the next result compares the sub-levelsets of the fixed points of two operators.
Recall that we use the shorthand {u ≤ t} := {x ∈ X | u(x) ≤ t}, for any u : X → R and t ∈ R.

Proposition 3.5. Let Λ,Γ : RX → RX be two operators on a finite set X = X̊ ⊔ ∂X, such5

that Γ − Ccomp ≤ Λ ≤ Γ for some constant Ccomp ≥ 0. Assume that Λ is monotone, additively
invariant, σ-sub-multiplicative for some σ > 0, and has Cpast-memory. Consider u∗, û ∈ RX , a
partition X = Y̊ ⊔ ∂Y satisfying ∂X ⊂ ∂Y , and thresholds t ≤ t′, such that the following holds

Λu∗ = u∗, {u∗ ≤ t} ⊂ ∂Y ⊂ {u∗ ≤ t′}, û = 0 on ∂Y, Γû = û on Y̊ . (28)

Then u := sû + t − Cpast and u := û + t′ satisfy u ⪯ u∗ ⪯ u on Y̊ , where s := σ/(Ccomp + σ).
Thus, ∀T ≥ 0

{u∗ ≤ sT + t− Cpast} ⊂ {û ≤ T} ⊂ {u∗ ≤ T + t′}. (29)

Proof. One has Λu = Λû+ t′ ⪯ Γû+ t′ = u on Y̊ , using successively (i) the additive invariance
of Λ, (ii) the comparison assumption Λ ≤ Γ, and (iii) the fixed point assumption (28, iv). In
addition u = t′ ⪰ u∗ on ∂Y , using (28, ii and iii), hence u ⪰ u∗ by the comparison principle
proposition 3.4, as announced. Denoting t∗ := t− Cpast, we have on Y̊

Λu = Λ(sû+ t∗) = Λ(sû) + t∗ ⪰ sΛû+ (1− s)σ + t∗ ⪰ s(Γû− Ccomp) + (1− s)σ + t∗ = u,

using successively (i) additive invariance, (ii) σ-sub-multiplicativity as in lemma 3.2 since s ∈
]0, 1], (iii) the assumption Γ− Ccomp ≤ Λ, and (iv) the definition of s and (28, iv). In addition
u = t∗ ≤ max{u∗, t∗} on ∂Y , and one has on Y̊

max{u∗, t∗} = u∗ = Λu∗ = Λmax{u∗, t∗}

using successively (i) the observation that t∗ ≤ t ⪯ u∗ on Y̊ by (28, ii), (ii) the fixed point
assumption (28, i), and (iii) the fact that Λ has Cpast-memory and Λu∗ = u∗ ⪰ t = t∗ + Cpast

on Y̊ . Using again the comparison principle proposition 3.4 we obtain u ⪯ max{u∗, t∗} on X,
thus u ⪯ u∗ on Y̊ , as announced. We have established that u ≤ u∗ ≤ u on Y̊ , equivalently
u∗− t′ ⪯ û ⪯ (u∗− t∗)/s on Y̊ , which implies E ∩ Y̊ ⊂ E′ ∩ Y̊ ⊂ E′′ ∩ Y̊ where E,E′, E′′ denote
the sublevel sets appearing in (29). We conclude the proof of (29) noting that ∂Y ⊂ E′ and
∂Y ⊂ E′′ by (28, ii and iii).

5i.e. Γu− Ccomp ⪯ Λu ⪯ Γu for all u ∈ RX
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3.2 The complete algorithm and its complexity

We replace in this subsection the ideal but non-computable narrow band used in proposition 2.13,
with an approximation based on proposition 3.5. This completes the analysis of algorithm 1,
under the assumptions listed below, which are checked in section 3.3 and appendices A and B
for the numerical schemes of interest.

Assumption 3.6. We denote by X = X̊ ⊔ ∂X a finite set, and by Λ,Φ,Γ : RX → RX three
operators. The operator Φ is subject to assumption 2.11: it is monotone, ρ-sub-additive, super-
multiplicative, and its fixed point satisfies −1 ⪯ v∗ ≺ 0. We assume in addition that v∗ = −1
on ∂X. The operator Λ is additively invariant, σ-sub-multiplicative, has Cpast-memory, and
Φ = EαΛE

−1
α . The operator Γ satisfies Γ− Ccomp ≤ Λ ≤ Γ, and for any partition X = Y̊ ⊔ ∂Y

there exists a solution û ∈ RX to Γû = û on Y̊ and û = 0 on ∂Y . The constants satisfy
ρ, α, σ > 0 and Cpast, Ccomp ≥ 0.

We use the following notations from lemma 2.12 and proposition 2.13 of section 2.2:

vn := (1− n2−r+1)v∗ + 2−n, X+
n := {v∗ ≥ −2−n}, X−

n := {v∗ ≤ −2−n}, B∗
n := X+

n−r ∩X−
n ,

where r > 0 and n ≥ 0 are integers. The following lemma constructs an approximation Bn

of the ideal narrow band B∗
n+1, from an approximation of the explicit super-solution vn. The

definition of Bn matches the one given in algorithm 1 when Γ is the graph based approximation
of Λ described in section 3.3.

Lemma 3.7. Under assumption 3.6. Let vn ∈ RX be such that v∗ ⪯ vn ⪯ vn, with 0 ≤ n ≤ 2r−3

and r ≥ 3. Then
X+

n−r+1 ⊂ {vn ≥ −2
−(n−r+1)} ⊂ X+

n−r. (30)

Let ûn ∈ RX satisfy ûn = 0 on Yn := {vn ≤ −2−(n−1)} ∪ ∂X, and Γûn = ûn on X \ Yn. Then
X−

n−1 ⊂ Yn ⊂ X−
n , X−

n+1 ⊂ {ûn ≤ T} ⊂ X−
n+r̂, (31)

with T := (2τ + Cpast)/s and r̂ := ⌈T/τ⌉, where τ := α ln 2 and s := σ/(Ccomp + σ). Finally

B∗
n+1 := X+

n−r+1 ∩X−
n+1 ⊂ Bn+1 := {vn ≥ −2−(n−r+1) and ûn ≤ T} ⊂ X+

n−r ∩X−
n+r̂. (32)

Proof. Recall that v∗ < 0 by assumption. At any point ofX, one has the sequence of implications

v∗ ≥ −ε ⇒ vn ≥ −ε ⇒ vn ≥ −ε ⇔ v∗ ≥ −
ε+ 2−n

1− n2−r+1
⇒ v∗ ≥ −2ε,

choosing ε = 2−(n−r+1) and using that n2−r+1 ≤ 1/4 in the last inequality; the inclusions (30)
follow. Similarly, at any point of X we have the sequence of reversed implications

v∗ ≤ −ε ⇐ vn ≤ −ε ⇐ vn ≤ −ε ⇔ v∗ ≤ −
ε+ 2−n

1− n2−r+1
⇐ v∗ ≤ −2ε,

choosing ε := 2−(n−1) and using that n2−r+1 ≤ 1/4 in the last inequality; the inclusions (31,
left) follow, noting that ∂X ⊂ {v∗ = −1} ⊂ X−

n . Let u∗ := E−1
α v∗, in such way that Λu∗ = u∗

and X−
n = {u∗ ≤ nτ}. Applying proposition 3.5 with t := (n − 1)τ and t′ := nτ , the sets

∂Y := Yn and Y̊ := X \ Yn, and observing that sT + t−Cpast = (n+ 1)τ , we obtain (31, right)
which concludes the proof. Finally, the set intersection of (30) and (31, right) yields (32), which
concludes.
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Corollary 3.8. Under assumption 3.6, choose ε > 0 and define the parameters n, r,K as in
proposition 2.14. Define v0 := 0 and let vn := ΦK

Bn
vn−1 for all 0 < n ≤ n, where the narrow

band Bn is defined by (32). Then vn is a super-solution and v∗ ⪯ vn ⪯ vn, for all 0 < n ≤ n.
Finally we have u∗ ⪯ un := E−1

α vn ⪯ u∗ + ε, and at most NK(r + r̂ + 1) elementary solution
updates are used in the iterations defining vn.

Proof. Denote by v∗n the sequence of proposition 2.13, which is the simplified algorithm with
oracle, and recall that v∗n ⪯ vn for all 0 ≤ n ≤ n. We claim that vn ⪯ v∗n for all 0 ≤ n ≤ n:
indeed v0 = v∗0 = 0, and vn = ΦK

Bn
vn−1 ⪯ ΦK

Bn
v∗n−1 ⪯ ΦK

B∗
n
v∗n−1 = v∗n for all 0 < n ≤ n, using (i)

the induction hypothesis vn−1 ⪯ v∗n−1 and the monotony of the operator Φ, and (ii) the inclusion
B∗

n ⊂ Bn see (32) and the fact that v∗n−1 is a sub-solution. We have shown that vn ⪯ v∗n ⪯ vn
for all 0 ≤ n ≤ n, and therefore un ⪯ u∗n := E−1

α v∗n ⪯ u∗ + ε. In addition, vn is a super-solution
of Φ, since v0 = v∗0 is a supersolution and using proposition 2.9 for induction, hence vn ⪰ v∗ by
the comparison principle proposition 2.7, and therefore un ≥ u∗ by monotony of E−1

α . Finally,
for any given x ∈ X, the membership x ∈ Bn implies −2−(n−r−1) ≤ v∗(x) ≤ −2−(n+r̂−1) by (32),
equivalently n∗(x)− r̂ ≤ n ≤ n∗(x)+ r where n∗(x) := 1− ln(−v∗(x))/ ln 2, thus the elementary
solution update “v(x)← Φv(x)” is used at most K(r+ r̂+1) times overall along the iterations,
which concludes.

3.3 Verification of the axioms for the semi-Lagrangian scheme

We construct in this section a graph based approximation Γ of the semi-Lagrangian update
operator Λ defined in (3). We check that it satisfies assumption 3.6, and conclude the proof of
the complexity estimate theorem 1.3. For that purpose, we define for all u ∈ RI

λF (u) := min
ξ∈ΞI

F (ξ) + ⟨ξ, u⟩, γF (u) := min
1≤i≤I

F (bi) + ui, FΞmax := max
1≤i≤I

F (bi).

Here and in the next proposition, I is a positive integer, F is a norm on RI (always possibly
asymmetric, by convention) and (bi)1≤i≤I denotes the canonical basis of RI .

Proposition 3.9. For any norm F on RI , one has for all u ∈ RI

• (additive invariance) ∀t ∈ R, λF (u+ t) = λF (u) + t.

• (σ-sub-multiplicativity) ∀t ≥ 0, λF [(1+ t)u] ≤ (1+ t)λF (u)−σt with σ := FΞmin, see (24).

• (FΞmax-memory) λF (max{u, t}) = λF (u) for all t ≤ λF (u)− FΞmax.

• (Comparison) γF (u)− FΞmax ≤ λF (u) ≤ γF (u).

Proof. Similarly to proposition 2.17, additive invariance and σ-sub-multiplicativity hold for any
affine mapping λξ

F (u) := F (ξ) + ⟨u, ξ⟩, where ξ ∈ ΞI is fixed, hence for their minimal envelope.
Proof of comparison: one has γF (u) − FΞmax ≤ min1≤i≤I ui = minξ∈Ξi

⟨ξ, u⟩ ≤ λF (u), and
λF (u) ≤ γF (u) since the canonical basis is contained in ΞI , as announced. Proof of FΞmax-
memory: one has λF (u) ≤ γF (u) ≤ FΞmax+min1≤i≤I ui. From t ≤ λF (u)−Fmax we thus obtain
t ≤ min1≤i≤I ui, hence max{u, t} = u, and therefore λF (max{u, t}) = λF (u), as announced.

We introduce a graph based operator Γ, defined for all x ∈ X̊ as follows (recalling (6))

Γu(x) := min
v∈E(x)

Fx(v) + u(x+ v), where E(x) := {vj | (v1, · · · , vd) ∈ V(x), 1 ≤ j ≤ d}, (33)
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and Γu(x) := 0 for all x ∈ ∂X. Clearly, if X = Y̊ ⊔ ∂Y with ∂Y ⊂ ∂X, then the graph distance
map to ∂Y can be characterized as the unique fixed point of Γ with null boundary conditions
on ∂Y , as follows

(Γû = û on Y̊ , and û = 0 on ∂Y ) ⇔ ∀x ∈ X, û(x) = dE(x, ∂Y )
(
:= min

y∈∂Y
dE(x, y)

)
. (34)

With this choice of Γ, the narrow bands Bn+1 defined in algorithm 1 and (32) are thus identical.

Corollary 3.10. Under assumption 1.2 (connected stencil), and assuming that Φ := EαΛE
−1
α is

ρ-sub-additive for some α > 0 and ρ < 1, as in proposition 2.24. The operator Λ on X := X̊ ⊔
∂X defined in (3) is additively invariant, σ-sub-multiplicative, has Cpast-memory, and satisfies
Γ− Ccomp ≤ Λ ≤ Γ. The fixed point u∗ of Λ satisfies 0 ⪯ u∗ ⪯ NhE . We denoted N := #(X),
the constant σ > 0 is given in (26, right), and one has Ccomp = Cpast = hE = max(x,v)∈E Fx(v)
(thus hE ≤ h, see (8)).

Proof. For any interior discretization point x ∈ X̊ and stencil element V = (v1, · · · , vd) ∈
V(x), one has (FV

x )Ξmax = max1≤i≤dFx(vi) using the notation (7). Note also that Γu(x) =
min{γFV

x
(uVx ) | V ∈ V(x)}, for all x ∈ X̊. The additive invariance, σ-sub-multiplicativity, Cpast-

memory, and comparison with Γ thus follow from the counterparts of these properties for λF

and γF established in proposition 3.9, and from lemma 3.3 on the minimum of several schemes.
The map û(x) := dE(x, ∂X) satisfies û ⪯ NhE by the connectedness assumption 1.2 and

since the oriented graph has N vertices with edgelengths bounded by hE . One has Γû = û
in view of (34), thus Λû ⪯ û and therefore Φv̂ ⪯ v̂ where v̂ := Eαû and Φ := EαΛE

−1
α . By

corollary 2.3 there exists a unique fixed point v∗ of Φ, therefore v∗ ⪯ v̂ ≺ 0 by the comparison
principle proposition 2.7, and thus u∗ := Eαv∗ ⪯ û ⪯ NhE as announced.

Final complexity estimate. We conclude the proof of theorem 1.3. By corollary 3.8, the
computation of the approximate fixed point un requires at most NK(r + r̂ + 1) elementary
updates, with the parameters N := #(X), K and r from proposition 2.14, and r̂ := ⌈(2 +
Cpast

α ln 2 )(1 +
Ccomp

σ )⌉ from lemma 3.7. Combining these estimates we obtain the complexity

O(N
p

ln+
(max(u∗)

pε

) (CpastCcomp

ασ
+ ln+

(max(u∗)

ε

))
) (35)

= O
(
Nκ2
√
d ln+

(Nhκ2
√
d

ε

) (
κ
√
d+ ln+

(Nh

ε

)))
(36)

where p := 1 − ρ and ln+ := max{1, ln}. We assumed for simplicity in (35) that ε ≤ α,
thus ε/(6α) ≤ δ ≤ 1/3, and that σ ≤ Ccomp, up to considering ε′ := min{ε, α} and σ′ :=
min{σ,Ccomp}. We inserted in (36) the estimates of ρ, α, σ, Cpast, Ccomp and max(u∗) established
in proposition 2.24 and corollary 3.10, which are specific of the semi-Lagrangian scheme (3).

Complexity of the narrow bands construction. For completeness, we briefly recall in
algorithm 2 how a variant of Dijkstra’s algorithm can be used to construct the narrow bands
of algorithm 1. The insertion in the penultimate line of algorithm 2 is conditioned to the
inequality û(x) < T , in such way that the graph distance dE(x, Yn) is correctly computed up to
the value T which is required for the construction of the narrow band Bn+1, and is overestimated
elsewhere. As a result of this conditional insertion, any given point x ∈ X which is inserted
in L at step n satisfies x ∈ Bn+1. Each such point triggers at most e(x) updates of û, where
e(x) := #{y ∈ X | x = y + v for some v ∈ E(y)}, thus E :=

∑
x∈X e(x) =

∑
y∈X̊ #E(y) is
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the total number of edges in the graph. In addition, as already observed in corollary 3.8, there
are at most r + r̂ + 1 values of n such that x ∈ Bn+1. The overall cost of algorithm 2 is thus
O((r+ r̂+1)E lnN), accounting for the logarithmic overhead of maintaining the heap structure,
which is clearly not dominant.

Algorithm 2 Dijkstra-based narrow band computation

Inputs: An increasing sequence Y0 ⊂ Y1 ⊂ · · ·Yn ⊂ X of finite sets, Y−1 := ∅. A positively
weighted graph structure on X, here defined by the edges E(x) and corresponding costs c(x, x+
v) := Fx(v) for each v ∈ E(x), x ∈ X̊.
Variables: An array û : X → [0,∞] initialized to +∞. A list L initially empty and containing
points of X sorted by the corresponding values of û (implemented using a heap for efficiency).
For n = 0, · · · ,n do

Set û(x) = 0 for all x ∈ Yn \ Yn−1, and insert these points in L (previously empty).
While L is non-empty do

Remove from L an element y which minimizes û(y).
For all x ∈ X such that y = x+ v for some v ∈ E(x) do

If c(x, y) + û(y) < û(x) then
û(x)← c(x, y) + û(y)
If û(x) < T then insert x in L if not present, or update its position otherwise.

Yield ûn := û, satisfying ûn(x) ≥ dE(x, Yn) for all x ∈ X, with equality if dE(x, Yn) ≤ T .

4 Numerical experiments

We illustrate the proposed Narrow Band (NB) method algorithm 1 with a toy one-dimensional
numerical experiment, a large two-dimensional test case from seismology featuring anelliptic
anisotropy, and two synthetic test cases featuring strong Riemannian anisotropy and asymmetric
anisotropy respectively. Our objective is to show that the parameters of the NB method are
easy to set in practice, and to illustrate the quasi-linear complexity established in theorem 1.3.

For comparison6, we implemented the Global Iteration (GI), Fast Sweeping (FS) [Zha05],
Adaptive Gauss Siedel Iteration (AGSI) [BR06], and Fast Iterative Method (FIM) [JW08], see
algorithms 3 to 5 and [JW08, Algorithm 4.2]. At termination, the approximate numerical
solution produced by each method satisfies u − ε ⪯ Λu ⪯ u by construction7, where ε > 0 is a
tolerance parameter and Λ denotes the update operator of the scheme.

We report for each method the number of evaluations of the update operator Λ until termina-
tion. We do not report computation time8, which was not particularly optimized. In particular,
we did not parallelize the numerical implementations, despite a clear opportunity to do so out-
lined in the last line of algorithm 1.

6The Banded Fast Marching method [CCF11] is close in spirit to the proposed NB method, despite the lack
of complexity guarantee. A comparison with this method would have been interesting in principle. However, it is
more complex and less formally specified than the AGSI, FIM and FS, hence it was not implemented.

7This implies u∗ ⪯ u ⪯ (1 + ε/σ)u∗ where u∗ is the exact fixed point of Λ, using the σ-sub-additivity of the
update operator as in lemma 3.2 and the comparison principle, where the constant σ > 0 is given in corollaries 3.10,
A.7 and B.6 for the Semi-Lagrangian, Lax-Friedrichs, or Eulerian scheme respectively.

8For reference, the anelliptic test case BP 2007 TTI of size 12596× 1801 completed in 25min on a single core
of a Macbook pro laptop equipped with a M1 max processor and 32GB ram, using the Lax-Friedrichs scheme and
the proposed Narrow Band method.
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The three discretizations of the eikonal equation considered in this paper have different
strengths and weaknesses, about which we share here our subjective and empirical experience
[Mir14b, Mir14a, Mir19]. The semi-Lagrangian scheme usually has the best accuracy among
first order methods, especially if one uses a sufficiently refined stencil with e.g. 8 points in two
dimensions; on the negative side, the update operator (3) is defined by an optimization problem
which can be non-trivial to implement for anelliptic metric structures [DCC+21]. The Eulerian
scheme has a rather simple and fast to compute update operator (52), by solving univariate
quadratic equations; on the negative side, it only applies to specific families of metrics, namely
Randers or Riemannian. The Lax-Friedrichs scheme has the simplest update operator (43),
which is easily implemented for any metric structure; on the negative side, it is highly diffusive
and never satisfies the causality property (9).

The complexity of the FS, AGSI, and FIM methods is empirically close to O(N) on “easy”
problems where e.g. the metric Fx(v) = c(x)∥v∥ is proportional to the identity matrix, the cost
function c > 0 is smooth, and the Eulerian scheme is used, where N denotes the number of
discretization points. In this numerical section, we purposely focus on “difficult” test cases,
involving the strongly non-causal Lax-Friedrichs scheme in the first two numerical experiments,
and either strong anisotropy or strong asymmetry in the other two experiments, so as to illustrate
the limitations of the FS, AGSI and FIM in difficult situations. Under these conditions, their
average number of iterations per point grows linearly with the largest grid dimension, see fig. 1,
resulting in superlinear complexity O(N1+ 1

d ) (for a square domain with N
1
d points on each side).

Algorithm 3 Global Iteration

Inputs : An update operator Λ : RX → RX , a tolerance ε > 0.
Variables : An array u : X →]0,∞], initialized to ∞.
Until Λu ⪰ u− ε do

For all x ∈ X do u(x)← Λu(x) in parallel.

Algorithm 4 Fast Sweeping [Zha05]. Same inputs and variables as GI.

Until Λu ⪰ u− ε do
For i = 1, · · · , d do

For all x = (x1, · · · , xd) ∈ X in order of increasing xi do u(x)← Λu(x).
For all x = (x1, · · · , xd) ∈ X in order of decreasing xi do u(x)← Λu(x).

Algorithm 5 Adaptive Gauss Siedel Iteration [BR06]. Same inputs and variables as GI.

Additional variable : A FIFO queue L, initialized with the points of ∂X.
While L is non-empty do

Pop x ∈ X from the front of L.
If Λu(x) < u(x)− ε then

u(x)← Λu(x)
Append to L all the neighbors of x which are not already in L.

Discussion of the timescale α. The analysis of the proposed numerical method is based,
above all, on two ingredients which are the monotony of the update operator Λ, and the ρ-sub-
additivity of the update operator Φ := EαΛE

−1
α written in Kružkov’s exponential coordinates
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(13), with ρ < 1. Assuming differentiability of Λ, for simplicity, these assumptions read

∂Λu(x)

∂u(y)
≥ 0,

∑
y∈X

∂Λu(x)

∂u(y)
exp

(u(y)− Λu(x)

α

)
≤ ρ, (37)

for all x, y ∈ X and u ∈ RX . The timescale α > 0 thus heuristically measures the admissible
amount of non-causality : the arrival time Λu(x) may depend on ulterior values u(y) > Λu(x),

as opposed to (9), but the dependency ∂Λu(x)
∂u(y) ≤ ρ exp(Λu(x)−u(y)

α ) decays exponentially fast as a

function of the non-causal differences u(y)− Λu(x) ≥ 0, with the timescale α.
As announced in the introduction we replace the fixed number of iterations K within the

narrow band Bn in algorithm 1 with a stopping criterion, so as to both reduce complexity
and eliminate this parameter. More precisely, at each inner iteration, we perform the update
u(x)← Λu(x) at each point x ∈ Bn which does not satisfy

exp
(un − Λu(x)

α

)
− exp

(un − u(x)

α

)
≤ ε∗ (38)

where un is the lower bound for the values in the narrow band Bn, and ε∗ > 0 is a fixed threshold.
The choice of timescale α > 0 can be guided by proposition 2.24 for the Semi-Lagrangian

scheme, proposition B.4 for the Eulerian scheme, and proposition A.6 for the Lax-Friedrichs
scheme. Unfortunately, the theoretical value is often excessively large for practical use, and
likewise the other narrow band parameters are often unusable, even in the toy one-dimensional
example of section 4.1. For this reason, we present simple heuristics for parameter setting.

Heuristic choice of narrow band parameters. Timescale α. Consider the eikonal equation
associated with a metric F on a bounded domain Ω ⊂ Rd, discretized on the grid Ω ∩ hZd with
scale h > 0. Denote by Vmin := 1/max{Fx(v) | x ∈ Ω, ∥v∥ = 1} the minimal propagation
speed. We use α ∈ [2h/Vmin, 5h/Vmin] in the following experiments. An excessively large value
of α increases computational cost (linearly w.r.t. α empirically), and an excessively small value
increases the residue ∥u − Λu∥∞ of the numerical solution produced by the NB method (this
quantity was always computed and checked to validate the experiments).

Threshold ε∗ > 0. The condition (38) implies Λu(x) ≥ u(x)− eα ε∗ for all x ∈ Bn such that
u(x) ≤ α (using that exp′(s) ≥ 1/e, ∀s ≥ −1), i.e. at points whose value is to be frozen soon.
We use ε∗ :=

ϵ
eα in the following experiments, for consistency with the stopping criterion of the

GI, AGSI, FS and FIM.
Time step τ > 0. Lemma 3.7 suggests τ = α ln 2. We use τ = α/2 in the following

experiments, which slightly improves accuracy.
Narrow band width rτ . A significant step of the convergence analysis is the estimate (16)

which similar to (38) but with the tolerance ε∗ = (1 − ρ)2−r, corresponding to rτ = α ln((1 −
ρ)eα/ε). We use rτ = α ln(α/ε) in the following experiments, since the contraction factor ρ is
often unknown, hard to estimate, or excessively pessimistic.

Narrow band extension parameter T . Lemma 3.7 suggests T = (2τ + Cpast)(σ + Ccomp)/σ;
however σ, Cpast and Ccomp may again be unknown, hard to estimate, or excessively pessimistic.
We use T = 5τ in the following experiments, which is sufficiently large to ensure that the back
of the narrow band never catches up with the front.

Finally, let us mention that the test cases feature point sources u(x0) = 0 for some x0 ∈ Ω,
and outflow boundary conditions u =∞ on ∂Ω. This is consistent with the intended applications,
but differs slightly from the setting of theorem 1.3.
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4.1 One dimensional toy experiment, Lax-Friedrichs scheme

We solve the toy problem |u′| = 1 on Ω :=]0, 1[, with the Dirichlet boundary condition u(0) = 0,
and the outflow boundary condition u(1) =∞. The exact viscosity solution of this eikonal PDE
is u∗(x) = x for all x ∈ Ω. The Lax-Friedrichs update operator (43) reads

Λu(x) := min{hC0+min{u(x+h), u(x−h)}, c1(h− 1
2 |u(x+h)−u(x−h)|)+ 1

2(u(x+h)+u(x−h))},

for all x ∈ X̊ :=]0, 1[∩hZ, where the grid scale h > 0 is chosen as the inverse of an integer. The
scheme parameters need to obey 0 < c1 < 1 ≤ C0; we choose arbitrarily c1 = 1/3 and C0 = 2.
Observing that the solution u is non-decreasing we obtain the simplified but equivalent scheme

Λu(x) = min
{
2h+ u(x− h),

h+ 2u(x− h) + u(x+ h)

3

}
. (39)

Narrow band parameters. The parameters arising from the convergence analysis are not
reasonable for numerical applications, even in this simple example. Specifically, corollary A.7
suggests using α = 216h, to achieve a contraction factor ρ = 1− 1/1296. Proposition 2.14, with
h = 1/1000 and target accuracy ε = 10−4h, suggests using K = 33979 inner iterations, so as to
satisfy (38) with ε∗ ≈ 4.1× 10−12, and to use a narrow band of width rτ ≈ 4117h. Lemma 3.7
suggests using T ≈ 2096h for the narrow band extension. In practice, the narrow band would
be larger than the domain, the threshold ε∗ would be comparable with machine precision, and
the number K of inner loops would be greater than what GI uses overall.

On the other hand, instantiating (37, right) with the scheme (39) and the known eikonal
PDE solution u∗(x) = x, yields 2

3 exp(−h/α) +
1
3 exp(h/α) ≤ ρ. Letting α = h/ ln(3/2) ≈ 2.46h

thus yields the contraction factor ρ = 1− 1/18; however, this only holds in the vicinity of u∗.
In practice, we use the middle ground α = 5h for the timescale, and use the tolerance

ε = 10−4h; thus following our heuristics τ = α/2 = 2.5h, rτ = α ln(α/ε) ≈ 54h, T = 5τ = 12.5h
and ε∗ =

ε
eα ≈ 7.4× 10−6. Figure 2 illustrates the narrow band, which is rather thin and allows

concentrating the numerical computations in the region where they are most useful. In contrast,
the AGSI queue quickly grows and encompasses most of the domain, resulting in poor efficiency
similarly to GI.

The NB method uses in average 220 updates per point with the specified parameters, inde-
pendently of the problem size (this relatively high number, for such a simple problem, is due to
the high diffusivity and non-causality of the Lax-Friedrichs scheme). In contrast the AGSI uses
203, 684, 2849 updates per point for the problem sizes 200, 1000 and 5000 respectively, with the
same tolerance ε = 10−4h, and the FIM, FS and GI are even more costly (in that order), see
fig. 1 (i).

4.2 Anelliptic anisotropy, Lax-Friedrichs scheme

The BP 2007 TTI test case9 is a large two-dimensional dataset describing the underground
properties below the seafloor using Thomsen’s elastic parameters [Tho86], which is commonly
used in seismic tomography benchmarks. The discretization grid has shape 12596× 1801, with
grid scale h = 6.25m. Thomsen’s parameters describe a part of the Hooke elasticity tensor,
which is sufficient to compute the arrival time of the seismic pressure waves by solving the
eikonal equation associated with the metric (40) below. The speed profile is tilted, anisotropic
and anelliptic, with sharp velocity contrasts at the boundary of the different media (rock, salt
domes, water).

9Created by Hemang Shah and provided courtesy of BP Exploration Operation Company Limited.
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Figure 1: Average number of updates per point Nup, as a function of the largest grid dimension
Nx, in the four considered test cases. Observe that Nup grows linearly with Nx when using the
AGSI, FIM, FS and GI methods, but remains constant with the proposed NB method.

Figure 2: Solution values (thin lines) and effective band of active points (thick lines; i.e. the
narrow band, queue, or whole domain), at the specified iteration counts of the main loop of the
NB, AGSI, and GI methods. Problem size Nx = 400, see text for the method parameters.

Formally, consider a bounded domain Ω ⊂ Rd equipped with c ∈ C0(Ω,Rd×d×d×d), the
reduced Hooke tensor, obeying the usual assumptions of symmetry (cijkl = cklij = cjikl) and
positivity (

∑
ijkl cijkl(x)mijmkl > 0 for any m ∈ Sd), where the indices i, j, k, l always range

over {1, · · · , d}. Define for any point x ∈ Ω and any (co-)vector η ∈ Rd the (dual-)metric

F∗
x(η) :=

√
|||c(x; η)|||, where c(x; η)jk :=

∑
i,l

cijkl(x)ηiηl. (40)

We denoted by |||·||| the operator norm of a d × d matrix, which in this case is also the largest
eigenvalue since c(x; η) ∈ S++

d for any η ̸= 0 in view of the assumptions on c. As announced the
norm F∗ is anelliptic (non-Riemannian), and has a complex structure depending in full generality
on the numerous10 independent coefficients of the reduced Hooke tensor c, which complicates
the implementation of semi-Lagrangian [DCC+21] or Eulerian schemes. In contrast, the Lax-
Friedrichs scheme implementation (43) is trivial since it only requires evaluating F∗

x(η). We
solve F∗(∇u) = 1 on Ω \ {x0} with the point source boundary condition u(x0) = 0 where x0 is
an interior point close to the top-right corner, and outflow boundary conditions on ∂Ω.

The Lax-Friedrich scheme parameters C0(x) and c1(x) are defined pointwise in this experi-
ment, for best efficiency, and are adjusted numerically so as to satisfy C0(x)

−1∥ξ∥∞ ≤ F∗
x(ξ) ≤

c1(x)
−1∥ξ∥1 sharply, by sampling over a set of 20 directions ξ. We normalized the data so that

the maximum pressure wave velocity is Vmax = 1, and we use the timescale α = 2h/Vmin ≈ 6h,

10There are 6 independent coefficients if d = 2, and 15 if d = 3. The two-dimensional BP 2007 TTI test case
only provides four: Thomsen’s parameters Vp, ε, δ, and the tilt angle θ, but they are sufficient to approximate
well (40) and thus the pressure wave speed profile.
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Figure 3: (i) Geometry of the BP 2077 TTI test case. (ii) Contour plot of the numerical
solution of the eikonal equation. (iii, iv) Narrow band of active points, at several steps of the
NB method, for the horizontal problem sizes Nx = 630 and Nx = 6298, see text for parameters.
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Figure 4: Tubular test case. (i) The Riemannian metric has eigenvalues 1 and 1/202 in the
spiral blue region, with an eigenvector tangential to the spiral curve; and equals Id elsewhere.
(ii) Contour plot of the numerical solution. (iii) Narrow band of active points, at several steps
of the NB method, problem size Nx = 1001, see text for other parameters.

tolerance ε = 10−4h, and following our heuristic τ = α/2, rτ = α ln(α/ε), T = 5τ . Some narrow
bands produced during the computation are illustrated on fig. 3.

The proposed NB method uses in average 130 updates per point, independently of the
problem size. In contrast, the AGSI uses 172, 635 and 2946 updates per point for the problem
sizes 629× 90, 2519× 360 and 12596× 1801 (model subsampled by a factor 20, 5, and original
size respectively), and the FIM, FS and GI are even more costly (in that order).

4.3 Strongly anisotropy Riemannian test case, Semi-Lagrangian scheme.

The following test case, introduced in [BC11], is inspired by applications to tubular structure
segmentation in medical images. We use a semi-Lagrangian discretization, based on the four-
point two-dimensional diamond stencil on the Cartesian grid; this numerical scheme similar to
the seminal work [Tsi95], except that the Riemannian anisotropy destroys the causality property
(9), and makes the FMM inapplicable. The front propagation is fast and strongly anisotropic
in the neighborhood of a given curve, and slow and isotropic elsewhere, which leads to slow
convergence of the AGSI as observed in [BC11]. This test case motivated the design of adaptive
numerical schemes, using wide stencils depending on the local value of the Riemannian metric
and designed using a tool from algorithmic geometry known as Selling’s matrix decomposition,
in order to apply the FMM and solve the problem in a single pass [Mir14a, Mir19]. We show
here that the original problem discretization can also be solved efficiently, provided the AGSI is
replaced with the NB method.

Formally, the metric has a Riemannian structure Fx(v) :=
√
⟨v,M(x)v⟩ on the domain

Ω :=] − 1/2, 1/2[2. It satisfies M(x) = Id, except when x ∈ Ω lies in a band of width 1/20
along the spiral curve Γ : r ∈ [0, R] 7→ r(cosωr, sinωr) with ω := 12π and R = 0.43, in which
case M(x) has eigenvalues 1 and 1/20, with the second eigenvector tangential to Γ. We solve
⟨∇u,M−1∇u⟩ = 1 on Ω \ {x0} with the point source boundary condition u(x0) = 0 at the
domain center x0 := (0, 0), and outflow boundary conditions on ∂Ω.

We use the timescale α = 5h, tolerance ε = 10−4h, where h > 0 denotes the grid scale, and
following our heuristic τ = α/2, rτ = α ln(α/ε), and T = 5τ . The number of updates per point
of the NB method slightly decreases from 97 to 78 as the problem size increases from 2012 to
20012. In contrast, the AGSI uses 196, 389, 770 and 1544 updates per point for the problem
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Figure 5: Swirl test case (i) Vector field ω, defining the asymmetric part of the metric. (ii)
Solution, which is radial up to boundary effects. (iii) Some narrow bands, Nx = 1001, α = 3h.

sizes 2012, 4332, 9312 and 20012, and the FIM, FS and GI are even more costly (in that order),
see fig. 1 (iii).

4.4 Strongly asymmetric Randers test case, Eulerian scheme.

The following test case is inspired by Zermelo’s problem of a boat navigating a whirlpool of
water [BRS04]. It involves a Randers metric with a strong asymmetric term defined by a
rotating vector field, whose norm almost saturates Randers local controllability criterion (48).
We use a four-point Eulerian scheme, similar to the seminal work [RT92, Set96], except that
the Randers asymmetric bias term destroys the causality property (9), and makes the FMM
inapplicable. A test case with a similar structure is considered in [Mir14b], where the AGSI is
shown to be inefficient; in that work, a semi-Lagrangian scheme is used in combination with
adaptive stencils depending on the local value of the metric and designed using a tool from
arithmetic known as the Stern-Brocot tree, which is specific to the two-dimensional setting, so
as to restore causality and apply the single pass FMM. We show below that the original simple
Eulerian problem discretization can also be solved efficiently, provided the AGSI is replaced with
the NB method.

Formally, the domain Ω :=] − 10, 10[2 equipped with the Randers metric Fx(v) := ∥x∥ +
⟨ω(x), v⟩, where ω(x) := ρ ∥x∥2

1+∥x∥2
x⊥

∥x∥ with ρ := 0.98 < 1 so as to obey the Randers compatibility

condition, see definition B.1. We solve ∥∇u−ω∥ = 1 on Ω\{x0} with the point source boundary
condition u(x0) = 0 at the domain center x0 := (0, 0), and outflow boundary conditions on ∂Ω.

We use the timescale α = 5h, tolerance ε = 10−4h, where h > 0 denotes the grid scale, and
following our heuristic τ = α/2, rτ = α ln(α/ε) and T = 5τ . The number of updates per point
of the NB method slightly decreases from 115 to 70 as the problem size increases from 2012 to
20012. In contrast, the AGSI uses 125, 219, 410 and 810 updates per point for the problem sizes
2012, 4332, 9312 and 20012, and the FIM, FS and GI are even more costly (in that order), see
fig. 1 (iv).

Conclusion

We establish in this paper, to our knowledge, the first quasi-linear complexity result for a
numerical solver of anisotropic eikonal equations which does not rely on the causality property
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(9). The method concentrates the computation on a narrow band, whose width (a range of
solution values) is essentially proportional to a characteristic time α > 0 which quantifies the
non-causality discretization scheme, and depends logarithmically on the numerical tolerance
ε > 0. The method applies to semi-Lagrangian, Eulerian, and Lax-Friedrichs schemes.

The proposed algorithm does work in practice, provided the excessively pessimistic parame-
ters derived from the theoretical analysis are replaced with suitable heuristics. It shines partic-
ularly well, in comparison with other iterative solvers of eikonal equations, in test cases which
are large along at least one axis, and which either (i) are addressed using the highly non-causal
Lax-Friedrichs relaxation scheme, or (ii) feature strong anisotropy or asymmetry. Avenues for
future work include addressing more complex front propagation models than the eikonal PDE,
establishing sharper theoretical bounds leading to method parameters usable in practice, and
developing a high performance parallel numerical implementation.
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A Lax-Friedrichs scheme

We consider in this appendix a discretization of anisotropic eikonal PDEs based on a Lax-
Friedrichs relaxation similar to [KOQ04], which is combined with a graph based limiter. We
prove that this scheme can be solved using the proposed narrow band algorithm 1 with quasi-
linear complexity, see corollary A.7. For that purpose, we need to introduce some notations.

Let Ω ⊂ Rd be a bounded open domain with Lipschitz boundary, equipped with F∗ ∈
C0(Ω × Rd) a Finslerian (dual-)metric. Thus ξ ∈ Rd 7→ F∗

x(ξ) is a norm, possibly asymmetric,
and satisfying

C−1
0 ∥ξ∥∞ ≤ F

∗
x(ξ) ≤ C1∥ξ∥1, (41)

for all x ∈ Ω, ξ ∈ Rd, where C1, C0 > 0 are constants, and ∥ξ∥1 :=
∑d

i=1 |ξi| and ∥ξ∥∞ :=

maxdi=1 |ξi|. Let h > 0 be a fixed gridscale, and let X := X̊ ⊔ ∂X be the discretization domain
with interior X̊ := Ω ∩ hZd and boundary ∂X := {x + τhbi | x ∈ X̊, 1 ≤ i ≤ d, τ = ±1} \X,
where (bi)

d
i=1 denotes the canonical basis of Rd. We consider the numerical scheme

max
{

max
1≤i≤d

τ∈{−1,1}

u(x)− u(x− τhbi)

C0h
, F∗

x(∇hu(x))−
h

2c1
∆hu(x)

}
= 1, (42)

for all x ∈ X̊, where 0 < c1 < C−1
1 is a constant. This scheme is defined in terms of the standard

centered finite differences discretizations of the gradient and Laplacian differential operators:

∇hu(x) :=
∑

1≤i≤d

u(x+ hbi)− u(x− hbi)

2h
bi, ∆hu(x) :=

∑
1≤i≤d

u(x+ hbi)− 2u(x) + u(x− hbi)

h2
.

Choosing a smooth u and letting h→ 0 we find that (42) is consistent with max{∥∇u(x)∥∞/C0,
F∗
x(∇u(x))} = 1, up to a first order truncation error, hence with the anisotropic eikonal PDE
F∗
x(∇u(x)) = 1 in view of (41). (For readability, we changed the sign convention w.r.t. (1).)
Solving for u(x) in (42), we obtain the update operator Λu(x) := min{Λ0u(x),Λ1u(x)} where

Λ0u(x) := hC0 + min
1≤i≤d

τ∈{−1,1}

u(x+ τhbi), Λ1u(x) :=
c1
d

(
h−Fx(h∇hu(x))

)
+

∑
1≤i≤d

τ∈{−1,1}

u(x+ τhbi)

2d
,

for any u ∈ RX and any interior point x ∈ X̊. By convention Λu(x) = 0 for all x ∈ ∂X. For
convenience, we study the elementary operator λ(u) := min{λ0(u), λ1(u)}, u ∈ R2d, where

λ0(u) := C0 +min(u), λ1(u) :=
c1
d
(1− F ∗(Du)) +

⟨u,12d⟩
2d

, Du :=
(u+i − u−i

2

)
1≤i≤d

(43)

and where C0 and c1 > 0 are constants, and F ∗ is a norm, always possibly asymmetric. Here
and below, the components of u ∈ R2d are denoted by uτi, τ ∈ {−1, 1}, 1 ≤ i ≤ d. The following
assumption is used throughout propositions A.2 and A.6 and lemmas A.3 to A.5.
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Assumption A.1. F ∗ is a norm on Rd, satisfying C−1
0 ∥ξ∥∞ ≤ F ∗(ξ) ≤ C1∥ξ∥1 for all ξ ∈ Rd.

The constants C0, C1, c1 > 0 and δ := (1− C1c1)/(2d) > 0 are all positive.

We recall that min(u),max(u) ∈ R denote the smallest and largest element of u ∈ R2d,
whereas max{u, t} ∈ R2d denotes the elementwise maximum with t ∈ R, see notations.

Proposition A.2. The following properties hold for all u ∈ R2d:

• (Monotony) ∀u′ ∈ R2d, u ⪯ u′ ⇒ λ(u) ≤ λ(u′), and in addition λ1(u
′)−λ1(u) ≥ δ∥u′−u∥1.

• (Translation invariance) ∀t ∈ R, λ(u+ t) = λ(u) + t.

• (Comparison) λ0(u)− Ccomp ≤ λ(u) ≤ λ0(u), with Ccomp := C0.

• (Cpast-memory) λ(u) = λ(max{u, t}) for all t ≤ λ(u)− Cpast, with Cpast := C0.

• (σ-sub-multiplicativity) ∀t ≥ 0, λ((1 + t)u) ≤ (1 + t)λ(u)− tσ, with σ := c1/d.

Proof. Proof of monotony: one has F ∗(Du) − F ∗(Du′) ≤ F ∗(Du − Du′) ≤ C1∥Du − Du′∥1 ≤
C1∥u−u′∥1/2 using successively the triangular inequality for the asymmetric norm F ∗, assump-
tion A.1, and the finite differences expression (43, right). The announced inequality for λ1

follows remarking that ⟨u′ − u,12d⟩ = ∥u′ − u′∥1 since u′ ⪰ u. Finally, λ is monotone since it
is defined as the maximum of λ1 which is monotone by the above argument, and of λ0 which
is clearly monotone. Translation invariance is clear. Comparison follows from the observation
that λ1(u) ≥ λ1(min(u)12d) = c1/d+min(u) ≥ min(u) = λ0(u)−Ccomp using monotony for the
first inequality. Proof of Cpast-dependency : one has t ≤ λ(u) − C0 ≤ λ0(u) − C0 = min(u),
hence max{u, t} = u. Proof of σ-sub-multiplicativity : λ0 (resp. λ1) is the sum of the 1-
positively homogeneous min function (resp. the function u 7→ 1

2d

(
⟨u,12d⟩ − 2c1F

∗(Du)
)
) and

of the constant C0 (resp. c1/d), hence is C0-sub-multiplicative (resp. c1/d-). The result follows
for λ = min{λ0, λ1} by lemma 3.3 on the properties of the minimum of two operators, and since
C0 ≥ C−1

1 ≥ c1 ≥ c1/d by assumption A.1 (use that C−1
0 ≤ F ∗(b1) ≤ C1, and 1−C1c1 > 0).

Define ϕ0 := Eαλ0E
−1
α , where α > 0, see (13). One easily checks that for all v ∈ Rd

ϕ0(v) = exp(−C0/α)min{0,min(v)}, (44)

and therefore ϕ0 is ρ0-sub-additive, with ρ0 := exp(−C0/α). A similar result is established for
the complete update operator in proposition A.6, preceded with some technical lemmas.

Lemma A.3. Let λ : RI → R be an arbitrary function which is differentiable at u ∈ RI . Let
ϕ := EαλE

−1
α and v := Eαu, where α > 0. Then[ d

dt
ϕ(v + t)

]
t=0

= ρ(α;λ, u), where ρ(α;λ, u) :=
〈
exp

(
[u− λ(u)]/α

)
,∇λ(u)

〉
.

Proof. By the differentiation rule for compositions, using the explicit expression (13) of Eα[ d

dt
ϕ(v + t)

]
t=0

= E′
α(λ(u))⟨E−1′

α (v),∇λ(u)⟩ = 1

α
exp

(
− λ(u)

α

) 〈
− α

v
,∇λ(u)

〉
.

Lemma A.4. If λ1(u) ≤ λ0(u), for some u ∈ R2d, then max(u) ≤ min(u) + C0/δ.

Proof. One has λ1(u) ≥ λ1(min(u)12d) + δ∥u − min(u)∥1 ≥ min(u) + δ(max(u) − min(u)) by
proposition A.2 (monotony). We conclude recalling the expression (43) of λ0.
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Lemma A.5. For any u ∈ R2d, such that F ∗ is differentiable at Du ∈ Rd, one has

∇λ1(u) =
1
2d

(
1− c1τ ∂iF

∗(Du)
)τ∈{−1,1}
1≤i≤d

∈ R2d. (45)

If λ1(u) ≤ λ0(u) and α ≥ C0/δ, then ρ1(α;λ1, u) ≤ 1− c1
αd +

C2
0

α2δ2
.

Proof. The expression (45), where ∂iF
∗ denotes the partial derivative of F ∗ : Rd → R w.r.t. the

i-th coordinate, is obtained by differentiating (43, center). Let us note the identities

∥∇λ1(u)∥1 = ⟨12d,∇λ1(u)⟩ = 1, ⟨u,∇λ1(u)⟩ = λ1(u)− c1/d, (46)

for any u ∈ R2d, using (left) proposition A.2 (monotony) which implies that ∇λ1(u) ∈ [0,∞[2d,
and (right) Euler’s identity for the 1-homogeneous function u 7→ λ1(u) − c1/d. We assume
λ1(u) = 0 in the following, w.l.o.g. thanks to the additive invariance of λ1, and obtain denoting
r(x) := exp(x)− x− 1 and inserting (46) in the last estimate

ρ(α;λ1, u) =
〈
exp

(u
α

)
,∇λ1(u)

〉
=

〈
12d +

u

α
+ r

(u
α

)
,∇λ1(u)

〉
≤ 1− c1

αd
+
∥∥r(u

α

)∥∥
∞. (47)

One has min(u) + c1/d = λ1(min(u)12d) ≤ λ1(u) = 0 ≤ λ0(u) = min(u) + C0 by assumption
and monotony of λ1. Thus −C0 ≤ min(u) ≤ 0, therefore max(u) ≤ C0/δ by lemma A.4, hence
∥u/α∥∞ ≤ 1 by assumption. Recalling that 0 ≤ r(t) ≤ t2 for all t ≤ 1, see lemma 2.20, and
inserting this estimate in (47), we conclude the proof.

Proposition A.6. One has ϕ(v + t) ≤ ϕ(v) + ρ(α)t for all v ∈ R2d, t ≥ 0, with ϕ := EαλE
−1
α

and

ρ(α) := max
{
exp

(
− C0

α

)
, 1− c1

αd
+

C2
0

α2δ2

}
< 1, assuming α > α0 :=

dC2
0

c1δ2

Proof. Let us first check that one has a continuous extension λ : R2d
∞ → R∞, where R∞ :=

] − ∞,∞] is equipped with the topology of ]0, 1], in such way that ϕ is continuously defined
on Rd. Consider a converging sequence un → u as n → ∞, with un ∈ R2d and u ∈ R2d

∞. If
max(u) < ∞, then λ(un) → λ(u) by continuity of λ on Rd. If min(u) = ∞, then λ(un) ≥
min(un) → ∞ as n → ∞, which proves continuity. Finally, if min(u) < ∞ and max(u) = ∞,
then λ(un) = λ0(un) = min(un) + C0 for sufficiently large n by lemma A.4, and we conclude
noting that λ0 is continuous on R2d

∞. (In contrast, λ1 is ill-defined on R2d
∞ due to the indeterminate

form ∞−∞ in (43, right).)
Now let v0 ∈ Rd, and u(t) := E−1

α (v0+t) ∈ R2d
∞ for all t ∈ R. Assume that min(v0) < max(v0),

otherwise the result is clear, and let t0 := (max(v0)−Rmin(v0))/(R−1), with R := exp(αC0/δ).
By construction [max(u(t)) < min(u(t))+C0δ <∞] iff t < t0. For all t ≥ t0 one has ϕ(v0+ t) =
ϕ0(v0+ t) by lemma A.4, which is exp(−αC0)-Lipschitz by (44) as a function of t. On the other
hand for all t < t0 one has ϕ(v0+ t) = min{ϕ0(v0+ t), ϕ1(v1+ t)}, which is ρ(α)-Lipschitz w.r.t.
t in view of lemma A.5, for any α ≥ C0/δ (note that α0 ≥ C0/δ since C0 ≥ c1, δ ≤ 1, d ≥ 1).
Finally, the choice of α0 ensures that ρ(α) < 1.

Corollary A.7. The operator Λ is monotone, translation invariant, satisfies Γ−C ′
comp ≤ Λ ≤

Γ where the graph based approximation is defined as Γ := Λ0, has C ′
past-memory, is σ′-sub-

multiplicative, and Φ := Eα′ΛE−1
α′ is ρ′-sub-additive. The fixed point u∗ of Λ satisfies 0 ⪯ u∗ ⪯

NhE where N := #(X). The constants are defined in terms of those of propositions A.2 and A.6
as follows: C ′

comp = C ′
past = hE := hC0, σ

′ := hσ > 0, α′ := 2hα0, and ρ′ := 1− 1
2(

c1δ
C0d

)2 < 1.
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Proof. The properties follow from propositions A.2 and A.6 and the identity Λu(x) = hλ(ũ/h),
for any x ∈ X and u ∈ RX , by choosing ũτi := u(x+ τhbi) and F ∗ := F∗

x , but with the constant

ρ(2α0) instead of ρ′. Denoting α := 2α0, we have exp(−C0
α ) ≤ 1−C0

2α ≤ 1− c1
2α = 1− c1

αd+
C2

0
α2δ2

= ρ′,
using successively that exp(−x) ≤ 1 − x/2 for all 0 ≤ x ≤ 1 for the first inequality, basic
inequalities δ ≤ 1, c1 ≤ C0, d ≥ 1 which follow from the assumptions, and the expression of
α0; thus ρ′ = ρ(2α0) as required. The existence, uniqueness and estimate of u∗ is similar to
corollary 3.10.

We have gathered all the ingredients necessary to apply algorithm 1, and establish a counter-
part of theorem 1.3 for the Lax-Friedrichs scheme. Specializing the generic complexity estimate
(35) of algorithm 1 with the values of corollary A.7 we obtain

O(N
p

ln+
(NhC0

pε

)
ln+

(NhC0

ε

)
) with p := 1− ρ′ =

1

2
(
c1δ

C0d
)2.

B Eulerian scheme

We establish in this appendix the counterpart (61) of our main complexity result theorem 1.3,
for an Eulerian discretization of the eikonal equation first considered in [RT92, Set96] and gen-
eralized to Riemann and Randers type anisotropy in [Mir19]. The key ingredient of the proof is
that the Eulerian scheme (52) can be regarded as an instance of the semi-Lagrangian scheme (3),
using a diagonal metric in a higher dimensional space, see lemma B.2. In particular, the classical
Eulerian [RT92, Set96] and semi-Lagrangian [Tsi95] (using the four point stencil) discretizations
of the isotropic eikonal equation are mathematically equivalent. This coincidence has likely been
noticed before, but curiously no proof has been published to the author’s knowledge. In order
to proceed, we need to introduce some notations.

Let Ω ⊂ Rd be an open bounded domain with Lipschitz boundary, and let D ∈ C0(Ω,S++
d )

and ω ∈ C0(Ω,Rd) be subject to the following compatibility condition: for all x ∈ Ω

∥ω(x)∥D(x) ≤ ωmax < 1, on Ω, where ∥v∥D :=
√
⟨v,Dv⟩. (48)

Our objective is to numerically approximate the unique viscosity solution U : Ω→ R of

∥∇U + ω∥D = 1, in Ω, U = 0 on ∂Ω. (49)

The solution U(x) of this variant of the eikonal PDE (1) is the traveltime (or path-length)
distance (2) from a point x ∈ Ω to the boundary ∂Ω, with respect to the Randers metric
Fx(ξ) := ∥ξ∥D(x)−1 + ⟨ω(x), ξ⟩, see [Mir19]. Randers metrics arise, for instance, in Zermelo’s
navigation problem describing a vehicle is subject to drift, and the condition (48) ensures the
local controllability of the system, see [BRS04]. The special case where ω = 0 identically on Ω
corresponds to a Riemannian eikonal PDE, without drift. In order to discretize (49), we consider
a finite and non-empty set of offsets E ⊂ Zd \ {0}, and coefficients µ ∈ C0(Ω × E, ]0,∞[) such
that

D(x) :=
∑
e∈E

µ(x, e)ee⊤, 0 < µmin ≤ µ(x, e) ≤ µmax, (50)

for all x ∈ Ω, e ∈ E. In the special case of a diagonal matrix, which is denoted D(x) =
Diag(µ1(x), · · · , µd(x)), we recover the classical scheme [RT92, Set96] by choosing E = {b1, · · · , bd}
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as the canonical basis of Rd and letting µ(x, bi) := µi(x) for all 1 ≤ i ≤ d. Non-diagonal
anisotropy, introduced in [Mir19] for this class of schemes, is discussed in remark B.7.

Let h > 0 be a fixed grid scale, and let

X̊ := Ω ∩ hZd, ∂X := {x+ τhe | x ∈ X̊, e ∈ E, τ = ±1} \ X̊, (51)

denote the discretized domain interior and boundary. The Eulerian update value λ = Λu(x),
where u ∈ RX and x ∈ X̊, is defined as the unique solution of the finite differences equation∑

e∈E
µ(x, e)max

{
0, λ− u(x− e) + h⟨ω(x), e⟩, λ− u(x+ e)− h⟨ω(x), e⟩

}2
= h2. (52)

The exact solution λ can be numerically computed by solving at most #(E) univariate quadratic
equations, see [Set96] or [MGB+23, Algorithm 3]. Replacing λ with u(x) in (52), and using (50,
left) and a Taylor expansion, we find that this scheme is first order consistent with (49), see
[Mir19] for more discussion and a convergence analysis. By convention Λu(x) = 0 for all x ∈ ∂X.

Definition B.1 (Randers norm). For any M ∈ S++
I and ω ∈ RI obeying the compatibility

condition ∥ω∥M−1 < 1, we define the Randers norm F (ξ) := ∥ξ∥M + ⟨ω, ξ⟩, ξ ∈ RI . This norm
is asymmetric whenever ω ̸= 0.

A Randers norm is clearly convex and 1-positively homogeneous, and for all ξ ∈ RI \ {0}

0 < (1− ∥ω∥M−1)∥ξ∥M ≤ F (ξ) ≤ (1 + ∥ω∥M−1)∥ξ∥M ≤ 2∥ξ∥M , (53)

using the Cauchy-Schwartz inequality ⟨ω, ξ⟩ ≤ ∥ω∥M−1∥ξ∥M and the compatibility condition.
As announced, we draw in lemma B.2 a connection between the Eulerian update operator (52)
and the semi-Lagrangian update λF defined in proposition 1.6. It is used in proposition B.4
and corollary B.6 to establish the properties of the Eulerian scheme allowing to apply algorithm 1
and prove a counterpart of theorem 1.3 in this setting.

Lemma B.2. Let µ1, · · · , µI > 0, and ω := (ω1, · · · , ωI) ∈ RI be such that
∑I

i=1 µiω
2
i < 1. Let

F be the Randers norm of parameters M = Diag(µ−1
1 , · · · , µ−1

I ) and ω. Then λ := λF (u) is the
unique solution to ∑

1≤i≤I

µimax{0, λ− ui − ωi}2+ = 1. (54)

Proof. Denote f(λ) :=
∑I

i=1 µimax{0, λ−ui−ωi}2+ for all λ ∈ R. Observe that f is continuous,
vanishes on ] −∞, λ0] where λ0 := min{ui + ωi | 1 ≤ i ≤ I}, is strictly increasing on [λ0,∞[,
and that f(λ)→∞ as λ→∞. Thus there exists a unique solution to f(λ) = 1, as announced.

In the following, we let λ := λF (u), and denote by ξ ∈ ΞI the minimizer of the convex
optimization problem (12) defining this value. By the KKT relations lemma 2.18, there exists
ν ∈ [0,∞[I obeying the complementary condition ⟨ξ, ν⟩ = 0 and

Mξ

∥ξ∥M
+ ω + u = λ1+ ν, hence

Mξ

∥ξ∥M
= max{0, λ1− u− ω}. (55)

The identity (55, right) is proved by distinguishing two cases, given 1 ≤ i ≤ I: (i) if ξi > 0, then
νi = 0 by the complementarity condition, and thus 0 < µ−1

i ξi/∥ξ∥M = λ−ui−ωi+νi = λ−ui−ωi,
(ii) if ξi = 0, then recalling that νi ≥ 0 we obtain that 0 = µ−1

i ξi/∥ξ∥M = λ − ui − ωi +
νi ≥ λ − ui − ωi. Finally, applying ∥ · ∥M−1 to (55, right) we obtain 1 = ∥Mξ∥M−1/∥ξ∥M =
∥max{0, λ1− u− ω}∥M−1 , which establishes (54) and concludes the proof.
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Assumption B.3. The domain Ω ⊂ Rd is open and bounded. The Randers eikonal equation
parameters D ∈ C0(Ω,S++

d ) and ω ∈ C0(Ω,Rd) obey the compatibility condition (48). The finite
difference stencil E ⊂ Zd \ {0} and coefficients µ ∈ C0(Ω× E, ]0,∞[) are positive and bounded
(50). The discrete domain X = X̊ ⊔ ∂X is defined by (51) in terms of the grid scale h > 0. The
update operator λ = Λu(x) solves (52) for all x ∈ X̊, and Λu(x) = 0 for all x ∈ ∂X.

Proposition B.4. Under assumption B.3. For any interior vertex x ∈ X̊ one has

Λu(x) = min
τ∈{−1,1}E

λhF τ
x
(uτx), (56)

where the Randers norm F τ
x on RE, and the collection of values uτx ∈ RE, are defined by

F τ
x (ξ) :=

√∑
e∈E

ξ(e)2

µ(x, e)
+

∑
e∈E

τ(e)⟨ω(x), e⟩ξ(e), uτx :=
(
u(x+ hτ(e)e)

)
e∈E , (57)

for all τ ∈ {−1, 1}E and ξ ∈ RE. As a result, Λ is monotone and sub-additive. The operator
Φ := EαΛE

−1
α is monotone, super-multiplicative, and ρ-sub-additive, where σ > 0, α > 0 and

ρ < 1 are defined as

σ := h
1− ωmax√
µmax#(E)

, α :=
8h
√
µmax

(1− ωmax)µmin
ρ := 1− σ

2α
. (58)

Proof. The function F τ
x has the structure of a Randers norm, with parametersMx = Diag(µ(x, e)−1,

e ∈ E) and ωτ
x = (τ(e)⟨ω(x), e⟩)e∈E . The Randers compatibility condition is satisfied since

⟨ωτ
x,M

−1
x ωτ

x⟩ =
∑
e∈E

µ(x, e)⟨ω(x), e⟩2 = ⟨ω(x), D(x)ω(x)⟩ ≤ ωmax < 1

using the successively (i) the diagonal structure of Mx, (ii) the consistency property (50, left),
and (iii) the corresponding assumption (49, right) on Ω. We therefore obtain using (53)

(1− ωmax)∥ξ∥Mx ≤ F τ
x (ξ) ≤ 2∥ξ∥Mx , hence (F τ

x )min ≥
1− ωmax√

µmax
, (F τ

x )max ≤
2

√
µmin

, (59)

and (F τ
x )Ξmin ≥ (F τ

x )min/
√
#(E) as observed in (24). Noting the analogy between (56) and

(25), we obtain (58) as in proposition 2.24, and inserting (59) we conclude the proof.

Remark B.5. Consider the Riemannian case, where the (co-)vector field ω inducing the Randers
asymmetry vanishes identically. Then the operator Φ := EαΛE

−1
α is ρ-sub-additive for any

α > 0, where ρ := 1− (1−ωmax)
√

µmin/(2µmax#(E)) exp(−2/(α√µmin)). Indeed, the norm F τ
x

satisfies the classical acuteness condition definition 1.4 thanks to its diagonal structure, hence
remark 2.25 applies, and this estimate follows from (27) and (59). Note that in this special case,
the scheme (52) may also be solved using the FMM [Mir19].

We define a graph-based operator Γ : RX → RX as follows: for all u ∈ RX and x ∈ X̊

Γu(x) := min
e∈E

min
τ∈{−1,1}

h(µ(x, e)−
1
2 + τ⟨ω(x), e⟩) + u(x+ τhe), (60)

with Γu(x) = 0 for all x ∈ ∂X by convention. Similarly to (34), this operator characterizes the
distance dE on the positively weighted oriented graph with an edge (x, x + τe) for any x ∈ X̊,

τ ∈ {−1, 1} and e ∈ E, traversed in time hF τ
x (be) = h(µ(x, e)−

1
2 + τ⟨ω(x), e⟩), where (be)e∈E

denotes the canonical basis of RE .
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Corollary B.6. Under assumption B.3, and assuming that Φ := EαΛE
−1
α is ρ-sub-additive for

some α > 0 and ρ < 1, as in proposition B.4. The operator Λ is additively invariant, σ-sub-
multiplicative, has Cpast-memory, and satisfies Γ − Ccomp ≤ Λ ≤ Γ. The fixed point u∗ of Λ
satisfies 0 ⪯ u∗ ⪯ NhE . We denoted N := #(X), the constant σ > 0 is given in (58), and

Ccomp = Cpast = hE = hmaxe∈E
x∈X̊

(µ(x, e)−
1
2 + |⟨ω(x), e⟩|) (thus hE ≤ 2h/

√
µmin, see (59)).

Proof. For any x ∈ X̊ and e ∈ E, there exists an integer n ≥ 0 such that x, x+e, · · · , x+ne ∈ X̊
and x + (n + 1)e ∈ ∂X, by construction (51) and since Ω is bounded. This establishes a
counterpart of the connectedness assumption 1.2, and from this point the proof is identical to
corollary 3.10.

We have gathered all the ingredients necessary to apply algorithm 1, and establish a counter-
part of theorem 1.3 for the Eulerian scheme. Specializing the generic complexity estimate (35)
with the values and bounds on α, ρ, σ, Cpast, Ccomp and max(u∗) established in proposition B.4
and corollary B.6 we obtain

O(N
p
ln+

( Nh

pε
√
µmin

)(√
#(E) + ln+

( Nh

ε
√
µmin

))
), with p := 1− ρ =

(1− ωmax)
2µmin

16µmax

√
#(E)

. (61)

Again, this estimate is quasi-linear w.r.t. N , and logarithmic w.r.t. the tolerance ε, with con-
stants depending on the scheme structure. Finally, we discuss the matrix decomposition (50),
and a shortcoming of our analysis which is the dependency of (61) on the minimal coefficient
value µmin (rather than e.g. Dmin > 0 such that D ≥ Dmin Id).

Remark B.7 (Construction of the matrix decomposition coefficients). The Selling decomposi-
tion of a symmetric positive definite matrix D ∈ S++

d , d ∈ {2, 3}, is efficiently computable and
yields coefficients µ(D, e) ≥ 0, for all e ∈ Zd \{0}, which are continuous (piecewise affine) w.r.t.
D and satisfy

D =
∑

e∈Zd\{0}

µ(D, e)ee⊤, with µ(D, e) = 0 if ∥e∥ > C(d)
√
∥D∥∥D−1∥, (62)

where the constant C(d) only depends on the dimension [BBM23]. It is suggested in [Mir19]
to choose the scheme coefficients µ̂(x, e) = µ(D(x), e). One strength of this approach is that
Selling’s decomposition is adaptive, and avoids using large offsets unless anisotropy is strong,
see (62, right). One the negative side, these non-negative coefficients typically vanish on part of
Ω (unless D is diagonal), thus fail (50) and make (61) inapplicable.

Assume that 0 < cmin Id ⪯ D(x) ⪯ cmax Id for all x ∈ Ω, define E := {e ∈ Zd |
C(d)

√
2cmax/cmin}, and define c0 > 0 by Id /c0 :=

∑
e∈E ee⊤ (this matrix is proportional to

the identity by symmetry of the set E). Then set for all e ∈ E and x ∈ Ω

µ(x, e) := µ(D(x)− cmin Id /2, e) + cminc0/2.

These coefficients are positively bounded below as required by (50), hence the quasi-linear com-
plexity estimate (61) holds. However, we see the dependency of (61) on µmin as an artifact of
our proof technique, rather than a defect of Selling’s decomposition, and would recommend using
the unmodified coefficients µ̂ in applications, see [BBM23, Appendix B] for a related discussion.
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