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The dynamics and rheology of a vesicle (a simple model for red blood cell) suspension in bounded
Poiseuille flow are simulated in the Stokes limit. For a a single vesicle we find several new so-
lutions. Besides documented solutions, such as a parachute centered shape, or a slipper shape,
we find here other solutions, such as a fully off-centered shape, and a multilobe shape exhibiting
complex dynamics. We reveal two distinct slipper shape branches, one emerges as a supercritical
bifurcation from the symmetric parachute branch and one from a saddle-node bifurcation and co-
exists with the parachute and the first slipper branches. Phase diagrams showing data collapse in
terms of combination of independent dimensionless parameters are exhibited. We then investigate
the implication on rheology. A first outstanding feature is that the normalized viscosity (defined
as [η] = (ηeff − ηout)/(ηoutφ), ηeff being the effective viscosity of the suspension, ηout that of the
suspending fluid, and φ is the hematocrit) decreases with increasing hematocrit, before an increase
for higher hematocrit. The normalized viscosity shows a minimum for a small enough hematocrit,
found in microcirculation. This non-monotonic behavior results from a subtle spatial organization of
the suspension. This organization leads to a moderate increase of the effective viscosity with hema-
tocrit, in a marked contrast with the behavior of the effective viscosity in macrocirculation. This
tendency confirms that reported for a linear shear flow, highlighting the generality of the behavior
of rheology for confined suspensions.
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I. INTRODUCTION

About half of the blood volume is occupied by Red Blood Cells (RBCs), while other components (white cells,
platelets) account for less than 1%. Thus, blood flow properties are dominated by RBCs dynamics and interaction
among them. These interactions are of different origins: (i) hydrodynamics, (ii) direct interaction (like RBC-RBC
bridging via macromolecules, such as fibrinogen), or (iii) purely entropic nature (depletion forces) (see [? ? ] for
more details). The advent of microfluidics and the power increase of computers have induced a tremendous upsurge
of interest in the study of blood flow[? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ]. The computational
power has allowed tackling the blood flow problem by following a bottom-up approach, i.e. by taking explicitly blood
elements into account. RBCs are often modeled as a capsule, that is a membrane which is incompressible and which
is endowed with in-plane shear elasticity (due to cytoskeleton) and bending. Another popular model is the vesicle
one, which is a closed membrane of a bilayer of phospholipids, devoid of cytoskeleton. This is a simplified model of
RBC. Simplification is essential since it allows us to decide whether a given phenomenon is a robust feature of closed
membranes, or does it depend on some specific ingredients. Another simplification is often adopted, namely reducing
the dimension (for the benefit of computational efficiency), by considering the membrane as a contour rather than
a surface. Fortunately, many phenomena seen in 2D have also been reported in 3D as well (with 3D vesicles and
capsules). Typical examples (far from being exhaustive), are parachute and slipper shapes [? ? ] which are exhibited
both in 2D and 3D. The fact that shapes and dynamics are often shared by 2D and 3D systems is also another
indication of their robustness. In this work we will adopt a 2D model and will take only hydrodynamic interaction
into account.

RBCs moving in a channel can exhibit a variety of rich scenarios going from simple steady and symmetric shapes,
to asymmetric ones and even to chaos [? ]. This results from an interplay between shape adaptation, and lateral
migration. Lateral migration of vesicle in bounded Poiseuille flow has two different sources: (a) the shear rate gradient
and (b) the hydrodynamic lift force due to wall [? ]. The coexistence of the two effects leads to a rich phase diagram
of cell shape [? ? ? ? ? ? ? ? ].

A first study in 2D in an unbounded Poiseuille flow has shown [? ] that below a certain flow strength the symmetric
parachute solution becomes unstable in favor of a slipper shape (the same viscosity inside and outside the vesicle was
assumed). The same scenario was confirmed in a subsequent simulation for 3D vesicles [? ]. Introducing walls in a
2D simulation revealed [? ] that for a weak confinement the results obtained for an unbounded flow were recovered
[? ]. By increasing confinement, the slipper solution disappears (called unconfined slipper) in favor of a parachute
solution, and reappears at stronger confinement (confined slipper). By introducing a viscosity contrast [? ] a rich
phase diagram was found, such as snaking or even chaotic dynamics [? ].

The first objective of this study is to dig further into the bifurcation structure of different shapes and dynamics
by exploring different parameters (such as flow strength, confinement and viscosity contrast). We show here that, in
fact, there are two distinct slipper branch solutions, one appears as a supercritical (pitchfork) bifurcation from the
symmetric parachute one, and the other takes place as a saddle-node bifurcation and coexists with the parachute and
the other slipper solution. Other shapes, such as multilobes are also revealed. These shapes were reported recently
in 3D (for capsules) [? ], and it was stated that cytoskeleton elasticity was essential. The fact that we find here
the same type of solutions for vesicles highlights the irrelevance of shear elasticity. The same conclusion was reached
recently for 2D vesicles under a linear shear flow, where a full study was dedicated to multilobe solutions [? ]. It will
be seen here that multilobe solution exhibits often irregular dynamics, which has a chaotic-like character. The second
objective is to show that the bifurcation diagrams can be represented in some universal forms which combines different
dimensionless parameters into a single universal parameter. The third objective is to analyze systematically rheology
for a dilute and more concentrated suspensions. We shall show that the normalized viscosity [η] = (ηeff−ηout)/(ηoutφ)
(ηeff being the effective viscosity of the suspension and ηout that of the suspending fluid) decreases with hematocrit
φ in the range φ ' 0–15%. This range of hematocrit corresponds to that in microcirculation. We shall see that
this behavior is a consequence of a subtle spatial organization. This finding means also that the effective viscosity
ηeff increases very slowly in this range of φ, in a marked contrast with the behavior of viscosity in macrocirculation,
which increases by several folds in comparison to that in microcirculation studied here. Since the viscosity is a direct
measure of flow efficiency, this result shows that the suspension organizes itself in a way to enhance RBCs transport,
and thus oxygen carriage capacity.

The article is organized as follows. The model and simulation method are presented in Section II. Section III
contains the main results and their discussion. We discuss the effect of the confinement and the flow strength on
the lateral position of a single vesicle in a wide range of viscosity contrast, λ = 1–10, as well as its impacts on the
rheology. In this section we also discuss the effect of the hematocrit on the rheology of the suspension. Section IV is
devoted to the conclusion and perspectives.
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II. MODEL AND SIMULATION METHOD

This study is carried out using a vesicle model under a 2D configuration. We will see that some shapes and dynamics
that were suspected to be due to cytoskeleton are in fact reproduced here in 2D, ruling out the hypothesis of relevance
of the cytoskeleton. This is why we believe that a simplified model (e.g. pure 2D) should be analyzed in details before
including other ingredients.

A. Mathematical model

We consider a single or multiple vesicles immersed in a periodic long straight channel, defined by a box Ω =
[−L/2, L/2]× [−W/2,W/2] (where W is the width and L the length). A quadratic velocity profile is imposed as

u0
x = u0

max

[
1−

(
y

W/2

)2
]

(1)

and u0
y = 0, here u0

max is the maximum velocity at the center line y ≡ 0. The dynamic viscosity of interior fluid is
denoted as ηin, while the exterior one is denoted as ηout. The viscosity contrast is then defined as λ = ηin/ηout. Typical
magnitude of blood plasma viscosity is ηout ∼ 10−3Pa·s. The shear rate at the channel wall γ̇w = (∂ux/∂y)|y=−W/2 =
4u0

max/W has its typical physiological value in the range 100–104/s [? ], depending on the blood vessel size. This
implies that Reynolds number (by using RBC radius R0 as a length scale) Re ∼ O(10−4) is small enough, so that the
flow can be considered to be in the Stokes regime.

The vesicle membrane shape is represented by a closed curve X(s, t), where s is a curvilinear coordinate, and t
represents time. The Helfrich energy [? ] is takes into account bending mode under the constraint of local membrane
inextensibility:

H(X(s)) = κb
2

∮
c2ds+

∮
ζds (2)

Here κb is the bending modulus of the membrane (for RBC its value is often taken as κb = 3× 10−19J), c is the local
curvature, and ζ is a Lagrange multiplier that enforces a constant local membrane area [? ]. Thanks to the functional
derivative of H, the force term acting from vesicle membrane on the fluid can be obtained as [? ]

f(s) = κb

(
d2c

ds2 + 1
2c

3
)

n− ζcn + dζ

ds
t (3)

Here n and t are the normal and tangential unit vector, respectively.
We define the characteristic radius of a vesicle R0 by the relation A = πR2

0, which has for a RBC a typical value
R0 = 3 µm. The reduced area τ is defined by the ratio between vesicle area A and the area of a circle having the
same perimeter (denoted as P ) as the vesicle

τ = A

π[P/(2π)]2 = 4πA
P 2 . (4)

This quantity specifies the roundness of the vesicle shape, the more round is the shape, the closer is its value to 1.
We fix τ = 0.6 in this study, in reference to the known value of a healthy RBC (which is about 0.65).

B. Boundary integral formulation

We use the boundary integral method (BIM) [? ? ? ? ? ] to convert the Stokes equations into an integral equation
for the evolving boundaries (vesicle shape dynamics). For the rheology part we will use a lattice-Boltzmann method
(LBM, for details of the method see [? ]) due to its efficiency for large hematocrit. We will nevertheless run few
simulations with BIM as a benchmark. Using a spectral discretization, the membrane position X is represented by a
Fourier series defined on the complex plane:

Xx(s) + iXy(s) =
kmax∑

k=−kmax

Xk exp (2πiks) (5)
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where the complex amplitudes Xk are the shape parameters of the membrane. The membrane force term f(s) in Eq.
(3), regarded as a function of derivatives (e.g. local curvature c) and integrals (e.g. perimeter P ) of X, can then be
analytically represented as a function of Xk series. The velocity at any point r in the simulation domain obeys an
integral equation:

Λu(r) =u0(r) + 1
ηout

∮
f(s′) ·G(2W )(X(s′), r)ds′

+ (1− λ)
∮

u(X(s′)) ·T(2W )(X(s′), r) · n(X(s′))ds′

+ 1
ηout

∫
W

fw(s′) ·G(2W )(s′, r)ds′

(6)

G(2W ) is the single layer Green’s function, while the T(2W ) denotes the double-layer Green’s function [? ]. The
contour integrals are carried out along all vesicles in the calculation domain, and the last one is along the domain
boundaries, where fw is the force due to the wall on the fluid (unknown a priori). Here we use Green’s functions
which do not satisfy the no-slip boundary condition at the walls (in contrast to one of our previous studies [? ]), this
is why the contribution of the walls to the velocity field has to be taken explicitly. This contribution should precisely
guarantee the no-slip condition at the walls (see [? ] for more detail). The notation Λ is defined as

Λ(r) =


λ, if r is inside a vesicle
(1 + λ)/2, if r is on a membrane
1, if r is out side of any vesicles

(7)

Once having the velocity on the membrane, the evolution of vesicle shape is obtained from a simple fixed time step
Euler scheme:

X(t+ ∆t) = X(t) + u(t)∆t (8)

When implementing Eq.(8), velocity term u(X(s′)) on the right hand side in Eq. (6) takes its value at time t.
Two additional procedures were performed in order to ensure long-term stability of the simulations. First, we keep

the inner volume of the particles fixed. Normally, fluid incompressibility and membrane impermeability should keep
the inner volume of the particles constant. However, a small drift due to numerical error can not be fully excluded.
We compensate this drift by inflating or deflating the elastic particle through homogeneous normal deformation.
Second, we perform a small correction of membrane positions when two particles approach each other too closely
(considered as a collision). The correction starts to act only when the distance between the particles’ membranes
is below a certain limit δh. The correction pushes the particles apart, thus preventing numerical instabilities from
particle interpenetration.

In order to eliminate numerical artifacts, we performed several simulations with more refined meshes in time steps,
sampling points, Fourier harmonics and critical inter-particle distance δh. Based on this verification and a compromise
between efficiency and accuracy, each particle was characterized by 63 Fourier harmonics. 2048 sampling points were
used to resolve the short-range hydrodynamics interactions. The velocity of the particle membrane was calculated
at 128 sampling points. The minimal distance δh for which the particles were unaffected by the collision-preventing
procedure was 0.005 of the particle radius.

The choice of the number of harmonics for walls depends on channel length L. By using harmonics from 256 to
1024, the residual wall velocity was found to be of very small fraction of velocity in the center of the channel (with
relative value less than 10−5, reducing to machine precision in many cases).

The problem has three dimensionless numbers: i) the viscosity contrast

λ = ηin
ηout

, (9)

ii) the capillary number

Ca = ηoutγ̇wR
3
0

κb
= γ̇wτc (10)

which describes the fluid strength over the vesicle bending strength, and iii) the degree of confinement

Cn = 2R0

W
. (11)
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Here the capillary number can also be interpreted as the ratio of the characteristic time scale for vesicle deformation
τc and the time scale of the imposed flow 1/γ̇w. The simulation box always has its length L = 10W unless otherwise
specified, which is validated as being long enough to eliminate artifacts due to periodic boundary conditions [? ]. We
checked also that all simulation results have numerical perimeter deviations less than 0.3%, which is taken here to be
as an acceptable value.

III. RESULTS AND DISCUSSION

One main novelty of this study is to show the existence of several solutions, more or less complex, for the same set
of parameters. The traditional solution in a Poiseuille flow is the parachute solution. Another solution is the slipper
one [? ] where the center of mass of the cell is not at the center line, and thus the overall shape in not symmetric
with respect to the flow center line. In order to identify solutions which are different from the parachute one, it is
natural to define the lateral position of the vesicle as a simple measure for that deviation. This deviation, denoted as
h(t), is defined as

h(t) =
[
∮
mem

X(t) · yds]
WP

(12)

where y is the unit vector of y (lateral) direction. h has its values ranging from −0.5 to 0.5, with 0 denoting center
line. The final lateral position can then formally be defined as

hf = lim
T→∞

∫ T
0 h(t)dt
T

(13)

In practice, the simulation time should be large enough in comparison to the intrinsic relaxation time τc. We start
the simulation with a well relaxed vesicle with a biconcave shape aligned along the flow direction. This choice is
of course arbitrary, and any other choice could be selected as well. We shall discuss later the impact of initial
conditions on the results. h0 = h(0) denotes the initial lateral position. The simulation ran for long enough time
until a steady or periodic (or permanently chaotic in rare cases) pattern is observed. Thus, hf can be approached by
ht =

∫ T1
T0
h(t)dt/(T1 − T0). Here T0 and T1 are chosen to guarantee that the transient effects have decayed before T0

and that the time interval T1 − T0 is long enough to ensure the convergence of hf .

A. Emergence of the off-centered final position by increasing viscosity contrast

The viscosity contrast appears to be a factor having a strong influence on the solution behavior. We exemplify
the main finding of this investigation by fixing the two other remaining parameters (Cn, Ca) = (2/7, 80). By acting
on the initial position h0 from 0 to 0.4 with interval 0.05, we observed either a centered or an off-centered (with a
slipper-like shape) final position for λ = 1 and 5 (Fig. 1a,b).
This off-centered final shape emerging at higher λ is found to be a robust feature. The behavior of hf against λ is

shown in Fig. 2a. When λ is larger than a critical value λ(OC)
c ≈ 4, an off-centered stable branch emerges (h(OC)

f ). If
a vesicle has its initial position and viscosity contrast pair (h0, λ) residing in the red region (that we may call a bassin
of attraction) in Fig. 2a, then the final position is off-centered h(OC)

f and the vesicle shape may be referred to as a
slipper shape (Fig. 2b). One may notice that when λ > λ

(OC)
c , the attraction domain of h(OC)

f is much wider than
that of h(C)

f . This result would imply that a slipper shape may be a more common scenario than parachute (Fig. 2c)
in vivo, given the fact that λ lies in the range around 5 ∼ 10 for healthy RBCs.
The coexistence of two stable branches in Fig. 2a (red and blue lines with filled circles) is a prototypical behavior of

a saddle-node bifurcation. The saddle-node point is estimated from our simulations to be close to (hf , λ) = (0.072, 4).
We have indeed seen that simulations with initial position h0 = 0.05 or 0.1 (which are close to hf = 0.072, but lying in
the blue domain) both end up with their final position at the center line. Recall that for all the simulations obtained
in Fig. 2a the initial shape is a flow-aligned biconcave shape. However, when using an off-centered slipper as an initial
shape (in Fig. 2b), while keeping the same initial positions (h0 = 0.05 or 0.1), the final position is off-centered h(OC)

f .
We have checked and excluded the possible numerical artifacts such as deviation in perimeter or reduced area. This
sensitivity to initial shape is an indication of the saddle-node bifurcation character.

Besides the off-centered slipper as a final shape, we also observed a snaking-parachute (oscillation of center of mass
around centerline [? ? ]) shape pattern at λ = 10 and h0 ≤ 0.1 (see Fig. 2d). We will see below that this snaking
motion appears as an intermediate state between parachute and another steady shape.
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FIG. 1. (a) Normalized lateral position versus time. Different curves h(t) correspond to different initial positions, with λ = 1.
All curves converge to hf = 0, which corresponds to a parachute final shape; (b) h(t) curves obtained with λ = 5, where
vesicles start from an off-centered initial position (h0 ≥ 0.05), and they reach an off-centered final position hf = 0.097. If
instead we start from h0 = 0 we obtain hf = 0 (parachute shape), which has been reported in [? ]. The stability of hf = 0 is
validated by imposing small perturbations about the presumed steady state solution.
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FIG. 2. The emergence of h(OC)
f and the corresponding final shapes, with confinement Cn = 2/7 and capillary number

Ca = 80: (a) The blue and red solid lines represent centered (h(C)
f ) and off-centered (h(OC)

f ) final position as a function of the
bifurcation parameter λ. The red dashed line indicates an unstable branch, and we have added it qualitatively. Simulations
are performed with different initial positions (h0) but with a flow-aligned biconcave shape, represented by (red or blue) dots.
All initial conditions within a given domain (blue or red) yield a given final position, which is either h(C)

f (when initial data
are in the blue region) or h(OC)

f (when initial data are in the red region) depending on λ and h0. The corresponding basins of
attraction are colored in red or blue. The black dashed line represents estimated borders and are here plotted just as a guide
for the eyes. A parachute snaking dynamics is observed when λ = 10 and h0 ≤ 0.1. (b), (c) and (d) are schematics for final
shapes and hf (the blue trajectory in (d)).
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B. Effects of confinement

We have found that besides the viscosity contrast, the confinement plays also a crucial role. By fixing the capillary
number Ca = 80, we display the diagram of solutions against λ for different confinements, from W = 5R0 to 10R0
(corresponding to Cn = 0.2 ∼ 0.4) in Fig. 3. In this range of confinement, the phase diagram at λ = 1 in Ref. [? ]
indicates either unconfined slipper or parachute shape. It should be noted that at λ = 1, although the vesicle shape
varies with different confinements, the final position is always close to the center. Comparing to results in Fig. 2a,
two new final positions associated to two final shapes emerge (their basins of attraction are cyan and yellow regions).
The cyan color indicates a zone such that when initial configurations lie within it, the final state ends up with a near-
centered final position (this final position is denoted as h(NC)

f ). The final shape is similar to the unconfined slipper
shape observed in Ref. [? ]. Starting inside yellow zone leads to a complex tumbling motion with an apparently
chaotic behavior. Running simulations for more than 500τc, we have found that the final position hf , as defined in
Eq. (13), oscillates between h(NC)

f and h(OC)
f in an apparently erratic fashion. Systematic simulations in the vicinity

of the yellow zone show that there is a sudden transition from other stable final position (like slipper, parachute) to
chaotic behavior. We did not observe any progressive sign of bifurcation towards chaos (like subharmonic cascade,
or intermittency). The direct transition to chaos is not common, but has already been observed in simple enough
dynamical systems [? ].
We observed that the off-centered slipper region (red zones in Fig. 3a) appears when W & 5R0. Increasing W ,

we find that the critical value λ(OC)
c for the appearance of the off-centered position decreases. In the meantime, the

whole red zone is also sweeping leftward. This leftward shifting is also valid for the cyan colored region corresponding
to near-centered slipper region (the decrease of the critical value λ(NC)

c ). The snaking parachute (represented by
green color in Fig. 3b) is viewed as an intermediate state between parachute and near-centered slipper. The region
where a complex tumbling-multilobe motion prevails (denoted in yellow in Figs. 3a and b), which can be viewed as
the intermediate state between the near-centered slipper and off-centered slipper, shifts towards the left side as well.
This general global evolution of phase boundaries while varying λ for different W (or Cn) may be indicative that
one could find another representation of the results where both λ and W can be varied following a certain functional
dependence p(λ,Cn). In other words, instead of varying both parameters independently, a single combination may
turn out to be more appropriate.

Indeed, the results of Fig. 4 are to be viewed as the projection of the results from the parameter plane (λ,Cn)
onto the single line p(λ,Cn). This function is considered to be monotonic with respect to both λ and Cn, obeying
∂p/∂λ > 0 and ∂p/∂Cn < 0. The degree of confinement Cn does not qualitatively change the behavior of vesicle
dynamics within the considered parameter range (1 ≤ λ ≤ 10, 1/10 ≤ Cn ≤ 1/2). The simulation results in Fig. 3
and their robustness highlighted in Fig. 4 shows that branch h(OC)

f is a saddle-node bifurcation, where h(OC)
f (red line

in Fig. 4) and the dashed line border of the red zone are its stable and unstable branches, respectively. The branch
h

(NC)
f results from a Pitchfork bifurcation out of the parachute solution. h(NC)

f (cyan line in Fig. 4) and its negative
image −h(NC)

f are the two stable branches; h ≡ 0 is the unstable branch.
Here we attempt to find the degenerate parameter p(λ,Cn). The idea is to find the onsets of bifurcations (the

critical viscosity ratios λ(OC)
c and λ

(NC)
c ), and rescale the parameters according to these critical values. As shown

in Fig. 3a, the critical viscosity ratios λ(NC)
c and λ

(OC)
c both decrease with the increase of channel width W (i.e.

decrease of confinement Cn). The phase diagrams of the final position in the plane of confinement and viscosity ratio
are plotted in Fig. 5a. After curve fitting with the present results, we obtained the following two equations:

λ(NC)
c = 411.8C3

n, (14)

λ(OC)
c = 336.2C4

n + 1.687. (15)

According to Eq. (14), the value of λ(NC)
c is 0 when Cn = 0 (unbounded condition), which means that the near-

centered slipper shape prevails even without viscosity contrast. This asymmetric slipper shape has been observed in
Ref. [? ] at λ = 1 in an unbouded flow. Similarly, Eq. (15) indicates that λ(OC)

c > 1 in unbounded Poiseuille flow.
Under this condition, the off-centered branch refers to indefinite migration of vesicle away from the center (in the
absence of walls), as reported in Ref. [? ? ]. Based on Eqs. (14) and (15), we define two degenerated parameters by
rescaling the viscosity ratio λ as

p(NC) = λ

λ
(NC)
c

= λ

411.8C3
n

, (16)
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Parachute Snaking
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FIG. 3. (a) Evolution of final positions and final shape diagram against channel width (confinement Cn) while fixing the
capillary number Ca = 80. Simulations are performed with different initial positions (h0) but with a flow-aligned biconcave
shape. The red, blue and green zones are as defined in Fig. 2a. Two distinct final patterns emerged when W & 8. The yellow
region represents long term tumbling (longer than 500τc in simulation time) with apparently chaotic dynamics. The cyan
region represents a final slipper shape that is slightly different from parachute (its final position is slightly away from center
line). The dashed line represents estimated borders and are here plotted just as a guide for the eyes. The notation λ(OC)

c

indicates the position of the border between red and blue regions, and λ(NC)
c is the critical value where transition from

parachute to near-centered slipper happens. (b) Final shapes observed in diagrams above, the colors indicate corresponding
regions in those diagrams. The dark green lines represent their final h(t) schematically. One may notice the ascending order
from centered parachute to off-centered slipper. This order is always preserved when having λ fixed. The parachute snaking
and complex tumbling are considered as intermediate states of the other three steady states.

p(OC) = λ

λ
(OC)
c

= λ

336.2C4
n + 1.687 . (17)

The above equations satisfy ∂p/∂λ > 0 and ∂p/∂Cn < 0. We have represented all data in the plane of final lateral
position and the degenerate parameter p, as shown in Fig. 5b. The representation in terms of a degenerate parameter
shows a data collapse. This indicates that the two bifurcations result from the change of viscosity ratio λ, while the
confinement Cn plays a role by affecting the transitions of bifurcations. One may argue why there are two degenerated
parameters p(NC) and p(OC). As stated above, the emergence of near-centered branch is due to a pitchfork bifurcation,
while the off-centered branch corresponds to a saddle-node bifurcation. Thus the two branches are disconnected and
there is a priori no reason that p(NC) and p(OC) follow the same scaling. It is hoped to investigate this matter further
on the basis of direct analytical considerations in order to provide a more fundamental basis. .
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FIG. 4. A schematic plot showing an attempt to combine both Cn and λ into a single parameter p. The black frames plotted
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FIG. 6. The evolution of final position hf with viscosity contrast for Ca = 4, 8 and 80. The colors and final positions share
the same definition as in Figs. 3 and 4. In all these simulations, Cn is fixed at 0.2 (W = 10R0). It is confirmed that the
off-centered slipper is robust and exists for all explored capillary numbers. The parachute shape is not preferred when Ca is
small. When λ = 1, our simulation results are consistent with the results from [? ].

C. Effects of capillary number

The capillary number Ca is a measure of degree of membrane deformability. The increase of flow velocity or the
decrease of membrane bending modulus are typical ways of increasing Ca. We investigated the same parameter set
(h0, λ) as in section III B but with different values of Ca. The results are shown in Fig. 6. We found no topological
changes for off-centered slipper region (which has final position h(OC)

f ), when comparing the results to those of Fig.
4. However, when Ca is decreased from 80 to 8 and then to 4, we observed a significant shrinkage and even collapse
(when W & 7R0) of the parachute region, see Fig. 6. Here we show the results for W = 10R0 as an example,
while similar behaviors are observed when W & 7R0. This observation was also reported in [? ]. The fact that this
occurs for a capillary number of order unity is indicative of the competition between the hydrodynamic stress and the
bending resistance. Note that for Ca . 8, the time needed to reach final shapes becomes long. For example, when
Ca = 4, λ = 4 and h0 = 0.4, it took about 103τc to reach the final position and final shape. The dashed line with
cyan color in Fig. 6 represents the terminal position (near-centered slipper) for Ca = 4.
It is interesting to compare dynamics of two situations obtained for two extreme capillary numbers. Consider

the points A1 and A2 having as coordinates (Ca, λ, h0) = (4, 6, 0.1) and (4, 6, 0.05) respectively. The second set of
points are B1 and B2 having as coordinates (80, 6, 0.1) and (80, 6, 0.05) respectively (see Fig. 6). When Ca = 80 the
dynamics of both B1 and B2 exhibit complex tumbling motion, whereas when Ca = 4 (points A1 and A2) a stable
near-centered slipper shape is obtained. The lateral position curves (h(t)) and their corresponding shapes are plotted
for the first 1000τc in Fig. 7. When Ca = 4, both simulations with h0 = 0.05 and 0.1 lead to tumbling with small
deformation, while their lateral position gradually descends to reach the final state. Supplementary simulations with
initial position from h0 = 0.04 to 0.01 suggest that h(t) will keep descending until it reaches h(NC)

f – the final position
for near-centered slipper, although the whole tumbling process lasts for a long time, t ∼ O(104τc). For Ca = 80, the
complex tumbling motion (for cases B1 and B2) prevails. It is worth of mention that the shape exhibited in Fig. 7
for Ca = 80, which may be called "trilobe shape" [? ? ] takes place here for a purely fluid membrane (i.e. in the
absence of cytoskeleton elasticity). This points to the fact that this shape is robust since it does not depend on the
details of the underlying structure. The domain of this type of motion is shown by yellow zones in Fig. 3.

D. Impacts on rheology

Our goal in this section is to analyze the rheological properties of the suspension, from very dilute to relatively
dense suspensions. One objective in the dilute regime is to make a link between the branches of solutions discussed
above and the rheology.

Let us recall the basic results of the last sections. For values of confinement Cn between 0.2 to 0.4 and viscosity
contrasts 1 . λ . 10, we have seen from sections IIIA, III B and III C, that the main effect of high viscosity contrast
is the introduction of an off-centered slipper shape (with corresponding final lateral position denoted as h(OC)

f ).
Moreover, we have seen that by exploring a wide range of the capillary number Ca (from 4 to 80), that for viscosity
contrast in the range 4 . λ . 7, the off-centered slipper region has the largest attraction zone. Interestingly, this
range lies in the viscosity contrast value range for healthy RBCs.

The areal concentration of a vesicle suspension is defined as φ = n · πR2
0/(LW ), here n is the number of vesicles in
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the suspension. The effective viscosity of vesicle suspension is defined by

ηeff ·Q(ssp) = ηout ·Q (18)

where ηeff denotes the effective viscosity, Q(ssp) is the average flux of vesicle suspension, Q is the flux of the pure fluid
(with viscosity ηout) which is subjected to the same pressure gradient as Q(ssp) is. We recall that ηout is the viscosity of
external fluid. The intrinsic (or normalized) viscosity, [η] –which evaluates the contribution of the suspended entities
(vesicles in this study) to the viscosity of a solution– can be defined as

[η] = lim
φ→0

ηeff − ηout
ηoutφ

(19)

The total velocity is composed of the imposed flow u0 (the first term of the right-hand-side of Eq. (6)) and the
induced flow u(ind)(the terms represented by integrals in Eq. (6)). One can express the normalized viscosity as a
function of the induced flow and the areal concentration. We straightforwardly find

[η] ≈ ηeff − ηout
ηoutφ

= −
∫
u

(ind)
x dy

(ū0
x +

∫
u

(ind)
x dy)φ

= − [u(ind)
x ]

1 + [u(ind)
x ]φ

≈ −[u(ind)
x ], (20)

where the last equality is valid in the dilute regime. [u(ind)
x ] is the normalized mean induced velocity (along x) defined

as

[u(ind)
x ] =

<
∫
u

(ind)
x dxdy >

ū0
x · nπR2

0
=
<
∑n
i=1
∫
u

(ind)
xi dxdy >

ū0
x · nπR2

0
(21)

Here ū0
x is the mean velocity of the imposed flow, < · > is the time averaging operation (for steady shape, it can be

omitted), nπR2
0 is the total area of all vesicles immersed in the flow, and u(ind)

xi is the induced flow velocity due to
the ith vesicle. Eq. (21) shows that the effect of φ is implicitly presented in u(ind)

x . Thus as φ decreases, both the
numerator and denominator approach zero. Through boundary integral formula (Eq. (6)) it can be seen that [u(ind)

x ]
contains directly information on the vesicle shape, which depends on the dimensionless parameters such as λ, Cn, Ca
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FIG. 8. Vesicles possessing different final shapes with the same parameter set ((Ca, λ, Cn) = (80, 6, 2/7)). The color map
shows the flow-aligned component of the normalized local induced velocity field U (ind)

x (see Eq. (22), which has its mean value
approximately equal to −[η]. The off-centered slipper has its normalized viscosity [η](OC) ≈ 0.24 (right panel), and is about
15% smaller than its counterpart for the centered parachute (left panel, [η](C) ≈ 0.28)

etc. Here, we evaluate [u(ind)
x ] numerically with a equidistant spatial mesh size ∆x = 0.1R0. Based on the concept of

normalized mean induced velocity [u(ind)
x ] defined in Eq. (21), the local normalized induced velocity can be written

as

U (ind)
x (r) = u

(ind)
x (r)
ū0
x · φ

(22)

The above discussion means that [u(ind)
x ] (Eq. (20)), is approximately equal to −[η] when the suspension is dilute.

We plot the U (ind)
x fields for two distinct steady states: a centered parachute (as show in Fig. 2c) and a slipper

at an off-centered position (as shown in Fig. 2b) respectively, fixing parameters at Ca = 80, λ = 6 and W = 7R0.
A quick glance to that plot shows that the figure which exhibits darker blue color (Fig. 8a) would provide a higher
viscosity, since this is related to the negative average value of the induced field.

Fig. 9 shows hf and [η] as functions of λ including both centered and off-centered branches at Ca = 80. For
Ca = 8 and 4, apart from an increase in the absolute magnitude of [η], we observed no qualitative change in their
corresponding diagrams. We can summarize the observed trends into three classes:

i) for centered parachute, the normalized viscosity is not sensitive to λ, but its absolute value is approximately
proportional to Cn; ii) for off-centered slipper (red curves in Fig. 9), its final position h(OC)

f positively correlates with
[η]; iii) for near-centered slipper (blue curves in Fig. 9 where it has non-zeros hf value), the increase of λ results in a
slight decrease in [η].
The trend i) is obvious since both the shape and lateral position are almost preserved among different λ. This

indicates only the presence of walls (and their width) dictate the viscosity [η](C) For trend ii), we consider the off-
centered final position as a result of the balance between the lifting force from the wall (see [? ? ? ? ? ? ? ?
? ]) and the lateral migration towards off-center direction when viscosity contrast is high (see [? ]). At the same
time, the increase of h(OC)

f is accompanied by an increase of effective viscosity (well-known as the Fahraeus-Lindqvist
effect [? ]). This effect is the main reason of the interdependency between h(OC)

f and [η](OC). For trend iii), where
the vesicle is almost at the center line, the Fahraeus-Lindqvist effect becomes negligible. Instead, the near-centered
slipper (see its schematic shape in Fig. 3b), when compared to the parachute shape, has a smaller lateral extent in
the vertical direction and in addition exhibits a tank–treading motion (meaning it acts as a smoother obstacle to the
flow in comparison to the parachute shape which exhibits no tank-treading). Both these two features trigger a slight
decrease of the effective viscosity; this tendency is enhanced with λ. When W (or Cn) increases, the off-centered
slipper becomes more and more off-centered and therefore its lag with respect to the imposed flow increases, resulting
into further dissipation. We observe then a cross-over where the off-centered solution has higher viscosity than the
parachute one.

E. Investigation of rheology for higher concentrations

Here we would like to analyze the rheological properties for higher concentrations. We will use the lattice-Boltzmann
method (LBM, for details of the method see [? ]), which is more efficient and especially for high hematocrit. We
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FIG. 10. The normalized viscosity [η] (a and b) and the effective viscosity ηeff (c and d) as a function of concentration φ for
different values of viscosity contrast λ (λ = 1 for the left column, and λ = 5 for the right column). Here BIM and LBM
represents the results using boundary integral method and lattice-Boltzmann method, respectively. Different random initial
configurations of vesicles are studied when using LBM, denoted by 1 and 2. The insets in (a) are snapshots of vesicles at
φ = 0.016, 0.128, and 0.256. The dashed line in the lower panel is the relative viscosity of blood in macrocirculation according
to Ref. [? ]. Here W = 7R0 and Ca = 80.

will compare some of the results by using the BIM. It was reported that under linear shear flow [? ] the suspension
organizes in files that lead to non-monotonic behavior of the normalized viscosity [η]. This behavior was a direct
consequence of the confinement and of the fact that the vesicles are subject to wall migration effect. In vivo the flow
is of Poiseuille type, and it is therefore important to see how the rheological properties are affected by confinement.

The normalized ([η]) and the effective (ηeff ) viscosities are plotted as a function of concentration (φ) for different
viscosity contrast λ = 1 and 5 (see Fig. 10). The other parameters are fixed as to Ca = 80, W = 7R0 and
L = 8W . The number of vesicle are n = 2, 5, 8, 16 and 32, corresponding to φ = 0.016, 0.04, 0.064, 0.128 and 0.256.
Simulations are initiated with well relaxed vesicle shapes with random positions within the channel. Figure 10a,b
shows the normalized viscosity (which is a direct information on the effect of vesicle presence, related to the induced
flow) as a function of φ. The comparison with BIM validates the correctness of LBM, as shown in Fig. 10a. An
interesting feature emerges: [η] always decreases with φ up to a concentration of about φ . 0.13. Moreover, different
initial configurations of vesicles are studied (denoted by 1 and 2 in Fig. 10), showing similar behaviors. Below we
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FIG. 11. Streamlines (blue lines with arrows) in a comoving frame for results of LBM-1 in Fig. 10a. Vesicles are denoted with
red lines. The corresponding concentrations are φ = 0.016 (upper panel), φ = 0.04 (middle panel), and φ = 0.064 (lower
panel). Here W = 7R0, λ = 1 and Ca = 80.

shall provide some intuitive explanation. It is interesting to note that the decrease occurs in a range of concentrations
corresponding to microcirculation values (which fall in the range 5–20% [? ? ]). In other words the system manages
to reduce dissipation in order to enhance the cell flow rate, and thus for the benefit of oxygen transport.

In order to explain the present behavior, we first refer to our previous results for the case a single vesicle, which
should remain valid in the small φ regime. For λ = 1, we have observed that a single vesicle always migrates to
the center and shows a centered parachute (see Fig. 1a). In the sufficiently dilute regime vesicles form a single file
(Fig. 11) in the center (or close to it). In other words, the vesicles behave as if they were alone (the hydrodynamic
interaction among vesicles is weak). Between vesicles zones of recirculation appear (see the upper panel of Fig.11), and
the interdistance between two vesicles is about 10R0, in quantitative agreement with Ref. [? ]. When the hematocrit
is increased, say when a new cell is added, it will be inserted in the file and reduces the intensity of recirculation
zone (middle and lower panels of Fig. 11), meaning that dissipation per cell is reduced. This leads to the decrease of
[η] with φ for a small enough φ. Increasing further φ causes some central cells to be expelled towards the periphery,
where they oppose more resistance to the flow. As a consequence [η] increases with φ (Fig. 10a,b).
Note that the effective viscosity ηeff always increases with φ (Fig. 10c,d). The above non-monotonic behavior of

[η] has, in fact, an impact on the behavior of ηeff , in that it causes its slow increase with φ, a much more slower
increase than is the case for viscosity in macrocirculation. Indeed (the dashed line in Fig. 10c,d) in macrocirculation
blood viscosity increases by 2 folds at φ = 0.25, whereas it increases only by 1.1 in microcirculation, precisely due to
a subtle cell organization, which also favors a high cell-free layer. It will be interesting to analyze in the future the
part due to cell-free layer and the part due to cell organization. For example, in Ref. [? ], we have found that under
a linear shear flow [η] decreases with φ at low φ, then it increases with φ after a single central file becomes saturated
(addition of a new cell expels one or few cells outside a center). A further increase of φ causes then [η] to decrease
again because the cells form two organized files which are symmetric with respect to the center. This has led to a very
low increase (or even a plateau) of the effective viscosity [η] with φ [? ]. Our results imply that in microcirculation
increasing hematocrit does not affect significantly the viscosity, allowing thus for a more efficient supply of oxygen.
It is well known that athletes can boost their performance upon an increase of hematocrit. This is probably the case
precisely due to a very moderate increase of viscosity with φ in microcirculation.

IV. CONCLUSION

In this work, the dynamical behavior of vesicles in a channel flow (under a Poiseuille flow) is numerically studied. We
have found several branches of solutions, such as the centered parachute and slipper, snaking parachute, off-centered
slipper, and complex trilobe dynamics. A complex phase diagram in the plane of viscosity contrast and initial position
is observed. Moreover, we showed that the effect of viscosity contrast and confinement can be integrated into one
degenerate parameter. This study highlights the complexity of dynamics, even for the most simple 2D model with
an incompressible membrane having only resistance against bending. In particular, we have shown that the trilobe
shape is not a property to be linked to membrane cytoskeleton, unlike the claim in Ref. [? ]. Of course, enriching
the model by treating a full 3D model by incorporating the shear elasticity may add an extra layer of complexity,
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but the existence of the above modes are robust features which do not require further ingredients. We have analyzed
the rheology for different concentrations. The rheology is linked to spatial organization of vesicles. We have shown
that the decrease of the normalized viscosity [η] (Fig. 10) in the relatively small concentration regime does not occur
only in linear shear flow [? ] but also in the pipe flow, which is more relevant to blood circulation. The origin of
the decrease is attributed to the spatial organization of vesicles. For a dilute suspension the cells tend to select their
single-cell solution (slipper) in a way that reduces dissipation. The induced flow field in the gap between the two cells
causes a kind of screening. It is interesting to note that the viscosity decrease occurs in a range of about 0 − 15%
which is more or less the range of hematocrit in microcirculation. In some sense, the cells organize themselves in a
way to reduce as much as possible the increase of viscosity due to an increase of hematocrit. By this way the cells try
to enhance efficiency of oxygen transport. The effective viscosity in this range of concentration increases very slowly
(or even shows a tendency of plateau; see Fig. 10), which is translated into a decrease of the normalized viscosity.
It would be interesting to investigate in the future whether the decrease of [η] is a robust feature that also happens
in 3D. The study of Ref. [? ] for a linear shear flow, has shown the same rheological tendency as in 2D. However
their studies were confined to dilute suspension (around 5 %). It would also be an interesting task to investigate the
spatial organizations in 3D and its consequence on rheology in 3D at higher hematocrit.
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