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ABSTRACT
Most third-generation sequencing (TGS) processing tools rely on multiple sequence
alignment (MSA) methods to manage sequencing errors. Despite the broad range of
MSA approaches available, a limited selection of implementations are commonly used
in practice for this type of application, and no comprehensive comparative assessment
of existing tools has been undertaken to date. In this context, we have developed
an automatic pipeline, named MSA Limit, designed to facilitate the execution and
evaluation of diverse MSA methods across a spectrum of conditions representative
of TGS reads. MSA Limit offers insights into alignment accuracy, time efficiency, and
memory utilization. It serves as a valuable resource for both users and developers, aiding
in the assessment of algorithmic performance and assisting users in selecting the most
appropriate tool for their specific experimental settings. Through a series of experiments
using real and simulated data, we demonstrate the value of such exploration. Our
findings reveal that in certain scenarios, popular methods may not consistently exhibit
optimal efficiency and that the choice of the most effective method varies depending
on factors such as sequencing depth, genome characteristics, and read error patterns.
MSA Limit is an open source and freely available tool. All code and data pertaining to it
and this manuscript are available at https://gitlab.cristal.univ-lille.fr/crohmer/msa-limit.

Subjects Bioinformatics, Computational Biology
Keywords Long reads, Multiple sequence alignment, Sequencing errors, Heterozygosity, Pacific
bioscience, Oxford nanopore, Benchmark

INTRODUCTION
The introduction and widespread adoption of DNA sequencing have been instrumental
for biological research for over 50 years. In the last decade, technologies like Illumina,
representative of what is called next-generation sequencing (NGS), have not only
made sequencing cost-effective but also increased throughput, broadening access to
genomic information. However, the technology continues to evolve, with third-generation
sequencing (TGS) technologies addressing key limitations of NGS. One major advantage of
TGS is the generation of significantly longer reads—ranging from 104 to 105 nucleotides,
even reaching into the megabase range. This performance surpasses that of the NGS, which
can only read up to 300 nucleotides (Belser et al., 2018; Miga et al., 2020; Hotaling et al.,
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2021). These extended reads span a majority of genomic repeats, leading to higher-quality
genome assembly. Additionally, TGS employs amplification-free protocols that eliminate
the GC bias inherent in NGS, thereby offering a more representative genomic profile (Chen
et al., 2013; Lan et al., 2015; Browne et al., 2020). However, TGS is not without challenges.
It can introduce a high level of noise and primarily suffer from insertion and deletion
errors, ranging from 5 to 15% (Delahaye & Nicolas, 2021), as opposed to the mainly
substitution-based errors at lower frequencies (from 1% to 0.1%) in NGS (Stoler &
Nekrutenko, 2021).

Current computational tools attempt to manage this noise by leveraging redundancy
to sift through erroneous bases and accurately represent genomes (Annis et al., 2020).
One common approach involves multiple sequence alignment (MSA), a task known for
its computational complexity (Wang & Jiang, 1994; Elias, 2006) and a very rich literature
addressing this issue in practice. Various strategies exist to construct MSAs from TGS
data, including the selection of a ‘‘backbone’’ read as a reference (Au et al., 2012; Hackl
et al., 2014; Goodwin et al., 2015), or the use of more robust but computationally intense
methods based on partial order graphs (Lee, Grasso & Sharlow, 2002), which was originally
introduced to align sets of homologous genes or proteins.

The first application of partial order graphs to TGS reads can be traced back to
PBDAGCON, the error correction module of HGAP (Chin et al., 2013). This trend
has then been adopted by numerous tools, some of which directly use the POA (Lee,
Grasso & Sharlow, 2002) program, such as Nanocorrect (Loman, Quick & Simpson, 2015),
while others, like PBDAGCON (Chin et al., 2013), provide their own implementation of
partial order graphs for assembly (Koren et al., 2017; Chin et al., 2016; Xiao et al., 2017)
and for correction/polishing (Kundu, Casey & Sung, 2019; Ruan & Li, 2020; Bao et al.,
2019;Miyamoto et al., 2014; Ye & Ma, 2016;Morisse et al., 2021). Recently, RACON (Vaser
et al., 2017) implemented a faster version of POA based on Single Instruction Multiple
Data (SIMD), called SPOA, to enhance correction and polishing. RACON has been
extensively used to improve numerous published genomes and is integrated into other
tools, such as Unicycler (Wick et al., 2017) and Raven (Vaser & Šikić, 2021). Another
SIMD implementation of POA dedicated to long reads is available in abPOA (Gao et al.,
2020). Moreover, some of these techniques are even used as part of the read sequencing
process. For example, Pacific Bioscience High Fidelity Reads (HiFi) (Wenger et al., 2019)
are generated by sequencing a region multiple times and creating a consensus sequence
using methods similar to Sparc (Ye & Ma, 2016).

We address this gap through a two-fold contribution: Firstly, we introduce MSA_Limit,
an automated toolkit designed to benchmark various MSA tools on TGS datasets against a
reference sequence. Built on Snakemake (Köster & Rahmann, 2012) and Conda (Grüning
et al., 2018) environments, MSA_Limit offers a user-friendly, easily installable, and flexible
framework. A detailed description of the pipeline can be found in section ‘The MSA_Limit
Pipeline Overview’. Secondly, we present an extensive set of datasets and benchmark a
range of MSA tools. These datasets span bacterial, yeast, and human genomes and serve as
a comparative baseline for a selection of widely-usedMSA tools from various backgrounds:
MUSCLE (Edgar, 2004), T-Coffee (Notredame, Higgins & Heringa, 2000), MAFFT (Katoh
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et al., 2002), Clustal Omega (Sievers et al., 2011), KALIGN (Lassmann & Sonnhammer,
2005), KALIGN3 (Lassmann, 2020), POA (Lee, Grasso & Sharlow, 2002), SPOA (Vaser et
al., 2017) and abPOA (Gao et al., 2020). This benchmarking analysis is discussed in section
‘Benchmarking with MSA_Limit’.

THE MSA_LIMIT PIPELINE OVERVIEW
Overview of the strategy
The primary goal of MSA_Limit is to provide an automated protocol to evaluate MSA
tools on TGS reads. Our investigation focuses on the influence of three critical factors on
alignment quality and computational efficiency:

• sequencing error profile, encompassing error rate and error types,
• length of the aligned sequences,
• sequencing depth.

Detailed descriptions of these three factors follow.

Sequencing error profile
It includes various error types such as insertions, deletions, and substitutions present at
different rate.

Length of aligned sequences
The aligned sequence length is constrained by read length and also depends on the
read processing strategy. For example, tools like CONSENT (Morisse et al., 2021)
and ELECTOR (Marchet et al., 2020) employ spliting strategies to focus on smaller
subsequences, affecting the length of the actual MSA inputs.

Sequencing depth
We explore sequencing depth values ranging from 10x to 200x, covering a wide array
of experimental designs and applications. Generally, guidelines advise against low-depth
sequencing below 20x. Indeed, using a Poisson distribution to model sequencing depth,
we estimate that with 20x depth, several bases would be missed from a gigabase-sized
genome (Hozza, Vinař & Brejová, 2015). As a result, most assemblers designate their
comfort zone between 30x and 60x (Phillippy, Koren & Walenz, 2020). We also examine
higher sequencing depths of 100x and 200x to determine whether increased information
from more sequences leads to improved alignments and to assess the ability of MSA tools
to handle such large data.

Pipeline inputs
The MSA_Limit pipeline necessitates a set of TGS reads and a reference sequence for
input. The reference sequence acts as the ground truth for MSA quality evaluation. It is
not involved in MSA construction.

Pipeline steps
By default, the pipeline conducts various experiments using different region sizes and
sequencing depths. Each experiment is distinctly identified by a genomic region, sequencing
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Figure 1 Global overview of the MSA_Limit pipeline.
Full-size DOI: 10.7717/peerj.17731/fig-1

depth, and the MSA tool in use. The comprehensive process comprises the following seven
steps. A bird’s-eye view of the pipeline steps is displayed in Fig. 1 completed with a more
detailed depiction in Fig. 2.
1. Read alignment: Align the complete set of reads against the reference genome using

minimap2 (Li, 2018), with preset options based on the nature of the reads (ONT,
PacBio).

2. Starting position selection: Select starting positions for genomic regions. By default,
10 random positions are chosen.

3. Genomic region construction: For each starting position, construct genomic regions
of varying lengths. By default, MSA_Limit constructs regions with sizes of 100, 200,
500, 1,000, 2,000, 5,000, and 10,000 bases.

4. Read selection: For each region, select a set of reads that satisfy the desired sequencing
depth.

5. MSA construction: Compute theMSA for each available MSA tool using each selection
of reads.

6. Consensus sequence creation: Derive a consensus sequence from each MSA. The
precise definition of the consensus sequence is provided in section ‘Constructing
consensus sequences’.
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Figure 2 Main steps of the MSA_Limit pipeline.
Full-size DOI: 10.7717/peerj.17731/fig-2

7. MSA evaluation: Evaluate theMSAby computing a series ofmetrics from the consensus
sequence aligned to the reference sequence. Those metrics are described in section
‘Pipeline outputs and evaluation metrics’.

Constructing consensus sequences
For each MSA, a consensus sequence is built, using the DNA IUPAC code. The method
considers each column of the MSA independently and applies a selection procedure
to determine which IUPAC character represents the column based on the most frequent
characters present in the column. This procedure relies on a threshold parameter, indicating
the minimal appearance rate for a nucleotide to be included in the consensus sequence.
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Column 6: - 60%, T 40%
majority gap, consensus : - → -

Column 10: C 40 %, T 40%, A 20 %
    40+40+20>90, consensus C+T+A →H 

1    2     3    4    5    6     7    8    9   10   11  12   13 1    2    3    4    5    6     7    8    9   10   11  12   13

Figure 3 Consensus sequence examples with thresholds at 70% and 90%. The MSA has five sequences.
The last row is the consensus sequence.

Full-size DOI: 10.7717/peerj.17731/fig-3

If the most frequent character is a gap, we retain the gap to represent the column in the
consensus sequence. Otherwise, we consider possible nucleotides (A, C, G, T) in descending
order of frequency. If the most prevalent nucleotide rate exceeds the threshold, we choose
this nucleotide for the consensus. If not, we consider the cumulative rate of the first
and second nucleotides. If this rate is above the threshold, we select the corresponding
IUPAC character. We continue this process by adding the subsequent nucleotide until the
threshold is reached. Note that when selecting the next nucleotide, if there is a tie (i.e., the
two following nucleotides have the same occurrence), both nucleotides are added to avoid
order bias. We display several examples of consensus sequences using different thresholds
in Fig. 3.

Pipeline outputs and evaluation metrics
Post-execution of a MSA_Limit run, numerous outputs are generated for detailed analysis,
including:

• Identity rate: The ratio of positions where the two sequences have strictly identical
characters, divided by the consensus size.

• Ambiguous character rate: The ratio of positions in the consensus sequence where
multiple characters are possible (any characters other than A, C, G, T, or gap).

• Match rate: The ratio of positions where the two IUPAC codes share a potential
nucleotide character. For instance, Y (which represents T or C) and S (G or C) match
because both can represent C, but R (G or A) and Y do not match.

• Error rate: Non-matching characters are considered as errors.
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• Consensus size: The length of the consensus sequence.

This is done by pairwise sequence alignement using Exonerate (Slater & Birney, 2005)
in the exact global alignment mode. Additionally, summary files providing mean and
standard deviations of the metrics across different genomic region starting positions are
furnished.

BENCHMARKING WITH MSA_LIMIT
Selection of MSA tools
We benchmarked a diverse set of MSA tools chosen based on their widespread use and
complementarity.

Progressive alignment methods:. These tools initially compute pairwise alignments, which
are then progressively merged into a final MSA following a guide tree. The methods
differ in pairwise alignment computation, clustering algorithms, and guide tree sequence
incorporation. We selected the following tools for this category:

• Clustal Omega: A global sequence aligner using fast hierarchical clustering.
• KALIGN and KALIGN3: Tools that blend local matches into global alignment.
• POA, SPOA, and abPOA: Programs utilizing directed acyclic graphs for intermediate
MSAs.

Iterative methods: Initiating from a rudimentary MSA, these tools iteratively refine it.
Selected tools are:

• MUSCLE : Employs k-mer counting, progressive alignment, and tree-dependent
refinement.

• MAFFT : Uses the fast Fourier transform (FFT) for quick homologous segment detection.

Consistency check methods: Tools like T-Coffee precompute both local and global
alignments for consistency checks before guide tree construction.

Construction of datasets
Simulated datasets
For precision over reference and error profiles, we used simulated datasets created via
PBSIM2 (Ono, Asai & Hamada, 2021), utilizing the E. coli K-12 strain as the reference
(GenBank accession GCF_000005845.2). The datasets are named by their error types:
DEL (deletions only), INS (insertions only), SUB (substitutions only), and MIX. The MIX
datasets contain a proportion of 23% substitutions, 31% insertions, and 46% deletions
following an ONT error model. For each of these four error types, DEL, INS, SUB and
MIX, we generated eight datasets showcasing different error rates, 1, 2, 5, 10, 15, 20, 25,
and 30%, giving a total number of 32 datasets.

Real datasets
We handpicked a selection of ONT real datasets based on three criteria: a reliable reference
sequence, sequencing depth exceeding 100x, and diverse estimated sequencing error rates.
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Table 1 Real datasets employed.

Reference Error rate Depth

E. coliHiFi Custom HiFi Assembly 17.28% 200x
E. coli Illumina Custom Illumina Assembly 16.36% 650x
BMB Yeast Custom Illumina Assembly 10.8% 110x
Human T2T-CHM13v2.0 6.6% 120x

The reference sequence’s credibility is pivotal, as a perfect sequence is elusive. To minimize
discrepancies, we chose genomes derived from the same individual. When such a genome
was not available, we required that complementary reads from alternative sequencing
technologies, Illumina or HiFi, were available for the same individual and assembled those
reads to produce a reference genome.

For each dataset, we estimated the sequencing error rate by aligning the ONT reads on
the reference genome using minimap2. The list is available in Table 1.

E. coli HiFi. Derived from the ENA’s SAMN13901561 sample, we accessed both ONT
(SRR12801740) and HiFi (SRR11434954) reads. The Hifiasm assembler (Cheng et al.,
2021) was utilized for reference genome creation from the HiFi reads, yielding a 17.28%
sequencing error rate for the ONT reads against this reference sequence.

E. coli Illumina. This dataset originates from ENA’s sample SAMN10604456 for the strain
CFSAN027350, and provides both ONT (SRR8335315) and Illumina (SRR8333590) reads.
A custom SPAdes assembly was generated from the Illumina reads to build the reference
genome. The sequencing error rate for ONT reads is estimated to be 16.36%.

BMB Yeast. This dataset utilized the Illumina sequencing ERR1308675 and ONT
sequencing ERR4352154. The reference genome was constructed from Illumina reads
with SPAdes, resulting in an estimated 10.8% sequencing error rate for the ONT reads.

Homo sapiens. We collected ONT data from the T2T consortium (Nurk et al., 2022), and
used the T2T-CHM13v2.0 reference genome. ONT reads attained a 6.6% sequencing error
rate.

General behaviour of all MSA tools
In our initial experiments, we utilized the nine MSA tools described in section ‘Selection
of MSA tools’ and the four real datasets referenced in section ‘Construction of datasets’,
namely E .coli Hifi, E. coli Illumina, BMB yeast, and Human. We assessed a broad range of
genomic region sizes: 100, 200, 500, 1000, 2000, 5000, and 10,000 bases. Additionally, we
varied sequencing depths: 10x, 20x, 30x, 45x, 50x, 60x, 100x, 150x, 200x. For each dataset, we
took 10 random regions. A total of 22,680 experiments were conducted. Comprehensive
results can be found in the data repository gitlab.cristal.univ-lille.fr/crohmer/msa-limit
along with the corresponding data gitlab.cristal.univ-lille.fr/crohmer/msa-limit-data, while
a concise summary is provided in Table 2.
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Table 2 Preliminary results for a variety of region lengths and sequencing depths, for all MSA tools
and all real datasets. The first part of the table ‘‘Consensus sequence identity rate’’ is constructed as fol-
lows. For each dataset, we selected different region lengths (100, 200, 500, 1000, 2000, 5000, and 10,000
bases) and sequencing depths (10x, 20x, 30x, 45x, 50x, 60x, 100x, 150x, 200x), and for each such combi-
nation, we have picked 10 regions. Then we ran every MSA tool on each region, resulting in 10 consen-
sus sequences per tool for each length-depth combination. Those 10 consensus sequences were compared
to the reference sequence in order to compute the identity percentage. We deduced from this the average
consensus identity percentage associated to a tool and a length-depth combination. It allowed us to de-
termine for each tool which are the lower average identity rate (corresponding to the worst case combina-
tion) and the highest average identity rate (corresponding to the best case combination) over all combina-
tions. For each dataset and each MSA tool, we indicate the range min–max, where min (resp. max) refers
to the lower average identity rate (resp. higher average identity rate). In the two other sections of the ta-
ble, the execution time (in seconds) and the memory usage (in MB) are computed for 10 regions of length
200 bases and sequencing depth 10x (min) and 10 regions of length 1000 bases and sequencing depth 100x
(max).

Ecoli-Hifi Ecoli-Illumina BMB yeast Human

Consensus sequence identity rate
abPOA 95.2 97.9 95.8 97.4 98.8 99.7 99.6 99.9
clustal o 83.9 89.7 84.8 91.2 92.4 96.2 95.1 98.6
KALIGN 93.6 98.7 92.9 97.8 97.8 99.7 99.6 100
KALIGN3 90.1 98.6 90.7 97.4 96.8 99.7 99.4 99.9
MAFFT 93.1 98.9 94.2 98.4 98.2 99.8 99.5 100
MUSCLE 95.5 98.6 95.3 97.8 98.7 99.6 99.7 99.9
POA 93.7 97.0 96.1 97.1 98.9 99.6 99.7 99.9
SPOA 95.2 98.6 95.9 98.0 98.9 99.8 99.6 99.9
T-Coffee 96.2 99.3 95.7 98.3 99.1 99.9 99.7 100.0

Computation time (in seconds)
abPOA 0.0 0.7 0.0 0.6 0.0 0.5 0.0 0.6
clustal o 0.4 89.7 0.4 82 0.4 129.2 0.3 100.9
KALIGN 0.0 3.4 0.0 3.1 0.0 3.5 0.0 3.3
KALIGN3 0.1 5.4 0.1 5.3 0.1 6 0.1 5.9
MAFFT 0.3 8.7 0.2 8.5 0.2 9.2 0.2 8.5
MUSCLE 0.4 173.3 0.3 171.1 0.3 122.6 0.3 70.9
POA 0.1 44.7 0.1 24.3 0.1 19.8 0.1 15.4
SPOA 0.0 2.1 0.0 1.8 0.0 1.7 0.0 1.6
T-Coffee 1.3 8102.9 12.9 7479.5 13.5 8114.3 13.5 8114.3

Memory usage (in MB)
abPOA 3.3 41.3 3.2 15.9 3.1 34.5 3.6 34.6
clustal o 6.0 78.0 5.9 75.5 5.9 76.0 5.8 74.7
KALIGN 1.8 3.5 1.8 3.5 1.8 3.4 2.2 3.8
KALIGN3 4.2 8.8 4.2 7.8 4.1 7.6 4.4 8.2
MAFFT 21.9 37.1 21.8 36.9 21.9 35.6 22.9 37.5
MUSCLE 77.0 69.8 7.6 71.1 7.7 71.8 17.6 71.5
POA 2.4 12.2 2.4 11.3 2.4 11.2 3.8 13.5
SPOA 8.3 42.3 8.8 38.2 8.0 37.3 8.6 38.0
T-Coffee 46.5 347.7 46.3 442.2 113.2 424.5 107.9 355.6
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Of the nineMSA tools we tested, seven (abPOA,KALIGN,KALIGN3,MAFFT,MUSCLE,
POA, and SPOA) processed all datasets effectively. Clustal Omega and T-Coffee were the
exceptions. Although Clustal Omega is known for its accuracy with sequences that are
evolutionarily related (Sievers et al., 2011), it underperformed in our long-read alignments.
It struggled with managing insertions, deletions, and often introduced spurious gaps,
likely because of its ‘‘Once a gap, always a gap’’ paradigm. On the other hand, while
T-Coffee produced high-quality MSA results, it was notably resource-intensive, being
slower and consuming significant memory. We were not able to run it on larger datasets,
such as those with sequencing depth 150x or 200x. Therefore, for large regions or deep
sequencing, T-Coffee was not feasible. Given the minor accuracy improvement and
significant computational cost, its utility is limited for reads datasets. Moving forward, our
analysis omitted Clustal Omega and T-Coffee, focusing on the seven other tools, which are
more efficient.

Evaluation of MSA quality
We provide a more detailed analysis into the remaining seven MSA tools’ performance
across 100 dataset windows, as opposed to the 10 windows used in previous experiments.

Influence of genomic region size
In Fig. 4, it was observed that genomic region size, spanning from 100 to 10,000 bases,
had a negligible impact on consensus identity rate across all sequencing depths, deviating
by less than 1%. As a result, the following experiments determined the region size at 500
bases, unless stated otherwise.

Influence of the sequencing depth
Figure 5 illustrates the correlation between consensus identity rate and sequencing depth.
The human dataset, characterized by its low error rate, showed only minor discrepancies
between tools. In contrast, all other datasets, whose sequencing error rate is above 10%,
exhibited distinct variability in tool performance.

Although there is a general trend indicating that greater depth improves results, this isn’t
always the case. The data suggests that after achieving a depth of approximately 50x, further
enhancements in most tools become stagnant. Surprisingly, tools like the POA family and
MUSCLE sometimes underperform at increased depths. On the other hand, KALIGN,
KALIGN3, and MAFFT consistently show improvement. For example, for Hifi E. coli
datasets that exceed 50x depth, most tools stabilize within a 97.5% to 98.5% identity range.
However, POA stands out, dropping below 96% at these depths. It is worth noting that
while POA and SPOA perform exceptionally well at lower depths, KALIGN and MAFFT
achieve their best results at higher depths. Such variations highlight that the choice of
the optimal tool largely depends on the specific depth context. The considerable standard
deviation, approximately 2% in most instances, emphasizes the significant fluctuation in
accuracy depending on region selection. The same observations hold for Illumina E. coli
and BMB yeast.
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Figure 4 Effect of region size on the consensus sequence identity rate forHuman, BMB yeast, E. coli Il-
lumina, and E. coli HiFi datasets. Each dataset is evaluated over 100 distinct regions with 100x depth. The
X-axis represents region length (in bases) while the Y -axis indicates the identity percentage between the
consensus and reference sequences. Mean identity percentages and standard deviations are depicted.

Full-size DOI: 10.7717/peerj.17731/fig-4

Influence of the sequencing error profile
Understanding the error rate impact is essential since it can vary a lot accross employed
technologies and datasets. Figure 5 from the previous paragraph already indicated that
lower error rates yield higher accuracy consensus sequences. We delve further into this
question using simulated data. In Fig. 6, we demonstrate how consensus identity rate
varies with sequencing error rate, specifically following an ONT error distribution. All
tools, when tested on simulated data, yielded highly accurate consensus sequences when
the error rate was below 10%. Beyond this threshold, most tools’ accuracies plunged, with
the exception of POA and SPOA that showed resilience against escalating error rates. Our
results validate the selection of POA for processing high error rates, reminiscent of early
ONT sequencings.
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Figure 5 Effect of sequencing depth on the consensus sequence identity rate forHuman, BMB yeast,
E. coli Illumina, and E. coli HiFi datasets. The sequencing depth varies from 10x to 200x for E. coli Illu-
mina and E. coli HiFi datasets, and from 10x to 100x for Human and BMB yeast datasets, whose sequenc-
ing depth is smaller (see Table 1). Each dataset is evaluated over 100 distinct regions of size 500. The X-
axis represents the sequencing depth, while the Y -axis indicates the identity percentage between the con-
sensus and reference sequences. The figures display the mean consensus identity rate along with the stan-
dard deviation.

Full-size DOI: 10.7717/peerj.17731/fig-5

Differing TGS techniques exhibit distinct error patterns. Hence, assessing tools against
these errors becomes paramount. In Fig. 7, we delve into the consensus identity rate’s
response to varying error types: substitution, insertion, or deletion. The type of error
highly influences the performance of the MSA methods. Substitutions are easier to rectify,
but the POA family struggles with high substitution error rates. Insertion and deletion
errors are more challenging, with deletions being slightly more difficult than insertions.
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Figure 6 Effect of error rate on the consensus identity rate on a simulated E. coli dataset. The dataset
consists of 100 distinct regions, each of size 500 bases with a depth of 45x. Reads are generated following
the MIX model: 23% substitutions, 31% insertions, and 46% deletions. The graph illustrates the mean
consensus identity rate and standard deviation relative to the imposed error rate.

Full-size DOI: 10.7717/peerj.17731/fig-6

Evaluation of memory usage and execution time
Influence of the genomic region size
In section ‘Evaluation of MSA quality’, we observed that the influence of sequence size on
MSA quality is minimal. However, sequence size significantly affects memory and runtime
for most algorithms. Figure 8 illustrates the relationship between memory consumption,
running time, and region size. Our results indicate that certain tools, like KALIGN3,
KALIGN, and MUSCLE, show linear memory growth with increasing sequence size. In
contrast, tools like POA and MAFFT exhibit superlinear growth, while abPOA and SPOA
display quadratic growth. Runtime patterns also vary, with some tools appearing almost
linear (e.g., SPOA, abPOA, KALIGN, KALIGN3) and others showing superlinear growth
(e.g., MUSCLE, POA, MAFFT). In practical scenarios, we observe significant performance
disparities among the tested tools in terms of both memory usage and CPU time. These
observations confirm the rationale behind previous studies (Morisse et al., 2021; Marchet
et al., 2020) that favored partition strategies for constructing MSA from multiple short
sequences over long ones.
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Figure 7 Effect of error type on the consensus identity rate for a simulated E. coli dataset. This dataset
has 100 regions, each 500 bases in size, and a depth of 45x. The types of errors evaluated are substitutions
only (SUB), insertions only (INS), and deletions only (DEL). The graph details the mean consensus iden-
tity rate and its standard deviation relative to the error rate.

Full-size DOI: 10.7717/peerj.17731/fig-7
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Figure 8 Effect of the region size onmemory usage and CPU time for the E. coliHiFi dataset with 100x
depth over 100 distinct regions. The top figure displays the mean maximal memory usage divided by the
region size, the middle figure shows the corresponding CPU time, and the bottom figure represents the
mean CPU time according on a log scale. Standard deviation is displayed in black. Notably, the memory
curves for KALIGN and KALIGN3 overlap.

Full-size DOI: 10.7717/peerj.17731/fig-8
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Influence of sequencing depth
Figure 9 elucidates the impact of sequencing depth on runtime and memory consumption.
Surprisingly, depth has a minimal effect on memory usage with MUSCLE being notable
exceptions whose memory scale linearly. Runtime-wise most tools behave super linearly
according to the available depth, the fastest growth being MUSCLE that almost scale
quadratically.

Influence of sequencing error rate
Figure 10 demonstrates that the error rate marginally impacts time performance except for
POA and MUSCLE where a high error rate can double the runtime. Memory wise all tools
are almost unaffected by the error rate the POA bases methods that display a linear growth
according to the error amount.

Addressing diploid genomes and heterozygosity
In previous sections, polyploid genomes were not addressed. Our datasets were composed
of genomes that are functionally haploid, including the human CHM13 genome. This
particular human genome, despite being diploid by definition, predominantly arises from
the loss of the maternal genetic material and duplication of the paternal genetic material
post-fertilization, resulting in a homozygous condition with a 46,XX karyotype. This
process effectively renders it haploid for analytical purposes. This approach simplifies the
analysis by not accounting for allelic variations, which are minimal in such homozygous
contexts.

When analyzing heterozygous organisms, relying solely on a single reference sequence
can lead to an overestimation of differences between reads and the reference, especially due
to heterozygous local variations. Some contemporary methods can generate ‘‘polyploid’’
reference sequences by distinguishing distinct haplotypes through phasing (Garg, Martin
& Marschall, 2016). When multiple haplotypes are available, one approach is to assign
each read to a specific haplotype and execute MSA_Limit on each haplotype separately.
However, this method is not foolproof. Low polymorphism regions can be challenging to
differentiate, especially with highly noisy reads. Due to mapability challenges, many reads
may be misassigned, skewing the analysis. Fortunately, a significant portion of haplotype
variations, such as SNPs (Single Nucleotide Polymorphisms), can be easily encoded in a
reference sequence using the IUPAC code.

In this section, we explore diploid genomes to determine if MSA tools can effectively
process reads from distinct alleles. For this purpose, we crafted an artificial diploid genome,
ensuring precise knowledge of both haplotypes.

Constructing a heterozygous yeast genome
Inspired by the experiments in the nPhase paper (Abou Saada et al., 2021), we combined
datasets from homozygous diploid strains of Saccharomyces cerevisiae to simulate
heterozygous yeast genomes. To emulate this, we utilized the BMB strain, introduced
another strain (CCN), and combined them to create a ‘‘heterozygous yeast’’. The reference
sequences for the diploid genome were crafted by aligning contigs from both strains using
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Figure 9 Effect of sequencing depth onmemory usage (top) and CPU time (borrom) for the E. coli
HiFi dataset across 100 distinct regions of size 500. The mean runtime is displayed for each sequencing
depth on a log scale.

Full-size DOI: 10.7717/peerj.17731/fig-9
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Figure 10 Effect of sequencing error rate onmemory usage (top) and CPU time (bottom) for MIX sim-
ulated E. coli dataset across 100 distinct regions of size 500 with a depth of 45x. The mean CPU and
standard deviation are plotted against the error rate.

Full-size DOI: 10.7717/peerj.17731/fig-10
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Table 3 Recall and precision for sequencing depth 20x, 50x and 100x for diploid yeast. For each MSA tool, the recall is computed as the num-
ber of IUPAC symbols in the consensus sequence corresponding to heterozygous sites, divided by the number of total heterozygous SNPs (290). The
precision is the number of IUPAC symbols in the consensus sequence corresponding to heterozygous sites divided by the total number of IUPAC
symbols in the consensus sequence.

Recall

abPOA KALIGN KALIGN3 MAFFT MUSCLE POA SPOA T-Coffee

depth 20 0.72 0.76 0.76 0.80 0.81 0.73 0.69 0.78
depth 50 0.87 0.92 0.92 0.93 0.94 0.88 0.85 0.93
depth 100 0.90 0.96 0.95 0.96 0.93 0.92 0.86 0.97

Precision
abPOA KALIGN KALIGN3 MAFFT MUSCLE POA SPOA T-Coffee

depth 20 0.34 0.22 0.10 0.18 0.28 0.26 0.35 0.43
depth 50 0.44 0.35 0.19 0.29 0.42 0.30 0.46 0.59
depth 100 0.43 0.43 0.33 0.40 0.45 0.26 0.44 0.64

minimap2. The alignments were refined with Exonerate, leading to a consensus sequence
where IUPAC symbols indicate heterozygous polymorphisms between the two alleles.

Experimental design
We selected 100 windows of length 500 bases, resulting in a total of 290 SNPs between the
two alleles. For each window, we ran the MSA tools, generating one consensus sequence
per tool, similar to the approach in section ‘Benchmarking with MSA_Limit’. Given the
ploidy degree of two, we set the identity threshold for consensus at 70%, accommodating
the sequencing error rate of the datasets. In this context, IUPAC symbols in the consensus
sequences are intended to represent polymorphisms between the two alleles. We conducted
the experiment at three different sequencing depths: 20x, 50x, and 100x.

Results
Our primary objective was to assess the capability of MSA tools in identifying heterozygous
SNPs from the read set. To evaluate this, we first checked if the 290 heterozygous SNPs
from the reference genome were present in the consensus sequences generated by each tool.
Results are presented in Table 3, detailing recall and precision, and in Fig. 11. While most
tools are able to display a high recall that improve with depth (≈ 75% with 20x, ≈ 90%
with 50x, ≈ 93% with 100x), all methods display very low precision with only T-Coffee
with 100x able to be above 50%. This confirms the known fact that de novo genotyping
from TGS is a hard problem (Shafin et al., 2021).

DISCUSSION
From our experiments, several insights emerge. Foremost, Clustal Omega and T-Coffee
appear to be the least suitable among the tested tools. As expected, the performance of other
tools, namely MAFFT, MUSCLE, KALIGN, KALIGN3, abPOA, SPOA, and POA, enhances
as the sequencing error rate diminishes. These tools exhibit commendable performance
with contemporary sequencing data, especially when error rates are around 5%, as observed
in the recent Human dataset.
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results

***** Threshold 70%

Cover 20 Cover 50 Cover 100

 abpoa  kalign kalign3  mafft  muscle  poa  spoa  t-coffee  abpoa  kalign kalign3  mafft  muscle  poa  spoa  t-coffee  abpoa  kalign kalign3  mafft  muscle  poa  spoa  t-coffee

SNP/correct IUPAC 208 221 219 232 234 212 201 226 252 266 267 271 272 256 246 271 262 278 276 278 271 267 250 280

SNP/ other 82 69 71 58 56 78 89 64 38 24 23 19 18 34 44 19 28 12 14 12 19 23 40 10

Vide 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

Non SNP / IUPAC 400 798 1924 1081 603 605 378 302 322 498 1132 663 377 604 286 189 351 365 565 410 327 760 316 158
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Figure 11 Qualitative performances of the different tools with distinct coverage 20 (left), 50 (middle),
100 (right), and a threshold of 70% for diploid yeast. SNP/correct IUPAC refers to heterozygous SNPs
that are accurately identified in the consensus sequence (true positives), SNP/other to heterozygous SNPs
that are not found in the consensus sequence (false negatives), and Non SNP/IUPAC to IUPAC charac-
ters present in the consensus sequence that do not correspond to SNPs in the reference genome (false pos-
itive).

Full-size DOI: 10.7717/peerj.17731/fig-11

A deeper analysis reveals that POA might be superseded by its variants, abPOA or
SPOA. KALIGN3, in comparison to its predecessor KALIGN, seems less compelling.
MAFFT emerges as a balanced choice, while MUSCLE’s performance is offset by its
computational demands. Interestingly, the influence of sequencing depth is not uniform
across tools. Tools from the POA lineage are recommended for datasets with lower depths
(10x or 20x), whereas MAFFT, KALIGN, and KALIGN3 excel with datasets having depths
greater than 50x.

In section ‘The MSA_Limit Pipeline Overview’, we highlighted the inherent limitations
of tools when addressing SNPs in diploid genomes. In such scenarios, no tool provides a
comprehensive solution, emphasizing the need for specialized tools.

A pressing question arises: do different tools make errors at unique positions, or are
there universally challenging patterns? If each tool errs differently, a combined approach
could potentially boost accuracy. To investigate this, we developed a ‘‘meta-MSA’’
using consensus sequences from various tools. We then compared the accuracy of this
‘‘metaconsensus’’ with that of individual tool-specific consensus sequences. As shown
in Table 4, the metaconsensus often outperforms individual tools in certain scenarios.
However, it doesn’t consistently emerge as the top choice. Notably, it excels in datasets with
low coverage and high error rates, and consistently outperforms the least effective tool. This
implies that a hybrid approach, drawing on the strengths of multiple tools, might enhance
accuracy in specific situations. Yet, it is worth noting that the metaconsensus consistently
underperforms compared to Tcoffee. A logical next step would be to experiment with
various tool combinations to pinpoint the most effective strategies for specific scenarios.

CONCLUSION
We introduced a robust pipeline to assess the proficiency of MSA tools in generating
accurate consensus sequences from TGS data. With its user-friendly design, facilitated
by Conda and Snakemake, we envision three straightforward purposes for our tool:
benchmarking novel methods, aiding users and developers in refining or selecting a
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Table 4 We compare the metaconsensus with the best sequence and the worst sequence selected from all consensus sequences obtained from
the different tools (MUSCLE, MAFFT, KALIGN, KALIGN3, POA, SPOA, abPOA), as well as against T-Coffee. This comparison is conducted for
each dataset and at various depths. In the columns for the best sequence, we display how often the metaconsensus shows superior (>), equal (=), or
inferior (<) identity rate compared to the best sequence, along with by the average difference observed. Similarly, we report the performance of the
metaconsensus in comparison with the worst sequence, and with T-Coffee.

E. coli HiFi (estimated sequencing error rate: 17.28%)

Depth Best sequence T-Coffee

> = < 1average 1average > = < 1average

10 100 0 0 1.76 5.80 0 1 99 −1.32
20 72 11 17 0.52 3.88 0 0 100 −1.29
50 50 32 18 0.14 2.57 0 0 100 −1.08
100 59 13 28 0.16 2.43 0 0 100 −0.93

E. coli Illumina (estimated sequencing error rate: 16.38%)
Depth Best sequence Worst sequence T-Coffee

> = < 1average 1average > = < 1average
10 95 4 1 1.17 6.07 0 0 100 −2.10
20 73 14 13 0.44 4.77 0 0 100 −1.87
50 28 28 44 −0.10 3.34 0 0 100 −2.00
100 18 17 65 −0.23 2.08 0 0 100 −1.83

BMB yeast (estimated sequencing error rate: 10.8%)
Depth Best sequence Worst sequence T-Coffee

> = < 1average 1average > = < 1average
10 51 29 20 0.17 2.06 0 16 84 −0.64
20 8 39 53 −0.13 1.12 0 8 92 −0.68
50 2 39 59 −0.15 0.57 0 14 86 −0.59
100 0 31 55 −0.16 0.62 0 13 73 −0.58

Human (estimated sequencing error rate: 6.6%)
Depth Best sequence Worst sequence T-Coffee

> = < 1average 1average > = < 1average
10 15 72 12 0 0.55 0 63 36 −0.32
20 0 73 26 −0.07 0.39 0 57 42 −0.38
50 0 72 27 −0.09 0.26 0 58 41 −0.32
100 0 72 24 −0.08 0.22 0 61 35 −0.31

Heterozygous yeast
Depth Best sequence Worst sequence T-Coffee

> = < 1average 1average > = < 1average
10 54 24 22 0.18 1.99 0 1 99 −1.08
20 4 26 70 −0.18 1.02 0 0 100 −1.27
50 3 30 67 −0.27 0.57 0 0 100 −1.29
100 4 20 76 −0.30 0.57 0 0 100 −1.19

method best suited to their needs, optimizing parameters for their chosen methods to fit
their data properties.

In addition to this pipeline, we generated a comprehensive benchmark dataset, which
allowed us to unveiled some unexpected results. For instance, the popular SPOA doesn’t
always emerge as the best, especially at higher depths. The optimal tool can vary based on
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the error profile and sequencing depth. Our results also confirmed that existing methods
struggle to effectively capture heterozygoty, with a mediocre precision. This could suggest
potential enhancements by tweaking scoring systems or amalgamatingmultiple techniques.

Our study lays the groundwork for developing sophisticatedMSA techniques specifically
designed for TGS traits. Such advancements could reshape tools used for read correction,
assembly refinement, and consensus sequence generation in sequencing devices. Our delve
into heterozygosity indicates that MSA can help differentiate between noise and authentic
genomic bases. It can also retain variants, laying the groundwork for heterozygosity-
conscious read correction or direct TGS data phasing.
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