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Abstract

The electrical properties of rocks are widely used in the geophysical exploration of natural
resources, such as minerals, hydrocarbons and groundwater. In mining exploration, the primary
goal is to map electrically anomalous geological features associated with different mineralization
styles, such as clay alteration haloes, metal oxides and sulphides, weathered crystalline rocks
or fractured zones. As such, the reconciliation of geophysical data with geological informa-
tion (geochemistry, mineralogy, texture and lithology) is a critical step and can be performed
based on petrophysical properties collected either on core samples or as downhole measure-
ments. Based on data from 189 diamond drill cores collected for uranium exploration in the
Athabasca Basin (Saskatchewan, Canada), this paper presents a case study of reconciliation of
downhole resistivity probing with core sample geochemistry and short-wave infrared spectroscopy
(350–2500 nm) through three successive steps: (i) multivariate analysis of resistivity and other
petrophysical properties (porosity, density) against geochemical and infrared spectroscopy infor-
mation to characterize electrical properties of rocks with respect to other physical parameters,
(ii) a machine-learning workflow integrating geochemistry and spectral signatures in order to
infer synthetic resistivity logs along with uncertainties. The best model in the basin was Light
Gradient-Boosting Machine with pairwise log-ratio, which yielded a coefficient of determination
R² = 0.80 (root mean square error = 0.16), and in the basement, support vector regression
with data fusion of infrared spectroscopy and pairwise log-ratios on geochemistry yielded R² =
0.82 (root mean square error = 0.35); (iii) the best model was then fitted on an area that was
excluded from the original dataset (Getty Russell property) in order to infer synthetic resistivity
logs for that zone. Software code is publicly available. This workflow can be re-used for the
valorization of legacy datasets.
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1 Introduction

As easy-to-explore, shallow ore deposits are progressively depleting, exploration is now targeting
more deeply-seated mineralized bodies. This involves an increasing need for extensive geophysical
surveys under overburden, regolithic zones or thick sedimentary covers to characterize variations in
physical properties related with metallogenic processes, such as hydrothermalism, e.g. density lows
associated to alteration haloes [61].

In this context, coupling petrophysical measurements on cores and geophysical downhole logging
is an essential tool for exploration geoscientists because it is the only way to connect parameters
observed by geophysicists to actual rock properties observed during drilling and fieldwork. The
use of petrophysical data to model deposit footprints has been applied to various types of mineral
systems, such as unconformity-related uranium deposits [62], orogenic gold deposits [12], porphyry
copper deposits [16] and volcanogenic massive sulphide deposits [63].

However, in mineral exploration, downhole geophysical logging is historically less widespread
than in the oil-andgas sector, resulting in scarcer petrophysical data volumes, and geoscientists
often need to rely on incomplete datasets to infer the properties of a whole area [19]. Being able
to use proxies coming from other types of data systematically collected across prospects, such as
geochemistry and infrared (IR) spectroscopy in this case study, would be an important asset in
expanding entry data for 3D geophysical models. However, and despite a growing concern in the
geoscience exploration community for the integration of multi-source (geochemical, geophysical,
geological and mineralogical) datasets in unified 3D models [44], there are also substantial difficulties
in reconciling data that were often collected at varying spatial scales without such prospects in
mind [63].

Furthermore, physical properties of rocks are a complex type of data as they are controlled by
several parameters occurring at the micro-scale (e.g., crystallographic assemblages, crystal defects),
meso-scale (e.g., mineralogy, pore geometry, pore saturation, permeability. . . ) and macro-scale
(e.g., fault zones geometry). Influences on physical properties have therefore been observed through
geochemical studies [40], spectroscopic studies [46] as well as lithological variations [9], but because
of this important number of parameters involved, no single measurement method can be thought to
reflect all geological features susceptible to influence physical properties.

Machine-Learning (ML) offers opportunities to integrate multi-source datasets for the inversion
of petrophysical parameters using other available parameters, like geochemistry and IR spectroscopy,
as demonstrated by the important increase in the number of publications associating petrophysics
and ML over the last few years [43]. Various issues need to be overcome before applying data fusion,
e.g., differences in sampling intervals across different datasets, problems associated to closed compo-
sitional datasets or high number of dimensions in the case of geochemical and IR spectroscopic data.
Here, through a data collection from uranium exploration in the Athabasca Basin (Saskatchewan,
Canada), we aim to demonstrate that consistent predictions along with associated confidence in-
tervals can be obtained in various geological media. A workflow using data fusion of geochemistry
and Vis-NIR-SWIR spectroscopy (350-2500nm) data is proposed to infer electrical properties using
downhole resistivity data as a learning dataset. Following a first step of descriptive statistics and
multivariate analysis, we used various ML methods (Light Gradient Boosting Machine – LGBM;
Partial-Least Squares Regression – PLS-R; Random Forest; eXtreme Gradient Boosting – XGBoost;
Support Vector Regression – SVR) to predict values of resistivity for two different datasets, sand-
stone rocks and crystalline rocks. After testing our method on an external dataset (Getty Russell
property), synthetic resistivity logs are obtained and compared to actual values.
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2 General context

2.1 Geological setting

The studied area (Figure 1) is located in the South-East of the Athabasca Basin (Saskatchewan,
Canada). The Athabasca Basin is an intracratonic sedimentary basin made of a suite of unmetamor-
phosed, chemically highly mature quartzose sandstone, formed around 1.7 Ga [36] and deposited in
an epicontinental or fluvial setting [74]. The maximum thickness of the sedimentary basin currently
reaches 2km in its centermost part [6] decreasing towards its edges, although it has been estimated
by studies on fluid inclusions that it could have originally been 5 to 6km thick [49]. The basin con-
sists of several conglomeratic and sandstone formations but in the studied area, only the Manitou
Falls formation is observed [60]. The latter breaks down into seven members: the Clampitt-Dunlop,
Hodge, Warnes, Collins, Bird, Read and Smart members [10] all being considered very similar in
geochemical composition [6].

The Athabasca Basin unconformably overlies a crystalline basement [46] divided between the
Rae province to the West, and the Hearne province to the East of the basin [68]. To the East, the
Hearne province itself is divided into three domains, namely the Wollaston, Mudjatik and Wollaston-
Mudjatik transition zone which are mostly comprised of Archean gneisses and Paleoproterozoic
metasedimentary rocks which underwent extensive tectonic folding at ca. 1.8 Ga [68]. Interested
readers are referred to [7] for more details on the geology of the Athabasca basement.

2.2 Uranium exploration in the Athabasca basin

Unconformity-related uranium (URU) deposits are thought to have formed as a result of the reac-
tion between oxidizing basin brines and either reducing basement fluids [35], or reducing basement
lithologies themselves [39], precipitating uranium at the basin-basement unconformity as massive
ore, veins or disseminated along fault zones both in the sandstone and the basement [32]. A com-
plete review of the evolution of conceptual genetic models of URU deposits goes well beyond the
scope of this study and is detailed in [39].

URU deposits were originally explored using surface methods (airborne radiometry, radioactive
boulder chasing, surface geochemistry) and most of the first deposits discovered were located at
or near the surface, or were discovered through surface anomalies (e.g., [64] for the Midwest Lake
discovery; [24] for the Key Lake deposit). Over the past three decades, increasing reliance has been
put on geophysical surveys using electrical and electromagnetic methods [59] such as resistivity for
delineating prospective targets at depth. Although some recent discoveries have been made at or
near the surface, the current exploration paradigm is that most favorable zones are located in the
immediate vicinity of the intersection between conductive reactivated graphitic shear zones in the
basement and the basin-basement unconformity [41]. Electrical properties are also thought to be
associated with various other processes related to hydrothermal alteration that are interpreted as ev-
idence of uranium mobility, such as silicification, de-silicification, chloritization and argilization [59].
Indeed, broad hydrothermal alteration haloes surrounding these deposits are often considered as ex-
ploration guides. In basin rocks, it is mainly expressed by an evolution from a background cemented
sandstone with a matrix of dickite (clay), iron oxides or hydroxides [15] toward an altered sandstone
where iron oxides have been leached and the clay matrix is entirely replaced by various illite poly-
types [56] [38] and small crystals of aluminum-phosphate-sulphate (APS). In basement rocks, the
alteration is mainly expressed by a replacement of primary magmatic and metamorphic minerals
such as feldspars, biotites and muscovites by an assemblage of clay minerals including illite, sudoite
plus in a lesser proportion Mg-foitite [75] [57]. In some areas of extreme alteration, silica dissolution
is additionally observed in both the basin and basement surrounding major U deposits [48].

3



Resistivity drill holes
Petrophysical samples

Uranium deposits
Producing mine

Other major deposits

Geological domains
Mudjatik
Wollaston
WMTZ

Athabasca supergroup
Lazenby Lake
Manitou Falls
Fair Point

Figure 1: Location of resistivity drill holes and petrophysical samples studied. WMTZ = Wollaston-
Mudjatik Transition Zone, drawn after [31]). Uranium mines are reported: Mc Arthur R.:
MacArthur River Uranium Mine; Cigar L.: Cigar Lake; Eagle P.: Eagle Point; McClean L.: Mc-
Clean Lake. Coordinate reference system is NAD83 UTM Zone 13. Light green area represents the
Getty Russell property. Drillholes within this area were used as an external dataset for generating
synthetic logs.
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3 Data and methods

As the Athabasca Basin sandstone and its underlying basement rocks strongly differ in physical
properties, alteration minerals and lithogeochemistry, basement samples and basin samples were
divided into two separate subsets based on the depth of the unconformity. The depth of the uncon-
formity strongly varied between different zones, ranging from ca. 100m at the edges of the basin
to ca. 450m in the innermost prospects, with a median value of ca. 200m between all drill holes.
In the external dataset (Getty Russell), the depth of the unconformity is approximately 180m. All
subsequent steps including pre-processing, data analysis and resistivity prediction were performed
separately for the two subsets. For each subset – basement and sandstone, two different datasets
were studied:

• A dataset comprising resistivity logs, geochemistry and IR spectroscopy was used for the
Machine-Learning workflow. A summary of the different processing steps performed before
obtaining synthetic resistivity logs is given in Figure 2.

• A second dataset comprising geochemistry, IR spectroscopy and petrophysical core measure-
ments (resistivity, porosity and density) was constituted for descriptive statistics and multivari-
ate analysis in order to assess their relationships with resistivity relative to other petrophysical
parameters (porosity and density). The purpose of this second dataset was to ensure that re-
sistivity data measured on cores displayed similar geological responses to downhole probing
measurements. It was also necessary to verify that no significant bias was introduced by the
lack of information about groundwater resistivity.

3.1 Resistivity logs

A total of 189 drill holes with downhole resistivity, IR spectroscopy and whole-rock geochemistry
logged between 2006 and 2018 by Orano Canada Inc. (formerly AREVA Resources Canada Inc.)
for uranium exploration in the South-East of the Athabasca Basin were considered. Downhole
resistivity logs were obtained using a dual focused resistivity probe LL3 manufactured by Geovista,
United Kingdom [27]. The probe gives two resistivity readings, one shallow measurement with a
lateral investigation depth of ca. 10cm, and a deep measurement with a lateral investigation depth
of ca. 1m. Vertical resolution of the logs is 0.1m. Prior to processing, all data above 30.000 Ω.m
were set to 30.000 Ω.m, since they are considered outside of the device detection limits [27].

According to the usual practice [47] [46] [72], resistivity values were taken as log values in
all subsequent steps because of the wide spread of their distributions depending of the medium
investigated.

3.2 Petrophysical samples

We integrated petrophysical properties measured by Orano Canada Inc. on cores in the same
drillholes where geochemistry and IR spectroscopy were available, to give a comparative view of the
responses of resistivity, porosity and density relative to IR spectroscopy and geochemistry. Porosity
and density measurements were made by weighting samples after oven drying, water saturation and
comparing measurements. Resistivity measurements were performed using a Sample Core Induced
Polarization (SCIP) device manufactured by Instrumentation GDD Inc. The device features a holder
equipped with two copper disks that function as electrodes. After having been saturated in a copper
sulphate solution before every measurement, two cellulose sponges are then placed on the electrodes
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ICP-MS geochemistry
Resolution = 10-20m (basin),

each lithological break (basement)

IR spectroscopy (350-2500nm)
Resolution = 3m

Upscaling and data merging
Arithmetic averaging of IR and resistivity values to

geochemical acquisition scale
Training/testing datasets split

Resistivity logs
189 drillholes

Resolution = 0.1m

Different algorithms :
RF, XGB, LightGBM, PLS-R, SVR

Different datasets:
- geochemistry only (clr, ilr, pwlr),

- IR only (SOD, FOD, SS, OR, CR),
- Data fusion (geochemistry + IR)

Quantification of prediction
intervals using bootstrap

Generation of predictive logs for an
exterior dataset using best model

(Getty Russell property)

- Handling of censored values
(multiplicative lognormal replacement)
- Log-ratio transformation (clr, ilr, pwlr)

- Removing of bad spectra using TSG
filters

- Spectral transformations (SOD, FOD,
SS, OR, CR)

Removing of out-of-calibration values

Model accuracy evaluation and
model selection

Data pre-processing
and cleaning

Hyperparameters optimization
for each scenario

Data split
drillhole based

Scenario testing

Model tuning and
selection

Entry data

Data preparation for
Machine-Learning

Figure 2: Steps followed for the generation of synthetic resistivity logs. Petrophysical samples were
not used for Machine-Learning but only for data analysis and observing correlations.
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to enhance connection between the sample and the electrodes [25]. Descriptive statistics for the
different petrophysical properties are provided in Table 1.

Count Mean Median STD Kurtosis Skewness IQR Q5 Q95 Min. Max.

Resistivity (ohm.m
-1

) 1530 1941.21 1208.61 3530.72 289.85 14.42 1346.67 375.1 5608.69 89.78 85339.3

Density (g/cm3) 1530 2.46 2.46 0.06 2.59 0.42 0.08 2.37 2.56 2.22 2.86

Porosity (%) 1530 8.92 8.91 3.05 -0.26 0.11 4.2 3.99 13.93 0.35 20.38

Resistivity (ohm.m-1) 1380 28626.66 548.46 154777.03 143.73 10.92 5579.57 50.8 96035.13 3.98 2677440

Density (g/cm
3
) 1380 2.62 2.61 0.16 7.39 0.94 0.12 2.36 2.85 1.7 3.58

Porosity (%) 1380 4.38 2.63 5.56 10.29 2.72 5.16 0.1 14.8 0 41.95

Downhole logs

Resistivity (ohm.m-1) 2643 5083.9 3956.22 3832.86 2 1.32 5091.18 1024.72 12728.77 12.6 29147.79

Resistivity (ohm.m
-1

) 1485 5058.97 993.26 7452.09 1.55 1.63 7346.89 109.58 22758.34 10.97 29920.59

Petrophysical samples

Basin

Basement

Basin

Basement

Table 1: Summary statistics for petrophysical properties

Core measurements were taken once every 20m in the basin and near the central part of each
lithological break in the basement. All samples taken for petrophysical analysis were cut to 100mm
in length with a rock saw, so that the core edges are perpendicular to the core first axis.

3.3 Infrared spectroscopy

3.3.1 Data collection

Spectral point measurements on cores in the Vis-NIR-SWIR range were made available for the
same drill holes by Orano Canada Inc. These data were obtained between 2006 and 2018 in the
350-2500nm range using a TerraSpec® device, manufactured by Analytical Spectral Devices Inc.
(ASD). The device consists of three distinct sensors covering the spectral ranges of 350-1000nm,
1000-1800nm and 1800-2500nm respectively. The measurements obtained from these sensors are
subsequently concatenated to generate a composite spectrum. In total, there are 72,641 spectra
available for analysis. Core samples were taken and either air-dried for 2 to 4 days or dried in
an oven for 8 to 12 hours to avoid water contamination and ensure good-quality analyses. A white
calibration standard was used for sandstone samples, and a dark grey standard for basement samples
to improve the reflectance of darker rocks (e.g., gneisses and granites). As such, basin and basement
samples must be studied separately if one intends to treat them with a quantitative approach using
ML.

3.3.2 Pre-processing steps

Spectra were trimmed from the 350-500 and 2400-2500nm windows which are usually highly affected
by noise. Following methodology proposed by [17]), convex hull was removed from the raw spectra
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in order to remove background effects and better highlight the concentration in alteration miner-
als. Three other usual spectral transformation methods (simple Savitzky-Golay smoothing of the
original reflectance and Savitzky-Golay first- and second-order derivatives,[33]) were also used as
a comparison. Mean centering was then applied in order to enhance spectral features and remove
baseline shift [33].

3.4 Geochemistry

3.4.1 Data collection

Geochemical data was collected based on two different sampling methodologies, one for basement
samples and one for basin samples. Basin samples are composites made of crushed chip samples
taken every meter. Composites were collected every 20m in the upper part of the sandstone, and
every 10m from 0 to 100m from the unconformity. In the basement, chip samples were taken every
meter and then crushed and grouped into composites based on lithological breaks noted by field
geologists. These two sampling methodologies were developed by uranium exploration companies
several decades ago for the Athabasca Basin and have been applied consistently in their different
exploration prospects since then.

Samples were analyzed using the uranium exploration package in the Saskatchewan Research
Council (SRC) geoanalytical laboratory in Saskatoon, Saskatchewan. Basement and basin samples
were prepared and analyzed in different batches and facilities in order to avoid contamination by one
another. The samples were processed using near-total digestion through 3 acids leaching (HClO4,
HNO3, HF). Most trace elements were analyzed using ICP-MS, while major oxides were measured
using ICP-OES. SiO2, C and loss on ignition (LOI) were not measured. Summary statistics of the
geochemical data available is given in Table 2 for the basin and the basement subsets.

3.4.2 Pre-processing steps

Geochemical data is said to be compositional [3], each element given as a concentration and forming
part of a whole (e.g. 100%, 106ppm. . . ). This feature of geochemical data needs to be taken into
account when dealing with non-detects (censored values) and by the use of log-ratios instead of raw
geochemical variables for any statistical treatment.

Handling of censored values Censored values in a geochemical dataset correspond to values that
are either “greater than” (right-censored) or “less than” (left-censored) the analytical detection limit
(Sanford et al., 1993), and this problem needs to be addressed before any further step in geochemical
data analysis. Only left-censored data were present in the considered datasets. Traditionally, single
replacement values have been used, such as a fraction of the detection limit (DL), usually 1/3 to 1/2

DL. However, using arbitrary substitution values does not take into account the geometric structure
of geochemical compositions [53] and can lead to biased estimates of the distributions of geochem-
ical elements [28]. More robust methods that take into account the constraints of compositional
data analysis (scale invariance, subcompositional coherence) are usually preferable to single-values
replacement strategies [54] [51]. The robust multiplicative lognormal replacement method from the
R package ZCompositions [52] was used in this study. Elements with over 50% of censored values
were also discarded. Using this threshold, no element was discarded in the basement and Bi, CaO,
Cd, Cs, MnO, and Na2O were discarded in the basin.

Log-ratio transformations Due to their compositional nature, geochemical variables are sub-
jected to the total sum constraint, making the use of log-ratio transformations necessary to correctly
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Table 2: Summary statistical table of geochemical elements for the basin and basement datasets.
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compare them using multivariate methods [3]. As SiO2, C and LOI were not measured and some
elements were discarded from the sandstone dataset due to their high proportion of non-detects, the
remaining elements did not add to a constant sum. In this case, it is usually advised [70] [67] to
close the system to a constant sum by adding a filler variable. With N variables in ppm, the filler
(F) is given by:

F = 106 −
N∑
k=1

xk (1)

with xk the concentration of elements in parts per million. [71] proposed the use of the pair-wise
log-ratio (pwlr) transformation when using geochemical variables along with algorithms that do not
show affine equivariance, which is the case for XGBoost, Random Forest and LightGBM among the
methods we tested. Pair-wise log-ratio transformation is given by [3]:

pwlr(x) =


0 ln

(
x1
x2

)
· · · ln

(
x1
xN

)
ln
(
x2
x1

)
0 · · · ln

(
x2
xN

)
...

...
. . .

...
ln
(
xN
x1

)
ln
(
xN
x2

)
· · · 0

 with x = [x1, x2, . . . , xN ]. (2)

The pwlr matrix contains all the possible log-ratios between elemental variables and is readily
interpretable in terms of chemical meaning, while capturing all of the information in the dataset
[45]. The vector representing the observation x in the ML datasets is the vectorized upper triangular
matrix extracted from pwlr(x). It has the drawbacks of having a high number of variables (N(N-1)
/ 2), yielding high redundancy between variables and increased computational cost. In the present
case, these drawbacks are not prohibitive as we are using essentially ensemble algorithms (LightGBM,
RFR, XGBoost), which include an in-built feature selection [11] and support vector regression which
suffers little from the curse of dimensionality thanks to the kernel trick.

Other common methods that were tested for comparison include the centered logratio (clr)
transformation which computes the log-ratio of each component against the geometric mean [3]:

clr(x) = ln

(
xi

G(x)

)
with G(x) = N

√
x1x2 . . . xN (3)

and the isometric logratio (ilr) transformation [23]:

ilr(x) = V · clr(x) (4)

with V a (N − 1)xN matrix whose columns are orthogonal vectors, each summing to zero [67].
ILR transformation was applied using the default function of the pyrolite library [73].

3.5 Data fusion

Given the significant variance in vertical resolutions across the datasets, ranging from 0.1m for
resistivity readings to 20m for geochemical composites, the challenge of creating a unified dataset
suitable for machine learning (ML) analysis needed to be resolved. Averaging the finest resolution
signals to the resolution of the lowest resolution dataset (geochemistry in the present case study) is
used by most practitioners and is usually the preferred method for performing such a task [1] [43].

For the present study, resistivity readings were averaged on the resolution of geochemical com-
posites using the arithmetic average. Examples of five randomly sampled drillholes from the dataset
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Figure 3: Examples of comparison between raw resistivity values (grey) and averaged resistivity
values (black) for 5 randomly sampled drillholes. The dashed red line represents the depth of the
unconformity.

prior to and after averaging are given in Figure 3. Petrophysical samples were attributed the geo-
chemistry of the composite interval to which they belonged. All spectra belonging to the given
interval were averaged as well, yielding a resulting averaged spectra as a result of the averaging of
all wavelengths from the different individual spectra located within the interval.

After data fusion, the dataset was divided into two subsets using the depth of the unconformity
noted by field geologists in each drill hole during campaigns. The depth of the unconformity strongly
varied between different zones, ranging from ca. 100m at the edges of the basin to ca. 450m in the
innermost prospects, with a median value of ca. 200m between all drill holes. In the external
dataset (Getty Russell), the depth of the unconformity is approximately 180m. Samples with a
depth below the unconformity were grouped into a basement subset, and those with a depth above
that of the unconformity into a basin subset. All subsequent steps were performed separately on the
two different subsets.

3.6 Training, testing and external datasets

Following data analysis, an external dataset (Getty Russell property, Figure 1) was excluded from
the remaining data. It was neither used for training nor testing. The best model was used with
this external dataset to infer synthetic resistivity logs to give an illustrative view of the results that
could be produced on an entire area where no downhole electrical measurements are available. As
in any machine-learning application, it is important to assess the prediction results over an external
dataset independent from both the training and testing data to avoid estimation bias.

Each subset (i.e., basement and basin) outside of the Getty Russell property was then split
between a training dataset and a testing dataset. 25% of the drillholes were randomly attributed
to the testing dataset and 75% to the training dataset (Figure 4). This method was preferred to
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Tes�ng drillholes
Training drillholes

Figure 4: Location of the testing and training drillholes split using a blind well splitting strategy.

random sampling of individual samples, as otherwise neighboring samples within a same drillhole
could be split between the training and testing data, yielding spurious high-accuracy results that
would not be reproducible in a practical case (e.g., [18] [42]).

3.7 Data analysis methods

Statistical analysis was performed using Python. Machine-Learning methods were drawn from the
scikit-learn [55], lightgbm [34] and xgboost [14] libraries.

3.8 Prediction methods

3.8.1 Machine-Learning methods

Five state-of-the-art regression methods representing the main families of ML models (SVR, RFR,
PLS-R, LGBR and XGBR) were chosen. They represent representative families of ML methods:
kernel-based machines (SVR), decision tree based methods (RFR), recent ensemble methods (LGBR
and XGBR) and PLS-R, which has been efficient for calibration problems applied to IR spectra.
A brief description of each of the methods is given in Table 3. Interested readers are referred to
references therein for more details about the specific implementation of each model.
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Method Description Hyperparameters Reference

Random Forest RF works by building a set of
decision trees (Bagging technique)

n_estimators,
max_depth,
max_leaf_nodes,
min_samples_split, etc.

[11]

Partial Least
Squares Regression

Partial Least Squares (PLS)
regression is a statistical method
that finds the fundamental
relations

number of components [26]

XGBoost XGBoost regression is a popular
machine learning technique
designed to improve gradient
boosting performance

max_depth, gamma,
learning_rate,
subsample,
colsample_bytree, etc.

[14]

LightGBM LGBM regression, also known as
LightGBM regression, is designed
to handle large datasets efficiently

n_estimators,
reg_alpha, reg_lambda,
colsample_bytree, etc.

[34]

Support Vector
Regression

Support Vector Regression (SVR)
is a machine learning method that
performs linear regression in a
higher dimension

kernel, degree, gamma,
epsilon, regularization

[20]

Table 3: Summary of the different prediction methods used in this paper.

3.8.2 Hyperparameters optimization

For a given prediction method, hyperparameters are the ensemble of parameters chosen to build the
model, including, for example, the number of decision trees used in a random forest or the maximum
number of variables to be randomly selected for each decision tree at each iteration. There is no rule
of thumb as to what are the best hyperparameters to choose for a given study case and this task
should always be performed prior to model selection. Hyperparameter optimization was performed
using the Tree-structured Parzen Estimator Sampler [8] implemented in the optuna library [4].
Each model was run for 200 trials for each possible scenario, after which no significant improvement
in performance metrics was observed. Hyperparameters were selected by cross-validation of the
coefficient of determination on the training dataset.

3.8.3 Prediction intervals

In Machine-Learning, the overall quality of a regression method can be estimated using the Root
Mean Squared Error (RMSE) computed on the test dataset:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5)

with ŷi and yi the predicted and actual values associated to observation i respectively. Another
common performance metrics is the coefficient of determination (R²):

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(6)
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with ŷ the arithmetic mean of actual values.
However, neither the RMSE nor the R² provide any clue about what regions in the dataset were

predicted with the most accuracy or stability [66]. We argue that this point is particularly important
when dealing with petrophysical downhole data, as having information about uncertainty for each
prediction could raise flags on anomalous zones and geological processes at stake, thus enhancing
the interpretability of the model.

Confidence intervals are usually computed using bootstrapping. Bootstrapping is a statistical
resampling procedure that aims at estimating the variability or uncertainty of a given statistic by
repeatedly resampling the original data, with or without replacement [22]. Algorithm 1 summarizes
the procedure used, termed ‘non-parametric bootstrap resampling’ as it works without making any
assumptions about the distribution (most importantly, the normality) of the target variable [13].
The number of bootstrap samples n is typically taken as a value between 50 and 200 [69] and was
set to 100 for this study.

Algorithm 1 Procedure followed for estimating prediction intervals through bootstrap resampling
1: Input: Original dataset divided into a testing dataset of m samples (25% of the original data)

and a training dataset containing the remaining samples.
2: Run the model using the complete training data and obtain predictions for each of the m samples.

3: Generate n bootstrap samples of size 100, with replacement, from the original training data.
4: for i = 1 to n do
5: Fit a given predictive model using the i-th bootstrap sample as training data, and make

predictions on the testing data.
6: Append the array of the m predictions as a row to a matrix.
7: end for
8: for each sample mi do
9: Compute a 0.95 confidence interval: CIi = ŷi ± 1.96σmi , where σmi is the standard deviation

of the bootstrap predictions for mi and ŷi is the prediction for mi using the complete dataset.
10: end for
11: Output: An array of length m with prediction intervals associated with each individual sample.

3.8.4 Model selection and model accuracy evaluation

Prediction models were fit for the 8 different scenarios considered for each of the two subsets (base-
ment rocks and basin rocks). For each model, log values of resistivity are taken as the dependent
variable. 8 different scenarios for independent variables were tested:

• Using geochemistry only. Geochemical data was considered as centered log-ratios (CLR),
isometric log-ratios (ILR) and pairwise log-ratios (PWLR).

• Using IR spectroscopic data only. The different scenarios tested include IR spectroscopy taken
as raw spectra after simple smoothing (SS), using first-order derivative (FOD), second-order
derivative (SOD) and continuum removal (CR).

• Data fusion of both datasets, each time using the data transformation for IR and geochemistry
that performed best in the two previous series of models.

Each model was run for 100 optuna trials using 5-fold cross-validation on the training dataset and
optimized by maximizing the coefficient of determination (R). The best scenario for using IR only
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Table 4: Results of R2 and root mean square error (RMSE) for resistivity prediction on the testing
dataset.

and geochemistry only was then kept for data fusion. The best model was then selected based on
the R obtained on the testing dataset. Table 4 gives a complete summary of RMSE and R for all
tested scenarios. R and RMSE were computed for the training and testing datasets in order to
ensure the models were able to aptly generalize to unseen data.

4 Results

4.1 Descriptive statistics

In the basin (Figure 5a and 6a), resistivity follows a roughly log-normal distribution, although with
a heavy tail towards high values as exemplified by positive coefficients of skewness in core mea-
surements and mean being consistently higher than the median, both for core measurements and
downhole logging values. Resistivity values between core measurements and downhole probing can-
not be compared as they were obtained using different devices, including different induced currents,
and only a comparison of the characteristics of the distributions is possible. Resistivity probing mea-
surements display similar patterns to that of core measurements with a slightly heavier tail towards
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positive values (median = 3956.22 Ω.m; mean = 5083.90 Ω.m; skewness = 1.32) and a low number
of outliers (kurtosis = 2.00).

Density is the only parameter showing a slightly negative skew in the sandstone, indicating a
slightly stronger weight of lower values on the overall statistical distribution, as well as a highly
peaked distribution with kurtosis values of 9.21 and 14.47 respectively, indicating a low number of
outliers.

Porosity appears to follow a strongly symmetrical distribution, with similar mean and median
values (≈ 9%) and a spread of values similar to that of a standard normal distribution as evidenced
by its kurtosis and skewness close to 0, with 90% of the porosity values lying between 4 and 14%.

In the basement (Figures 5b and 6b), resistivity values for both core measurements and downhole
probing display a much wider spread than in the basin, with an IQR of 7346 against 5091 Ω.m
for probing measurements and 2686 against 1346 Ω.m for core measurements as well as higher
standard deviations for basement rocks compared to their sandstone counterparts. The distribution
of downhole probing values appears very strongly bimodal, with two distinct peaks around ≈ 1000
and 15000 Ω.m. This is probably due to the differentiation between unaltered lithologies and rocks
affected by either graphitization or clay or chloritic alteration [59].
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Figure 5: Histograms of physical properties (porosity, density and log-resistivity) for petrophysical
samples in the Athabasca (a) basin and (b) basement, along with their associated empirical cumu-
lative distribution functions

4.2 Multivariate analysis

4.2.1 Geochemical controls on physical properties

Geochemical data was transformed using CLR and used for exploratory data analysis with Partial-
Least Squares (PLS) modelling using the different physical properties as target variables. PLS can
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Figure 6: Distribution of resistivity values for downhole logs in the Athabasca basin (a) and basement
(b).

be used in a similar fashion to traditional Principal Components Analysis (PCA) for exploratory
data analysis, with the advantage that PLS latent variables will be correlated to a target variable,
in this case a physical parameter, making it more suitable to the study of the relationships between
a whole dataset and a specific parameter [26]. Results for the two first latent variables are shown in
Figures 7 and 8. No significant visual information was observed in the following latent variables.

In the basin (Figure 7), samples with low density and resistivity values, along with higher porosity
values appear to be somewhat correlated to a suite of elements including mainly K2O, CaO, MgO,
Ni and Li associated for the most part to the presence of illite (being the main primary bearer of
K2O in the sandstone), Mg-chlorites or magnesiofoitite (MgO), sudoite (Li), and sulphides (Ni, Co).
Higher density and resistivity samples are mostly related to a group of elements including most of
the immobile and High-Field Strength Elements (TiO2, Th, Zr, Hf, Nb, Sn and some rare-earths like
Sm, Pr, La, Ce, Yb) reflecting higher proportions of heavy minerals such as zircons and titanium
oxides.

In the basement (Figure 8), lower resistivity and density values tends to be associated with
a group of elements including Al2O3, TiO2, Ni, V, Li, Co, MgO, B, U and some HFSE (Zr, Ta,
Nb, Sn), while most REE appears to show a very light association to higher density and resistivity
samples (Gd, Er, Ho, Yb, Sm, Ce, La, Pr, Eu). K2O, MnO, Zn, Ba, and CaO on their side are
associated with higher density and resistivity samples. In the case of MnO, the very high resistivity
observed in garnetites and mafic gneisses from the basement [46] is most certainly the origin of its
strong positive correlation with resistivity.

4.3 Mineralogical controls on physical properties

Figures 9a to 9d present spectra of the mean correlation of different wavelengths with physical
parameters for the different spectral transformations used. According to the Beer-Lambert law, the
intensity of the absorption feature of a chemical species is proportional to its concentration in the
considered material [17]. However, this determination is considerably more complex in practice [29],
and no clay content data was available for this study. Therefore, as the nature of the relationship
between clay content and intensity of the absorption features was not known, Spearman’s rank
correlation was preferred to Pearson’s linear correlation coefficient. Hull quotient removed spectra
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Figure 7: PLS latent variables for geochemical variables against porosity, density, log-resistivity
collected on core samples in the sandstone

Figure 8: PLS latent variables for geochemical variables against porosity, density and log-resistivity
collected on core samples in the basement

are the most interpretable in terms of mineralogical significance, as hull quotient removal preserves
and enhances peaks associated to different mineral species.

In the basement, the most significant absorption features are seen around 1900nm, 2200nm,
and 2250nm which corresponds to the signatures of hydroxyl bounds, Al-OH bounds and Fe-OH
respectively [37]. All three petrophysical parameters appear to roughly reproduce the absorption
spectrum of an ideal chlorite, and, to a lesser extent, to that of an illite (Figure 9e). The importance
of the Fe-OH bound relative to the Al-OH bound is more marked for resistivity than for density and
porosity, hinting at a possible increased effect of chlorite on resistivity compared to the two other
properties.

Hematite displays a diagnostic absorption peak around 900nm [37] positively associated to den-
sity and negatively to porosity. Hematized sandstone are usually slightly denser and less porous
than their bleached counterpart, where hematite coatings have been removed.

4.4 Prediction of resistivity signals

Results of resistivity prediction using the various methods are summarized in Table 4. Details
regarding the specific implementation, computing time, definition of hyperparameters search spaces
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Figure 9: Correlation spectra of physical properties for (a) hull quotient removal, (b) first derivative
(c) second derivative and (d) simple Savitzky-Golay smoothing. Y-axis was voluntarily reversed,
as it measures correlation with absorption depths, i.e., a strong negative correlation of a property
with a given spectral region means that it is positively related to the associated mineral species.
(e) Reference of pure continuum-removed IR spectra of the main minerals seen through IR in the
Athabasca basin and basement
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and optimization for each model are provided in ESM-1. In two specific models (out of 80), SVR with
simple smoothing and continuum removal on the basin subset were unable to generalize to unseen
data, yielding negative R. Most models yielding R values superior to 0.7 displayed rather small
generalization gaps between training and testing datasets, indicating a good capacity to generalize
to unseen data.

For predictions using solely IR spectroscopy, the first derivative was the most effective method
for most algorithms and was used for data fusion, with simple smoothing yielding the poorest results.
In terms of log-ratio transformations for geochemical variables, pwlr appears to slightly outperform
other log-ratio transformations for most methods, so pwlr was preferred as the method for data
fusion with IR spectroscopy.

In the basin, the best model obtained used geochemistry along with a Light Gradient Boosting
Machine (LightGBM) and yielded an R = 0.80; RMSE = 0.16. In the basement, the best model
was a Support Vector Regression and yielded an R = 0.82; RMSE = 0.35 using data fusion of
geochemistry and IR spectroscopy. The best model using IR spectroscopy was obtained using a
LightGBM on the first spectral derivative in the basin and a Support Vector Regressor in the
basement, giving R = 0.71; RMSE = 0.19 for the former and R= 0.55; RMSE = 0.54 for the
latter. Scatterplots of real versus predicted values for these scenarios are given in Figure 10 for the
best models. All other scatterplots related to different ML methods in the basement and the basin
are also provided as supplementary material in ESM-1. The variance of resistivity values in the
basement subset is much higher than that of the basin subset as was shown in Table 3 and Figure 5,
explaining higher RMSE given similar R values. Among all the methods, LightGBM appeared to
consistently outperform other methods for the basin. In the basement, SVR yielded slightly better
results. Prediction using geochemistry only was also found to be consistently better than using
IR spectroscopy. Adding IR spectroscopy to geochemistry slightly improved prediction results only
in the basement. Gain-based feature importances were computed for the basement and the basin,
using the best performing scenario with LightGBM which features an in-built feature importance
based on importance gain (Figure 10). The two best models for the sandstone and the basement
were fitted on the external dataset (Getty Russell property) and concatenated to obtain complete
synthetic logs for comparison with actual resistivity domains and assess the generalizability of the
model. Synthetic logs are given in Figure 12. They are plotted next to visual logging of important
geological variables performed by exploration geologists and made available by Orano Canada Inc.
including graphite, clay and chlorite contents as well as the intensity of silicification noted on a scale
from 0 (absent) to 4 (abundant).

5 Discussion

5.1 Features importance

Filler appeared to have a strong influence on the resulting model in the sandstone, as Filler/MgO was
by far the most important feature used in terms of gains on prediction (Figure 11). As a reminder,
SiO2 was the only non-measured major oxide and is estimated to represent over 98% of the bulk
geochemistry of the sandstone [6]. As a consequence, the filler can be taken to approximately repre-
sent the SiO2 content of the rock (the only other major not included component in the basin being
LOI), and the most representative variables would thus roughly correspond to SiO2/MgO, MgO/Ba,
SiO2/K2O, MgO/Hf, SiO2/B and K2O/Ba. These variables all consist of log-ratio containing one
immobile element (SiO2, Hf, Ba) and a mobile element signing hydrothermal alteration, K2O being
primarily a signature of illite [5], B a signature of hydrothermal tourmaline [2] and MgO a signature
of Mg-chlorites [46]. These results are in line with the correlations seen with multivariate analysis
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Figure 10: Scatterplots for the best models on the validation dataset for both subsets using a) best
models using IR spectroscopy only (basin: LGBR using FOD; basement: SVR using FOD) b) best
models using geochemistry (basin: LGBR using PWLR geochemistry; basement: SVR using data
fusion of geochemistry and IR)

comparing geochemistry and petrophysical measurements on cores.
In the crystalline basement of the Athabasca, MgO/Na2O and Al2O3/Na2O were by far the most

influent features, followed by MnO/Ni, B/Filler and Eu/Sr, with MgO and Al2O3 also translating
mainly to the presence of chlorite and illite, respectively. These correlations are in agreement with
what was seen through correlation analysis of IR spectroscopy against physical parameters, in which
low resistivity values were primarily correlated to the 2250nm Fe-OH absorption bands associated
with chlorite and to a lesser extent with the 2200nm Al-OH absorption band associated with illite.

5.2 Potential applications of the method

Synthetic logs obtained allowed to reconstruct resistivity domains well for most drillholes, for both
the basin and the basement subsets. Geochemistry consistently outperformed IR spectroscopy for

21



0 200 400 600 800 1000 1200 1400

Importance gain

Cr/Ni

Fe2O3/Mo

Cr/V

Mo/Sr

Be/Filler

Fe2O3/V

Mo/Na2O

CaO/MgO

MnO/V

B/Na2O

Na2O/Pb

Ag/Na2O

Eu/Sr

Hf/Na2O

Eu/Na2O

Ga/Na2O

B/Filler

MnO/Ni

Al2O3/Na2O

MgO/Na2O

Basement

0 200 400 600 800

Ce/La

Er/Y

K2O/P2O5

TiO2/V

MgO/Rb

Filler/W

Hf/V

Ba/Rb

Ag/Filler

Cr/MgO

Filler/Rb

Filler/V

Ba/V

Ba/K2O

Ce/MgO

Filler/K2O

MgO/P2O5

Hf/MgO

Ba/MgO

Filler/MgO

Basin

Importance gain

Im
po

rt
an

ce
 g

ai
n

Figure 11: Features importances for LightGBM (only the first 20 features are displayed) using pwlr
geochemistry for both subsets

the predictive task, although for the dataset located in the sedimentary part of the studied area the
difference was much smaller than for the crystalline part.

Predictive tasks are usually mostly performed the other way around (i.e., predicting geochemistry
using petrophysical logs, e.g., [18]) due to the higher cost of the former compared to the latter.
However, geochemistry and IR spectroscopy have long been used routinely in several mining districts
worldwide, which is not always true for resistivity logs. Such a method could be used for the
reassessment of historical prospects that were not logged for electrical properties several decades
ago, in order to produce synthetic data usable as entry data for 2D and 3D geophysical models.
This also extends to sectors where companies tend to relaunch exploration (e.g., hydrogen, helium,
geothermal fields) in prospects where drilling was previously performed for other commodities (such
as coal or hydrocarbons; e.g., [30]) and where widespread historical data is already available to
perform such work.

5.3 Biases and sources of errors

In the basinal part of the studied drillholes, resistivity can be summarized as the combined effect
of three interdependent processes: (i) connected porosity, (ii) clay alteration and type of clay min-
erals [50] and (iii) groundwater chemistry, especially salinity (e.g., [65]). Groundwater chemistry
and resistivity were not available for this study and thus were not considered. A hydrogeochemical
study performed by [21] showed that the total dissolved solids (TDS) content of Athabasca sandstone
groundwater significantly varies between zones (50 mg/l to 60’000mg/l) but that samples originating
from the southern and eastern edges of the basin all displayed TDS values on the lower end of the
distribution, inferior to 500mg/l due to higher recharge from meteoric waters. This is confirmed
by recent reports [58] on the McClean Lake area which found all groundwater samples displaying
TDS lower than 1000mg/l with average values ranging from ca. 40 to 80mg/l. Furthermore, strati-
graphic and lithological variations were found to be rather independent of groundwater chemistry,
with samples displaying similar ionic compositions independently of the rock they were extracted
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Figure 12: Synthetic logs for 12 drillholes of the Getty Russell property and associated geological logs
(noted by Orano Canada logging geologists, on a visual scale from 0 to 4). Horizontal dotted lines
correspond to unconformity depth, light orange and light blue domains to the basin and basement,
respectively. Black full line corresponds to the ground-truth, red full line to the prediction using
LightGBM along with geochemistry, dashed red lines to the upper and lower limits of the prediction
intervals using bootstrap. Graph. = graphitization ; Chlor. = chloritization ; Arg. = argilization
; Silic. = Silicification. Log RLLD corresponds to the original deep resistivity probing (before
averaging on geochemical composites). Associated R for each drill hole are given on the bottom
right of synthetic logs. GRL180 and GRL185 were not run for resistivity in the basin
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from [58]. On this basis and by lack of consistent hydrogeochemical measurements across the study
area, we considered groundwater chemistry to be uniform between the different drillholes, as all
areas considered in the study came from the southern and eastern edges of the basin. One should
however be aware that not integrating hydrogeochemical variations in the study could be a potential
source of error in the results, in the case of local or regional variations between drilled areas. In the
basement, groundwater chemistry can be considered negligible as it has barely any influence on the
meso- and micro-scales, and thus on the bulk electrical behavior of rocks at the scale considered.

Another, more significant, source of bias in the present study is due to the widespread presence
of graphite in the Athabasca basement. Graphitic zones have been long shown to display anomalous
resistivity responses due to the high conductivity of graphite [47][46]. Carbon was not part of
the whole-rock geochemistry assays made available for this study and, having no signature in the
SWIR domain, the considered dataset did not offer any opportunity to take into account the strong
influence graphite has on resistivity. This effect is seen on the synthetic logs (Figure 12) where
strongly graphitized intervals appear to be consistently overestimated, for example in GRL164,
GRL180, GRL185, GRL197 and GRL221.

A third important potential source of bias in this study may be due to the absence of SiO2

measurements. Silicification has been shown to result in a significantly increased resistivity sig-
nal [32][59]. However, as mentioned above, this information is partially hidden within the filler
variable and thus, to some extent, present in the geochemical data. The impact of the lack of
SiO2 values is harder to estimate as it is less widespread in the predicted logs, and often limited to
very small intervals whose resistivity response would be hidden after averaging. The only drillhole
displaying high silicification values over a large interval is GRL161A in which associated predicted
values appeared to be slightly underestimating actual values, hinting that the lack of SiO2 may still
degrade the model. Values associated to another silicified interval in GRL220 are also seen to be
underestimated around 330m depth.

However and in spite of a more complex geology, the basement dataset did not yield a lower
overall predictivity than the sandstone, being even slightly higher for the best models. This is
probably due to the differences in sampling methodology, as basement samples were taken at each
lithological break, giving more consistent resistivity intervals based on changes in rock characteristics
while sandstone samples were taken arbitrarily every 20 or 10m. Although geochemistry appears
to be slightly superior to IR in terms of predictive power, it is important to note that we used
geochemistry from samples analyzed using ICP-MS, whilst IR spectroscopy is a cheap and flexible
method that can be used on site during exploration and provide immediate results.

5.4 Controls on physical properties

The Bulk-Grain-Texture (BGT) model for petrophysical parameters [19] is a recent conceptual
framework for explaining primary controls on physical parameters. According to this model, phys-
ical parameters are divided between parameters dominated by the bulk composition of the rock
(geochemistry and mineralogy) such as density, parameters driven by grain parameters (volume,
size, shape, such as ferromagnetic properties) and parameters driven by textural properties (poros-
ity, pore connectivity and geometry and permeability, such as electrical properties).

According to this model, electrical properties are the less likely features to be predicted using
geochemistry and mineralogy, as they are primarily governed by rock texture, whose variations is
only to a limited extent due to variations in chemical and mineralogical processes. We argue however
that there are reasons why this study was able to provide, at first-order, constraints on electrical
properties of rocks using geochemistry and IR spectroscopy:

• In the sedimentary part of the studied area, it should be reminded that our dataset was ex-
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tremely homogeneous in terms of lithology, not only because it solely included chemically
highly mature Athabasca sandstones, but also because it included samples coming from the
very same sub-basin and the very same formation (Manitou Falls Formation), whose members
have been shown to display very little lithogeochemical variations (Alexandre, 2021). In this
case, most of the lithogeochemical and spectral variations were due to hydrothermal alter-
ation and alternances of conglomeratic and fine-grained layers, both features being related to
connected porosity.

• In the basement, all publications that presented a study on resistivity values in the crystalline
rocks observed very different values for different lithologies in the basement, suggesting at least
some type of lithogeochemical control on the electrical properties of the rock [47] [46].

This study showcases the potential of segmented learning for improving overall ML prediction quality.
In this case, segmented learning here corresponds to splitting a dataset into smaller subsets (here,
basement and basin) on which all ML tasks are performed separately before rearranging them for
obtaining synthetic logs. As resistivity displays very different controls based on a rock texture [19]
and thus its lithology, different subsets will display different controls on resistivity (see Figures 7 and
8 for the basin and basement subsets presented in this study). As an example, K2O and Rb were
associated with resistivity lows in the basin because it is associated with illite. In the basement,
these elements are associated with resistivity highs, because they are mainly associated with fresh,
highly resistive granites less affected by fluid circulations. Therefore, training specific models for each
subset instead of one global model will better capture the different controls on resistivity properties.

In practice, this approach has however two limitations: it can become time consuming for complex
datasets, and the resulting subsets may not have enough samples for ML models to be trained on
sufficient data. It is thus needed to find a balance between the size of the different subsets, the
degree of precision one wants to obtain and the effort one is willing to put into the task.

6 Conclusions

The pipeline presented in this paper tested several different scenarios using IR spectroscopy (hull-
quotient removal, first and second derivatives and simple smoothing of the original reflectance)
and ICP-MS geochemistry (pwlr, ilr, clr transformations). Geochemistry demonstrated consistently
higher results than IR spectroscopy, with best models displaying an R = 0.82 and RMSE = 0.35 in
the basement using a Support Vector Regressor and R = 0.80 and RMSE = 0.16 in the sandstone
using a Light Gradient Boosting Regressor along with geochemistry taken as pairwise log-ratios.
This level of accuracy allowed us to obtain synthetic resistivity logs for an external dataset that
reproduced well the general trends of the resistivity variations. Results were however limited by
sources of biases induced by the lack of several important components in the geochemical data, the
most important being C (i.e., graphite) and SiO2 (silicified zones). Significant improvements could
be expected in geological contexts where graphite is absent or where C and SiO2 are measured. This
method can prove particularly useful for generating synthetic data for geophysical models in areas
where extensive geochemical and infrared information was historically performed before the advent
of modern resistivity logging tools.

7 Computer code availability

The code used for the Machine-Learning workflow and generation of synthetic logs presented in this
study is made available at: https://github.com/MehdiSerdoun/ResistivityInversion. It was
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run and tested under Windows 10 with a 11th Gen Intel(R) Core(TM) i9-11950H @ 2.60GHz and
32GB RAM.
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