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Abstract

This is an introductory review to localization techniques in supersymmetric two-dimensional
gauge theories. In particular we describe how to construct Lagrangians of N =(2, 2) theories
on curved spaces, and how to compute their partition functions and certain correlators on
the sphere, the hemisphere and other curved backgrounds. We also describe how to evaluate
the partition function of N =(0, 2) theories on the torus, known as the elliptic genus. Finally
we summarize some of the applications, in particular to probe mirror symmetry and other
non-perturbative dualities.

This is a contribution to the review volume “Localization techniques in quantum field
theories” (eds. V. Pestun and M. Zabzine) which contains 17 Chapters available at [1]
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1 Introduction

Two-dimensional theories, despite the low dimensionality, are interesting for a number of
reasons: they often appear in statistical physics and condensed matter physics; they share
many properties with four-dimensional theories but are more tractable and yet quite non-
trivial; they play a central role in string theory; they endow intricate mathematical problems
and structures. Particularly tractable are supersymmetric theories, and we will be mostly
concerned with 2d N =(2, 2) and N =(0, 2) supersymmetry. Those theories appear on the
worldsheet of strings compactified down to four dimensions with N =2 or N =1 supersymme-
try. They also exhibit dualities, which identify low-energy limits of pairs of theories, similar
to 4d Seiberg duality [2]. Two-dimensional non-linear sigma models (NLSMs) with Kähler
or Calabi-Yau target space, or bundles on such spaces, are related to mathematical prob-
lems such as mirror symmetry, Gromov-Witten invariants and quantum sheaf cohomology.
Gauged linear sigma models (GLSMs), namely two-dimensional supersymmetric gauge the-
ories, can provide convenient ultraviolet (UV) descriptions of NLSMs [3] thus proving to be
extraordinary computational tools. Finally, GLSMs are also used as microscopic descriptions
of surface operators in higher dimensions and as worldsheet theories for brane intersections
(such as M-strings).

In this review we summarize recent results in supersymmetric localization techniques for
two-dimensional theories, and applications to Calabi-Yau manifolds and dualities. The first
half of the review concerns N =(2, 2) theories on curved (compact) spaces: their construction
and the computation of the corresponding Euclidean path-integral—that we will generically
call a “partition function”. Curved-space Lagrangians can be obtained by coupling the
supersymmetric theory to supergravity, and then switching on background values for the
metric and the other bosonic fields in the graviton multiplet [4] (also Contribution [5]).
While the flat space N =(2, 2) supersymmetry algebra admits both a vector and an axial
U(1) R-symmetry, a mixed anomaly prevents them from being simultaneously gauged: the
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curved space background must break one, giving rise to A-type and B-type backgrounds,
respectively. Supersymmetric supergravity backgrounds on compact orientable Riemann
surfaces and preserving the vector R-symmetry were classified in [6].1 With the topology
of the sphere, one finds the well-known A- (and A-) twist [8] with ±1 units of R-symmetry
flux, as well as an “Ω-deformation” thereof [9, 10] (see subsection 3.4)—but also “untwisted”
backgrounds [11, 12, 13] (see section 2 and subsection 3.2) with zero net R-symmetry flux,
analogous to the seminal setup of Pestun on S4 [14]. The genus g = 1 case includes flat tori
(see section 4). For all these cases, we show how partition functions can be computed. For
g > 1, the only solution is the A-twist and we will not discuss it further.

To begin with, in section 2 we follow [11, 12, 13] and perform supersymmetric localiza-
tion for N =(2, 2) chiral and vector multiplets on squashed-sphere untwisted backgrounds
preserving the vector R-symmetry R. Since continuous deformations of the coefficients in
kinetic and superpotential terms in the action do not affect the path-integral (as those terms
are Q-exact with respect to a supercharge Q), the partition function is independent of gauge
couplings and wave-function renormalization and it is thus a renormalization group (RG)
invariant. It is a non-trivial non-perturbative function of R-charges and twisted chiral pa-
rameters: twisted masses and flavor fluxes (background field strengths coupled to flavor
symmetries) as well as Fayet-Iliopoulos (FI) parameters and theta angles (appearing in the
twisted superpotential).

To showcase the supersymmetric localization method, we go through this relatively
tractable case in detail. The path integral localizes to fixed-points of Q (see subsection 2.2)
and quadratic fluctuations around these. Their contribution (see subsection 2.6) is found
by adding to the action a Q-exact and Q-closed deformation term tδQV : the limit t → ∞
localizes the path integral further to saddle-points of δQV . It turns out that using two dif-
ferent deformation terms one can get different-looking expressions (2.17) and (2.40). The
first one (see subsection 2.3), called Coulomb branch formula, is a sum over gauge fluxes
and an integral over a Coulomb branch parameter of the theory, which converges for generic
FI/theta parameters. We show in subsection 2.4 that it obeys a system of differential equa-
tions called the A-system. The second one (see subsection 2.5), called Higgs branch formula,
is an expansion in some corner of the FI/theta moduli space: it involves a sum over solu-
tions (dubbed Higgs branches) of the D-term equations, with non-perturbative contributions
from point-like (anti-)vortices at the (South) North pole. Q-invariant operators can also be
included in both expressions (see subsection 3.1).

The two forms are useful in different settings. Higgs branch expressions are used to con-
firm Seiberg-like dualities, as discussed in subsection 5.2. For instance, U(K) and U(N −K)
gauge theories with N fundamental chiral multiplets are expected to have the same low-
energy limit. Their sphere partition functions are shown to be equal by mapping the ( N

K ) so-
lutions of D-term equations of one theory to the ( N

N−K ) solutions for the other, and equating
(anti-)vortex contributions order by order in the number of vortices. More complicated vari-
ants of this duality can also be checked using Higgs branch expressions (see subsection 5.3).

On the other hand, Coulomb branch expressions are useful to characterize “phases” of

1A more general classification was provided in [7].
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GLSMs. Let us consider briefly a famous example: a U(1) vector multiplet and chiral mul-
tiplets P,X1, . . . , X5 of charges (−5,+1, . . . ,+1) with a superpotential W = P G5(X) for
some homogeneous degree 5 polynomial G5. For FI parameter ζ ≫ 0 this GLSM flows to
an NLSM on the quintic hypersurface {G5(X) = 0} ⊂ CP

4, while for ζ ≪ 0 the GLSM
flows to an orbifolded Landau-Ginzburg model with a single classical vacuum. The distinc-
tion between these two phases can be seen in the sphere partition function: the Coulomb
branch integral can be expanded as a sum of residues of poles to one side or the other of
the integration contour depending on whether 2πζ ≶ 5 log 5 (see [15, 16] for more general
discussions).

We also use the Coulomb branch integral as our starting point when investigating mir-
ror symmetry in subsection 5.1. As explained in Contribution [17], metric deformations of
the NLSM’s target Calabi-Yau decompose into complex structure deformations and Kähler
structure deformations, which correspond respectively to superpotential and twisted super-
potential terms in the GLSM action. The partition function ZA preserving R gives the
Kähler potential KK = − logZA on the moduli space of Kähler structure deformations
[18, 13, 19, 20]. Important enumerative geometry data of the Calabi-Yau manifold, namely
its genus-zero Gromov-Witten invariants, can then be extracted from the ζ ≫ 0 expansion
of ZA. The Kähler potential on the moduli space of complex structure deformations is sim-
ilarly KC = − logZB in terms of the partition function ZB of the GLSM on a supergravity
background that preserves the axial R-symmetry [21]. We compute ZB in subsection 3.2.
Mirror symmetry states that pairs of Calabi-Yau manifolds have identical moduli spaces,
with complex structure and Kähler structure deformations interchanged. Accordingly, we
describe in subsection 5.1 how ZA of a GLSM is equal to ZB of a GLSM flowing to an NLSM
on the mirror Calabi-Yau.

Another important case where localization was performed is the hemisphere [22, 23, 24]
(see subsection 3.3), which is the simplest case of a manifold with boundaries. GLSMs on
the hemisphere can be used to describe open strings with Calabi-Yau target space: boundary
conditions for fields on the hemisphere are branes in the target. The hemisphere partition
function has an integral and a series representations, like the sphere partition function ZA

(although the contour is difficult to work out in general). We do not discuss the real projective
plane calculation of [25], which gives information about orientifold planes in the Calabi-Yau
target.

As is well-known, Kähler potentials are only defined up to Kähler transformations K →
K + f(z) + f(z) where z is a holomorphic coordinate on the given Kähler manifold (here a
moduli space of metric deformations of a Calabi-Yau). This translates to a multiplicative
ambiguity of sphere partition functions, which can be traced to a freedom in choosing how
FI parameters (promoted to twisted chiral multiplets) couple to background supergravity
[13, 6, 19]. Derivatives ∂∂ logZ of the Kähler potential remain unambiguous. An analysis
of supergravity counterterms [20] shows that there is no such universal content for general
N =(0, 2) theories on the sphere. In order to find physical observables, one needs to compute
correlators. For some N =(0, 2) deformations of N =(2, 2) GLSMs, placed on the sphere using
the A/2-twist, correlators were computed using supersymmetric localization in [26].
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The review is organized as follows. In section 2 we calculate the (squashed) sphere parti-
tion function of N =(2, 2) GLSMs using the two different localization approaches. In section 3
we extend the results in various ways: we discuss the inclusion of operators, twisted chiral
and twisted vector multiplets, the hemisphere, the Ω-deformed A-twist, ending with a general
discussion of N =(2, 2) supersymmetry on curved spaces. In section 4 we turn to a second
major localization result in two dimensions: the (equivariant) elliptic genus of N =(2, 2) and
N =(0, 2) theories, namely their partition function on a flat torus. Contrarily to the sphere,
the torus has non-trivial cycles and we include flat background connections. The elliptic
genus is an important probe of supersymmetry breaking and is one of the rare RG invariant
quantities available to test dualities between N =(0, 2) theories. After defining the elliptic
genus and its modularity properties, we describe N =(0, 2) multiplets and Lagrangians in
subsection 4.1, then give the localization formula (4.28) in subsection 4.2 followed by an
outline of the derivation in subsection 4.3, and we end with several extensions and applica-
tions in subsection 4.4. In section 5 we highlight some applications of the sphere and torus
partition functions. We begin with a check of Abelian mirror symmetry in subsection 5.1.
Then we check that Seiberg-dual N =(2, 2) theories have equal sphere partition functions and
equal elliptic genera in subsection 5.2 before turning to generalizations in subsection 5.3. We
compare elliptic genera for the N =(0, 2) triality in subsection 5.4. We conclude in section 6
with a brief discussion of topics that were not included in the review.

2 N =(2, 2) gauge theories on spheres

This section is devoted to partition functions of N =(2, 2) Euclidean gauge theories on the
round [11, 12] and squashed [13] sphere. The aims are to show localization at work and to
obtain two exact expressions, (2.17) and (2.40), for the S2 partition function.

In terms of the standard flat superspace [3], the basic N =(2, 2) multiplets are: chiral
superfields defined by D±Φ = 0; vector superfields with gauge transformation V ∼= V +Λ+Λ
for Λ chiral; twisted chiral superfields defined by D+Φ̃ = D−Φ̃ = 0; twisted vector superfields
with gauge transformation Ṽ ∼= Ṽ +Λt+Λt for Λt twisted chiral. The field-strength multiplets
Σ = D+D−V and Σ̃ = D+D−Ṽ are twisted chiral and chiral, respectively. Twisted and
untwisted multiplets are interchanged by a Z2 automorphism of the N =(2, 2) superalgebra,
that also exchanges the vector U(1)R and axial U(1)A R-symmetries. One can write down
kinetic terms for the basic multiplets,

∫
d2θ d2θ̄

(
ΦΦ + Φ̃Φ̃

)
,

including (twisted) chirals and field strengths. Besides, one can write superpotential interac-
tions terms (top component of a composite chiral field W ) and twisted superpotential terms
(top component of a composite twisted chiral field W̃ ).

We focus in this section on gauged linear sigma models built from vector and chiral
multiplets. The components of chiral multiplets (a complex scalar φ, a complex Dirac spinor
ψ and a complex auxiliary scalar F ) transform in some representation R of a gauge and
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flavor symmetry group G × Gf , their conjugates (φ̄, ψ̄, F̄ ) transform in R, while the vector
multiplet components (a real gauge field Ai, real scalars η, σ, complex Dirac fermions λ, λ̄
and a real auxiliary scalar D) transform in the adjoint representation of G.

In subsection 2.1 we place these GLSMs on the sphere in a way that preserves U(1)R,
describe how supersymmetries act and write supersymmetric Lagrangians. Other N =(2, 2)
theories and backgrounds are considered in section 3. We choose a localization supercharge Q
whose square rotates the sphere around its poles. In subsection 2.2 we find that Q-invariant
field configurations are generically parametrized by a discrete gauge flux m through S2 and
a vector multiplet scalar σ. When chiral multiplets are not charged under U(1)R, we note
the existence of additional vortex and antivortex configurations near the poles for particular
values of σ named Higgs-branch roots. In subsection 2.3 we localize using a deformation term
that eliminates (anti)vortices and expresses the partition function as a sum over fluxes and an
integral over the Coulomb branch parameter σ of one-loop determinants computed later. The
partition function obeys a system of differential equations [15], shown in subsection 2.4, that
are (anti)holomorphic in certain combinations of Fayet-Iliopoulos (FI) parameters and theta
angles. It must thus be a sum of products of a holomorphic solution and an antiholomorphic
solution. We reproduce the factorization for a large class of GLSMs in subsection 2.5 (in the
absence of R-charges) by a different choice of deformation term which interpolates between
the Coulomb branch integral and a sum over Higgs branches. Each term in this sum factorizes
into (anti)holomorphic vortex partition functions due to (anti)vortices at the (South) North
pole. These can be obtained explicitly by expressing the Coulomb branch integral as a sum of
residues. We end in subsection 2.6 by outlining how one-loop determinants for fluctuations
around saddle points are computed, correcting a sign in the process.

2.1 Multiplets, Lagrangians and supersymmetry

We now place vector and chiral multiplets and their Lagrangians on squashed spheres which
preserve a U(1) ⊂ SU(2) isometry of S2. The metric, vielbein, and spin connection are2

ds2 = δabe
aeb , e1 = f(θ) dθ , e2 = r sin(θ) dϕ , ω =

r cos θ

f(θ)
dϕ , (2.1)

where ϕ is 2π-periodic, 0 ≤ θ ≤ π, and f(0) = f(π) = r to avoid conical singularities at the
North (θ = 0) and South (θ = π) poles. The full covariant derivative is Di = ∇i − iAi in
terms of the metric-covariant derivative ∇i and (dynamical and background) gauge fields Ai.
Using the vielbein, D1 = f(θ)−1Dθ and D2 = (r sin(θ))−1Dϕ.

The metric is conformally flat, hence the generators of superconformal transformations
are those of flat space. Among those, supercharges which square to isometries of the sphere
generate the Poincaré superalgebra su(2|1) for the round sphere f(θ) = r, and su(1|1) in
general. Explicitly, we will use a supercharge Q ∈ su(1|1) whose square is Q2 = J + R/2,
where J is the U(1) rotation and R is a U(1) vector R-symmetry.

2This metric assumes that lengths of meridian circles are monotonic from the equator to each pole. Final
results will only involve the equatorial radius r.
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Thanks to conformal flatness, the action of superconformal transformations (and Q in
particular) on vector and chiral multiplets is known. It is conveniently written in terms
of conformal Killing spinors ǫ, namely solutions of ∇iǫ = γiǫ̃ for some ǫ̃. Unfortunately
the conformal map between the squashed sphere and the plane is quite unwieldy, thus the
resulting conformal Killing spinors are complicated. Another approach, which works for non-
conformally-flat spaces in higher dimensions [27, 28], is to keep spinors simple by introducing
an R-symmetry background gauge field Vi. For definiteness we choose3

ǫ = eiθγ1/2eiϕ/2ǫ0 , ǭ = eiθγ1/2e−iϕ/2ǭ0 , with γ3ǫ0 = ǫ0 and γ3ǭ0 = −ǭ0 (2.2)

and the normalization ǭǫ = ǭ0ǫ0 = 1. These spinors span the space of solutions to ∇iǫ =
iγiǫ/2r on the round sphere. On squashed spheres they are solutions to the R-covariant
conformal Killing spinor equation

Diǫ = (∇i − iVi)ǫ =
iγiǫ

2f(θ)
Diǭ = (∇i + iVi)ǭ =

iγiǭ

2f(θ)
(2.3)

with a connection V = 1
2

(
1 − r

f(θ)

)
dϕ smooth everywhere. Note that supersymmetry trans-

formations of vector and chiral multiplets must likewise be made covariant by including V
in every covariant derivative, with the R-charge of each field as its coefficient.

Let us now write the supersymmetry variations δQ of vector and chiral multiplet compo-
nents under the supercharge Q built from ǫ, ǭ). We only list the supersymmetry transforma-
tions of fermions (we have also shifted the auxiliary field D by σ/r), and refer to [11, 12, 21, 6]
for the complete expressions:

δQλ = (iV +
m γ

m −D)ǫ

δQλ̄ = (iV −
m γ

m +D)ǭ
where

V ±
i = ∓Diσ + εijD

jη

V ±
3 = F12 ± i[σ, η] − η/f(θ)

(2.4)

δQψ =
(
iγiDiφ+ iσφ+ γ3ηφ− qφ/(2f(θ))

)
ǫ+ ǭF

δQψ̄ =
(
iγiDiφ̄+ iφ̄σ − γ3φ̄η − qφ̄/(2f(θ))

)
ǭ+ ǫF̄ .

(2.5)

The implicit summations on the first and second line are over m = 1, 2, 3.
The most general renormalizable action with N =(2, 2) supersymmetry involving only

vector and chiral multiplets takes the form

S = Sv.m. + S
W̃

+ Sc.m. + SW . (2.6)

The vector multiplet action Sv.m., the chiral multiplet action Sc.m. and the superpotential
term SW are dimensional reductions of their 4d N =1 counterparts, with corrections of order
1/r and 1/r2 to preserve supersymmetry on the squashed sphere.

3Our conventions for spinor components of chiral and vector multiplets and our choice of Killing spinors
follow [11] for consistency with the rest of the review. They differ from [12, 13] by factors of eiπ(1−γ3)/4.

Note that eiπ(1−γ3)/4γie−iπ(1−γ3)/4 = εijγj . Moreover the contraction of spinor indices is ψχ = ψαε
αβχβ,

namely the symbol ψχ stands for ψT
(

0 1
−1 0

)
χ in standard matrix notation.
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The twisted superpotential term S
W̃

is analogous to the superpotential term SW : a
(twisted) superpotential is the top component of a polynomial in (twisted) chiral multiplets.
In theories of vector and chiral multiplets the only twisted chiral multiplet available is the
field strength Σ of the vector multiplet, and the most commonly used twisted superpotential
in a gauge theory is linear in Σ. The twisted superpotential term S

W̃
is then—for each

U(1) gauge group—the familiar FI D-term and a topological term measuring the gauge field
flux m through S2. The coefficients ζ (FI parameter) and ϑ (theta angle) combine into a
complexified FI parameter z = e−2πζ+iϑ.

Finally, one can endow chiral multiplets with twisted masses by coupling the flavor sym-
metry group to an external (non-dynamical) vector multiplet and giving it a supersymmetric
background value. We solve the BPS equations in (2.14) and find that the background is
parametrized by a real scalar τ and a discrete flux n. The action Sc.m. and the supersym-
metry transformations (2.5) of a chiral multiplet then depend on its R-charge q, its twisted
mass τ and the flux n.

Except for the twisted superpotential term S
W̃

, all terms in the action (2.6) are Q-exact
and Q-invariant. Explicitly, the corresponding Lagrangian densities are

Lv.m. = δQδǭ Tr
(
λ̄λ/2 − 2σD + σ2/f(θ)

)

Lc.m. = δQδǭ

(
ψ̄ψ − 2iφ̄σφ+ (q − 1)φ̄φ/f(θ)

)

LW = δQ

(
ψ(W )ǫ+ ǭψ̄(W̄ )

)
.

(2.7)

Therefore, any Q-invariant observable is independent of the coefficients in Sv.m., Sc.m. and SW ,
and can only depend on parameters in the twisted superpotential (FI parameters, theta an-
gles) and in supersymmetry transformations (R-charges, twisted masses, background fluxes).
In particular, these observables are independent of the gauge couplings gYM hence are invari-
ant under the RG flow, which makes them very powerful probes of the low-energy limit of
GLSMs.

2.2 BPS equations

The localization argument guarantees that only Q-invariant field configurations (and quadratic
fluctuations nearby) contribute to Q-invariant path integrals. The variations δQ of bosons in-
volve fermionic fields hence vanish automatically and we are left with solving δQλ = δQλ̄ = 0
and δQψ = δQψ̄ = 0 for the spinors ǫ, ǭ defining Q.

The vanishing of gluino variations (2.4) implies

iV ±
3 ∓ V ±

1 sin θ = D cos θ and iV ±
2 ± V ±

1 cos θ = D sin θ . (2.8)

The integration contour is fixed by convergence of the path integral: the bosons Ai, η, σ,
and D in vector multiplets are real, thus V ±

m are real as well. In one of the localization
calculations we will replace D by its complex on-shell value, thus we now keep D general
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when solving the BPS equations. Extracting the real and imaginary parts of (2.8) yields
V ±

1 = ReD = 0, V ±
2 = sin θ ImD and V ±

3 = cos θ ImD. Therefore, the BPS equations read

0 = D2η = D1σ = D2σ = [η, σ] (2.9)

D1η = − sin θ ImD and F12 − η

f(θ)
= cos θ ImD . (2.10)

Fixing the gauge Aθ = 0, equations (2.10) imply ∂θ(Aϕ + rη cos θ) = 0. Solving in either
region 0 ≤ θ < π or 0 < θ ≤ π one gets A = (k − r cos θ η) dϕ where k is fixed by continuity
at the pole to be k+ = rη(0) and k− = −rη(π), respectively. The two A are gauge equivalent
away from the poles provided the flux m = 1

2π

∫
F = rη(0) + rη(π) = k+ − k− is GNO

quantized [29] namely has integer eigenvalues on any representation of G. The remaining
equations imply that the constant σ commutes with all η(θ, ϕ) and that

∂ϕη = i[k±, η] (2.11)

with a constant k± depending on the gauge. Periodicity in ϕ requires η to lie in integer
eigenspaces of k± (in the adjoint representation), which coincide due to GNO quantization
of k+ − k−.

We now turn to the BPS equations of the chiral multiplet. Linear combinations of
δQψ = 0 and the complex conjugate of δQψ̄ = 0 yield 0 = F = σφ and

0 = cos
θ

2
(D1+iD2)φ−sin

θ

2

(
η+

q

2f(θ)

)
φ = sin

θ

2
(D1−iD2)φ−cos

θ

2

(
η− q

2f(θ)

)
φ . (2.12)

Taking into account A = (k± − r cos θ η) dϕ from above, the equations imply

0 = F = σφ =

(
sin θ∂θ − f(θ)η +

q

2
cos θ

)
φ =

(
∂ϕ − ik± +

iq

2f(θ)/r

)
φ . (2.13)

Periodicity in ϕ requires φ to lie in the integer eigenspaces of k± −iqr/2f(θ) for all θ, but this
is only possible if q = 0 (or if the sphere is round). At the poles, (2.12) imply additionally
to first order in θ that φ is (anti)holomorphic at the (South) North pole.

In subsection 2.3 we will keep D real and assume that all R-charges are positive (and the
sphere is squashed), so that φ = 0. Since ImD = 0 we now have ∂θη = 0 hence η is equal to
its value at the poles and is constant. Altogether,

f(θ)F12 = η =
m

2r
, σ = constant , 0 = [η, σ] = D = φ = F . (2.14)

The path integral localizes to these “Coulomb branch” configurations, so named in analogy
to the Coulomb branch of the flat space theory. Since η and σ commute, a constant gauge
transformation reduces them to the Cartan algebra t of G. Another outcome of this compu-
tation concerns non-dynamical vector multiplets: one can turn on a flux mext = n and a real
twisted mass σext = τ for each chiral multiplet, as announced in subsection 2.1.
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In subsection 2.5 we will assume that all R-charges vanish and alter the contour of inte-
gration of D (equivalently we evaluate its Gaussian path integral) to localize onto complex
saddle points of the deformation term chosen there. Namely,

D = −i(φφ̄− χ) (2.15)

where we will choose a “deformation” FI parameter χ for each U(1) gauge factor. Besides
Coulomb branch configurations similar to (2.14) with φ = 0, there are now Higgs branch
(and mixed branch) configurations with φ 6= 0. Writing a twisted mass τI for each chiral
multiplet φI explicitly, the constraint (σ + τI)φI = 0 only allows non-zero φ at particular
points on the Coulomb branch. For generic twisted masses at most rankG different chiral
multiplets can be non-zero. Due to (2.13), φ(θ, ϕ) ∼ (eiϕ sin θ)k±

φ0 near the poles, hence
regular non-zero solutions φ must additionally lie in the non-negative integer eigenspaces of
k±. The remaining BPS equations

∂θη = f(θ) sin θ (φφ̄− χ) , sin θ ∂θφ = f(θ) ηφ (2.16)

have not been analysed in full generality. For G = U(N) with (anti)fundamental matter
and generic twisted masses we will find that all contributions to the localized path integral
are suppressed as χ → ∞ except those in which the group is fully Higgsed. The condition
is that the non-vanishing chiral multiplets span CN : then (σ + τI)φI = 0 fixes σ, and more
importantly all eigenvalues of k± must be non-negative integers. While in the Coulomb
branch localization scheme only the difference k+ − k− was GNO quantized, in the Higgs
branch localization scheme χ → ∞ both k+ and k− are quantized (and non-negative). We
will interpret k± as counting vortices at the North pole and antivortices at the South pole.

2.3 Coulomb branch localization

In this section we assume for simplicity that all R-charges are in the range 0 < q < 2.
In all models of interest this condition can be made to hold by mixing the R-charge with
U(1) gauge charges if needed. Other values for the R-charges can be reached by analytic
continuation.

Recall the localization argument: we add a Q-invariant deformation term tδQV to the
action and take t → ∞ thus making the saddle-point approximation exact. Any Q-invariant
observable then reduces to an integral over saddle points of its classical value at these saddles,
with a measure given by a Gaussian integral (one-loop determinant) of quadratic fluctuations
around the saddles. Additionally, saddle points that are not Q-invariant cannot contribute
since the Grassmann integral of a constant vanishes. This second argument would not be
necessary if we used the canonical deformation term δQ

(
λ δQλ + ψ δQψ

)
since the saddle

points of its bosonic part are precisely Q-invariant configurations. However, we use the Q-
closed and Q-exact deformation term Sv.m. + Sc.m. in (2.7). It is straightforward to check
that all Q-invariant configurations (2.14) are saddle points.

The (squashed) sphere partition function of a 2d N =(2, 2) GLSM with gauge groupG and
chiral multiplets in the representation R =

⊕
I RI (each with an R-charge qI , a background
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flux nI , and a twisted mass τI) is then a sum over GNO-quantized fluxes (m has integer
eigenvalues on any representation of G) and an integral over the Cartan algebra t of G of
classical and one-loop factors

ZS2 =
rc/3

|Weyl(G)|
∑

m

∫

t

d(rσ)

(2π)rank G
Zcl(z, z̄; rσ,m)Zgauge(rσ,m)Zmatter(q, rσ + rτ,m + n) .

(2.17)
The order |Weyl(G)| of the Weyl group appears due to residual discrete gauge redundancy
in t. The result only depends on the squashed sphere through its equatorial radius r. We
explain in subsection 2.6 how to compute vector multiplet and chiral multiplet one-loop
determinants: they are products over positive roots α of G and over weights ρ of each
representation RI ,

Zgauge =
∏

α>0

(−1)α(m)

[
r2α(σ)2 +

α(m)2

4

]

Zmatter =
∏

I,ρ

Γ
(

qI

2
− irτI − nI

2
− irρ(σ) − ρ(m)

2

)

Γ
(
1 − qI

2
+ irτI − nI

2
+ irρ(σ) − ρ(m)

2

) .
(2.18)

For the common case of a linear twisted superpotential W̃ with an FI parameter ζℓ and a
theta term ϑℓ for each U(1) gauge factor, the classical contribution is

Zcl =
∏

ℓ

z
Trℓ(irσ+m

2
)

ℓ z̄
Trℓ(irσ−m

2
)

ℓ (2.19)

where zℓ = e−2πζℓ+iϑℓ and we denote Trℓ the projection onto the ℓ-th U(1) factor: for
G =

∏
ℓ U(Nℓ) these really are traces. To be more precise, (2.19) involves renormalized

FI parameters at the scale 1/r,

zℓ = (rMUV)
∑

I
Qℓ

I zUV
ℓ , (2.20)

where zUV are bare parameters at some UV scale MUV and Qℓ
I are charges of chiral multiplets

under the ℓ-th U(1) factor. We obtain this dependence on r from zeta function regularization
when computing one-loop determinant in subsection 2.6, and also obtain the overall power
rc/3,

c

3
=
∑

I

(1 − qI) dimRI − dimG . (2.21)

For theories that flow to a superconformal field theory (SCFT), c is the central charge. The
equatorial radius r is also used as a scale for twisted masses and σ.

Several comments are in order. The partition function only depends on parameters in
the twisted superpotential (here z, z̄), on R-charges, twisted masses and background fluxes.
This is expected since the coupling constants gYM and superpotential couplings multiply
Q-exact terms. In particular any superpotential simply specializes ZS2 by fixing some linear
combinations of the R-charges to 2. The partition function depends holomorphically on the
combinations qI

2
− irτI hence it can be extended to R-charges beyond 0 < q < 2.
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Groups with (−1)2δ(m) = 1

SU(MN)/ZM with M odd or N even
SO(2N)
SO(8N)/Z2, SO(8N + 2)/Z2

Sp(4N)/Z2, Sp(4N + 3)/Z2, E6/Z3

Simply-conneted groups: SU(N),
Spin(N), Sp(N), E6, E7, E8, F4, G2

Groups with (−1)2δ(m) a discrete theta angle

SU(MN)/ZM with M even and N odd
SO(2N + 1)
SO(8N + 4)/Z2, SO(8N + 6)/Z2

Sp(4N + 1)/Z2, Sp(4N + 2)/Z2, E7/Z2

Quotients Spin(4N)/Z2 other than SO(4N)

Table 1: Effect of the vector multiplet one-loop determinant sign (−1)2δ(m) for connected
compact simple groups. It is trivial when the Weyl vector δ is a weight, and otherwise
corresponds to a Z2 discrete theta angle. For U(N) the sign shifts the (continuous) theta
angle by π if N is even.

Another extension is to include Q-invariant operators in the path integral, such as
Trℓ(iσ+ η) at the North pole or Trℓ(iσ− η) at the South pole: this is achieved by including

their on-shell values Trℓ

(
iσ ± m

2r

)
in the integrand (2.17), and will be further discussed in

subsection 3.1. These insertions can be realized by taking derivatives with respect to log zℓ

and log z̄ℓ, respectively. This is a manifestation of the fact that the integrand in (2.17) fac-
torizes as a function of z and iσ + m

2r
times a function of z̄ and iσ − m

2r
. This factorization

will play an important role later.
Note that the sign ∏

α>0

(−1)α(m) = e2πiδ(m) , (2.22)

which we will derive later, was originally missed. It was correctly predicted in [24, 30, 31].
For many groups this sign is +1 because the Weyl vector δ (half sum of positive roots) is a
weight of G. An important exception is U(N) with N even: then the sign is equivalent to a
shift of the theta angle by π. Table 1 gives a list for simple groups.

We expect the one-loop determinants of two chiral multiplets X and Y with opposite
gauge and flavor charges and with R-charges q and 2 − q to cancel. Indeed, such chiral
multiplets can be integrated out by including a superpotential mass term W = µXY with
µ → ∞, and W does not affect the partition function. Omitting external sources here for
brevity,

∏

ρ

Γ
(

q
2

− irρ(σ) − ρ(m)
2

)

Γ
(
1 − q

2
+ irρ(σ) − ρ(m)

2

)
Γ
(
1 − q

2
+ irρ(σ) + ρ(m)

2

)

Γ
(

q
2

− irρ(σ) + ρ(m)
2

) =
∏

ρ

(−1)ρ(m) . (2.23)

We have used Γ(x + m/2)/Γ(1 − x + m/2) = (−1)mΓ(x − m/2)/Γ(1 − x − m/2) which is
a consequence of Euler’s identity Γ(y)Γ(1 − y) = π/ sin πy. Since weights sum to zero for
simple factors of G, the sign simply shifts theta angles of some U(1) gauge factors by π.

The one-loop determinant of a vector multiplet can be recast as that of a collections of
chiral multiplets of R-charge q = 2 and gauge charges equal to the roots α of G. This can be
understood in terms of the Higgs mechanism. If the theory had an extra chiral multiplet of
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R-charge 0 in the adjoint representation, we could give a VEV to its diagonal components
without breaking the R-symmetry. The VEV would break the gauge group to its maximal
torus U(1)rank G, and give a mass both to vector and chiral multiplet components along the
roots α. Taking into account the observation above, we have schematically the relations:
Zgauge = 1/

∏
α Z

(α), q=0
chiral =

∏
α Z

(α), q=2
chiral . This fact implies that ZS2 of a non-Abelian GLSM is

the specialization of ZS2 of an associated “Cartan theory” which has gauge group U(1)rank G,
has rankG parameters zℓ, and has one chiral multiplet for each weight w of R and one for
each root α of G. The original partition function is retrieved by setting zℓ = 1 for each FI
parameter that does not correspond to a U(1) factor of the original theory.

2.4 The A-system

Remarkably, the partition function (2.17) obeys a system of differential equations that are
holomorphic in the zℓ and a similar system for z̄ℓ. We first review the results of [15], which
apply to abelian GLSMs and to non-abelian GLSMs through their associated Cartan theory.
Set r = 1 for brevity. Consider a GLSM with abelian gauge group G = U(1)N and chiral
multiplets of charges Qℓ

I under the ℓ-th gauge group factor. Its partition function is

ZS2 =
∑

m∈ZN

∫

RN

dNσ

(2π)N

N∏

ℓ=1

[
z

iσℓ+
mℓ
2

ℓ z̄
iσℓ−

mℓ
2

ℓ

]
∏

I

[
Γ
(

qI

2
− iτI − nI

2
−Qℓ

I(iσℓ + mℓ

2
)
)

Γ
(
1 − qI

2
+ iτI − nI

2
+Qℓ

I(iσℓ − mℓ

2
)
)
]

(2.24)

with an implicit summation over ℓ. If we shift the summation on m by any u ∈ ZN and the
contour for each σℓ by −iuℓ/2 (the contour encounters no pole), then the classical action is
multiplied by zuℓ

ℓ and the arguments of gamma functions are shifted by −Qℓ
Iuℓ in the numer-

ator. Extracting these shifts from the gamma function arguments yields some factors linear
in iσℓ + mℓ/2 which can be reproduced by acting on ZS2 with the holomorphic differential
operators zℓ∂/∂zℓ. We find that for any u ∈ ZN ,

∏

I, Qℓ
I
uℓ>0

(
qI

2
− iτI − nI

2
−Qℓ

I

∂

∂ log zℓ

)

Qℓ
I
uℓ

ZS2

=




N∏

ℓ=1

zuℓ

ℓ


 ∏

I, Qℓ
I
uℓ<0

(
qI

2
− iτI − nI

2
−Qℓ

I

∂

∂ log zℓ

)

−Qℓ
I
uℓ

ZS2

(2.25)

in terms of Pochhammer symbols (x)n =
∏n−1

i=0 (x + i) = Γ(x + n)/Γ(x). The same system

with zℓ → (−1)
∑

I
Qℓ

I z̄ℓ and n → −n holds.
This “A-system” of equations—a slight generalization of the GKZ (Gel’fand, Kapranov,

Zelevinski) A-hypergeometric systems—is highly redundant: the equation for u + u′ is a
consequence of those for u and u′, at least if Qℓ

Iuℓ and Qℓ
Iu

′
ℓ have the same sign for all I.

The space of holomorphic solutions to (2.25) is typically finite-dimensional, so ZS2 is a linear
combination of holomorphic times antiholomorphic solutions:

ZS2 =
∑

k

Ck Fk(z) F̃k(z̄) . (2.26)
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For GLSMs that flow in the infrared to NLSMs on Calabi-Yau manifolds, the differential
equations are the well-known Picard-Fuchs differential equations and the functions Fk are
periods of the mirror Calabi-Yau.

For non-Abelian examples it turns out that many solutions to the associated Cartan
theory’s A-system are absent from explicit factorizations of ZS2 into (2.26). This suggests
the existence of more stringent differential equations whose set of solutions would capture
exactly the (anti)holomorphic dependence of ZS2. Let us focus for concreteness on SQCD,
namely G = U(N) with Nf fundamental and Nf antifundamental chiral multiplets. We
replace the single FI parameter z by zℓ, 1 ≤ ℓ ≤ N as in the associated Cartan theory, but
we write the vector multiplet one-loop determinant as a differential operator rather than as
a chiral multiplet determinant. Concretely:

ZSQCD
S2 (z, z̄) =

1

N !




N∏

k<j

(
izk

∂

∂zk

− izj
∂

∂zj

)(
iz̄k

∂

∂z̄k

− iz̄j
∂

∂z̄j

) N∏

ℓ=1

ZN=1
S2 (zℓ, z̄ℓ)




zℓ=(−1)N−1z

z̄ℓ=(−1)N−1 z̄

.

(2.27)
The sign (−1)N−1 comes from (−1)α(m) in the vector multiplet one-loop determinant (see
Table 1). The partition function ZN=1

S2 of SQED (an Abelian theory) obeys the A-system,
which reduces in this case to a single equation (u = 1):




Nf∏

I=1

(
qI

2
− iτI − nI

2
− ∂

∂ log zℓ

)
− zℓ

Nf∏

I=1

(
qI

2
− iτI − nI

2
+

∂

∂ log zℓ

)
ZN=1

S2 = 0 . (2.28)

The space of holomorphic solutions to this Nf
th order differential equation is spanned by Nf

functions FI(z) for I = 1, . . . , Nf . The antiholomorphic counterpart z → z̄ also holds, so in
an appropriate basis ZN=1

S2 (z, z̄) =
∑

I CIFI(z)FI(z̄). Expand each SQED partition function
ZN=1

S2 in (2.27) as such a sum, so as to get (Nf)N factorized terms in total. Note that the

holomorphic differential operator in (2.27) is antisymmetric in the zk, hence only
(

Nf

N

)
terms

remain.4

We now show that these
(

Nf

N

)
terms are solutions of an ordinary differential equation of

order
(

Nf

N

)
in z∂/∂z, rather than a system of differential equations in zℓ∂/∂zℓ. By expanding

the differential operator in (2.27) into a sum of monomials which are products of derivatives
acting on individual factors ZN=1

S2 (zj , z̄j), then setting zj = (−1)N−1z and z̄j = (−1)N−1z̄
as indicated in (2.27), one writes the SQCD partition function as (2.29) below, for pj = j.
Consider more generally

Fp(z, z̄) = εℓ1···ℓN

N∏

j=1



(
iz
∂

∂z

)pj−1(
iz̄
∂

∂z̄

)ℓj−1

ZN=1
S2 (z, z̄)


 (2.29)

for integers pj ≥ 1. Reordering the pj only affects signs, and Fp vanishes if any pi = pj. The
iz∂/∂z derivative of Fp is a sum of N such functions (each with one pj → pj + 1). On the

4For Nf < N , localization gives a vanishing result for ZS2 : this is due to supersymmetry breaking.
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other hand, the GKZ equation (2.28) for ZN=1
S2 (z, z̄) expresses its Nf

th derivative as a linear
combination of its lower derivatives. Thus Fp with any pj > Nf can be written as a sum of

terms with lower p. All derivatives of ZSQCD
S2 = F1,2,...,N are hence linear combinations (with

known holomorphic coefficients) of the
(

Nf

N

)
functions Fp for which all 1 ≤ pj ≤ Nf . This

establishes the existence of a holomorphic differential equation of order
(

Nf

N

)
obeyed by the

SQCD partition function (coefficients can be made polynomial in z).
This proof extends to quiver gauge theories, and gives bounds on the number of terms

needed in the factorization of ZS2 that are stronger than those deduced from the GKZ system
of the associated Cartan theory. On the other hand the proof is not constructive; no closed
form expression for the differential equation is known at present.

2.5 Higgs branch localization

As we have just seen, the sphere partition function of a GLSM can be factorized into holomor-
phic times antiholomorphic functions of its complexified FI parameters. We now interpret
the factors physically as being due to vortices at the poles, by localizing the path integral
directly into this form. After this “Higgs branch” localization was found for 2d N =(2, 2)
theories [11, 12], it was used to explain a similar factorization in 3d N =2 theories [32, 33]
and 4d N = 1 theories [34, 35].

Because the Coulomb branch result (2.17) is analytic in qI

2
− irτI , we can work with

qI = 0. We also ignore fluxes for external vector multiplets for simplicity, and set r = 1.
Of course, we assume that the theory has U(1) gauge factors as otherwise the factorization
property is vacuously true.

We localize using in addition to Lv.m. + Lc.m. the deformation term [11]

LHiggs = δQ Tr
[
−i
(
φφ̄− χ

)
δQσ

]
. (2.30)

For each U(1) gauge factor, it includes a parameter χ which will play the role of an FI
parameter. The trace denotes the natural pairing between φ̄ and (δQσ)φ on the one hand,
and the projection onto each U(1) gauge factor with coefficients χ on the other hand. The
bosonic part of this deformation term includes iD(φφ̄ − χ), and leads to the on-shell value
D = −i(φφ̄ − χ) up to unimportant coefficients. After integrating out D, saddle points of
the deformation term are exactly the Q-invariant configurations analyzed in subsection 2.2:

η(θ, ϕ) = eiϕ[k±, · ]η(θ, 0) , φ(θ, ϕ) = eiϕk±

φ(θ, 0) , (2.31)

∂θη = f(θ) sin θ (φφ̄− χ) , sin θ ∂θφ = f(θ) ηφ , (2.32)

where k+ = η(0) is used in the simply-connected region 0 ≤ θ < π while k− = −η(π) in
the region 0 < θ ≤ π. The remaining fields are a constant σ which commutes with all
η(θ, ϕ) and such that (σ + τI)φI = 0 for all flavors I, and A = (k± − cos θ η) dϕ whose
flux m = k+ − k− is GNO quantized. We have also seen that any non-zero φ lies among
non-negative integer eigenspaces of k±. Since (σ, k±) commute pairwise, a constant gauge
transformation diagonalizes them.
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The partition function localizes to an integral over all solutions to these equations, and
one should compute one-loop determinants. One technique described in subsection 2.6 to
compute one-loop determinants involves localization to fixed points of Q2, namely the poles.
One-loop determinants are then a product of contributions from each pole that only depend
on values of the Q-invariant field configuration at those points. The one-loop determinants
(2.18) computed in the Coulomb branch factorize as functions of iσ± m

2
, which we associated

to the North and South poles by considering correlators of the Q-invariant operators iσ ± η
in subsection 2.3. We deduce that the one-loop determinant is, more generally,

Z1-loop =
∏

α>0

(−1)α(m) α
(
iσ + η(0)

)
α
(
iσ − η(π)

) ∏

I,w

Γ
(
−iτI − w(iσ + η(0))

)

Γ
(
1 + iτI + w(iσ − η(π))

) . (2.33)

Both k+ ∓ k− = η(0) ± η(π) are integrals over the squashed sphere. One is the flux:

η(0) + η(π) =
1

2π

∫ π

0
dθ
∫ 2π

0
dϕ∂θ(−η cos θ) =

1

2π

∫
F = m (2.34)

and fluxes through each hemisphere are k+ = η(0) and −k− = η(π). The other is the integral
of the D-term equation with the volume form:

η(0) − η(π) =
∫ π

0
dθ (−∂θη) =

1

2π

∫ (
χ− φφ̄

)
dvol2 ≡ ∆ . (2.35)

For a fixed flux m, each ratio of Gamma functions in (2.33) has the asymptotics

∣∣∣∣∣∣

Γ
(
−iτI − w(iσ + m/2 + ∆/2)

)

Γ
(
1 + iτI + w(iσ − m/2 + ∆/2)

)

∣∣∣∣∣∣
w(∆)→±∞

= e−(2w(∆)+1)( log|w(∆)|−1)+O(1) . (2.36)

Taking the product over weights w, we expect the one-loop determinant to be suppressed
for large ∆. We shall prove for a class of theories that in the appropriate limit χ → ±∞ the
one-loop determinant indeed is suppressed for all saddle points except those for which the
D-term φφ̄ − χ is small throughout the sphere. The path integral localizes in this limit to
solutions to φφ̄ = χ with vortices at the poles.

Let us focus for concreteness on U(N) SQCD with Nf fundamental and Na ≤ Nf an-
tifundamental chiral multiplets of generic twisted masses τI and τ̃I respectively. The case
Na ≥ Nf is obtained by charge conjugation. We assume Nf ≥ N to avoid supersymmetry
breaking. The results extend to

∏
ℓ U(Nℓ) quiver gauge theories by considering gauge groups

one by one, and perhaps to more general matter contents.
Consider a smooth Q-invariant configuration, and diagonalize σ by a constant gauge

transformation. At most N chiral multiplets are non-zero: in each eigenspace of σ, at most
one chiral multiplet is non-zero because of (σ+τI)φI = 0 for fundamentals and φ̃I(−σ+ τ̃I) =
0 for antifundamentals. Focus first on a non-zero fundamental φI 6= 0. The trace of (2.32)
in the eigenspace σ = −τI implies (with no summation on I in this paragraph)

sin θ ∂θ(φ̄IφI) = 2f(θ)φ̄IηφI , ∂θ(φ̄IηφI) = f(θ) sin θ (φ̄IφI − χ)φ̄IφI . (2.37)
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We prove by contradiction that φ̄IφI ≤ χ for any such non-zero solution (in particular χ > 0).
Consider the infimum θ0 of angles at which φ̄IφI ≥ χ (if it exists). The derivative of φ̄IφI must
be non-negative, thus φ̄IηφI ≥ 0. These two inequalities continue to hold for θ ∈ [θ0, π] since
derivatives are non-negative. However, we know that φI is among non-positive eigenspaces
of η(π) = −k−, thus the second inequality must be saturated everywhere, hence ηφI = 0 and
we find constant φI solutions with |φI |2 = χ. Similarly, solutions where an antifundamental
φ̃I 6= 0 is non-zero obey |φ̃I |2 ≤ −χ hence require χ < 0. Collecting these results, we deduce

in particular that the D-term χ1N − φIφ̄I +
¯̃
φI φ̃I is positive semidefinite for χ > 0 and

negative semidefinite for χ < 0. Furthermore, its trace is at least |χ| (in absolute value)
unless N chiral multiplets are non-zero, fully Higgsing the gauge group (fixing σ).

The (diagonal) matrix ∆ is the integral (2.35) of this semidefinite matrix. One conse-
quence is that Tr ∆ → ±∞ (with the same sign as χ) in the limits χ → ±∞, except for
saddle points for which N chiral multiplets are non-zero and the D-term equation is approxi-
mately obeyed throughout the sphere. Another consequence is that all eigenvalues of ∆ have
the same sign as Tr ∆; then taking the product of (2.36) over all weights we find that the
full one-loop determinant is suppressed as Tr ∆ → +∞ (for Na > Nf instead it would be
suppressed as Tr ∆ → −∞ while for Na = Nf it is suppressed in both limits). Therefore,
the only saddle points that contribute as χ → +∞ are those with N non-zero fundamental
chiral multiplets. The requirement that φ belongs to non-negative integer eigenspaces of k±

at poles then forces all eigenvalues of k± to be non-negative integers.
At the (South) North pole φI obeys BPS (anti)vortex equations. The eigenvalues of k±

control the asymptotics φI ∼ (eiϕ sin θ)k±
φ◦

I at the poles thus counting (anti)vortices there.
Since the integral of D is k+ + k−, the distance over which |φI |2 goes from 0 at the poles to
χ must scale like k±/

√
χ: vortices become point-like as χ → ∞.

Altogether, the path integral is a sum over
(

Nf

N

)
Higgs branches H , namely choices of

N flavors with φI 6= 0, and over vorticities k±
j (j = 1, . . . , N). The classical action for each

such configuration is evaluated using that the gauge flux and integrated D-term are k+ ∓k−,
and the result factorizes: contributions from (anti)vortices at the (South) North pole depend
(anti)holomorphically on z. After some massaging,

ZSQCD
S2 =

∑

H⊂{1,...,Nf }
#H=N


∏

J∈H

(zz̄)−iτJ
∏

I 6∈H γ(−iτI + iτJ )
∏Na

I=1 γ(1 + iτ̃I + iτJ )
fH(z) fH

(
(−1)Nf −Na z̄

)

 (2.38)

f{J1,...,JN }(x) =
∑

k1,...,kN ≥0

N∏

j=1

xkj
∏Na

I=1(−iτ̃I − iτJj
)kj∏N

i=1(iτJi
− iτJj

− ki)kj

∏
I 6∈{Ji}(−iτI + iτJj

− kj)kj

(2.39)

where γ(y) = Γ(y)/Γ(1 − y) and z is the renormalized value (2.20). Up to a relabeling
of parameters, the function fH(z) coincides with previously known vortex partition func-
tions computed in the Omega background. This is unsurprising as point-like vortices are
unaffected by the precise IR regulator (sphere or Omega background). The sign difference
(−1)Nf −Na between vortices and antivortices is explained by noting that Q2 rotates coun-
terclockwise around one pole but clockwise around the other, hence one should map the
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rotation parameter 1/r → −1/r, and by noting that the renormalized z includes a factor
rNf −Na .

We have glossed over a technical difficulty: the one-loop determinant (2.36) is singular for
chiral multiplets φI that acquire a non-zero value in a given Higgs branch. The corresponding
zero-mode of φI is removed by the D-term equation, in other words integrating out D makes
φI massive. To derive (2.38) we have eliminated these zero-modes by taking the appropriate
residues, but fixing signs is not straightforward in this approach. On the other hand, we
know that Coulomb branch and Higgs branch localization must yield the same result. One
can derive the Higgs branch expression (2.38) from the Coulomb branch integral (if Na < Nf

or Na = Nf and the true FI parameter ζ > 0) by closing the integration contours and writing
the integral as a sum of residues. From the Coulomb branch integral, k± appear as the flux
m = k+ − k− and integers k+

j + k−
j ≥ 0 labeling poles of gamma functions. Factorization

is due to the fact that the integrand in the Coulomb branch expression is a product of a
function of z and iσ + m/2 by a function of z̄ and iσ − m/2.

In more general theories, the Higgs branch localization result takes the form

ZS2 =
∑

Higgs branches

Zcl Z
′
1-loopZvortex Zantivortex . (2.40)

The sum ranges over constant solutions to (σ+τI)φI = 0 and to the D-term equation φφ̄ = χ,
which form a discrete set for generic twisted masses.5 The factors are a classical contribution
from these constant solutions, a one-loop determinant with poles removed as outlined above,
and (anti)holomorphic contributions from point-like (anti)vortices at the poles. The detailed
expression can in principle be obtained by localizing onto the Higgs branch as we have just
done for SQCD, but solutions to the BPS equations have not been investigated in general.

A simpler approach to obtain (2.40) is to start from the Coulomb branch integral and
close contours: as for SQCD, the residues organize themselves into a factorized form. This
leads to vortex partition functions which were also later computed in the Omega background
[36]. The relevant sets of poles are described in subsection 6.2 of Contribution [17]. We apply
this technique to compare partition functions of dual theories in subsection 5.2.

2.6 One-loop determinants

The first step in computing one-loop determinants around a Q-invariant configuration Φ0

is to write the quadratic Lagrangian for fluctuations δΦ, including a gauge fixing term.
The Lagrangian takes the form δΦ ∆[Φ0] δΦ for some operator ∆ whose bosonic part ∆b is
essentially a Laplacian, and whose fermionic part ∆f is essentially a Dirac operator. The
one-loop determinant reads

Z1-loop[Φ0] =
det ∆f[Φ0]

det ∆b[Φ0]
, (2.41)

where we omit the usual square root by considering ∆b as a complex operator rather than
a real operator on the same space of fields. Additionally, the operators ∆b and ∆f split

5In theories with a complicated matter content, this should be checked explicitly.
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into direct sums of contributions from the vector and chiral multiplets, which decompose
further into individual roots or weights. Three techniques are commonly used to evaluate
these determinants.

The most pedestrian approach (for the round sphere only) is to decompose fields into
spherical harmonics. In this decomposition ∆b and ∆f are block diagonal, with blocks
involving a finite number of modes. The determinant of each block is straightforward to
evaluate, and in their product, contributions of many bosonic and fermionic modes cancel.

A second approach harnesses the cancellation by constructing two eigenmodes of ∆f for
each eigenmode of ∆b, and viceversa. The pairing fails to be exactly 2-to-1 for some modes,
which thus contribute to the ratio of determinants (2.41). Only these eigenvalues need to be
computed, instead of the whole spectrum of ∆.

The third approach is more systematic. To begin with, find a basis (X,X ′) of the
fluctuation fields such that QX = X ′ and QX ′ = RX where R = Q2 is bosonic. Separate
pairs (X0, X

′
0) with X0 bosonic and X ′

0 fermionic from pairs (X1, X
′
1) with opposite statistics,

and write down the part of V quadratic in fluctuations as

V (2) = X ′
0D00X0 +X1D10X0 +X ′

0D01X
′
1 +X1D11X

′
1 . (2.42)

The operators ∆b and ∆f are read from QV (2). After some linear algebra, the constraint
Q2V (2) = 0 implies that6

det ∆f

det ∆b

=
det′ R1

det′ R0

=
detcoker D10 R1

detker D10 R0

=
∏

i

R(i)−mi , (2.43)

where i indexes eigenvalues R(i) of R, and mi is the multiplicity of R(i) in kerD10 minus
that in cokerD10. These eigenvalues and multiplicities are read from the R-equivariant index

ind
R

(D10) = Trker D10 e
tR − Trcoker D10 e

tR =
∑

i

mi e
tR(i) , (2.44)

itself computed as a sum over fixed points of R, thanks to the Atiyah-Bott-Berline-Vergne
equivariant localization formula [37, 38].

Each of these methods requires lengthy calculations for which we refer to appendices of
[11, 12, 13]. To clarify a sign that was originally missed (in the vector multiplet one-loop
determinant) we must describe some salient points. By continuity, squashing cannot affect
signs, so we focus for simplicity on the round sphere f(θ) = r and let r = 1.

As a warm-up before the vector multiplet, consider the one-loop determinant for fluctu-
ations of a chiral multiplet along a particular weight w of R. Denote by w(m) and w(σ)
the (on-shell) components of the vector multiplet when acting on this weight. One finds the

eigenvalues of ∆b by expanding fields in (spin) spherical harmonics:
(
J+ 1

2

)2−
(
iw(σ)+ 1−q

2

)2

with multiplicity 2J + 1 for J − |w(m)|
2

∈ Z≥0. The fermionic Lagrangian is

Lc.m.(w)
f = iψ̄∆

c.m.(w)
f ψ = iψ̄

(
− /D − w(m)/2 + (iw(σ) − q/2)γ3

)
ψ , (2.45)

6For a non-degenerate deformation term, ∆f and ∆b have no zero-modes transverse to the localization
locus. R0 and R1 can have such zero-modes, which should be omitted from det R1/ det R0, however these
are transverse to cokerD10 and kerD10.
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where /D = γiDi involves a flux w(m) through the sphere. Note that we extracted a factor of
i from ∆f: this multiplies the determinant by an overall constant phase which only affects the
normalization of the partition function. The operator /D has |w(m)| zero-modes of chirality
signw(m), and it has, for each J − |w(m)|/2 − 1/2 ∈ Z≥0, 2J + 1 pairs of modes with

eigenvalues ±i
√

(J + 1/2)2 − w(m)2/4 interchanged by γ3. The operator ∆f thus decomposes

into blocks with the following determinant (the matrix is expressed in a basis of eigenmodes
of /D)

det


−i

√
(J + 1/2)2 − w(m)2/4 − w(m)/2 −iw(σ) + q/2

−iw(σ) + q/2 i
√

(J + 1/2)2 − w(m)2/4 − w(m)/2




=
(
J + 1−q

2
+ iw(σ)

)(
J + 1+q

2
− iw(σ)

)
,

(2.46)

as well as |w(m)| eigenvalues −w(m)/2 + (iw(σ) − q/2) signw(m). Combining these ingredi-
ents,

det ∆
c.m.(w)
f

det ∆
c.m.(w)
b

=
(

− w(m)/2 − (q/2 − iw(σ)) signw(m)
)|w(m)|

×
∏∞

J=(|w(m)|+1)/2

(
J + 1/2 − q/2 + iw(σ)

)2J+1(
J + 1/2 + q/2 − iw(σ)

)2J+1

∏∞
J=|w(m)|/2

(
J + 1 − q/2 + iw(σ)

)2J+1(
J + q/2 − iw(σ)

)2J+1

=
(

− signw(m)
)|w(m)|

∞∏

J=|w(m)|/2

J + 1 − q/2 + iw(σ)

J + q/2 − iw(σ)
. (2.47)

The infinite product is divergent and we apply zeta-function regularization, namely replace∏
k≥0(x + k) by

√
2π/Γ(x). Combining the contributions from all weights w of the chiral

multiplet representation, we get the chiral multiplet one-loop determinant

Zc.m.
1-loop =

∏

w

(
− signw(m)

)|w(m)|
Γ
(

q
2

− iw(σ) + |w(m)|
2

)

Γ
(
1 − q

2
+ iw(σ) + |w(m)|

2

) =
∏

w

Γ
(

q
2

− iw(σ) − w(m)
2

)

Γ
(
1 − q

2
+ iw(σ) − w(m)

2

) .

(2.48)
The last equality can be proven using Γ(x+ 1) = xΓ(x).

We now move on to the vector multiplet, with an emphasis on signs rather than the precise
factors. The quadratic action, hence the one-loop determinant, splits into contributions from
each root α of G. Again we denote by α(m) and α(σ) the relevant on-shell components of the
vector multiplet. The bosonic operator ∆α

b , taking into account ghosts, is positive definite
as for the chiral multiplet hence will not affect signs in the final result. The fermionic action
is closely related to the action (2.45) of an adjoint chiral multiplet of R-charge q = 0. It is

Lv.m.(α)
f = −iλ̄∆

v.m.(α)
f λ = −iλ̄

(
− /D + 1

2
[w(m), ·] + iγ3[w(σ), ·]

)
λ , (2.49)

which differs from its chiral multiplet counterpart for the same weight α in two respects: we
extracted a different overall factor −i instead of i, and more importantly the sign in front of
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w(m) changed. Keeping track of the effect of this change on the eigenvalues found previously
gives

det ∆
v.m.(α)
f =

(
− signα(m)

)|α(m)|( |α(m)|
2

+ iα(σ)
)|α(m)|

∞∏

J=
|α(m)|+1

2

(
(J + 1

2
)2 + α(σ)2

)2J+1
.

(2.50)
Upon taking the product over the roots α, the signs for positive and negative roots combine:

∏

α

(
− signα(m)

)|α(m)|
=
∏

α>0

(−1)α(m) = e2πiδ(m) (2.51)

where δ is the Weyl vector, half-sum of the positive roots, and 2δ(m) ∈ Z may be odd. The
other contributions in (2.50) combine into positive factors, and most are cancelled by bosonic
factors. Altogether, the vector multiplet one-loop determinant is

Zv.m.
1-loop = e2πiδ(m)

∏

α>0

[
α(m)2

4
+ α(σ)2

]
. (2.52)

More precisely, the one-loop determinant omits factors for roots with α(m) = 0. We include
these factors nevertheless: they arise as Vandermonde determinants when replacing the
integral over all scalars σ in the Lie algebra of G commuting with m by an integral over the
Cartan subalgebra only.

Had we kept the radius explicitly, it would appear as 1/r2 in each factor of (2.52)
and 1/r in each factor of (2.47). The zeta-function regularized form of

∏
k≥0(x + k/r) is√

2πrrx−1/2/Γ(rx), thus the one-loop determinant listed above are multiplied altogether by

r− dim G+rank G
∏

w

r1−q+2irw(σ) = rc/3+rank G+2ir
∑

w
w(σ) , (2.53)

with c/3 =
∑

w(1−q)−dimG as in (2.21). This power of r, together with the power r− rank G

due to integrating over rσ rather than σ, yields the overall power rc/3 and the renormalization
(2.20) of FI parameters in subsection 2.3.

3 Other N =(2, 2) curved-space results

In this section we will briefly present some of the main directions in which the simple com-
putation of the S2 partition function has been developed.

3.1 Local operator insertions

Besides the computation of pure Euclidean partition functions, localization is also extremely
powerful in computing expectation values and correlators of BPS operators: both local
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and non-local, both order and disorder.7 In order to be computable, the operators must
be invariant under the supercharge Q used to localize, in other words they must be BPS.
However the superalgebra on a curved manifold may be quite different from the flat-space
one, therefore localization on S2 (or other curved manifolds) grants us access to correlators
that go beyond the standard “chiral rings” on flat space.

Let us discuss local operators on S2.8 It follows from (2.4)-(2.5) that the order operators
invariant under Q are the field-strength twisted chiral operators Σ—whose bottom compo-
nents are the complex scalars (σ − iη)—at the North pole xN, and their conjugates Σ̄ at
the South pole xS (since Q2 = J +R/2, Q-closed local operators must sit at fixed points of
J). For order operators the localization prescription is simply to insert the operator into the
integrand, in this case σ∓ im/2r for Σ and Σ̄, respectively. Schematically and setting r = 1,
non-normalized correlators are given by

〈
ON

(
Σ(xN)

)
OS

(
Σ̄(xS)

)〉

n.n.
=

1∣∣∣Weyl
∣∣∣

∑

m

∫

t

drankσ

(2π)rank
ON

(
σ − im

2

)
OS

(
σ +

im

2

)
Zcl,1-loop

(3.1)
where ON,S are arbitrary gauge-invariant polynomial functions, while normalized correlators
are further divided by ZS2.

There is a subtlety, though. Since we are forced to place all chiral operators at the same
point (and similarly for anti-chirals), one might expect contact terms to show up. Such
contact terms can be understood in terms of operator mixings [40]. Indeed the correlators
(3.1) do not satisfy the flat-space chiral ring relations. It turns out [41, 10] that they realize
a sort of non-commutative deformation of the chiral ring. Let us present the simple example
of CPN−1, i.e. the U(1) GLSM with N chiral multiplets of charge 1. With a trick similar to
the one used in subsection 2.4, one can show that the correlators satisfy

〈
ΣN ON(Σ) OS(Σ̄)

〉
=
(

i
r

)N
z
〈
ON

(
Σ − i

r

)
OS(Σ̄)

〉
, (3.2)

where Σ and Σ̄ are inserted at the North and South pole, respectively. In the limit r → ∞
this reproduces the twisted chiral ring of the GLSM, namely ΣN = ( i

r
)Nz,9 which coincides

with the quantum cohomology of CPN−1 [42]. To interpret the deformation, we rewrite
(non-normalized) correlators of Σ as derivatives of the partition function, Σ → z

ir
∂
∂z

, which
obviously do not commute with z. Then (3.2) reduces to the A-system equation for CPN−1,
( ∂

∂ log z
)N − (−1)Nz = 0, and the non-commutative ring is the D-module obtained as quotient

of the Weyl algebra by that equation.
An interesting class of local disorder operators is given by vortex operators.10 They are

7By “order” operators we mean standard polynomial functions of the fundamental fields in the Lagrangian,
while “disorder” operators are defined as singular boundary conditions for the fields in the path-integral at
points or submanifolds [39].

8Wilson line operators can be easily computed as well, see [12].
9On flat space this should be written as ΣN = (iMUV)NzUV, where the UV Fayet-Iliopoulos term is

related to the renormalized one as in (2.20).
10They are the equivalent of vortex line operators in 3d, and of certain simple surface operators in 4d.
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defined by the singular behavior of the gauge field A around a point,

A ∼ γ dϕ , (3.3)

where ϕ is an angular coordinate around that point and γ ∈ g. The definition (3.3) is in
a gauge where matter fields are regular, therefore it corresponds to a point-like insertion of
magnetic flux: F12 = 2πγ δ2(x). On S2 we can insert BPS local vortex operators at the two
poles, and the supersymmetric operator also involve the local source D = 2πiγ δ2(x). In
[43] the correlator of two vortex operators at the two poles, and labelled by γN,S, has been
computed with localization techniques in N =(2, 2) simple gauge theories. A useful trick
is the equivalence between gauge theories in the presence of (quantized) vortex operators
and on orbifolds [44]. In the Abelian case the result is that the correlators, as functions
of γ, are piecewise constant with jumps at certain specific values. In the non-Abelian case,
instead, there is a dependence on the Levi subgroup specified by γ, which is the reductive
subgroup of G commuting with γ. In both cases the partition function still factorizes as in
subsection 2.5.

3.2 Twisted multiplets on the sphere

So far we have considered the simplest type of N =(2, 2) gauge theories: those made of vector
and chiral multiplets. Things become even more interesting when including other types of
multiplets. The addition of twisted chiral multiplets has been studied in [13]. A twisted
chiral multiplet Y : (y, χ,G) satisfies D+Y = D−Y = 0 and it comprises a complex scalar y,
a Dirac fermion χ and a complex auxiliary scalar G. One can write Lagrangians for them
on the sphere that preserve the su(2|1) supersymmetry algebra of S2, and apply localization
to compute partition functions and correlators.11 Twisted chiral multiplets must be neutral
under vector multiplets, however they can couple to the field-strength twisted chiral multiplet
Σ through a twisted superpotential W̃ .

The supersymmetric action on S2 follows from the Lagrangian

Lt.c.m. = DiȳDiy + iχ̄γiDiχ+
∣∣∣G+ ∆

r
y
∣∣∣
2
. (3.4)

The parameter ∆ is the Weyl weight of the twisted chiral multiplet. In the special case ∆ = 1,
the action is the same as for an Abelian vector multiplet, because with the identifications
y = σ− iη, χ = λ and G = D− iF12 we construct the field-strength twisted chiral multiplet.

The interaction term L
W̃

has been already considered in subsection 2.1. In the context of
mirror symmetry, as we will see in subsection 5.1, particularly important is the non-minimal
coupling W̃ = ΣY between a vector multiplet and twisted chiral multiplets, where Y plays
the role of a dynamical FI term.

One can perform localization with respect to the same supercharge Q used before [13].
From the BPS equations δχ = δχ̄ = 0, one obtains the conditions

y = const. , G+ ∆
r
y = 0 , (3.5)

11In fact, [13] generalizes the construction to squashed rotationally-invariant spheres which preserve only
an su(1|1) superalgebra. It turns out that the localization computations do not depend on the squashing.

23



in other words the complex scalar y can be an arbitrary constant on the sphere. The La-
grangian Lt.c.m. is Q-exact and can be used as a localization term. The one-loop determinant
is trivial, in the sense that it does not depend on y. Thus, for a system of twisted chiral
multiplets YI the localization formula reads

ZS2 =
∫ (∏

I
d2yI

)
e−4πirW̃ (y)−4πirW̃ (ȳ) , (3.6)

where the index I runs over the twisted chiral multiplets. As we will see in subsection 5.1,
this expression can be used to confirm the mirrors [45] of Hori and Vafa.

The superalgebra on S2 we have considered so far—that we will call su(2|1)A—is a subal-
gebra of the N =(2, 2) superconformal algebra whose bosonic part comprises su(2) rotations
of S2 and the u(1) vector-like R-symmetry. There exists, though, another inequivalent choice,
su(2|1)B, which instead contains the u(1) axial R-symmetry [21]. The two are swapped by
the Z2 mirror outer automorphism that exchanges the R-symmetries and exchanges multi-
plets with twisted multiplets. Those superalgebras contain supercharges QA and QB, re-
spectively. The charge QA annihilates twisted chiral operators at the North pole and their
conjugates at the South pole: it can be used to compute their correlators on S2 (as we saw
in subsection 3.1), as well as the Zamolodchikov metric on the Kähler moduli space of con-
formal fixed points. Those quantities are independent of complex structure moduli because
chiral (superpotential) deformations are QA-exact. Likewise, QB annihilates chiral operators
at the North pole and their conjugates at the South pole, it can be used to compute their
correlators on S2 and the Zamolodchikov metric on the complex structure moduli space of
fixed points [21]. They will be independent of Kähler moduli because twisted chiral (twisted
superpotential) deformations are QB-exact.

At this point, the easiest way to construct su(2|1)B-invariant actions on S2 and compute
their path-integrals with localization is to exploit the Z2 mirror automorphism. Thus, the
su(2|1)B partition function of a gauge theory of vector and chiral multiplets is equal to the
su(2|1)A partition function of a theory of twisted vector and twisted chiral multiplets. In
this way, we can perform all computations in the su(2|1)A framework we have used to far,
provided we study all types of twisted multiplets, in particular twisted vector multiplets.

A twisted vector multiplet is a real multiplet Ṽ subject to gauge redundancy by a twisted
chiral multiplet: Ṽ ∼= Ṽ +Λt+Λt. It has the same components as a standard vector multiplet,
Ṽ : (Aµ, σ, σ̄, η, η̄, D), but the supersymmetry transformations are different. In particular,

the field strength sits in the chiral multiplets Σ̃ : (σ, η,D + iF ) and its conjugate, the trans-
formation of which we have already discussed. Twisted chiral multiplets can be minimally
coupled to twisted vector multiplets; in Wess-Zumino gauge, the transformations of the for-
mer pick up a dependence on the latter. One can then write down supersymmetric actions
on S2 [21], in particular the Yang-Mills Lagrangian for Ṽ equals the kinetic Lagrangian for
the chiral multiplet Σ̃. The FI term sits in a linear superpotential term for Σ̃.

An important point to stress is that charged twisted chiral multiplets contribute to the
gauge-U(1)R anomaly. Since U(1)R is part of the supersymmetry algebra on S2 (rather than
being an outer automorphism as on flat space), such an anomaly would spoil supersymmetry.
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Therefore, only theories for which the sums of the charges of twisted chirals under Abelian
twisted vectors vanish can preserve supersymmetry on S2 quantum mechanically.12

Both kinetic actions are Q-exact and can be used for localization [21]. The bosonic part
of the Lagrangian reads

Lkin

∣∣∣
bos

=
1

2g2
Tr
(

|Dµσ|2 +
1

4
[σ, σ̄]2 + F 2 + D̃2

)

+ |Dµy|2 + |G|2 +
1

2

(
|σy|2 + |σ̄y|2

)
+
g2

2
(yȳ − χ)2 , (3.7)

where D̃ ≡ D + ig2(yȳ − χ) and χ is the matrix of FI terms that commutes with the gauge
generators. Under the standard reality conditions, that Lagrangian is semipositive definite.
The path-integral localizes13 to its zeros modulo gauge transformations, that is the manifold

M =
{
y
∣∣∣ y = const. , yȳ − χ = 0

}
/G = C

|R|//χG (3.8)

with all other fields vanishing. Therefore, M is a Kähler quotient of C|R| at levels χ of the
moment map, where |R| is the dimension of the matter representation.

Let us consider the Abelian case discussed in [21]: the gauge group is U(1)Nc and there
are Nf twisted chiral multiplets of charges Qa=1...Nc

I=1...Nf
subject to

∑
I Q

a
I = 0. The one-loop

determinant turns out to be
Z1-loop = det(M †M) , (3.9)

where M is the Nf × Nc matrix M a
I = Qa

IyI . Obviously it must have Nf ≥ Nc, otherwise
the gauginos have fermionic zero-modes and the determinant vanishes. After some algebra,
the partition function can be written as

ZS2 =
∫
dNfy ∧ dNf ȳ

(2π)Nc
det(M †M)

∏

a

δ
(
2µa + χa

)
e−4πirW̃ (y)−4πirW̃ (ȳ) , (3.10)

where the functions

µa = −1

2

∑
I
Qa

I |yI |2 (3.11)

are the moment maps for the gauge action. Twisted chiral and antichiral operators are easily
inserted at the North and South pole, respectively, by including ONP(Y ) and OSP(Ȳ ) in the
integrand.

An interesting check performed in [21] in models with a low-energy geometric description
as Calabi-Yau NLSMs, is that the partition function assumes the form

ZS2 = idim M
∫

M
Ω ∧ Ω̄ = e−KC (3.12)

12The same statement is true if we try to use the B-type topological twist [46].
13As always, one should be careful to include the gauge-fixing sector. The details can be found in the

reference.
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in terms of the nonwhere vanishing holomorphic top form Ω. Thus, the sphere partition
function computes the Kähler potential on the complex structure moduli space.

There are other multiplets that represent the N =(2, 2) supersymmetry algebra, such as
semichiral multiplets, semichiral vector multiplets and large vector multiplets [47, 48]. The
most general N =(2, 2) NLSM contains chiral, twisted chiral and semichiral multiplets, and
has a non-Kähler target with bi-Hermitian [49] (also known as generalized Kähler [50, 51])
geometry with torsion. Some of those models can be realized at the IR of GLSMs constructed
out of the more general multiplets. For instance, the sphere partition function of GLSMs
with semichiral multiplets has been computed in [52].

3.3 Localization on the hemisphere

A very interesting development of the localization programme is to consider theories on
manifolds with boundaries. This is an extremely rich and interesting problem in its own
right, it allows to discuss domain walls and interfaces between different phases, it relates
with lower-dimensional theories that may live along the boundary, and in the 2d case it
makes contact with the physics of D-branes via string theory.

As a first step, [22, 23, 24] study 2d N =(2, 2) gauge theories on the hemisphere (topology
of the disk D2) and compute their partition function with localization. The result ZD2(B)
depends on the boundary conditions—or D-brane—at the boundary, and they mainly focus
on B-branes [46, 53, 54, 55]. The partition function depends holomorphically on twisted chiral
parameters and it is independent of chiral parameters. In fact, it computes the inner product
〈B|1〉 between two states in the Ramond sector, one generated by the identity operator14

and the other by the boundary conditions, and this is called the central charge of the D-
brane [53]. For theories that flow to NLSMs on Kähler manifolds, the large-volume limit
reproduces the known geometric expression [56], however the localization formula contains
all quantum corrections (to be compared with [45, 54]). This can help in identifying the
precise correspondence between the original B-brane and the mirror A-brane.

The partition function takes the form of an integral of a meromorphic form, and the
choice of contour is related to the choice of boundary conditions for vector multiplets. There
is no a priori rule to decide the boundary conditions, but the convergence of the integral
imposes strong constraints. Near the phase boundaries, a convergent contour can be found
only for a very restricted class of branes, and this reproduces the grade restriction rule found
in [55] in some specific cases, generalizing it to non-Abelian GLSMs and non-Calabi-Yau
geometries.

Let us briefly describe the localization computation of ZD2(B) [22, 23, 24]. The hemi-

sphere is parametrized by θ in the range
[
0, π

2

]
and the boundary breaks the superalgebra

su(2|1)A to su(1|1)A, whose bosonic u(1) subalgebra is a combination of rotations and vector-
like R-symmetry rotations. To construct the kinetic actions for vector and chiral multiplets,
one can use the same Q-exact expressions as on S2, however they will now involve boundary

14More generally, one can compute 〈B|O〉 by inserting the twisted chiral operator O at the pole.
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terms (we set r = 1):

δQδǭ

∫
dvol2 Tr

(
λ̄λ/2 − 2Dσ + σ2

)
=
∫
dvol2 Lv.m. +

∮

θ= π
2

dϕ Lbd
v.m.

δQδǭ

∫
dvol2

(
ψ̄ψ − 2iφ̄σφ+ (q − 1)φ̄φ

)
=
∫
dvol2 Lc.m. +

∮

θ= π
2

dϕ Lbd
c.m. .

(3.13)

Likewise, the FI and ϑ-terms as well as more general twisted superpotential interactions are
corrected by boundary terms to be supersymmetric. However the variation of the superpo-
tential is a boundary term:

δLW = iDµ

(
ǭγµψi ∂iW (φ)

)
+ iDµ

(
ǫγµψ̄ı̄ ∂ı̄W (φ̄)

)
(3.14)

called the Warner term [57]. This is not easily canceled by a boundary term as before.
To cancel the variation of the superpotential, we need to construct the so-called Chan-

Paton boundary interaction [55]. First we need a Z2-graded vector space

V = Ve ⊕ Vo . (3.15)

We can think of the space End(V) as a superalgebra, and take the odd endomorphisms to
anticommute with the fermionic fields. Then V must furnish a unitary representation of
G×GF × U(1)R, i.e. its coordinates are assigned R-charges q∗ and a gauge/flavor represen-
tation ρ∗. Finally we should construct two polynomials Q(φ), Q̄(φ̄) (complex conjugate in
Lorentzian signature) with values in End(V)o, invariant under G×GF and with R-charge 1
and −1, respectively, such that

Q(φ)2 = W (φ)1V , Q̄(φ̄)2 = W̄ (φ̄)1V . (3.16)

These equations are called a matrix factorization of W , and Q is called a tachyon profile.
With it we construct the super-connection

Aϕ = ρ∗

(
Aϕ + iσ

)
+
R

2
− i

2
{Q, Q̄} +

1

2
(ψ+ − ψ−)i∂iQ +

1

2
(ψ̄+ − ψ̄−)i∂iQ̄ (3.17)

and the boundary interaction is given by the supertrace

StrV

[
Pexp

(
i
∮
dϕAϕ

)]
. (3.18)

One can show that the SUSY variation of the Chan-Paton interaction cancels the Warner
term [55]. The term {Q, Q̄} represents a boundary potential.

At this point one should specify boundary conditions invariant under supersymmetry and
compatible with the Euler-Lagrange equations. The issue is somehow delicate, and details
can be found in [22, 23, 24]. The boundary conditions for vector multiplets include Dθσ = 0
and Fµν = 0, therefore—compared to the S2 case—the BPS moduli space does not include
the flux parameter m. For chiral multiplets there are two options: Neumann or Dirichlet.
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Neumann boundary conditions include Dθφ = Dθφ̄ = 0 and describe directions along the
D-brane (in target space). Dirichlet boundary conditions include φ = φ̄ = 0 and describe
directions perpendicular to the D-brane. The BPS equations fix σ = D = const. The
one-loop determinants are

Zgauge =
∏

α>0

iα(σ) sin
(
iπα(σ)

)

ZNeu
matter =

∏

w∈R

Γ
(

− iw(σ)
)
, ZDir

matter =
∏

w∈R

−2πi eπw(σ)

Γ
(
1 + iw(σ)

) .
(3.19)

As usual, twisted masses are introduced by including an external vector multiplet with scalar
component τ , and R-charges are accounted by the shift τ → τ + iq/2. The final localization
formula is

ZD2(B) =
1

|Weyl(G)|
∫

dNσ

(2π)N
ziσ StrV

[
e−2πσ

]
Z1-loop (3.20)

where z = e−2πζ+iϑ is the exponential of the complexified FI parameter and N = rankG. As
we have discussed before, the integration contour should be defined with care: it should be
a deformation of the real contour σ ∈ RN which ensures convergence, and only for a very
restricted set of branes can this be achieved for all values of z [24].

To clarify the role of the Chan-Paton interaction, let us give a simple example of D0-
branes on Cn. The model has n free chiral multiplets with flavor symmetry GF = U(n). To
describe D0-branes one can simply impose Dirichlet boundary conditions in all directions,
which does not break U(n). There is no gauge sector and the partition function reads

ZD2(D0) =
n∏

j=1

−2πi eπτj

Γ(1 + iτj)
(3.21)

where τj are the twisted masses (equivariant parameters). On the other hand, we can impose
Neumann boundary conditions and construct a boundary interaction. To construct V we
take fermionic oscillators {ηi, η̄

j} = δj
i and a Clifford vacuum |0〉 such that η̄j|0〉 = 0: then

we identify V with the fermionic Fock space. We choose the tachyon profile

Q(φ) = φiηi , Q̄(φ̄) = φ̄j η̄
j . (3.22)

Clearly Q(φ)2 = Q̄(φ̄)2 = 0. As ηi generate the Fock space and transform in the antifunda-

mental representation of U(n), one gets StrV

[
e−2πτ

]
=
∏

j(1 − e2πτj ). Hence

ZD2(D0) =
n∏

j=1

(
1 − e2πτj

)
Γ(−iτj) =

n∏

j=1

−2πi eπτj

Γ(1 + iτj)
. (3.23)

We have indicated the boundary conditions in the same way as before, namely as D0, because
they realize the same D-brane in the IR, and indeed the central charges agree. The boundary
interaction creates a potential {Q, Q̄} = φ̄iφi whose only minimum is at the origin, therefore
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at low energies it gives the same D-brane as by imposing Dirichlet boundary conditions. This
is a simple example of tachyon condensation [58]: one can describe all lower-dimensional
branes using space-filling branes and a suitable boundary tachyon profile.

An important outcome of the localization computation is the expression for the D-brane
central charge in large-volume geometric phases [24]:

ZD2(B) =
∫

X
Γ̂X eB+iω/2π ch(B) . (3.24)

Here X is the Kähler target manifold, ω its Kähler class, B is the B-field and ch(B) is the
Chern character of the complex of holomorphic vector bundles that specifies the brane (see

[24] for details). Moreover Γ̂X is the Gamma class of the holomorphic tangent bundle of X,
defined in the standard way in terms of the Chern roots by the function

Γ̂(x) = Γ
(

1 − x

2πi

)
. (3.25)

The formula was already known to mathematicians [59, 60, 61],15 and the appearance of

Γ̂X from the perturbative part of the NLSM path-integral has also been confirmed in [62].
A similar analysis for orientifold planes, as opposed to D-branes, has been done in [25] by
studying the partition function of GLSMs on RP2, and an expression for the central charge
in large-volume geometric phases has been found.

3.4 Ω-deformed A-twist on the sphere

The modern “Coulomb branch localization” framework initiated by Pestun [14] can be ap-
plied to well-studied setups to obtain new interesting results. In particular, the canonical
way to preserve supersymmetry on a curved manifold is to perform the so-called topological
twist [63]: one turns on a background vector field that couples to the R-symmetry, equal and
opposite to (some component of) the spin connection. On S2, the A-type topological twist
corresponds to one unit of magnetic flux for the vector R-symmetry R.16 Thus, the A-twist
[8] consists of a supersymmetric background for 2d N =(2, 2) theories—different from the
one we have discussed so far—preserving an su(1|1)A subalgebra (the bosonic u(1) is the
vector-like R).

The interesting observables in the A-model [8, 46] are correlation functions of twisted
chiral operators at non-coincident points (and their descendants). For gauge theories, they

are gauge-invariant polynomials O
(
Σ(p)

)
of the field-strength twisted multiplet at points

p. Those operators form a chiral ring, and the correlations functions are independent of
the insertion points p. For theories that flow to NLSMs, the correlators equal the structure
constants of the quantum cohomology ring of the target.

15In particular notice that Γ̂X appears in place of the A-roof class ÂX .
16In the B-type twist one turns on one unit of flux for the axial R-symmetry. Since the two are equivalent,

up to the Z2 automorphisms that swaps multiplets with twisted multiplets, we shall consider the A-twist
only.
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Localization has been applied to topologically twisted theories since the beginning, how-
ever in a form more similar to the “Higgs branch localization” in which the path-integral
localizes to holomorphic maps in A-twisted NLSMs, and to point-like vortices in A-twisted
GLSMs (see e.g. [3, 64]). It turns out that Coulomb branch localization can be applied as
well, producing compact and easily-calculable expressions for correlators in A-twisted gauge
theories on S2 [9, 10] and yielding new results in non-Abelian theories.

The A-twisted background can be generalized into a sort of Ω-deformed S2 [6]:17 the
superalgebra is still su(1|1), however the u(1) bosonic subalgebra is a linear combination of
R and rotations of S2 along an axis, controlled by a parameter ǫΩ. This deformation had
already appeared in the mathematical literature, starting with the work of Givental [65].
Since rotations are part of the supersymmetry algebra, for ǫΩ 6= 0 local operators can only
be inserted at the North and South poles.

Localization can be applied to the more general Ω-deformed A-twist as well [9, 10]. The
BPS configurations are parametrized by the Cartan part of the complex scalar σ in the vector
multiplet, as well as by diagonal magnetic fluxes m in the coroot lattice Γt. For a theory
with exponentiated complex FI term z = e−2πζ+iϑ the classical action is

Zcl = zTrm . (3.26)

The one-loop determinants for vector and chiral multiplets are

Zgauge
1-loop =

∏

α>0

[
α(σ)2 − α(m)2ǫ2Ω

4

]
, Zchiral

1-loop =
∏

w∈R

|Bw|−1
2∏

j=−
|Bw|−1

2

(
1

w(σ) + j ǫΩ

)sign Bw

(3.27)

where Bw = w(m) − qw + 1. Here qw are the R-charges, which on the A-twisted background
have to be chosen integral (because of Dirac quantization). Each operator insertion O(Σ)
brings an extra factor

O
(
σ ± ǫΩ

m

2

)
.

The sign is ± for insertions at the North/South pole, while for ǫΩ = 0 operators can be
inserted at any point. Then the localization formula is

〈∏
i
Oi

〉

Ω
=

1

|Weyl(G)|
∑

m∈Γt


 ∑

σ∗∈Msing

JK-Res
σ=σ∗

(
Q(σ∗), η

) ∏
i
Oi Zcl Z1-loop + bdry


 . (3.28)

This formula has a similar flavor to the previous ones, however the integration is over a
specific middle-dimensional contour in the complex σ-plane which effectively computes a
weighted sum of residues of the integrand at the singular points σ∗ ∈ Msing. This particular
contour is called the Jeffrey-Kirwan residue [66]: its importance for recent localization com-
putations has been recognized in [67] in the context of the elliptic genus, and we will explain

17A geometric way to understand this deformation is to start in 3d with an S2-bundle over S1 in which
S2 rotates by an angle ǫΩ as we wind around S1. Then reduce on S1 to 2d [9].
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it in detail in section 4, including the notation used in (3.28). The JK residue depends on the
choice of an auxiliary parameter η ∈ t, while the last term represents boundary contributions
at infinity of the σ-plane. The sum of all contributions does not depend on η, however for
certain choices the boundary contribution vanishes making the computation easier. More
details can be found in [9, 10].

3.5 General supersymmetric backgrounds

To study supersymmetric backgrounds more general than the N =(2, 2) massive superalge-
bras on the round S2 or the A-twist, one can employ a systematic method developed by
Festuccia and Seiberg in four dimensions [4], and adapted to the two-dimensional case in
[6] (the method is summarized in Contribution [5]). The method consists in coupling the
flat-space supersymmetric theory of interest to some off-shell supergravity,18 giving an ex-
pectation value to the bosonic fields in the graviton multiplet (including the metric and the
auxiliary fields), and then taking a rigid limit in which the Newton constant goes to zero but
the background remains fixed. In this limit, supersymmetry of the background is guaranteed
by the vanishing of gravitino variations (possibly including gaugino variations, when they
are part of the graviton multiplet).

The two-dimensional Lorentzian N =(2, 2) superalgebra can have at most the R-symmetry
group automorphism U(1)left × U(1)right ≃ U(1)R × U(1)A, i.e. a vector and an axial part.
We restrict to theories with a vector-like R-symmetry, then the algebra admits a complex
central charge Z.19 On Euclidean flat space, the supersymmetry algebra is

{Qα, Q̃β} =
[
2γµPµ + 2iP+Z − 2iP−Z̃

]
αβ
, {Qα, Qβ} = {Q̃α, Q̃β} = 0 , (3.29)

where P± are the projectors on positive/negative chirality spinors. Tilded quantities are
complex conjugate in Lorentzian signature, but are independent complexified quantities in
Euclidean signature. To Q±, Q̃± we assign R-charges −1 and +1, respectively.

Theories with an R-symmetry have an R-multiplet20 containing the conserved operators

Rµ :
(
Tµν , Sαµ, S̃αµ, j

R
µ , j

Z
µ , j

Z̃
µ

)
, (3.30)

namely the stress tensor, the supersymmetry currents, and the currents for R-symmetry
and central charges. Correspondingly, there exists an off-shell 2d supergravity—dimensional
reduction of new minimal 4d supergravity [69, 70, 71]—whose graviton multiplet couples to
the R-multiplet. In a Wess-Zumino gauge it contains the fields

Gµ :
(
gµν , Ψαµ, Ψ̃αµ, Vµ, Cµ, C̃µ

)
, (3.31)

18This step has the technical limitation that we need an off-shell formulation both for supergravity and
the quantum field theory. Thus, it becomes difficult to apply the method when the number of supercharges
is large.

19The N =(2, 2) superalgebra admits two complex central charges, each breaking one of the two R-
symmetries. A superconformal theory cannot have central charges.

20For a discussion of supercurrent multiplets in two dimensions see [68].
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namely the metric, the gravitinos and the gauge fields coupling to R- and central charges.
The gauge fields Vµ, Cµ, C̃µ appear in covariant derivatives, Dµ = ∇µ − iqVµ + z

2
C̃µ − z̃

2
Cµ,

as well as through their field strengths. It is convenient to introduce the dual field strengths

H = −iεµν∂µCν , H̃ = −iεµν∂µC̃ν . (3.32)

The gravitino variations—which will be referred to as the generalized Killing spinor (GKS)
equations—are:

0 = 1
2
δΨµ = (∇µ − iVµ)ǫ− 1

2

(
H 0

0 H̃

)
γµǫ+ . . .

0 = 1
2
δΨ̃µ = (∇µ + iVµ)ǫ̃− 1

2

(
H̃ 0
0 H

)
γµǫ̃+ . . . .

(3.33)

In the rightmost terms we used conventions in which the chirality matrix is γ3 =
(

1 0
0 −1

)
.

The two supersymmetry parameters ǫ, ǫ̃ are complex Dirac spinors with R-charges 1,−1
respectively, and no central charges. The dots represent terms that vanish when we set
Ψµ = Ψ̃µ = 0. These equations have to be solved for the background fields as well as for ǫ,
ǫ̃, and the number of solutions for the latter is the number of preserved supercharges.

From the off-shell supergravity transformations of fields (which can be found in [6]) one
deduces the deformed supersymmetry algebra on a background:21

{δǫ, δǫ̃} = iLK − iǫQǫ̃

{δǫ1, δǫ2} = {δǫ̃1 , δǫ̃2} = 0
Q =

(
z − σ − r

2
H 0

0 z̃ − σ̃ − r
2
H̃

)
(3.34)

acting on a field ϕq,z,z̃ of fixed charges. The first term is a gauge-covariant Lie derivative,
and it represents a translation along the vector field

Kµ = ǫγµǫ̃ . (3.35)

It follows from the GKS equations that such a vector field is Killing, ∇(µKν) = 0 and

LKH = LKH̃ = 0, unless it vanishes. The second term is a mix of R-symmetry, Z/Z̃-
symmetry and gauge/global symmetry rotations.

Let us discuss some important solutions to (3.33) (the full set of solutions in presented
in [6]). The first solution, known for a long time [8], is the topological A-twist:

Vµ = −1

4
ωab

µ εab , ǫ =

(
0
ǫ−

)
, ǫ̃ =

(
ǫ̃+
0

)
, H = 0 , H̃ = 0 (3.36)

where ωab
µ is the spin connection and ǫ−, ǫ̃+ are constant.22 This solution exists on any

orientable Riemann surface Σ. There are two Killing spinors of opposite R-charge and

21The contraction of spinor indices is ψχ = ψαε
αβχβ , namely the symbol ψχ stands for ψT

(
0 1

−1 0

)
χ in

standard matrix notation. Moreover in this subsection σ indicates the full complex scalar in the vector
multiplet, indicated by σ − iη before.

22More generally, H̃ could be an arbitrary function; this does not affect the supersymmetry algebra. We
cannot turn on holonomies for Vµ because ǫ, ǫ̃ (and the supercharges) would no longer be periodic and there
would not be solutions.
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chirality. On a compact Riemann surface of genus g, the background has (g − 1) units of R-
symmetry flux: 1

2π

∫
Σ dV = g− 1. In particular the R-charge of all gauge-invariant operators

should be quantized:
q (g − 1) ∈ Z . (3.37)

The deformed supersymmetry algebra, in the absence of central charges, is simply23

δ2
ǫ = δ2

ǫ̃ = 0 , {δǫ, δǫ̃} = 0 . (3.38)

Similarly, there is the A-twist with 1 − g units of R-symmetry flux. For g > 1 these are the
only two solutions.

For g = 0 (topologically S2), if the metric has a rotational symmetry around an axis,
there exists a one-parameter family of deformations called the Ω-background in [6]. Let Kµ

be the Killing vector field, which for definiteness we can take as K = ∂ϕ in the coordinates
(2.1). Then

Vµ = −1

2
ω12

µ , ǫ =

(
ǫΩKẑ

1

)
ǫ− , ǫ̃ =

(
1

−ǫΩKˆ̄z

)
ǫ̃+ , H = − i

2
ǫΩε

µν∂µKν , H̃ = 0 ,

(3.39)
where ǫΩ is a complex parameter. We have used the flat complex index that follows from
eẑ = e1̂ +ie2̂. In practice we can identify Cµ = ǫΩ

2
Kµ. The background preserves two complex

supercharges of opposite R-charge, and the deformed supersymmetry algebra is

{δǫ, δǫ̃} = iǫΩLs′

K + iǫ−ǫ̃+Z , (3.40)

where Ls′

K is a Lie derivative covariant with respect to gauge/flavor rotations, not with respect
to R, Z and Z̃, but where the spin s is replaced by s′ = s+ q

2
. This is the background that

we considered in subsection 3.4.
On S2 there is a second class of interesting solutions with no net R-symmetry flux: they

give untwisted backgrounds. The simplest case is that of a round S2, then

Vµ = 0 , H = H̃ =
i

r
, ∇µǫ =

i

2r
γµǫ , ∇µǫ̃ =

i

2r
γµǫ̃ . (3.41)

The spinors solve the Killing spinor equation: on the round S2 there are four solutions—two
for ǫ and two for ǫ̃—so the number of preserved supersymmetries is maximal. With no
central charges the deformed supersymmetry algebra is

{δǫ, δǫ̃} = iLK − ǫǫ̃

2r
R , (3.42)

and the Killing vectors Kµ generate the so(3) isometry algebra of S2. The full superalgebra is
su(2|1). Notice that the background is not the analytic continuation of a real background in
Lorentzian signature, and this in general breaks reflection positivity. However, if the theory

23With central charges one finds the su(1|1) superalgebra {δǫ, δǫ̃} = iǫ−ǫ̃+(z − σ).
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is superconformal, the auxiliary fields H, H̃ couple to redundant operators and reflection
positivity is recovered.

As described in subsection 2.1, on more general topological spheres with only U(1) isom-
etry one can still preserve two supercharges of opposite R-charge without twisting. Consid-
ering for definiteness the metric ds2 = f(θ)2dθ2 + r2 sin2 θ dϕ2, the background is

V =
1

2

(
1 − r

f

)
dϕ , ǫ = e

i
2

θγ1e
i
2

ϕ

(
ǫ0
0

)
, ǫ̃ = e

i
2

θγ1e− i
2

ϕ

(
0
ǫ̃0

)
, H = H̃ =

i

f
(3.43)

with constant ǫ0, ǫ̃0.
One last example we want to mention is that of N =(2, 2) theories with both vector and

axial R-symmetries, placed on a flat T 2. In this case one can turn on a flat connection
for, say, the left-moving R-symmetry U(1)left. As a result the left-moving supercharges are
lifted, however there remain the two right-moving supercharges with opposite charge under
U(1)right. This case is discussed in section 4.

Supersymmetric actions on the curved backgrounds are constructed in a way similar to
flat space: the supersymmetry variations of gauge-invariant D-terms and F-terms are total
derivatives, therefore their spacetime integrals are supersymmetric invariants. The top D-
term component of a neutral general supermultiplet with q = 0 can be used to construct
the super-Yang-Mills and matter kinetic actions, LD = D. For instance from the D-term of
−1

2
Φ̃e−2VΦ one obtains the kinetic action of a chiral multiplet Φ:

LΦ = Dµφ̃D
µφ+ φ̃Dφ+

1

2

(
q
2
Rs + Hz̃ + H̃z

)
φ̃φ+

1

2
φ̃{Q, Q̃}φ

− F̃F + iψ̃γµDµψ + iψ̃Q̃ψ + i
√

2 ψ̃λ̃φ+ i
√

2 φ̃λψ
(3.44)

where Rs is the scalar curvature. For NLSMs one uses the D-term of the Kähler potential
K(Φ̃,Φ). From the D-term of a gauge-invariant multiplet whose lowest component is 1

2
Tr σ̃σ

one obtains the SYM action

LV =
1

2

(
F12 − 1

2
H̃σ +

1

2
Hσ̃

)2

+
1

2
Dµσ̃D

µσ +
1

8
[σ, σ̃]2

+ iλ̃γµDµλ− iλ̃

(
[σ̃, ·] 0

0 [σ, ·]

)
λ− 1

2

(
D +

1

2
H̃σ +

1

2
Hσ̃

)2 (3.45)

with trace implicit. The top F-term component of a neutral chiral multiplet with q = 2,
z = z̃ = 0 gives superpotential interactions,

LW = FW + F̃W , (3.46)

where FW is the F-term component of the superpotential W (Φ):24

FW =
∂W

∂φi
Fi − 1

2

∂2W

∂φi∂φj
ψjψi , F̃W =

∂W̃

∂φ̃i

F̃i +
1

2

∂2W̃

∂φ̃i∂φ̃j

ψ̃jψ̃i . (3.47)

24Integrating out Fi, F̃i one obtains the real positive potential
∑

i

∣∣∂W
∂φi

∣∣2. Alternatively, to keep the fields

Fi, F̃i one should redefine them with an i, then the kinetic action is positive-definite and the superpotential
action is imaginary.
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The top component of a twisted chiral multiplet with q = z = z̃ = 0 (called twisted F-
term or G-term) can be corrected to give supersymmetric actions, since δ(G − iH̃ω) is a
total derivative (here ω is the lowest component of a twisted chiral multiplet). The twisted
superpotential action is then

LW = GW − iH̃W(ω) + G̃W + iHW̃(ω̃) , (3.48)

where

GW =
∂W
∂ωi

Gi − 1

2

∂2W
∂ωi∂ωj

ηjηi (3.49)

is the G-term of the twisted superpotential W.

4 Elliptic genera of N =(2, 2) and N =(0, 2) theories

We discuss now the Euclidean path-integral of two-dimensional N =(2, 2) supersymmetric
theories on a torus T 2. This quantity, called the elliptic genus, was first introduced in the
physics literature in [72, 73, 74] in the context of free orbifolds and in [75, 76] in the context
of non-linear sigma models. As usual, the path-integral on a circle computes the trace over
a Hilbert space of states, and we start from such a Hamiltonian definition:

ZT 2(τ, z, u) = TrRR (−1)F qHL q̄HRyJ
∏

a
xKa

a . (4.1)

The trace is over the Ramond sector of the Hilbert space of the theory on a spatial circle,
i.e. one takes periodic boundary conditions for fermions. Then F is the fermion number, we
define the parameters

q = e2πiτ , y = e2πiz , xa = e2πiua , (4.2)

and q specifies the complex structure of a torus w ∼= w + 1 ∼= w + τ , with τ = τ1 + iτ2.
HL and HR are the left- and right-moving Hamiltonians respectively, defined in Euclidean
signature in terms of Hamiltonian and momentum as 2HL = H + iP , 2HR = H − iP . We
assume that the theory has a left-moving U(1) R-symmetry J (which might be discrete if the
theory is not conformal) and a flavor group K (with Cartan generators Ka). Their fugacities
are y and xa. Given a charge vector ρa, we use the notation xρ =

∏
a xa

ρa

= e2πiρaua. We
also write ρ(u) = ρaua, considering ρ ∈ k∗ and u ∈ k, where k is the Cartan algebra of the
flavor symmetry group K. The elliptic genus with ua 6= 0 is sometimes called the equivariant
elliptic genus, while setting z = ua = 0 the elliptic genus reduces to the Witten index. The
q → 0 limit of the elliptic genus is called the χy genus.

Physically, the elliptic genus is interesting because it detects spontaneous supersymmetry
breaking: if supersymmetry is broken, then the Witten index is zero (although the opposite is
not necessarily true) [77]. Moreover, if the theory is superconformal the operators HL, HR, J
equal the zero-mode generators L0, L̄0, J0 of the superconformal algebra25 and the elliptic

25When not uniquely fixed, e.g. by the superpotential, the superconformal R-symmetries can be determined
through the c-extremization principle of [78, 79].
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genus is equal to the superconformal index, which counts superconformal primary operators
in flat space.

Mathematically, the elliptic genus of a NLSM with complex target manifold X is a
topological invariant—related to the elliptic cohomology of X [75]—equal to the Euler char-
acteristic of a specific infinite-dimensional formal vector space Eq,y. The Witten index equals
the Euler number of X. See e.g. [80].

If the theory has a discrete spectrum (at least in the equivariant sense), then the elliptic
genus is a holomorphic function of q because the contributions from states with HR 6= 0
cancels between pairs of states with opposite values of (−1)F . The genus has very interesting
modular transformation properties as well. Since the spectrum of the Ramond sector is
invariant under charge conjugation:

ZT 2(τ, z, u) = ZT 2(τ,−z,−u) . (4.3)

When the R-symmetry is non-anomalous and the theory flows to an IR fixed point, the
modular transformations of the elliptic genus are:

ZT 2

(
aτ + b

cτ + d
,

z

cτ + d
,

u

cτ + d

)
= exp

[
πic

cτ + d

(
cL

3
z2 − 2Aa

Luaz
)]

ZT 2(τ, z, u) (4.4)

for
(

a b
c d

)
∈ SL(2,Z). Here cL is the left-moving IR central charge, proportional to the

’t Hooft anomaly of J , while Aa
L is the ’t Hooft anomaly between J and Ka:

cL = −3
∑

fermions

γ3J
2 , Aa

L =
∑

fermions

γ3JKa . (4.5)

The sums are taken over all fermions in the theory, and γ3 is the chirality matrix that we
take positive (negative) on right (left) movers. For a NLSM on a Calabi-Yau manifold X of
complex dimension d = cL/3, the elliptic genus is a Jacobi form of weight zero and index
d/2.

Later on, the elliptic genus of Gepner models was computed using the known characters of
N =2 superconfomal algebras [81, 82]. Then it was realized that the elliptic genus of Landau-
Ginzburg models can be computed by localization [83], which led to a formula for the elliptic
genus of Gepner models using the orbifold Landau-Ginzburg description [84, 85, 86, 87]. In
this review we will be mostly concerned with the more recent computation of the elliptic
genus of gauge theories [88, 89, 67] with localization techniques. The resulting formula agrees
with that of Landau-Ginzburg models in case the gauge group is trivial, and with known
mathematical results of the elliptic genus of complete intersections in toric varieties [90, 91]
when the theory has a smooth geometric phase.

It turns out that one can equally well consider the elliptic genus of theories with only
N =(0, 2) supersymmetry. Mathematically, they describe more general bundles than the
tangent bundle on X. Their equivariant elliptic genus is defined as

ZT 2(τ, u) = TrR (−1)F qHL q̄HR
∏

a
xKa

a . (4.6)
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If the theory has a low-energy description as a NLSM with target a holomorphic vector
bundle over a compact complex manifold, as in the models in [92], the elliptic genus encodes
the Euler characteristic of that vector bundle [93].26

If the theory has discrete spectrum, the elliptic genus is a holomorphic function of τ with
the following modular transformation properties:

ZT 2

(
aτ + b

cτ + d
,

u

cτ + d

)
= ǫ(a, b, c, d)cR−cL exp

[
− πic

cτ + d
Aabuaub

]
ZT 2(τ, u) (4.7)

for
(

a b
c d

)
∈ SL(2,Z). The multiplier system ǫ(a, b, c, d) is a phase, independent of ua,

universally defined by

η
(

aτ+b
cτ+d

)

θ1

(
aτ+b
cτ+d

∣∣∣ u
cτ+d

)
= ǫ(a, b, c, d) e− iπc

cτ+d
x2 η(τ)

θ1(τ |u)
. (4.8)

It is through ǫ that the gravitational anomaly shows up. In the theories under consideration,
cR − cL equals three times the number of right-moving minus left-moving fermions, while
Aab are the flavor ’t Hooft anomalies:

cR − cL = 3
∑

fermions

γ3 , Aab =
∑

fermions

γ3KaKb . (4.9)

One could also consider alternative elliptic genera where the trace is taken in the Neveu-
Schwartz sector (on one or both sides), as in [88]. The resulting functions are all equivalent,
because easily related by spectral flow.

The Jeffrey-Kirwan residue. The main focus in this review is the computation of the
elliptic genera of gauge theories, through localization techniques. Such a computation has
been done in [88, 89, 67] for the simplest theories, building on [83, 94], and then generalized
in many ways, for instance in [95, 96, 97, 98]. In particular, the expression found in [89, 67]
involves a particular type of higher-dimensional residue operation called the Jeffrey-Kirwan
(JK) residue defined in [66] and motivated by [99]. Schematically:

ZT 2 =
∑

u∗

JK-Res
u=u∗

Z1-loop(u)

where Z1-loop is a meromorphic top-form on an r-dimensional complex manifold (r is the rank
of the gauge group), and the sum is over all singular points. The JK residue depends on a
choice of vector η, however the total sum does not (and the parameter η is just auxiliary).
The details are presented below.

Such a residue operation arises from a careful treatment of the bosonic and fermionic
zero-modes in the problem. It has then been realized that very similar systems of zero-
modes arise in many other localization contexts, for instance for the Witten index in one

26Setting ua = 0, the equivariant elliptic genus reduces to the partition function of the chiral CFT associ-
ated to the half-twisted model.
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dimension [100, 101], for the Nekrasov partition function [102] in four [103] and five [104]
dimensions, for the topological twist in two dimensions [9, 10, 26] and its higher-dimensional
generalizations [9]. In all these cases, the result of localization for gauge theories takes the
form of a JK residue, possibly with extra boundary contributions.

4.1 Multiplets, Lagrangians and supersymmetry

In the path-integral formulation, the elliptic genus equals the Euclidean path-integral of the
theory on a flat T 2, in the presence of flat connections AR and Aflav for the R- and flavor
symmetries, respectively, coupled to the R- and flavor symmetry currents:

z =
∮

t
AR − τ

∮

s
AR , ua =

∮

t
Aa-th flav − τ

∮

s
Aa-th flav , (4.10)

where t, s are the temporal and spatial cycles.27 This is equivalent to specifying non-trivial
boundary conditions twisted by the R- and flavor charges, along both the spatial and tem-
poral cycles. Since the background is flat, the actions are just the standard ones. In the
N =(2, 2) case we have already discussed multiplets, supersymmetry transformations and
actions for gauge theories in section 2 and section 3. So, let us move the N =(0, 2) case.

We are interested in N =(0, 2) gauge theories. The reader can consult [3, 92, 105] for
more details. Using the complex coordinate w, the supersymmetry parameters satisfy γwǫ =
γw ǭ = 0. It is convenient to write spinors in components, in particular the SUSY parameters
are ǫ+, ǭ+. We consider theories formulated in terms of chiral, Fermi and vector multiplets.

First we have a chiral multiplet Φ = (φ, φ̄, ψ−, ψ̄−) with variations

δφ = −iǭ+ψ− δψ− = 2i ǫ+Dw̄φ

δφ̄ = −iǫ+ψ̄− δψ̄− = 2i ǭ+Dw̄φ̄ .
(4.11)

Second we have a Fermi multiplet Λ = (ψ+, ψ̄+, G, Ḡ) with variations

δψ+ = ǭ+G+ iǫ+E δG = 2 ǫ+Dw̄ψ
+ − ǫ+ψ−

E

δψ̄+ = ǫ+Ḡ+ iǭ+Ē δḠ = 2 ǭ+Dw̄ψ̄
+ − ǭ+ψ̄−

E .
(4.12)

Here E(Φi) = (E, Ē, ψ−
E , ψ̄

−
E) is a chiral multiplet, holomorphic function of the fundamental

chiral multiplets in the theory, and it is part of the definition of Λ. Notice that E = E(φi) and
its fermionic partner is ψ−

E =
∑

i ψ
−
i ∂E/∂φi. Third we have a vector multiplet V = (Aµ, λ

+, λ̄+, D)
with variations

δAw = 1
2

(
ǫ+λ̄+ − ǭ+λ+

)
δλ̄+ = ǭ+(−D − iF12) δ(−D − iF12) = 2 ǫ+Dw̄λ̄

+

δAw̄ = 0 δλ+ = ǫ+(−D + iF12) δ(−D + iF12) = 2 ǭ+Dw̄λ
+ .

(4.13)
Comparing with (4.12), notice that the fields in the second and third column form a Fermi
multiplet Υ = (λ̄+, λ+,−D − iF12,−D + iF12) with E = 0.

27Choosing a constant connection AR
µ , we have z = (−2iτ2)AR

w̄ and similarly for the flavor holonomies.
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The supersymmetric action for chiral multiplets comes from the Lagrangian

LΦ = Dµφ̄D
µφ+ iφ̄Dφ+ 2 ψ̄−Dwψ

− − ψ̄−λ+φ+ φ̄λ̄+ψ− , (4.14)

for Fermi multiplets we have

LΛ = −2 ψ̄+Dw̄ψ
+ + ĒE + ḠG+ ψ̄+ψ−

E − ψ̄−
Eψ

+ , (4.15)

and for vector multiplets we have

LΥ = Tr
[
F 2

12 +D2 − 2 λ̄+Dw̄λ
+
]
. (4.16)

The last one equals the Lagrangian for the Fermi multiplet Υ. Interactions are specified by
holomorphic functions Ja(φ) of the chiral multiplets (and anti-holomorphic functions J̄a(φ̄)
of their partners), where a parametrizes the Fermi multiplets in the theory:

LJ =
∑

a

(
iGaJ

a − ψ+
a ψ

−a
J

)
, LJ̄ =

∑
a

(
iḠaJ̄

a − ψ̄+
a ψ̄

−a
J

)
. (4.17)

Their supersymmetry variation is a total derivative as long as

∑
a
Ea(φ)Ja(φ) = 0 . (4.18)

It turns out that all these actions are Q-exact. This reflects the fact that the elliptic genus
is a “topological invariant”, unaffected by continuous deformations of the parameters in the
theory. Defining the anticommuting supercharge Q by using commuting spinor parameters
and choosing them ǫ+ = ǭ+ = 1, the action of Q is then immediately read off from the
supersymmetry variations and one finds, up to total derivatives:

LΦ = Q
(
2iφ̄Dwψ

− − iφ̄λ+φ
)
, LΛ = Q

(
ψ̄+G− iĒψ+

)

LJ = Q
(∑

aiψ
+
a J

a
)
, LΥ = −Q Tr

(
λ+(D + iF12)

)
.

(4.19)

The N =(2, 2) theories can be regarded as special cases of N =(0, 2), in which the left-
moving R-symmetry appears as a flavor symmetry. To reduce from (2, 2) to (0, 2) super-
symmetry, we define projectors P± = (1 ± γ3)/2. Then the chiral multiplet Φ(2,2) splits

into a chiral multiplet Φ = (φ, φ̄, P−ψ, P−ψ̄) and a Fermi multiplet Λ = (P+ψ, P+ψ̄, F, F̄ ).
The vector multiplet V(2,2) splits into a vector multiplet V and an adjoint chiral multiplet

Σ = (σ, σ̄, P−λ, P−λ̄). If Φ(2,2) is charged under V(2,2), then its Fermi component Λ has
E = ΣΦ (where Σ acts in the correct representation). Superpotential interactions W (Φ(2,2))
become interactions Ja(φ) = ∂W/∂φa. A twisted chiral multiplet Y(2,2) (which must be neu-
tral) splits into a chiral and a Fermi multiplet. In particular the twisted chiral multiplet Σ(2,2)

constructed out of V(2,2) splits into Υ and Σ. A twisted superpotential W̃ (Σ(2,2)) becomes an

interaction JΥ(σ) = ∂W̃ /∂σ, and a complexified Fayet-Iliopoulos term is simply a constant
JΥ = θ

2π
+ iζ .
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4.2 The localization formula and the JK residue

We will first present the formula for the elliptic genus obtained from localization in [89, 67],
and then outline its derivation in the next subsection.

The localization computation proceeds along the same steps as in section 2. First, the
moduli space of BPS configurations is parametrized by flat G-connection on T 2 modulo
gauge transformations, where G is the gauge group. For simplicity, we will assume that the
non-Abelian part of G is connected and simply-connected.28 Let h be the Cartan algebra
of G, then the Cartan torus of G can be identified with h/Γh where Γh is the coroot lattice.
We define

M = hC/(Γh + τΓh) , (4.20)

then the moduli space is M/Weyl(G). We parametrize the complexified Cartan algebra hC
by ua, then M is the product of r copies of T 2 where r = rankG. Similarly, we introduce
variables ξb on the complexified Cartan algebra of the flavor group K and fugacities ζb =
e2πiξb .

Second, the one-loop determinants produce a meromorphic (r, 0)-form Z1-loop(τ, z, u, ξ).
In the N =(2, 2) case, for a gauge theory with chiral multiplets transforming in the (possibly
reducible) representation R, such a form is

Z1-loop =


 2πη(q)3

θ1(q, y−1)




r
∏

α ∈ G

θ1(q, xα)

θ1(q, y−1xα)

∏

ρ ∈R

θ1(q, yRρ/2−1ζKρxρ)

θ1(q, yRρ/2ζKρxρ)
du1 · · ·dur . (4.21)

The first product is over the roots α of G, while the second one is over the weights ρ of R.
The elliptic Dedekind and Jacobi functions are defined as

η(q) = q
1

24

∞∏

n=1

(1 − qn) , θ1(q, y) = −iq 1
8y

1
2

∞∏

n=1

(1 − qn)(1 − yqn)(1 − y−1qn−1) . (4.22)

Finally, Rρ/2 is the left-moving R-charge (if the axial R-charge is zero, then Rρ is the vector
R-charge) andKρ is the flavor weight of the chiral multiplet associated to the weight ρ. These
charges are constrained by superpotential interactions, and this is the only place where the
superpotential appears. If extra (neutral) twisted chiral multiplets Σc with axial R-charge
R(A)

c are present, one should also include the factor

∏

c

θ1

(
q, y−R

(A)
c /2 + 1

)

θ1

(
q, y−R

(A)
c /2

) .

In the N =(0, 2) case, for a theory with chiral multiplets in representation Rchiral and Fermi
multiplets in representation RFermi, the meromorphic form is

Z1-loop =


2πη(q)2

i




r
∏

α ∈ G

i
θ1(q, xα)

η(q)

∏

ρ ∈Rchiral

i η(q)

θ1(q, ζKρxρ)

∏

ρ ∈RFermi

i
θ1(q, ζKρxρ)

η(q)
du1 · · · dur .

(4.23)

28Non-simply-connected and disconnected groups can be treated as well, see e.g. [89].
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Note that the only difference between u and ξ is that u will be integrated over. We will
sometimes keep ξ implicit in the following formulæ.

The meromorphic form Z1-loop has poles in u, along hyperplanes corresponding to all
chiral and off-diagonal vector multiplets for N =(2, 2), and to chiral multiplets for N =(0, 2).
Each of those multiplets introduces a singular hyperplane Hi ⊂ M. We will use the index
i for them, and call Qi ∈ h∗ the weight of the multiplet under the gauge group. For the
different types of multiplets we have:

vector(2,2) : Hi =
{

−z +Qi(u) = 0 (mod Z + τZ)
}
, Qi = α

chiral(2,2) : Hi =
{

Ri

2
z +Qi(u) +Ki(ξ) = 0 (mod Z + τZ)

}
, Qi = ρ

chiral(0,2) : Hi =
{

Qi(u) +Ki(ξ) = 0 (mod Z + τZ)
}
, Qi = ρ .

(4.24)

Note that a single Hi can contain multiple parallel disconnected hyperplanes. We denote by
Q = {Qi} the set of all charge covectors. Then we define

Msing =
⋃

i
Hi (4.25)

in M, and we denote by M∗
sing ⊂ Msing the set of isolated points in M where at least r

linearly-independent hyperplanes meet:

M∗
sing =

{
u∗ ∈ M

∣∣∣ at least r linearly independent Hi’s meet at u∗

}
. (4.26)

Given u∗ ∈ M∗
sing, we denote by Q(u∗) the set of charges of the hyperplanes meeting at u∗:

Q(u∗) = {Qi

∣∣∣u∗ ∈ Hi} . (4.27)

Next, one has to choose a generic29 non-zero η ∈ h∗. Then, the elliptic genus is given by the
formula:30

ZT 2(τ, z, ξ) =
1

|Weyl(G)|
∑

u∗ ∈M∗
sing

JK-Res
u=u∗

(
Q(u∗), η

)
Z1-loop(τ, z, u, ξ) . (4.28)

Here JK-Res is the Jeffrey-Kirwan residue operation, which is explained in detail below. It
is locally constant as a function of η, but it can jump as η crosses from one chamber to
another. Nonetheless the sum on the right hand side is independent of η.

29Denote by Conesing(Q) ⊂ h∗ the union of the cones generated by all subsets of Q with r − 1 elements.
Then each connected component of h∗ \ Conesing(Q) is called a chamber. By a “generic” covector we mean
an η 6∈ Conesing(Q): such η identifies a chamber in h∗.

30For a technical reason, one has to assume the following condition on the gauge theory charges: For any
u∗ ∈ M∗

sing, the set Q(u∗) is contained in a half-space of h∗. A hyperplane arrangement with this property
at u∗ is called projective [106]. Notice that if the number of hyperplanes at u∗ is exactly r, the arrangement
is automatically projective. When the condition is not met, one needs to relax the constraints on R- and
flavor charges coming from the superpotential, resolve u∗ into multiple singularities which are separately
projective, and eventually take a limit where the charges are the desired ones. If at every u∗ the number of
hyperplanes meeting at u∗ is exactly r, we call the situation non-degenerate.
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4.2.1 The Jeffrey-Kirwan residue

The Jeffrey-Kirwan residue operation has been introduced in [66]; there are several equivalent
formulations available in the literature, and we follow [106]. We define the residue at u∗ = 0;
for generic u∗ one just shifts the coordinates. Consider n hyperplanes meeting at u = 0 ∈ Cr:

Hi =
{
u ∈ C

r
∣∣∣Qi(u) = 0

}
(4.29)

for i = 1, . . . , n and with Qi ∈ (Rr)∗. Here we indicate the set of charges Q(u∗) = {Qi}
simply by Q∗: the charges define the hyperplanes Hi and give them an orientation. The set
Q∗ defines a hyperplane arrangement (for further details on hyperplane arrangements see
e.g. [107]). The coefficients defining the hyperplanes are all real, i.e. we are dealing with a
complexified central arrangement. A residue operation is a linear functional on the space
of meromorphic r-forms that are holomorphic on the complement of the arrangement, such
that it annihilates exterior derivatives of rational (r − 1)-forms.

Take a meromorphic r-form ω defined in a neighborhood U of u = 0, and holomorphic
on the complement of

⋃
i Hi. When n = r, we can define the residue of ω at u = 0 by

its integral over
∏r

i=1 Ci, where each Ci is a small circle around Hi (and the overall sign
depends on the order of the Hi’s). This stems from the fact that the homology group

Hr

(
U \ ⋃r

i=1 Hi,Z
)

= Z, and therefore there is a natural generator defined up to a sign.

When n > r however, Hr

(
U \ ⋃n

i=1 Hi,Z
)

= Zcn,r with cn,r > 1, and it is imperative to
specify the precise cycle to choose.

For a projective arrangement and given an η ∈ (Rr)∗, the Jeffrey-Kirwan residue is the
linear functional defined by the conditions:

JK-Res
u=0

(Q∗, η)
dQj1

(u)

Qj1(u)
∧ · · · ∧ dQjr

(u)

Qjr(u)
=





sign det(Qj1 . . . Qjr) if η ∈ Cone(Qj1 . . . Qjr)

0 otherwise

(4.30)
where Cone denotes the cone spanned by the vectors in the argument. We can rewrite it as

JK-Res
u=0

(Q∗, η)
du1 ∧ · · · ∧ dur

Qj1(u) · · ·Qjr(u)
=





1

| det(Qj1 . . . Qjr)| if η ∈ Cone(Qj1 . . . Qjr)

0 otherwise

(4.31)

after choosing coordinates ua on h. The definition (4.30)-(4.31) is in general vastly over-
determined since there are many relations between the forms

∧r
α=1 dQjα

/Qjα, but it has
been proven in [108] that (4.30) is consistent, and it is given by an integral over an explicit
cycle. A constructive definition of the JK residue, as a sum of iterated standard residues,
has been given in [106] and reviewed in [67].

In the simplest case of r = 1, applying (4.31) one finds

JK-Res
u=0

(
{q}, η

) du
u

=





sign(q) if ηq > 0 ,

0 if ηq < 0 .
(4.32)
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Substituting into (4.28), one finds that the elliptic genus in the rank-1 case is given by

ZT 2 =
1

|Weyl(G)|
∑

u+ ∈M+
sing

1

2πi

∮

u=u+

Z1-loop = − 1

|Weyl(G)|
∑

u− ∈M−
sing

1

2πi

∮

u=u−

Z1-loop (4.33)

by choosing η = 1 and η = −1 respectively, where M
+(−)
sing is the subset of singularities

with positive (negative) associated charge. In other words, one should sum (with sign) the
residues coming from fields of either positive or negative charge. As the sum of all residues
vanishes, the result is independent of the choice of η.

4.3 The derivation

Let us briefly sketch how the formula (4.28) is derived. The formula and its derivation was
first obtained in [89, 67] and then extended in [100, 9, 10, 26].

The standard localization procedure reduces the path-integral to an integral over the
BPS supermanifold of zero-modes, schematically

ZT 2 =
∫

MBPS

Dϕ0 e
−S[ϕ0] Z1-loop[ϕ0] . (4.34)

In the present case, it turns out that MBPS contains fermionic zero-modes as well as singular
loci with extra bosonic zero-modes. With a suitable regulator, the two problems solve each
other and one is left with a contour integral within the bosonic component of MBPS.

Solving the bosonic BPS equations—read off from (4.11), (4.12) and (4.13)—chiral and
Fermi multiplets are set to zero and one finds the moduli space of flat connections on T 2

modulo gauge transformations. In the simplest case of a gauge group G with connected and
simply-connected non-Abelian part (and arbitrary Abelian part):

MBPS

∣∣∣∣
bos

= M/Weyl(G) , M = hC/(Γh + τΓh) . (4.35)

Here M is r copies of T 2 and we parametrize it by the variables u.
Around each of the BPS configurations, besides the bosonic zero-modes that parametrize

MBPS

∣∣∣
bos

there are also fermionic zero-modes and together they form complete supermulti-

plets. Each bosonic zero-mode is paired with a fermionic zero-mode coming from the Cartan
gaugini (in N =(0, 2) notation). The right-moving Cartan gaugini λ are not lifted because
they are charged only under the R-symmetry, and we cannot turn on a flat connection for
the R-symmetry without breaking supersymmetry. In a gauge where Aµ is constant, we
can identify (up to unimportant coefficients) u = Aw̄, then the fermionic zero-modes are
constant λ+, λ̄+. We can close the supersymmetry algebra “off-shell” if we introduce an
auxiliary bosonic zero-mode D0, which is the constant profile of D. The supersymmetry
algebra follows from (4.13):

Qu = 0 , Qū = 1
2
λ̄+ , Qλ̄+ = 0 , Qλ+ = −D0 , QD0 = 0

Q̃u = 0 , Q̃ū = −1
2
λ+ , Q̃λ+ = 0 , Q̃λ̄+ = −D0 , Q̃D0 = 0 .

(4.36)
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We used that the flux is zero and all modes are constant on T 2.
The one-loop determinants, keeping the dependence on D0 which serves as a regulator

of the final expression, are easy to compute using the Hamiltonian definition. For instance,
for an N =(2, 2) chiral multiplet of charge weight ρ one finds

Z(2,2) chiral(u, ū, D0) =
∏

m,n

(
m+ nτ + (1 − R

2
)z − ρ(u)

)(
m+ nτ̄ + R

2
z̄ + ρ(ū)

)

∣∣∣m+ nτ + R
2
z + ρ(u)

∣∣∣
2

+ iρ(D0)
. (4.37)

The determinants reduce to Z1-loop in (4.21) and (4.23) for D0 = 0. Then they develop
singularities on M along the hyperplanes Hi because extra bosonic zero-modes appear, but
there are no divergences for generic D0 6= 0.

The last step is to integrate over the moduli space of BPS configurations. For simplicity,
let us restrict to the case that G has rank 1. Since all action terms are Q-exact, we perform
localization simply by sending to zero all interactions. The singular hyperplanes—which in
this case are just points—arise because we take the limit e → 0, where e is the gauge coupling.
In the weakly-interacting theory the contribution from the neighborhood of a singular point
u∗ ∈ Msing where there are M quasi-zero-modes φi—whose charges Qi have the same sign
by the assumption in footnote 30—is roughly:

I =
∫
d2Mφ exp

[
−
∑

i
|Qi(u− u∗)|2|φi|2 − e2

2

(
ζ −

∑
i
Qi|φi|2

)2
]
, (4.38)

where ζ is the FI term. The second term comes from the D-term potential and it ensures

that the integral is convergent, even at u = u∗. By rescaling φi →
∣∣∣Qie

∣∣∣
−1/2

φi we can find an

upper bound |I| . C/eM for some constant C. Therefore, we can split the integral over M

into two pieces, removing from M an ε-neighborhood ∆ε of Msing. The integral over ∆ε is
bounded by ε2/eM up to constants, therefore in a scaling limit e, ε → 0 in which ε2/eM → 0
as well, it does not contribute. We thus have

ZT 2 =
1

|Weyl(G)| lim
e,ε→0

∫

M\∆ε

d2u
∫

R+iη
dD0

∫
dλ+dλ̄+ Z(u, ū, λ+, λ̄+, D0) . (4.39)

We have restored the dependence on the zero-mode D0 of the auxiliary field, since it will
be used as a regulator momentarily. Then Z is the effective partition function obtained by
integrating out all massive modes. Setting λ+ = λ̄+ = 0 and in the e → 0 limit it gives what
we have written in (4.37), and further setting D0 = 0 it gives the one-loop determinants
in (4.21) and (4.23). The function Z is holomorphic in D0 around the origin as long as
u 6∈ ∆ε. Therefore we have the freedom to shift the real integration contour on the complex
D0-plane along the imaginary direction, as long as this shift is small: in (4.39) we have called
η such a shift.

The partition function Z(u, ū, λ+, λ̄+, D0) depends on the gaugino zero-modes because
of the Lagrangian couplings λψφ to the matter fields we have integrated out. As noticed in
[9, 10], the dependence is fixed by supersymmetry. From the algebra (4.36) it follows

0 = Q̃Z = −λ+

2

∂Z
∂ū

−D0
∂Z
∂λ̄+

⇒ ∂2Z
∂λ+∂λ̄+

= − 1

2D0

∂Z
∂ū

∣∣∣∣
λ+=λ̄+=0

. (4.40)
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The integral over the fermionic zero-modes produces a total derivative, and by Stoke’s theo-
rem we obtain the contour integral expression

ZT 2 =
1

|Weyl(G)| lim
e,ε→0

∫

∂∆ε

du
∫

R+iη

dD0

D0

Z(u, ū, D0) . (4.41)

Consider a component of ∂∆ε around a point u∗ ∈ Msing. Suppose that we have chosen
η > 0. From the unregularized expression in (4.37) of the chiral one-loop determinant, we
see that the poles in the complex D0-plane are in the half ρ ImD0 > 0. If ρ < 0 the poles
are in the negative half-plane. As ε → 0 they collapse towards D0 = 0, because the term in
absolute value is of order ε on the contour ∂∆ε, however the contour R+ iη is safely far from
them. The D0-integral remains finite as ε → 0, and then the u-integral vanishes because its
contour shrinks. On the contrary, if ρ > 0 the poles are in the upper D0-half-plane and, as
ε → 0, they would cross the contour R + iη. To avoid that, we shift the contour to R − iη
and we collect minus the residue at D0 = 0. As before, the integral along R − iη does not
yield any contribution as ε → 0. Minus the residue at D0 = 0, though, gives

lim
e,ε→0

∫

∂∆ε

du Z(u, ū, 0) = Res
u=u∗

Z1-loop(u) ,

up to constants that can be fixed in one known example. Had we chosen η < 0 instead, a
similar argument goes through and one obtains minus the residue at u = u∗ if ρ < 0, zero if
ρ > 0.

We reach the conclusion that for η > 0 we collect the residues of Z1-loop(u) at the points
u∗ ∈ M+

sing corresponding to chiral fields with positive charges, while for η < 0 we collect mi-
nus the residues at the points u∗ ∈ M−

sing corresponding to chiral fields with negative charges,
reproducing (4.33). The generic higher-rank case is much more intricate, but conceptually
very similar, and it leads to the JK residue. We refer the reader to the references for details.

4.4 Extensions and applications

The localization formula we presented has been generalized in many ways. The authors of
[96, 97] have considered gauge theories with Stückelberg fields, which in the IR may realize
non-compact sigma models a prototype of which is the SL(2,R)/U(1) (cigar) coset. The
resulting genus is a Jacobi-like form that is non-holomorphic in the modular parameter τ of
the torus, with mock modular behavior. The reason is that those models have a continuous
spectrum above a threshold, even when equivariant parameters are turned on, and the density
of states of bosons and fermions in the continuum need not be equal.

The prototype N =(2, 2) GLSM is the one introduced by Hori and Kapustin in [109]. The
model has a U(1) vector field V , a chiral multiplet Φ of charge 1, and a chiral Stückelberg
field P that transforms as

P → P + iΛ (4.42)

under super-gauge transformations V → V − iΛ+ iΛ̄. Moreover the imaginary part of p (the
scalar in P ) is periodic, p ∼ p+ 2πi. The action is

S =
1

4π

∫
d2w d4θ

[
Φ̄eV Φ +

k

4

(
P + P̄ + V

)2 − 1

2e2
Σ̄Σ

]
, (4.43)
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where k > 0 and Σ is the field-strength twisted chiral multiplet. When written in components,
the imaginary part of p acts as a standard Stückelberg field that gives the photon a mass,
while the real part is a dynamical FI term. Integrating out the massive photon and after
some RG flow, one obtains the SL(2,R)k/U(1) SCFT with central charge c = 3 + 6

k
, which

in the large k limit has a description as the NLSM with cigar target

ds2 = 2k
(
du2 + tanh2 u dψ2

)
(4.44)

with ψ ∼= ψ + 2π, and a non-trivial background dilaton [110].
When computing the elliptic genus with localization, the presence of the field P introduces

many differences. First, the action involving P is naively Q-exact but in fact it gives rise to
a non-trivial boundary term in field space [109], therefore the final answer will depend on
k. Luckily, P appears quadratically in the action and so its path-integral can be computed
exactly.

Second, the field P has fermionic zero-modes χ−, χ̄− coupled to the gaugino zero-modes
λ+, λ̄+. Therefore, when integrating over the fermionic zero-modes they are absorbed at
tree level and we simply generate a constant factor—instead of a total derivative as before.
The integration over the bosonic zero-modes of P and the massive modes is standard, and
the details can be found in [111, 96, 97]. A point to note is that the imaginary part of p
is a periodic scalar which admits winding modes: p2(w + 1) = p2(w) + 2πn, p2(w + τ) =
p2(w) + 2πm. The path-integral over P then gives

ZP =
k

D0τ2

θ1(q, y)

η(q)3

∑

m,n∈Z

exp

[
− πk

τ2

(
m+ nτ + u+

z

k

)(
m+ nτ̄ + ū+

z

k

)]
. (4.45)

The one-loop determinant of the chiral multiplet is also modified. The UV left-moving R-
symmetry Jµ is anomalous and the IR conserved superconformal R-symmetry is obtained
by mixing with the gauge-invariant quantity Aµ + ∂µp2. The R-symmetry background expe-
rienced by Φ thus depends on the winding numbers (m,n):

ZΦ = yρnθ1(q, yR/2−1xρ)

θ1(q, yR/2xρ)
, (4.46)

where ρ is the gauge charge. Putting everything together, and generalizing to multiple chiral
multiplets Φi, one finds the formula:

ZT 2 = k
∫

T 2

d2u

τ2

∏

i

θ1(q, y
Ri
2

−1xρi)

θ1(q, y
Ri
2 xρi)

∑

m,n∈Z

yn
∑

i
ρi e

− πk
τ2

(m+nτ+u+ z
k )(m+nτ̄+ū+ z

k ) . (4.47)

The cigar coset theory corresponds to a single field with ρ = 1 and R = 0. Notice that in
the presence of multiple chiral multiplets with coincident poles, the integral is divergent and
it should be regularized with care.

The expression above is not holomorphic in τ : it is the product of a usual Jacobi form
and an Appell-Lerch sum. The latter are intimately related to a very interesting class of
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functions called mock modular forms [112, 113, 114]. Their key feature is that they transform
as modular forms, but they suffer from a holomorphic anomaly.

The example above can obviously be generalized to more Abelian groups and matter
contents. As an interesting application, [115] studies the equivariant elliptic genera of a class
of gravitational instantons that are given by hyper-Kähler four-manifolds of asymptotically
locally flat (ALF) type. The simplest of these spaces is the Taub-NUT manifold, while
more general constructions yield the multi-center Ak ALF spaces of Gibbons and Hawking
[116] and other spaces. Taub-NUT can be obtained from an N =(4, 4) GLSM consisting of
a U(1) vector multiplet, a hypermultiplet of charge 1 and a neutral Stückelberg hypermul-
tiplet [117].31 The model has SU(2)3 R-symmetry and U(1)f flavor symmetry (one SU(2)
corresponds to rotations of R3, while U(1)f rotates the circle). The coupling k controls the
size of the asymptotic circle, and in the k → ∞ limit the model turns into C2. Localization
in this case gives32

ZT 2 = k
∫

C

d2u

τ2

θ1(q, xyζ1) θ1(q, xy
−1ζ1)

θ1(q, xζ1ζ2) θ1(q, xζ1ζ
−1
2 )

e
− kπ

τ2
|u|2

, (4.48)

where we have used the sum over winding sectors to “unfold” the integral over the whole
complex plane. Here ζ1, ζ2, y are fugacities for U(1)f and for two left-moving R-symmetries,
respectively. In the k → ∞ limit one obtains the equivariant elliptic genus of C2, which
equals the integrand of (4.48) evaluated at u = 0 and it is holomorphic in τ .

Physically, the equivariant deformations produce a potential roughly proportional to the
length of the orbits of the associated U(1) actions. In the case of Taub-NUT the potential
produced by ζ1 = e2πiξ1 is

V =
ξ2

1
1
k

+ 1
|~x|2

, (4.49)

where ~x is a coordinate on R3. Around the origin (~x = 0) the potential is quadratic and
it gives a discrete IR spectrum, while at large |~x| it is a constant allowing for a continuous
spectrum of scattering states. The latter are responsible for the loss of holomorphy in τ .

One can also generalize the elliptic genus to the twining genera: in the minimal N =(0, 2)
case, given a theory with a discrete symmetry g that commutes with the right-moving su-
persymmetry algebra, they are defined as

Zg(τ, u) = TrR (−1)F g qHL q̄HR
∏

a
xKa

a (4.50)

with an insertion of g into the trace. These objects decompose into characters of the discrete
symmetry group, and therefore contain valuable information about the spectrum of the
theory. As shown in [95], it is easy to extend the localization computation to the twining
genera. If the symmetry element g acts on chiral and Fermi multiplets as

gΦi = e2πiαiΦi , gΛi = e2πiβiΛi , (4.51)

31In N =(2, 2) notation, the model has a vector multiplet V , two neutral chiral multiplets Φ, Ψ, two

chiral multiplets Q, Q̃ of charges ±1, and a Stückelberg chiral multiplet P . There is also a superpotential
W = Q̃ΦQ+ ΦΨ.

32In this model the R-symmetry current is not anomalous, therefore the Stückelberg field has no R-charge.
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the corresponding one-loop determinants are modified to

ZΦi
=

i η(q) eπiαi

θ1(q, e2πiαixρi)
, ZΛi

=
i θ1(q, e2πiβixρi)

η(q) eπiβi
. (4.52)

Then one takes the JK residue at the (possibly shifted) poles. The formula has been used
for instance in [95] to study the twining genera of N =(0, 4) NLSM with K3 target under
the action of elements of M24, the largest Mathieu group, in connection with the so-called
“moonshine conjectures”.

For N =(0, 2) gauge theories, the elliptic genus is one of the few quantities that can
be computed non-pertubatively via localization.33 Therefore it constitutes a crucial test of
conjectured IR dualities among different gauge theories. One example are the trialities of
[118], which will be discussed in subsection 5.4.

To conclude, we mention two recent applications of the elliptic genus of gauge theories.
One is in the context of “AGT correspondences” [119] (see also Contribution [120]). Through
the compactification of M5-branes on T 2 ×M4, where M4 is an arbitrary four-manifold, one
can try to relate the elliptic genus of certain N =(0, 2) gauge theories (which depend on M4)
and the Vafa-Witten partition function [121] of 4d N =4 SYM on M4. This program has
been initiated in [122]. Another application is to interpret the partition functions of certain
6d SCFTs as the generating functions of the elliptic genera of their BPS strings [123] (see
Contribution [124]).

5 Dualities

The supersymmetric observables exactly computed in previous sections provide powerful
means to test dualities. We review in this section a few such applications of the sphere
partition function and the elliptic genus. First we consider mirror symmetry in subsection 5.1,
comparing sphere partition functions of 2d N =(2, 2) GLSMs which flow to mirror Calabi-
Yau manifolds. In subsection 5.2 we discuss Seiberg-like dualities between 2d N =(2, 2) gauge
theories with U(N) gauge groups and (anti)fundamental matter. Then in subsection 5.3 we
list generalizations, while subsection 5.4 describes 2d N =(0, 2) dualities which have been
checked using the elliptic genus.

5.1 Mirror symmetry

Numerous NLSMs with Calabi-Yau target spaces can be realized as the low-energy limit of
gauged linear sigma models. The Calabi-Yau moduli space coincides with the conformal
manifold of the NLSM, which is typically spanned by exactly marginal (chiral and twisted
chiral) operators of the GLSM. Twisted chiral operators alter the (complexified) Kähler
structure of the Calabi-Yau, while chiral operators alter its complex structure. Both the
moduli space of Kähler structure deformations and that of complex structure deformations
are Kähler manifolds, whose metric derives from a Kähler potential.

33For deformations of N =(2, 2) gauge theories, one can also compute correlators on S2 [26].
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As reviewed in Contribution [17], these Kähler potentials can be efficiently computed from
GLSM sphere partition functions [18, 13, 19, 20]. Placing a GLSM on the sphere preserves
either the vector or the axial R-symmetry. These two choices lead to distinct partition
functions ZA and ZB, computed in section 2 and subsection 3.2. Both are independent of
the superrenormalizable gauge coupling hence are invariant under the RG flow. The first
one depends only on twisted chiral parameters (FI parameters, theta angles, twisted masses,
vector R-charges) and gives the Kähler potential KK on the moduli space of Kähler structure
deformations, while the second one depends only on chiral parameters (the superpotential)
and gives the Kähler potential KC on the moduli space of complex structure deformations:

ZA = e−KK and ZB = e−KC . (5.1)

This streamlines the extraction of genus zero Gromov-Witten invariants from KK (see [18,
125, 126, 62]). Remarkably, most known Calabi-Yau manifolds are paired such that the
moduli space of complex structure deformations of one is identical to the moduli space of
Kähler structure deformations of the other and viceversa. The manifolds are called mirrors
of each other. The interchange of KK and KC can be shown by proving that ZA of one
GLSM is equal to ZB of the other.

Mirror symmetry generalizes to GLSMs whose low-energy limit is an NLSM on a Kähler
manifold (with non-negative first Chern class) rather than a Calabi-Yau manifold: a large
class of GLSMs have Landau-Ginzburg models as their mirrors [45]. In this section, we
prove following [13, 21] (an example was worked out in [11]) that ZA of a GLSM is equal to
ZB of the Landau-Ginzburg mirror proposed by Hori and Vafa. In fact, to avoid switching
back and forth between the backgrounds that preserve su(2|1)A and su(2|1)B, we apply to the
Landau-Ginzburg model the involution of the superconformal algebra which exchanges these
two subalgebras and exchanges vector/chiral multiplets with twisted vector/chiral multiplets.
As a result, we wish to write ZA of a GLSM (computed in section 2) as ZA of a Landau-
Ginzburg model of twisted chiral multiplets (computed in subsection 3.2).

The key mathematical identity is (omitting irrelevant constant factors)34

Γ(a)

Γ(1 + b)
=
∫ ∞

0
dt e−tta−1

∫

Hankel
ds ess−b−1 =

∫ ∞

−∞

∫ π

−π
d2Y exp

(
−e−Y − aY + e−Ȳ + bȲ

)
,

(5.2)
where Y ∼= Y + 2πi is periodic and a + b ∈ Z. This identity applies readily to the one-loop
determinant (2.18) of a chiral multiplet:

Zchiral
1-loop =

∏

w

Γ
(

q
2

− irτ − n
2

− irw(σ) − w(m)
2

)

Γ
(
1 − q

2
+ irτ − n

2
+ irw(σ) − w(m)

2

) =
∏

w

∫
d2Yw e

− q

2
(Yw+Ȳw) e−4πirW̃w−4πirW̃ w

(5.3)

34The Hankel contour goes around the cut of s−b−1 along the negative real axis, at a constant distance ǫ > 0
above and below it. To prove the second equality, either redefine Y = − log t and Ȳ = − log s, or decompose
Y = x + iy and recognize that the last expression is the Fourier transform 2π

∫ +∞

−∞
dx e(b−a)xJa+b(2e

−x) of
the Bessel function of the first kind.
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where the twisted superpotential W̃ involves the bottom component Σ = rσ − im/2 of the
field strength twisted chiral multiplet:

4πirW̃w = e−Yw −
(
irτ + n

2
+ iw(Σ)

)
Yw . (5.4)

For non-zero R-charges, the weight factor exp[− q
2
(Yw + Ȳw)] is naturally absorbed in the

integration measure (up to a constant) by using the variables X̃w = exp(− q
2
Yw).

Translating the full partition function of a GLSM to the variables Y and Σ yields

ZGLSM =
∫
d2Σ

∏

α>0

[
eπα(Σ−Σ̄)α(Σ)α(Σ̄)

]
∏

I,w

[∫
d2Y I

w e
−

qI
2

(Y I
w+Ȳ I

w)

]
e−4πirW̃ −4πirW̃ (5.5)

where Σ has a GNO quantized imaginary part, we dropped a factor of rc/3 and numerical
constants, and where

4πirW̃ =
∑

ℓ

[(
ϑℓ + 2πiζℓ

)
Trℓ Σ

]
+
∑

I,w

[
e−Y I

w −
(
irτI + nI

2
+ iw(Σ)

)
Y I

w

]
. (5.6)

This twisted superpotential was found much earlier [45] to be generated by vortices.
Equation (5.5) is the ZA partition function (3.6) of a Landau-Ginzburg model with twisted

chiral multiplets Σ and Y in a certain target space (whose volume form leads to the non-
trivial integration measure) and subject to the twisted superpotential (5.6), or equivalently
the ZB partition function of a model with chiral multiplets. We can go further in the case
of Landau-Ginzburg models mirror to Abelian GLSMs: then Σ appears only linearly in the
twisted superpotential hence plays the role of a Lagrange multiplier. Integrating it out yields
delta function constraints between the variables Y I :

iϑℓ − 2πζℓ +
∑

I

Y IQℓ
I ∈ 2πiZ . (5.7)

Here Qℓ
I denotes the charge of the I-th chiral multiplet under the ℓ-th gauge group and we

have dropped the index w as each irreducible representation is one-dimensional. Each of
the N constraints (5.7) eliminates one of the Nf twisted chiral multiplets Y I . The twisted
superpotential reads

4πirW̃ =
Nf∑

I=1

[
e−Y I −

(
irτI +

nI

2

)
Y I

]

(5.7)

(5.8)

and the integration measure reduces to (up to permutations of the Y I ’s)

Nf −N∏

I=1

∫
d2Y I e−

q′
I
2 (Y I+Ȳ I) (5.9)

where q′
I are certain combinations of R-charges, most conveniently determined by mixing the

R-symmetry with gauge symmetries so that R-charges of eliminated twisted chiral multiplets

50



vanish. Switching to variables X̃I = exp(− q′

2
Y I) yields a Landau-Ginzburg model whose

target space is flat, but with a conical singularity at X̃ = 0.
Let us consider as an example the quintic hypersurface in CP

4. We start with a U(1)
GLSM with 5 chiral multiplets Xi of gauge charge +1 and R-charge q and a chiral multiplet
P of gauge charge −5 and R-charge qP = 2 − 5q, with a superpotential W = P G5(X)
where G5 is a generic homogeneous polynomial of degree 5. The parameter q mixes the
R-symmetry with the gauge symmetry. Following the steps above, we introduce twisted
chiral fields Y1, . . . , Y5, YP then integrate out Σ and obtain the constraint (5.7), namely
5YP = 2πζ − iϑ+ Y1 + . . .+ Y5 (mod 2πi). For convenience, mix the R-symmetry with the
gauge symmetry to set q → 2/5 so that qP = 0. The variables X̃i = exp(−Yi/5) ∈ C∗/Z5

absorb the integration measure, at the cost of an orbifold singularity at the origin. In those
variables, the twisted superpotential of the Landau-Ginzburg model reads

4πirW̃ = G̃5(X̃) = X̃5
1 + X̃5

2 + X̃5
3 + X̃5

4 + X̃5
5 + e(−2πζ+iϑ)/5X̃1X̃2X̃3X̃4X̃5 . (5.10)

This model does not depend on the 101 parameters in the original superpotential P G5(X),
hence it can only be the mirror of the quintic GLSM at a specific point in the moduli space.
Since the theories coincide at that point, their whole moduli spaces must be the same, but
let us describe more precisely how this comes about. Continuing from ZA of the Landau-
Ginzburg model, we add a U(1) twisted vector multiplet under which each X̃i has charge
+1 and a twisted chiral multiplet P̃ of charge −5 and replace W̃ by P̃ G̃5(X̃) to make it
gauge invariant. The ZA partition function (3.10) of this twisted GLSM coincides with that
of the Landau-Ginzburg model. The twisted GLSM is a special case of the quintic GLSM
with multiplets replaced by twisted multiplets and G5 → G̃5. When its FI parameter χ is
negative, the low-energy limit is the Landau-Ginzburg model (5.10): the D-term equation∑

i|X̃i|2 −5|P̃ |2 = χ forces P 6= 0 and the F-term equation then sets all X̃i = 0. When χ > 0
instead, the low-energy limit is an NLSM on the quintic hypersurface G̃5 = 0, orbifolded
as described above. This orbifold has fixed points and curves. Blowing up the singularities
requires a choice of 100 volume parameters which combine with χ to reproduce the 101 chiral
parameters of the original GLSM. The NLSM on the blown-up orbifold of {G̃5 = 0} could
also be described by a twisted U(1)101 GLSM with 106 twisted chiral multiplets, but this is
somewhat cumbersome.

The partition functions ZA and ZB of mirror theories have also been proven equal for all
complete intersections in products of weighted projective spaces.

5.2 Seiberg duality with unitary groups

We now describe a 2d N =(2, 2) analogue of 4d N =1 Seiberg duality, explain how sphere
partition functions and elliptic genera of the dual theories are compared, and deduce some
variants of this duality in the next subsection. The first such N =(2, 2) dualities were analyzed
in [127].

The duality states that two theories (named “electric” and “magnetic” theories) have the
same infrared limit. The electric theory has a U(K) gauge group, Nf fundamental chiral
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multiplets φF (1 ≤ F ≤ Nf ), and Na antifundamental chiral multiplets φ̃A (1 ≤ A ≤ Na).
We assume N ≤ max(Nf , Na), as otherwise supersymmetry is spontaneously broken (both
the elliptic genus and the sphere partition function vanish, see footnote 4) and there is no
duality. The magnetic theory has the same field content with

(K,Nf , Na) → (K ′, N ′
f , N

′
a) =

(
max(Nf , Na) −K , Na , Nf

)

and additionally it has NaNf gauge singlet chiral multiplets MAF with a cubic superpotential

W = MAF φ̃
′
Fφ

′
A. The complexified FI parameters t = 2πζ + iϑ and the vector R-charges are

(−1)N ′
f

−K ′

e−t′

=
[
(−1)Nf −Ke−t

]−1
namely ζ ′ = −ζ , ϑ′ = −ϑ+ min(Nf , Na)π (5.11)

q′
A = 1 − q̃A , q̃′

F = 1 − qF , q
′(M)
AF = q̃A + qF . (5.12)

These R-charges give the superpotential R-charge 2 as required by supersymmetry, and are
also consistent with the matching of chiral rings: MAF is mapped to the meson φ̃AφF of the
electric theory. The flavor symmetry S[U(Nf ) × U(Na)] shared by the two theories can be
coupled to a background vector multiplet to include twisted masses and flavor fluxes (the
same in both theories), and M transforms in the bifundamental representation of U(Nf ) ×
U(Na).

Charge conjugation lets us assume Na ≤ Nf . It would in fact be enough to check the
duality for Na = Nf , then decouple chiral multiplets by giving them large twisted masses.

Let us compare elliptic genera of the two theories [88, 67]. Recall that the elliptic genus
ZT 2(τ, z, ξ) depends on the period τ of T 2, an R-symmetry holonomy z, and flavor symmetry
holonomies ξ in the flavor Cartan algebra. It is a sum of JK residues (4.28) of Z1-loop(τ, z, u, ξ)
at values of the gauge holonomies u (in the gauge Cartan algebra) where this meromorphic
(rankG, 0)-form has poles. More precisely, each component of u lies in a torus C/(Z + τZ)
and similarly for ξ. For the electric theory,35

Z1-loop(τ, z, u, ξ, ξ̃) =
1

K!

(
2πη(q)3

θ1(τ | − z)

)K K∏

i6=j

θ1(τ |ui − uj)

θ1(τ |ui − uj − z)

×
K∏

i=1




Nf∏

F =1

θ1(τ |ui − ξF + ( qF

2
− 1)z)

θ1(τ |ui − ξF + qF

2
z)

Na∏

A=1

θ1(τ | − ui + ξ̃A + ( q̃A

2
− 1)z)

θ1(τ | − ui + ξ̃A + q̃A

2
z)


 dKu . (5.13)

In the following we omit R-charges by shifting ξF → ξF + (qF/2)z and ξ̃A → ξ̃A − (q̃A/2)z.
Consider first the case Na = Nf . The elliptic genus is a sum of residues of (5.13) at a

set of poles which depends on a choice of auxiliary parameter η in the gauge Cartan algebra.
Choosing η = (1, . . . , 1) selects poles due to fundamental chiral multiplets, at ui = ξFi

for
1 ≤ i ≤ K, with all Fi distinct. Altogether, poles which contribute are labelled by K-element

35With a slight abuse of notation, we identify θ1(τ |z) ≡ θ1(q, y) where, as usual, q = e2πiτ and y = e2πiz .
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subsets I of {1, . . . , Nf}:

Z
U(K)
T 2

(
τ, z, ξ, ξ̃

)
=

∑

I∈C(K,Nf )

∏

F ∈I


∏

E 6∈I

θ1(τ |ξF − ξE − z)

θ1(τ |ξF − ξE)

Na∏

A=1

θ1(τ | − ξF + ξ̃A − z)

θ1(τ | − ξF + ξ̃A)




=




Nf∏

F =1

Na∏

A=1

θ1(τ | − ξF + ξ̃A − z)

θ1(τ | − ξF + ξ̃A)


 Z

U(Nf −K)

T 2

(
τ, z, −z

2
− ξ , z

2
− ξ̃

)
. (5.14)

Besides straightforward rearrangements, the second line uses θ1(τ |−z) = −θ1(τ |z). Restoring
the R-charges by ξF → ξF − (qF/2)z and ξ̃A → ξ̃A + (q̃A/2)z, we recognize the genus of the
dual theory with R-charges (5.12).

For Na 6= Nf the left-moving U(1) R-symmetry is anomalous and reduces to Z|Nf −Na|.
The R-symmetry fugacity y must obey yNf −Na = 1, as Z1-loop is multiplied by yNf −Na upon
shifting any component of u by τ . Unfortunately, Z1-loop is ill-defined at y = 1 so the local-
ization calculation of the elliptic genus fails in that case (and whenever yK = 1). However,
we can introduce Nf −Na chiral multiplets Pj in the det−1 representation of U(K) to cancel
the R-symmetry anomaly and allow generic y, then take the limit yNf −Na → 1. Provided we
choose R-charges of Pj to be qj = q+2j for some q, their one-loop determinant contributions
to the elliptic genus cancel as yNf −Na → 1 (for y = 1 a physical explanation is that one can
turn on twisted masses for the Pj):




Nf −Na∏

j=1

θ1(q, yq/2+j−1x−1)

θ1(q, yq/2+jx−1)


 y

Nf −Na →1−−−−−−−−→ 1 . (5.15)

The elliptic genus of the theory enriched with the Pj can be computed with η = (1, . . . , 1)
as above and yields exactly (5.14) once one takes the limit (5.15). For the allowed values
(Nf −Na)z ∈ Z, the above turns out to simplify to

Z
U(K)
T 2

(
τ, z, ξ, ξ̃

)
y

Nf −Na =1
= y−KNa/2

(
Nf

K

)

y

= y−KNa/2

∏Nf

j=Nf +1−K

(
yj/2 − y−j/2

)

∏K
j=1

(
yj/2 − y−j/2

) . (5.16)

The elliptic genus vanishes for yK 6= 1: this could be derived by using η = (−1, . . . ,−1)
in the theory without Pj. Incidentally, we learn by setting y = 1 that the theories have(

Nf

K

)
vacua.

The equality of elliptic genera implies that BPS states of the dual theories have identical
flavor and R-symmetry charges, but does not fix the map of (complexified) FI parameters
nor the superpotential. These are fixed by comparing A-type and B-type sphere partition
functions, respectively.

Next, we sketch the proof [11, 41, 128] that A-type sphere partition functions ZA
S2 of the

two theories coincide. This probes their twisted chiral rings (these have also been proven
isomorphic). As described in subsection 2.5 the partition function can be localized to (2.38):
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a “Higgs branch configuration” (labeled by I below) in the bulk of the sphere with vortices
at the North pole and antivortices at the South pole. In detail,

ZA
S2 =

∑

I∈C(K,Nf )

ZI
0 Z

I
+(e−t) ZI

−

(
e−t̄+iπ(Nf −Na)

)
(5.17)

where the semiclassical contribution ZI
0 and the (anti)vortex contributions ZI

± are expressed
in terms of the combinations Σ±

F = qF/2 + irτF ± nF/2 of R-charge, twisted mass and
flavor flux of fundamental chiral multiplets and similarly Σ̃±

A = −q̃A/2 + irτ̃A ± ñA/2 for
antifundamentals:

ZI
0 =

∏

F ∈I


e−tΣ+

F
−t̄Σ−

F

∏

E 6∈I

Γ(Σ+
E − Σ+

F )

Γ(1 − Σ−
E + Σ−

F )

Na∏

A=1

Γ(Σ+
F − Σ̃+

A)

Γ(1 − Σ−
F + Σ̃−

A)


 (5.18)

ZI
±(x) =

∑

(kF ≥0)F ∈I

∏

F ∈I

xkF
∏Na

A=1

(
Σ±

F − Σ̃±
A

)
kF∏

E∈I

(
−Σ±

E + Σ±
F − kE

)
kF

∏
E 6∈I

(
Σ±

E − Σ±
F − kF

)
kF

. (5.19)

Dual partition functions are compared term by term. The semiclassical parts ZI
0,electric and

Z
{1,...,Nf }\I
0,magnetic are equal up to simple factors elaborated on below. Terms of order xk for some

k ≥ 0 in the vortex partition functions can be recast as a k-dimensional contour integral
such that the poles on one side of the contour are labelled by (kF ≥ 0)F ∈I with

∑
F kF = k.

Provided Na ≤ Nf − 2, there is no pole at infinity and the sum of residues is equal to a sum
over poles on the other side of the contour, which reproduces the k-vortex partition function
of the dual theory. For |Na −Nf | ≤ 1 the integrand is singular at infinity and more tedious
calculations are needed. The result is

Z
Nf ,Na

U(K)

(
Σ±, Σ̃±; t

)
= a+

(
e−t−iπK ′

)
a−

(
e−t̄+iπK ′

)

×
∏

F,A

Γ(Σ+
F − Σ̃+

A)

Γ(1 − Σ−
F + Σ̃−

A)
Z

Na,Nf

U(K ′)

(
Σ̃± + 1

2
,Σ± − 1

2
; t′
)

(5.20)

where the factors a± depend on Σ±
F and Σ̃±

A and are (anti)holomorphic functions of t:

a±(z) = z−K ′/2
Nf∏

F =1

[
e±iπK ′

z
]Σ±

F
Na∏

A=1

[
e±iπK ′

]Σ̃±
A

G±(z) (5.21)

and the last function is G±(z) = 1 for Na ≤ Nf − 2, G±(z) = e∓z for Na = Nf − 1,

and G±(z) = (1 + z)K ′−
∑

F
Σ±

F
+
∑

A
Σ̃±

A for Na = Nf . The last two factors in (5.20) are the

partition function of the dual theory with its mesons: shifts of Σ± and Σ̃± by 1
2

realize
the map of R-charges (5.12). The factors a± are ambiguities due to finite renormalization
of the partition function, but in quiver gauge theories they become physical and have neat
interpretations in terms of cluster algebras [41] or Liouville/Toda correlation functions [128].
The phase of a+a− comes from a background twisted superpotential that depends on t and
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on the background field strength (twisted chiral) multiplets incorporating twisted masses
and flavor fluxes. The absolute value is independent of these background fields and can be
ignored for our purposes. It comes from improving the R-symmetry current. Ambiguities of
the sphere partition function under multiplication by (anti)holomorphic functions of t play
an important role in Contribution [17].

We will not elaborate on the comparison of B-type sphere partition functions performed
very recently in [129]. It yields that if the electric theory is endowed with a superpotential
W = W (φ̃AφF ), then the magnetic theory has the superpotential W (MAF ) + MAF φ̃

′
Fφ

′
A.

This is consistent with the matching of chiral rings MAF = φ̃AφF and φ̃′
Fφ

′
A = 0.

5.3 Variants of Seiberg duality

We now turn to consequences and analogues of the N =(2, 2) Seiberg duality.
The N =(2, 2) SU(K) gauge theory with Nf fundamental chiral multiplets is dual to the

theory with K → K ′ = Nf −K, as described in [127]. Chiral rings are generated by baryons,
which match provided R-charges are q′

F = −qF +
∑

F qF/K
′. Chiral multiplets of the two

theories are in the (anti)fundamental of an SU(Nf ) flavor symmetry and have charges 1/K
and 1/K ′ under a U(1) baryonic symmetry. Elliptic genera are shown to match in [88, 67].
A-type sphere partition functions are shown to match [11] by integrating partition functions
of the analogous U(K) and U(Nf −K) theories:

Z
Nf

SU(K)(qF ) =
∫ 2π

0

dϑ

2π

∫ ∞

−∞
4π dζ Z

Nf

U(K)(qF ; ζ, ϑ)

=
∫ 2π

0

dϑ

2π

∫ ∞

−∞
4π dζ Z

Nf

U(Nf −K)(q
′
F ; −ζ,−ϑ+ #π) = Z

Nf

SU(Nf −K)(q
′
F ).

(5.22)

We have used that partition functions of U(K) and U(Nf −K) theories are equal up to (5.21),
namely powers of e−t and e−t̄ that can be absorbed by shifting the Coulomb branch parame-
ter σ and the flux m. This shifts R-charges from 1−qF to q′

F given above, and affects twisted
masses and flavor fluxes in the same way, compatible with flavor symmetries.

In the presence of Na ≤ Nf − 2 additional antifundamental chiral multiplets, all steps
of (5.22) go through (ζ-dependent factors prevent the last step for Na = Nf −1 and Na = Nf)
and yield

Z
Nf ,Na

SU(K)(qF , q̃A) =
∏

F,A

γ(q̃A/2+qF/2)Z
Na,Nf

SU(Nf −K)

(
2− q̃A +

1

K ′

∑

F

qF ,−qF +
1

K ′

∑

F

qF

)
. (5.23)

At first this suggests that the two theories may be dual. However, chiral rings do not match:
the mesons φ̃AφF and baryons φF1 ∧ · · · ∧ φFK

of the electric theory match with the singlets
and baryons of the magnetic theory, but there is no chiral operator in the magnetic theory
with the same R-charge as antibaryons φ̃A1 ∧ · · · ∧ φ̃AK

. The lack of duality is confirmed
by noting that elliptic genera fail to match. A similar situation was observed in [30] where
two GLSMs with equal ZA were shown to flow to different SCFTs, whose Calabi-Yau target
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spaces thus have the same quantum Kähler moduli space despite having different complex
structure moduli spaces.

The same technique gives pairs of U(K) and U(K ′) theories that have equal sphere
partition functions but are not all dual. Start from the equality of partition functions of
U(K) and U(Nf − K) theories with Nf fundamentals and Na ≤ Nf − 2 antifundamentals
and additional singlets for the magnetic theory36. Add L singlets on both sides and gauge
a U(1) ⊂ S[U(Nf) × U(Na)] × U(1)L flavor symmetry, then shift its generator by that of
U(1) ⊂ U(K) or U(1) ⊂ U(Nf − K). Integrate over FI and theta parameters associated
to the mixed U(1). This yields partition functions of U(K) and U(Nf − K) theories with
matter in Nf fundamental, Na antifundamental, and L singlet representations of the SU
gauge group and with arbitrary U(1) gauge charges. As in dualities above, the magnetic
theory has NfNa additional singlets, now charged under the U(1) gauge group. Despite
sphere partition functions being equal, the theories are not expected to be dual in general:
their chiral rings typically do not match due to antibaryons dressed by singlets. It would
be interesting to find out which of these pairs of theories are indeed dual. In [127], the
duality was established for Na = 0, L = 1, and with a superpotential W = P Gd(B) where
P is the additional singlet in the det−d representation of U(K), and Gd(B) is a degree d
polynomial in the baryons B. See also [130] for the case of Na = 1 multiplets in the �⊗det−1

representation and other negative powers of det (then chiral rings contain no U(1)-invariant
antibaryons).

Quiver gauge theories with U(Ni) gauge and flavor symmetry factors and bifundamen-
tal chiral multiplets have multiple duals. These are obtained by gauging part of the flavor
symmetry S[U(Nf ) × U(Na)] in the duality between U(K) and U(max(Na, Nf) − K) the-
ories above. Denote by aij ≥ 0 the number of chiral multiplets in the antifundamental
representation of U(Ni) and the fundamental of U(Nj) for i 6= j. Let Nf(k) =

∑
i Niaik and

Na(k) =
∑

j akjNj be the numbers of (anti)fundamental chiral multiplets for the node U(Nk).
For any gauge factor U(Nk) there exists a dual with

Nk → N ′
k = max

(
Nf(k) , Na(k)

)
−Nk , a′

ij =




aij + aikakj if i 6= k and j 6= k

aji if i = k or j = k
(5.24)

with cubic superpotential terms coupling the Nja
′
jk = akjNj fundamental and a′

kiNi = Niaik

antifundamental chiral multiplets of U(N ′
k) with the corresponding NiaikakjNj singlets of

U(N ′
k) while preserving the U(Ni) and U(Nj) symmetries. The map of (complexified) FI

parameters is more elaborate: for example in quivers with all Na(i) = Nf(i) so that FI
parameters do not run

z′
k = z−1

k and for k 6= i, z′
i = ziz

aki

k (zk + 1)aik−aki (5.25)

in terms of the Kähler parameters zj = exp
(
−tj + iπ(Nf (j) − Nj)

)
. One can typically

apply further Seiberg dualities to other nodes in the quiver, obtaining a web of dualities.
However, after dualizing the node U(Nk), the quiver gauge theory involves adjoint matter if

36To ease the parallel description of dual theories we have charge conjugated one theory.
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aik 6= 0 6= aki for some i: then one cannot apply Seiberg duality to U(Ni). This motivates
the restriction to quivers such that for any of the dual descriptions, whenever aij 6= 0 6= aji

for some i 6= j, there exists a quadratic superpotential giving mass to 2 min(aij, aji) of these
bifundamental chiral multiplets, which can thus be removed without affecting the infrared
limit. The condition is difficult to check, but has been proven for various classes of quivers.
Then all dual quivers can be taken to have aij = 0 or aji = 0 for all i, j, and the matter content
is equally described by the antisymmetric matrix Bij = aij −aji. In [41] it was observed that
B, together with the beta function of FI parameters, and the zj , reproduce the structure
of cluster seeds. Dualities act on this data as cluster mutations. The connection between
cluster algebras and 2d N =(2, 2) quiver dualities is stronger than in higher dimensions, as it
concerns not only the quiver described by B but also cluster coefficients and cluster variables.

Seiberg duality can also be realized as an explicit symmetry in a 2d CFT [128]: the
A-type sphere partition function of U(K) gauge theories with Nf fundamental and Na ≤ Nf

antifundamental chiral multiplets is equal to a correlator in the ANf −1 Toda CFT. Toda
CFT charge conjugation reproduces precisely K ′ = Nf − K and the map of FI parameters,
R-charges and twisted masses. This instance of the AGT correspondence goes further: one
can include adjoint matter and obtain two other dualities.

• A generalization of N =(2, 2)∗ dualities studied in [41]. The duality relates U(K) and
U(K ′) gauge theories with N fundamental, N antifundamental and one adjoint chiral
multiplet X with a superpotential W =

∑N
F =1 φ̃FX

lFφF for arbitrary integers lF ≥ 0.
The magnetic theory has K ′ =

∑
F lF − K colors (for K ′ < 0 supersymmetry is

broken and there is no duality). When all lF = 1, the theories are N =(2, 2)∗ theories(
mass deformations of N =(4, 4) SQCD

)
. A-type sphere partition functions of the two

theories were proven to be equal in [128]. Chiral rings are generated by φ̃AX
kφF with

0 ≤ k < lA, lF and by TrXk for 0 ≤ k < K or 0 ≤ k < K ′ depending on the theory.
This mismatch has not been investigated but might be cured by the superpotential.
Just like Seiberg duality, (part of the) flavor symmetries can be gauged to produce
dualities between quivers.

• An N =(2, 2) Kutasov-Schwimmer duality. The electric theory has U(K) gauge group
with Nf fundamentals, Na antifundamentals and one adjoint X with superpotential
W = TrX l+1 for some l ≥ 1. The magnetic theory is identical with (K,Nf , Na, l) →
(max(Nf , Na)l − K,Na, Nf , l) and lNfNa gauge singlets MjF A for 0 ≤ j < l, with a

superpotential W = MjAF φ̃
′
FX

′jφ′
A+TrX ′(l+1). Chiral rings match under X → X ′ and

φ̃AX
jφF → MjAF . A-type sphere partition functions were proven to be equal in [128].

It would be interesting to investigate the existence of analogues of Brodie dualities,
where the electric and magnetic theories have two adjoint chiral multiplets X and Y
subject to a superpotential W = Tr(Xk+1 +XY 2).

Orthogonal and symplectic gauge groups were considered by Hori [131]. For instance, the
USp(2k) gauge theory with 2p + 1 fundamentals φI and m singlets Ma subject to a cubic
superpotential W = A[IJ ]

a Ma〈φI , φJ〉 with generic coefficients A[IJ ]
a is dual to the theory with
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k → p − k and m →
(

2p+1
2

)
− m provided these numbers are positive. Sphere partition

functions of these dual theories have not been compared: the usual method of comparing
Higgs branch expressions fails due to the absence of FI parameter. Gauging a U(1) flavor
symmetry gives further dualities [30, 132], whose gauge group U(1) × USp(2k) (and its
Z2 quotient) allow FI-theta parameters. Sphere partition functions have been compared
for theories whose low-energy limit has a Calabi-Yau threefold target space. Presumably,
integrating over the FI-theta parameters as in (5.22) should help prove that Hori duals have
equal A-type sphere partition function.

5.4 N =(0, 2) trialities

We describe dualities [118] between N =(0, 2) theories with a gauge group U(K) and (anti)fundamental
matter. The theories are expected to flow at intermediate energy scales to NLSMs on bun-
dles over Grassmannians [133] and each duality is due to an isomorphism between bundles
over Gr(K,N) and Gr(N −K,N) [134].

We let NP , NΦ, NΨ denote the number of antifundamental chirals P , fundamental chirals
Φ, and antifundamental Fermi multiplets Ψ (which could be mapped to fundamental ones by
exchanging E and J interactions). The SU(K) gauge anomaly NP/2+NΦ/2−NΨ/2−K due
to fermions in the matter and vector multiplets must vanish, thus K = (NP + NΦ −NΨ)/2.
The U(1) gauge anomaly NPK + NΦK − NΨK = 2K2 of these multiplets is cancelled37 by
adding two Fermi multiplets Ω1,2 with U(1) charge K, i.e., in the determinant representation
of U(K). For convenience, we also include NPNΦ neutral Fermi multiplets Γ with a J-term
interaction ΓPΦ.

Theories with (NP , NΦ, NΨ) equal to the same (N1, N2, N3) up to cyclic permutations,
depicted by the quivers in Figure 1, are expected to flow to the same infrared fixed point.
As evidence, we show that the elliptic genus38 is invariant under cyclic permutations of
(NP , NΦ, NΨ). The classical flavor symmetry is S[U(NP ) × U(NΦ) × U(NΨ) × U(2)] with
holonomies (ξP

i , ξ
Φ
i , ξ

Ψ
i , ξ

Ω
i ) modulo gauge transformations, but mixed flavor-gauge anomalies

reduce Abelian symmetries to a two-dimensional subgroup: this can be used for instance to
fix the U(1)Ω holonomy

∑
i ξ

Ω
i = −∑

i ξ
P
i −∑

i ξ
Φ
i +

∑
i ξ

Ψ
i

(
we took Φ in the � of SU(NΦ)

)
.

Up to a constant, the elliptic genus is a sum of residues of

∏2
ℓ=1 θ(ξ

Ω
ℓ +

∑
a ua)

∏K
a=1

∏NΨ
i=1 θ(ξ

Ψ
i − ua)

∏NP

j=1

∏NΦ
k=1 θ(ξ

P
j − ξΦ

k )
∏K

a=1

∏NP

i=1 θ(ξ
P
i − ua)

∏NΦ
j=1 θ(ua − ξΦ

j )

K∏

a6=b

θ(ua − ub) θ
′(0)KdKu

where θ(u) = θ1(τ |u)/iη(q) = −θ(−u) has zeros at Z + τZ, no poles, and θ′(0) = 2πiη(q)2.
Several sets of poles give the same sum of residues: poles due to P (at {ua} = {ξP

j |j ∈ J}
for each set of K distinct flavors J ⊂ {1, . . . , NP }) with residue

∏2
ℓ=1 θ(ξ

Ω
ℓ +

∑
j∈J ξ

P
j )
∏

j∈J

∏NΨ
i=1 θ(ξ

Ψ
i − ξP

j )
∏

j 6∈J

∏NΦ
k=1 θ(ξ

P
j − ξΦ

k )
∏

j∈J

∏
i6∈J θ(ξ

P
i − ξP

j )
; (5.26)

37One could consider SU(K) gauge theories and omit Ω1,2.
38While [118] work in the NSNS sector we work in the RR sector; results are related by spectral flow.
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P Φ Ψ Γ Ω
U(K) � � � 1 det
U(NP ) � 1 1 � 1
U(NΦ) 1 � 1 � 1
U(NΨ) 1 1 � 1 1
SU(2) 1 1 1 1 �

K1

N1

N2 N3

2

P Φ

Ψ

Γ

K2

N1

N2 N3

2

P

Φ

Ψ

Γ
K3

N1

N2 N3

2
P

Φ
Ψ

Γ

Figure 1: Quivers for three N =(0, 2) theories related by triality: Ki = (N1 +N2 +N3)/2−Ni

and (NP , NΦ, NΨ) is one of (N2, N3, N1), (N3, N1, N2), (N1, N2, N3). The table lists how the

chirals P,Φ and Fermis Ψ,Γ,Ω transform under the gauge group U(K) = U
(

1
2
(NP + NΦ −

NΨ)
)

and the classical flavor symmetry S[U(NP ) ×U(NΦ) ×U(NΨ) ×U(2)] which loses one
Abelian factor due to a flavor-gauge anomaly.

or poles due to Φ (at {ua} = {ξΦ
j |j ∈ J} for J ⊂ {1, . . . , NΦ}) with residue

∏2
ℓ=1 θ(ξ

Ω
ℓ +

∑
j∈J ξ

Φ
j )
∏

j 6∈J

∏NP
i=1 θ(ξ

P
i − ξΦ

j )
∏

j∈J

∏NΨ
k=1 θ(ξ

Ψ
k − ξΦ

j )
∏

j∈J

∏
i6∈J θ(ξ

Φ
j − ξΦ

i )
. (5.27)

Up to a sign, (5.26) is mapped to (5.27) under (NP , ξ
P ) → (NΦ, ξ

Φ) → (NΨ, ξ
Ψ) → (NP , ξ

P )
and J → J∁. One also has a shift ξΩ

i → ξΩ
i − ∑

j ξ
Ω
j − ∑

j ξ
P
j fixed by the above constraint

on
∑
ξΩ. Elliptic genera of theories in Figure 1 are thus equal, with S[U(N1) × U(N2) ×

U(N3) ×SU(2)] flavor symmetries identified. Another outcome of the calculation is that the
elliptic genus vanishes if K > NP or K > NΦ in any frame, which is equivalent to K < 0
in a dual frame. This suggests that supersymmetry is broken unless (N1, N2, N3) obey the
triangle inequality.

Lack of space forces us to only mention variants of the Gadde-Gukov-Putrov triality.
Gauging flavor symmetries leads to dualities between N =(0, 2) quiver gauge theories with
bifundamental chiral/Fermi multiplets and Fermi multiplets in determinant representations;
however, most quivers have either gauge anomalies or spontaneous supersymmetry breaking.
Such quivers were obtained from brane brick models in [135]. As shown in [136], a twisted
dimensional reduction of the 6d (2,0) theory on S2 ×Σ yields N =(0, 4) Lagrangians labelled
by pants decompositions of Σ, and changes in pants decomposition give N =(0, 4) dualities.
Similarly, twisted dimensional reductions on S2 of 4d N =1 and 4d N =2 dualities yield two-
dimensional (0, 2) or (0, 4) or (2, 2) dualities [137], in particular an SU(K) variant of the
(0, 2) triality above. All of these dualities are checked by comparing elliptic genera. The
dimensional reduction is based on [138, 9] (see also [139, 140, 141]).

6 Conclusion

We have reviewed the main localization calculations in two dimensions on the sphere (section 2),
other curved backgrounds (section 3) and the torus (section 4), and discussed applications
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to mirror symmetry and gauge theory dualities (section 5). We now conclude this review by
mentioning other developments.

Two-dimensional gauge theory descriptions of several non-critical strings in 6d SCFTs
have been tested by comparing topological vertex results to the elliptic genus of a string. As
discussed in Contribution [124], this was done for M-strings [123, 142, 143, 144] (namely M2-
branes suspended between M5-branes), E-strings [145, 146] (M2-branes suspended between
M5- and M9-branes), little strings [147] (strings on type IIA or IIB NS5-branes), and for a
class of 6d N =(1, 0) SCFTs engineered from F-theory [148, 149].

Nekrasov’s instanton partition function of 4d N =2 theories such as SU(N) super-Yang-
Mills can be reproduced by an appropriate (R-preserving) S2 partition function [150].39

The 4d theory is engineered by N fractional D3-branes on C2/Z2 and its instantons by k
D(−1)-branes. Blowing up the singular point yields a D1–D5 brane system, described in the
gauge theory limit by a 2d N =(2, 2) U(k) GLSM on the blown-up sphere CP

1. In the zero-
radius limit, its sphere partition function reproduces the equivariant volume of the ADHM
moduli space of k instantons, while for non-zero radius it captures genus zero Gromov-Witten
invariants of the ADHM moduli space [16, 152]. This construction was later used to extract
spectra of hydrodynamic quantum integrable systems [153, 154].

Another appearance of integrable models in relation to 2d localization is that elliptic
genera give solutions to Yang-Baxter equations [155, 156]. In this context, the Yang-Baxter
equation amounts to the invariance of the genus under N =(2, 2) Seiberg-like dualities.

We have already mentioned that twisted dimensional reductions of 4d N =1 theories
on a sphere yield 2d N =(0, 2) theories and that 4d dualities become 2d dualities. The
2d N =(0, 2) elliptic genus is thus a limit of a T 2 × S2 partition function [9]. Similarly,
the partition function of 3d N =2 theories on Lens spaces, described in Contribution [157],
reduces to an S2 partition function when the circle fiber of the Lens space shrinks to zero
size (see also [158, 159]). The S2 partition function also appears when localizing 4d N =2
theories on S4 on their Higgs branch [160, 161].

In four-dimensional supersymmetric gauge theories, a class of surface operators can be
constructed by coupling a two-dimensional theory to the bulk fields supersymmetrically (see
also Contribution [162]). Superconformal indices of coupled 2d/4d systems were computed
in [88] (see [163, 164] for related 5d calculations) and led to discovering the node-hopping
duality (see also [165]): coupling the same 2d N =(2, 2) theory to different fields in a 4d N =2
quiver theory gives the same surface operator at low energies. The AGT correspondence
relates the node-hopping duality to crossing symmetry in a 2d CFT [128]: the S4 partition
function of the 4d theory is identified with a Toda CFT correlator, adding a surface operator
on S2 ⊂ S4 corresponds to inserting a (degenerate) vertex operator in the correlator, and
different choices of couplings correspond to different OPEs of that vertex operator with
others. Kähler parameters (the 4d gauge coupling and 2d FI/theta parameters) correspond
to positions of vertex operators in the correlator and are expected to transform non-trivially

39In a different approach [151], for 4d N =2 theories engineered by string theories on a Calabi-Yau three-
fold X , the Seiberg-Witten Kähler potential can be obtained as that of X , itself derived from the S2 partition
function of a GLSM flowing to an NLSM on X .
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under node-hopping. The map could be found by comparing S2 ⊂ S4 partition functions of
these 2d/4d systems, but instanton-vortex partition functions which appear when localizing
[166] are unknown. It would be interesting to derive them.
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