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Abstract 76 

 77 

The deep history of humans in Africa and the complex divergences and migrations among 78 

ancient human genetic lineages remain poorly understood and are the subject of ongoing 79 

debate. We produced 73 high-quality whole genome sequences from 14 Central and Southern 80 

African populations with diverse, well-documented, languages, subsistence strategies, and 81 

socio-cultural practices, and jointly analyze this novel data with 104 African and non-African 82 

previously-released whole genomes. We find vast genome-wide diversity and individual 83 

pairwise differentiation within and among African populations at continental, regional, and 84 

even local geographical scales, often uncorrelated with linguistic affiliations and cultural 85 

practices. We combine populations in 54 different ways and, for each population combination 86 

separately, we conduct extensive machine-learning Approximate Bayesian Computation 87 

inferences relying on genome-wide simulations of 48 competing evolutionary scenarios. We 88 

thus reconstruct jointly the tree-topologies and migration processes among ancient and recent 89 

lineages best explaining the diversity of extant genomic patterns. Our results show the necessity 90 

to explicitly consider the genomic diversity of African populations at a local scale, without 91 

merging population samples indiscriminately into larger a priori categories based on 92 

geography, subsistence-strategy, and/or linguistics criteria, in order to reconstruct the diverse 93 

evolutionary histories of our species. We find that, for all different combinations of Central 94 

and Southern African populations, a tree-like evolution with long periods of drift between short 95 

periods of unidirectional gene-flow among pairs of ancient or recent lineages best explain 96 

observed genomic patterns compared to recurring gene-flow processes among lineages. 97 

Moreover, we find that, for 25 combinations of populations, the lineage ancestral to extant 98 

Southern African Khoe-San populations diverged around 300,000 years ago from a lineage 99 

ancestral to Rainforest Hunter-Gatherers and neighboring agriculturalist populations. We also 100 

find that short periods of ancient or recent asymmetrical gene-flow among lineages often 101 

coincided with epochs of major cultural and ecological changes previously identified by paleo-102 

climatologists and archaeologists in Sub-Saharan Africa. 103 
 104 

  105 
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Introduction 106 

Unraveling genetic structure and gene flow among human lineages in Africa is crucial to the 107 

understanding of the biological evolution and diversity of Homo sapiens throughout the continent 108 

(Henn, Steele and Weaver, 2018; Schlebusch and Jakobsson, 2018; Pfennig et al., 2023).  109 

Population geneticists largely agree today that Homo sapiens spent a large part of its genetic 110 

evolution within Africa only, between its gradual emergence from anatomically archaic forms 600.000-111 

200,000 years ago and the beginning of the Out-of-Africa expansions to the rest of the world around 112 

100,000-50,000 years ago (Schlebusch and Jakobsson, 2018). For the past 20 years, the detailed 113 

demographic and evolutionary history that shaped the genetic diversity of extant populations since the 114 

Out-of-Africa has been, and is still, the subject of numerous investigations in various regions of Africa 115 

(Verdu et al., 2009, 2013; Schlebusch et al., 2012; Breton et al., 2014; Patin et al., 2014, 2017; Perry 116 

et al., 2014; Busby et al., 2016; Pierron et al., 2017; Semo et al., 2020; Lucas-Sánchez, Serradell and 117 

Comas, 2021; Sengupta et al., 2021; Fortes-Lima et al., 2022, 2024; Laurent et al., 2023; Pfennig et al., 118 

2023).  119 

However, how ancient genetic divergences, and the dynamics of admixture and/or migration events 120 

among ancient human lineages, influenced the genetic landscape observed today throughout Africa, 121 

largely remains to be assessed (Bergström et al., 2021). Classically tested demographic models 122 

(Stringer, 2002; Henn, Steele and Weaver, 2018; Hollfelder et al., 2021; Ragsdale et al., 2023), range 123 

from a unique ancestral Homo sapiens genetic population having recently and rapidly diverged into 124 

extant African populations via series of founding events and/or multifurcations -often referred to as 125 

tree-like models-, to models where extant populations diverged in a remote past and remained isolated 126 

over long periods of time until relatively recently -often referred to as multiregional models-. Moreover, 127 

each model may encompass possible gene exchanges among lineages via migration or admixture 128 

processes. Importantly, the timing, duration, and/or intensity of such gene-flow events may 129 

fundamentally change the most likely topology of bifurcating tree-like models compared to results 130 

obtained without gene flows, and may also create reticulations among pairs of lineages throughout 131 

history (Ragsdale et al., 2023). Finally, these classical albeit highly complex models have recently been 132 

enriched with possible introgression events from now extinct, unknown, or unsampled non-Homo 133 

sapiens or ancient “ghost” Homo-sapiens lineages (Lachance et al., 2012; Lorente-Galdos et al., 2019; 134 

Lipson et al., 2022; Fan et al., 2023; Pfennig et al., 2023; Ragsdale et al., 2023). Such latter models 135 

became plausible in Africa in analogy to the likely events of introgressions from now extinct hominid 136 

species into Homo sapiens lineages unveiled outside of Africa by the major advances of paleogenomics 137 

(Meyer et al., 2012; Prüfer et al., 2014).  138 

In this context, several recent investigations tested a variety of the above models with maximum-139 

likelihood approaches relying on whole genome sequences from several extant populations sampled 140 

throughout the continent. They often reached highly contrasted results, with different ancient tree-141 

topologies between different numbers of ancient lineages (Schlebusch and Jakobsson, 2018; Lorente-142 

Galdos et al., 2019; Lipson et al., 2022; Fan et al., 2023; Ragsdale et al., 2023). Furthermore, they 143 

found that reticulations among a limited number of ancient lineages explained observed genetic patterns 144 

without the necessity of archaic introgressions (Ragsdale et al., 2023); or, instead, that admixture with 145 

other non-Homo sapiens or ancient Homo sapiens “ghost” populations most satisfactorily explained the 146 

results (Lachance et al., 2012; Lorente-Galdos et al., 2019; Lipson et al., 2022; Fan et al., 2023).  147 

A possible source of such vast differences among obtained results is likely the variety of population 148 

sets considered in each study at a continental scale. Indeed, genetic diversity and differentiation among 149 

populations is maximal in Africa (Tishkoff et al., 2009; Skoglund and Mathieson, 2018; Pfennig et al., 150 

2023), and previously shown to be due to substantial differences in local populations’ demographic 151 
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histories (e.g. (Verdu et al., 2009; Schlebusch et al., 2012; Busby et al., 2016; Patin et al., 2017)). 152 

Therefore, representing vast regions of the continent by a single population (Lorente-Galdos et al., 153 

2019; Ragsdale et al., 2023), or even merging data from differentiated groups (Fan et al., 2023), likely 154 

influenced results obtained across studies and their interpretations.  155 

In addition, and most importantly, all above models are highly nested, i.e. overlapping and 156 

genetically largely indistinguishable for vast spaces of model-parameter values. Indeed, depending on 157 

values of divergence times, effective population sizes, timing, duration and intensity of migration or 158 

admixture events among lineages, tree-like, reticulated, and even multiregional models, with or without 159 

ancient admixture, may be highly mimetic of one another. This essential methodological difficulty is 160 

well illustrated by the often relatively similar values of posterior likelihoods of the various competing 161 

models, thus indeed proved empirically hard to discriminate with the maximum-likelihood approaches 162 

deployed, even more so when competing models differ in the number and specifications of parameters 163 

explored with different statistics. These fundamental statistical issues remain despite the use of high-164 

quality whole genomes, an increasing number of populations considered at once, and increasingly 165 

powerful methods based on innovative statistics (Gravel, 2012; Lorente-Galdos et al., 2019; Ragsdale 166 

and Gravel, 2019; Kamm et al., 2020; Fan et al., 2023; Ragsdale et al., 2023). Finally, the lack of 167 

ancient DNA data older than a few thousand years in Africa, strongly hampers the empirical testing of 168 

the possible occurrence of ancient Homo sapiens “ghost” or non-Homo sapiens introgression events in 169 

Homo sapiens lineages in Africa (Lachance et al., 2012; Skoglund and Mathieson, 2018; Lorente-170 

Galdos et al., 2019; Lipson et al., 2022; Ragsdale et al., 2023). 171 

In this context, we investigated 74 high coverage (>30x) whole genome sequences from an 172 

anthropologically well-characterized sample of hunter-gatherer, herder, and agricultural neighboring 173 

populations from Central and Southern Africa (FigureF1x, TableT1x), merged together with 105 174 

previously published high-quality whole genomes (SGDP-Mallick et al. 2016, HGDP-Meyer et al. 175 

2012, 1KGP-Auton et al. 2015, Rasmussen et al. 2014, SAHGP-Choudhury et al. 2017). In particular, 176 

we investigated genomic diversity patterns and aimed at reconstructing ancient demographic histories 177 

among lineages having led to different groups of Khoe-San hunter-gatherer or herder populations from 178 

Southern Africa (Schlebusch et al. 2012), and to different groups of both Eastern or Western Congo 179 

Basin hunter-gatherer populations (often historically designated “Pygmies” by Europeans) and their 180 

agriculturalist (“non-Pygmy”) neighbors with whom they share, nowadays, complex socio-economic 181 

interactions (Verdu et al. 2013; Hewlett 2014). Investigating detailed ancient demography and gene-182 

flow among these three groups of populations, taking explicitly into account local differentiations and 183 

possible gene-flow among and within groups, is of particular interest as they have previously been 184 

identified to be among the most deeply diverged lineages in our species (Li et al., 2008; Tishkoff et al., 185 

2009; Schlebusch and Jakobsson, 2018; Schlebusch et al., 2020; Pfennig et al., 2023). 186 

We conducted formal statistical choice of competing scenarios and subsequent joint estimation of 187 

parameters under the winning scenario using machine-learning Approximate Bayesian Computation 188 

(ABC) (Tavaré et al., 1997; Beaumont, Zhang and Balding, 2002; Blum and François, 2010; Csilléry, 189 

François and Blum, 2012; Pudlo et al., 2016), a methodological approach fundamentally differing from 190 

all maximum-likelihood methods previously deployed, and only rarely explored in previous studies 191 

reconstructing ancient demography in Africa (Lorente-Galdos et al., 2019). ABC allows us to compare 192 

a range of complex demographic scenarios presumed to have led to observed genetic patterns in 193 

numerous population samples, and to estimate posterior parameter distributions best mimicking the data 194 

under the winning scenario (e.g. (Verdu et al., 2009; Lorente-Galdos et al., 2019; Laurent et al., 2023)). 195 

Briefly, this is achieved based on informative summary-statistics computed on the observed data and 196 

on numerous explicit genetic simulations for which scenario-parameters are drawn randomly in large 197 

prior distributions set by the user. We thus aimed at inferring jointly competing tree-topologies, 198 

divergence times, effective population size changes, and timing, duration and intensity of possible 199 



6 

asymmetric gene-flow events, to reconstruct the detailed evolutionary mechanisms underlying the 200 

genomic diversity of extant Central and Southern African populations.  201 

 202 

--------------------------------------------------------------------------------------------------------------------------- 203 
FigureF1x: Sampling location and number of whole-genome sequenced individuals. 204 
Individuals and populations originally sequenced in this work are indicated with filled circles. Individuals and populations 205 
from previously published data merged with the original data set for comparison purposes are indicated with open circles. 206 
Circles’ diameters are proportional to the number of individuals as indicated in the top row of the legend in the bottom left 207 
corner. 208 
--------------------------------------------------------------------------------------------------------------------------- 209 

 210 

  211 
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FigureF1x 212 

 213 

 214 

  215 



8 

--------------------------------------------------------------------------------------------------------------------------- 216 
TableT1x: Population table 217 
Geographical location of population samples are indicated in FigureF1x. 218 
 219 

Population 
Name1 

N2 Dataset3 Sampling Location 
Language Family 
(language) 

Close socio-
economic 
interactions 
with 

Samples 
included in 
the ROH-
ASD-
ADMIXTUR
E analyses 
(FigureF2x, 
FigureF3x, 
FigureF4x) 

Samples 
included in the 
ABC analyses 
(FigureF5x, 
FigureF6x, 
FigureF7x, 
FigureF8x, 
FigureF9x) 

Original dataset 

Baka 7 this study Bosquet (Cameroon) 
Niger-Congo non Bantu 
Adamawa Ubangian 
Gbanzili (Baka) 

Nzime Yes 

wRHG, 5 
individuals with 
highest 
coverage 

Nzime 5 this study Messea (Cameroon) Bantu A842 (Nzime) Baka Yes RHGn (West) 

Ba.Kola 5 this study 
Dispersed between Lolodorf 
and Kribi (Cameroon) 

Bantu A80 (Kola) Ngumba Yes wRHG 

Ngumba 5 this study 
Dispersed between Lolodorf 
and Kribi (Cameroon) 

Bantu A80 (Ngumba) Ba.Kola Yes RHGn (West) 

Bi.Aka_Mbati 5 this study 
Bombeketi section of 
Bagandou (Central African 
Republic) 

Bantu C10 (Mbati) 
Mbati farmers 
(not in the 
dataset) 

Yes wRHG 

Ba.Kiga 5 this study Mukono (Uganda) Bantu J10 (Kiga) Ba.Twa Yes RHGn (East) 

Ba.Twa 6 this study 
Kebiremu, Byumba, 
Kitariro, Mgungu, Nteko 
(Uganda) 

Bantu J11 (Twa) Ba.Kiga Yes 

eRHG, 5 
individuals with 
highest 
coverage 

Nsua 5 this study Bundimassoli (Uganda) 
Sudanic Mangbutu 
(Efe) 

Ba.Konjo Yes eRHG 

Ba.Konjo 5 this study Mulimassenge (Uganda) Bantu J40 (Konjo) Nsua Yes RHGn (East) 

!Xun 5 this study 
Omega camp (Namibia) and 
Schmidtsdrift (Sout Africa)4 

Khoisan (Ju) Not applicable Yes nKS 

Ju|’hoansi 5 this study Tsumkwe (Namibia) Khoisan (Ju) Not applicable Yes nKS 

Nama 5 this study Windhoek (Namibia) Khoisan (KhoeKhoe) Not applicable Yes sKS 

Karretjie People 5 this study Colesberg (South Africa) 

Khoisan (Tuu ancestral 
language) / Indo-
European (Afrikaans 
current language) 

Not applicable Yes sKS 

Khutse-San 5 this study 
Kutse Game reserve 
(Botswana) 

Khoisan (Khoe 
Kalahari) 

Not applicable Yes No 

Comparative dataset 

Bantu_Herero 2 SGDP Namibia Bantu R30 (Herero) Not applicable Yes No 

Bantu_Kenya 2 SGDP Kenya No data Not applicable Yes No 

Bantu_Tswana 2 SGDP South Africa Bantu S31 (Tswana) Not applicable Yes No 

Biaka 2 SGDP Central African Republic Bantu C10 (Aka) Not applicable Yes No 

Coloured 8 SAHGP South Africa 
Indo-European 
(Afrikaans) 

Not applicable Yes No 

Dinka 4 
SGDP, 
HGDP 

Sudan Nilo-Saharan (Dinka) Not applicable Yes No 

Esan 3 SGDP, KGP Nigeria 
Niger-Congo non Bantu 
(Esan) 

Not applicable Yes No 

Gambian 2 SGDP Gambia 
Niger-Congo non Bantu 
(Mandinka) 

Not applicable Yes No 

Igbo 2 SGDP Nigeria 
Niger-Congo non Bantu 
(Igbo) 

Not applicable Yes No 

Ju|’hoansi_com
p 

4 
SGDP, 
HGDP 

Namibia Khoisan (Ju) Not applicable Yes No 

#Khomani 2 SGDP South Africa Khoisan (Tuu) Not applicable Yes No 

Kongo 1 SGDP Cameroon No data Not applicable Yes No 

Lemande 2 SGDP Cameroon Bantu A46 (Lemande) Not applicable Yes No 

Luhya 3 SGDP, KGP Kenya Bantu JE32 (Luhya) Not applicable Yes No 

Luo 2 SGDP Kenya Nilo-Saharan (Dholuo) Not applicable Yes No 

Maasai 2 SGDP Kenya Nilo-Saharan (Maasai) Not applicable Yes No 
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Mandenka 4 
SGDP, 
HGDP 

Senegal 
Niger-Congo non Bantu 
(West Maninkakan) 

Not applicable Yes No 

Mandinka 1 KGP Gambia 
Niger-Congo non Bantu 
(Mandinka) 

Not applicable Yes No 

Mbuti 5 
SGDP, 
HGDP 

Democratic Republic of 
Congo 

Bantu D30 (Bambuti) Not applicable Yes eRHG 

Mende 3 SGDP Sierra Leone 
Niger-Congo non Bantu 
(Mende) 

Not applicable Yes No 

Mozabite 2 SGDP Algeria Afro-Asiatic (Mozabite) Not applicable Yes No 

Saharawi 2 SGDP Western Sahara Afro-Asiatic (Saharawi) Not applicable Yes No 

Somali 1 SGDP Kenya Afro-Asiatic (Somali) Not applicable Yes No 

Sotho 7 SAHGP South Africa Bantu S30 (Sotho) Not applicable Yes No 

Xhosa 8 SAHGP South Africa Bantu S41 (Xhosa) Not applicable Yes No 

Yoruba 4 
SGDP, 
HGDP 

Nigeria 
Niger-Congo non Bantu 
(Yoruba) 

Not applicable Yes No 

Zulu 1 SAHGP South Africa Bantu S42 (Zulu) Not applicable Yes No 

French 4 
SGDP, 
HGDP 

France Indo-European (French) Not applicable Yes No 

CEU 2 KGP United States of America 
Indo-European 
(English) 

Not applicable Yes No 

Dai 6 SGDP, KGP China Tai (Dai) Not applicable Yes No 

Papuan 6 
SGDP, 
HGDP 

Papua New Guinea Papuan (no data) Not applicable Yes No 

Karitiana 5 
SGDP, 
HGDP 

Brazil Tupian (Karitiana) Not applicable Yes No 

1Population Names are self-reported for the original dataset presented in this study 220 
2Number of unrelated individuals considered in all analyses in this study (see Material and Methods) 221 
3SGDP (Mallick et al., 2016); KGP (The 1000 Genomes Project Consortium et al., 2015); HGDP (Meyer et al., 2012; Rasmussen et al., 222 
2014); SAHGP (Choudhury et al., 2017). 223 
4The place of origin of the !Xun is around Menongue in Angola. 224 
--------------------------------------------------------------------------------------------------------------------------- 225 

 226 

  227 
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Results 228 

We generated high-coverage whole genome sequences (>30X) in 74 individuals from 14 Central and 229 

Southern African populations for whom detailed ethno-anthropological information was gathered in the 230 

field jointly with DNA samples (FigureF1x and TableT1x). We merged this original dataset with a 231 

comparative dataset comprising 105 individuals from 27 African and five non-African populations for 232 

whom similar high-quality raw whole genome sequencing data were made available to the community 233 

(Meyer et al., 2012; Rasmussen et al., 2014; The 1000 Genomes Project Consortium et al., 2015; 234 

Mallick et al., 2016; Choudhury et al., 2017). After quality-control, variant-calling, and relatedness 235 

filtering procedures conducted on all 179 individuals together, we retained 73 and 104 unrelated 236 

individuals in our original and comparative datasets, respectively, for all subsequent analyses (see 237 

Material and Methods). 238 

Considering only the 73 Central and Southern African unrelated individuals newly sequenced here, 239 

we identify a total of 26,780,319 biallelic SNPs (241,428 multiallelic SNPs), and 2,454,965 simple 240 

insertions/deletions (969,025 complex indels), compared to the reference sequence of the human 241 

genome GRCh38, out of which 854,114 (3.1893%) and 114,362 (4.6584%), respectively, were not 242 

previously reported in dbSNP 156 (SupplementaryTableST1x). Among the 177 unrelated worldwide 243 

individuals including our original dataset, we identify 36,272,545 biallelic SNPs (257,906 multiallelic 244 

SNPs), and 3,159,306 simple insertions/deletions (977,542 complex indels), out of which 1,055,245 245 

(2.9092%) and 189,124 (5.9863%), respectively, were not previously reported in dbSNP 156 246 

(SupplementaryTableST1x).  247 

Furthermore, we find a large variability in the mean number of biallelic SNPs across populations 248 

(FigureF2x-PanelA, SupplementaryTableST2x). In particular, we find substantially more biallelic 249 

SNPs within African populations and more variation of the mean number of SNPs across African 250 

populations (from mean=3,726,018; SD=27,793 across 2 individuals in the Saharawi from Western 251 

Sahara, to mean=4,628,957; SD=8,139 across 5 individuals in the Ju|’hoansi from Namibia), than within 252 

and among non-African populations (from mean=3,214,086; SD=69,241 across 5 individuals in the 253 

Karitiana from Brazil, to mean=3,551,792; SD=7,819 across 2 individuals from the USA CEU 254 

population). Overall, Southern African Khoe-San populations exhibit the highest mean number of 255 

biallelic SNPs as well as numbers of previously unreported SNPs, followed by Central African 256 

Rainforest Hunter-Gatherer populations from the Congo Basin, and then by all other African 257 

populations in our dataset. These results show that a substantial number of previously unknown variants 258 

can still be found when investigating high-quality whole genome sequences from relatively under-259 

studied Sub-Saharan African populations, consistent with previous studies (Meyer et al., 2012; 260 

Rasmussen et al., 2014; The 1000 Genomes Project Consortium et al., 2015; Mallick et al., 2016; 261 

Choudhury et al., 2017; Schlebusch et al., 2020; Breton, Fortes-Lima and Schlebusch, 2021; Fan et al., 262 

2023; Ragsdale et al., 2023).  263 

 264 

  265 
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--------------------------------------------------------------------------------------------------------------------------- 266 
FigureF2x: Whole autosomal genome bi-allelic SNPs counts, unbiased heterozygosities, and distributions of Runs of 267 
Homozygosity by bins of length, in 37 African and 5 non-African populations. 268 
(A) Numbers of bi-allelic SNPs across individuals within populations of more than one individual, compared to the reference 269 
sequence of the human genome GCRh38 and to previously reported variants in dbSNP 156. Detailed variant-counts are 270 
provided in SupplementaryTableST1x and SupplementaryTableST2x. (B) Unbiased estimates of multi-locus 271 
heterozygosities (Nei, 1978), averaged across all variable (bi-allelic SNPs only) and non-variable autosomal sites with no-272 
missing genotype within each population of more than one individual, corrected then for haploid population sample sizes. (C) 273 
Mean total ROH lengths in four bins of length categories for each population of more than one individual, separately. For each 274 
panel, we present a box zooming specifically on the results obtained for the original dataset of 73 unrelated individuals whole-275 
genome sequenced from Central and Southern Africa. 276 
See Material and Methods for filtering and calculation details and the software packages used. For (A) and (B), box-plots 277 
indicate the population median in between the first and third quartile of the box-limits, whiskers extending to data points no 278 
more than 1.5 times the interquartile range of the distribution, and empty circles for all more extreme points beyond this limit, 279 
if any. Population geographical location, categorization, and descriptions are provided in FigureF1x and TableT1x. 280 
--------------------------------------------------------------------------------------------------------------------------- 281 

  282 
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FigureF2x 283 

 284 

 285 

 286 

 287 

  288 
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1. Large genetic diversities and differentiations in Central and Southern Africa 289 

1.A. Heterozygosities and Runs of Homozygosity 290 

We find very large differences across populations at a local scale in Central and Southern Africa in 291 

unbiased heterozygosities (Nei, 1978), calculated on both varying and non-varying autosomal sites 292 

(FigureF2x-PanelA-B and SupplementaryTableST2x). Indeed, we find varying genetic variation 293 

across Northern Khoe-San populations (!Xun and Ju|’hoansi) and Southern KS populations (Nama, 294 

Karretjie People and #Khomani). Furthermore, we find overall more variation in Rainforest Hunter-295 

Gatherer populations from the western part of the Congo Basin than in RHG populations from the east; 296 

and western RHG populations exhibited much larger genetic diversities than all their respective RHG 297 

neighbors.  298 

In addition, we investigated the distributions of Runs of Homozygosity (ROH) across individuals 299 

within each of the 46 populations in our dataset. In general (FigureF2x-PanelC), individuals from 300 

Eastern RHG populations (Nsua, Mbuti, Ba.Twa), exhibit the longest total proportion of their autosomal 301 

genome in ROH across Sub-Saharan African populations, for all ROH length-classes, with the 302 

exception of #Khomani individuals from Southern Africa, and that of Coloured individuals for short 303 

ROH only. Interestingly, we find that Western RHG populations (Ba.Kola, Baka, Biaka, Bi.Aka_Mbati) 304 

have much less ROH of all classes than Eastern RHG. Furthermore, we find less short ROH, but more 305 

long ROH, in Western RHG than in all RHG neighboring populations across the Congo Basin except 306 

for the Ba.Kiga RHGn from Uganda. Finally, we find that all Northern and Southern Khoe-San 307 

populations have relatively similar total lengths of short ROH compared to that of RHG neighbors, with 308 

the notable exception of the !Xun, who have the smallest proportion of their genomes in short ROH, 309 

worldwide. Nevertheless, we find substantially more ROH of longer class in KS populations than in 310 

RHG neighbors, a relative pattern similar to what was observed for Western RHG. The distribution of 311 

ROH sizes has been shown to be highly informative about important demographic processes such as 312 

levels of inbreeding or endogamy within populations, and reproductive isolation or recent admixture 313 

among populations (Pemberton et al., 2012; Mooney et al., 2018; Szpiech et al., 2019; Laurent et al., 314 

2023). Thus, our ROH results highlight possibly vast differences in recent demographic processes and 315 

levels of endogamy across Central and Southern African populations.  316 

Altogether, our heterozygosity and ROH results show the vast genetic diversity of Sub-Saharan 317 

African populations, as well as substantially diverging genomic patterns at a local geographical scale 318 

among and within groups of Rainforest Hunter-Gatherers, RHG neighbors, and Khoe-San populations. 319 

 320 

1.B. Individual pairwise genetic differentiation 321 

We investigated individual pairwise genomic differentiation across the 177 worldwide unrelated 322 

individuals in our dataset, including the 73 unrelated novel Central and Southern African individuals, 323 

using Allele-Sharing Dissimilarities (ASD, (Bowcock et al., 1991)). The Neighbor Joining Tree (NJT, 324 

(Saitou and Nei, 1987; Gascuel, 1997)) representation of the pairwise ASD matrix shows three main 325 

clusters among all African individuals, separated by a longer genomic distance from all non-African 326 

individuals (FigureF3x-PanelA). One cluster corresponds to all Southern African Khoe-San 327 

populations (represented by the pink and red symbols, see FigureF3x-PanelB), largely separated from 328 

a cluster corresponding to Rainforest Hunter-Gatherer populations from the Congo Basin (represented 329 

by the blue symbols); itself also largely separated from a third cluster grouping all other Western, 330 

Eastern, Southern and Central African populations in our data set, the latter group including Rainforest 331 

Hunter-Gatherer neighboring populations in green symbols (see, FigureF3x-PanelB).  332 

 333 

  334 
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--------------------------------------------------------------------------------------------------------------------------- 335 
FigureF3x: Individual pairwise genetic differentiation patterns. 336 
Neighbor-Joining Tree NJT (Saitou and Nei, 1987; Gascuel, 1997) and Multi-Dimensional scaling representation of genome-337 
wide Allele Sharing Dissimilarities (Bowcock et al., 1991) among pairs of individuals at worldwide and regional African 338 
scales. We considered the 14,182,615 genome-wide autosomal SNPs pruned for low LD (r2 threshold 0.1) to calculate ASD 339 
between all pairs of individuals. (A) NJT computed for all 177 worldwide individuals in the ASD matrix. For easing the 340 
visualization of the internal branches of the NJT, all terminal edges are represented in dotted lines each measuring 1/10th of 341 
their true size. (B) Individual symbols and colors identifying the 73 Central and Southern African individuals originally whole-342 
genome sequenced with filled symbols, and the 104 individuals from worldwide populations, including Africa, merged with 343 
the original data with open symbols. (C) and (D) First three axes of ASD-MDS computed on a subset of the full ASD matrix 344 
comprising only the individuals sequenced anew, whose symbols are provided in (B). (E) NJT computed on the same 345 
individual subset of the ASD matrix used for (C) and (D). Terminal edges of this latter tree are represented with dotted lines 346 
each measuring 1/30th of their true size. 347 
--------------------------------------------------------------------------------------------------------------------------- 348 

 349 

  350 
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FigureF3x 351 

 352 

 353 

  354 



16 

Note importantly that individual pairwise dissimilarities at the genome-wide scale do not reflect 355 

geography (FigureF1x, TableT1x), highlighting the large genetic differentiation found across African 356 

populations and the complexity of its distribution at both a local and continental scale. From West to 357 

East of the Congo Basin throughout Central Africa, RHG populations cluster separately from RHG 358 

geographic neighbors with whom they nevertheless share close socio-economic interactions. 359 

Furthermore, Central African RHGn are more genetically resembling certain other Western, Eastern 360 

and Southern Africans than their immediate RHG geographical neighbors. Analogously, Southern 361 

African Khoe-San populations are also clustering together and much more distant from other Southern 362 

African geographically neighboring populations. 363 

The Multidimensional Scaling (MDS) projection of the subsampled ASD matrix for only the 73 364 

novel individuals from Central and Southern Africa, further shows substantial differentiation among 365 

groups of individuals within each one of the three clusters identified at the continental scale. Indeed, 366 

FigureF3x-PanelC, D and E show substantial differentiation between Western and Eastern Central 367 

African Rainforest Hunter-Gatherer populations, and even substantial differentiation between Ba.Twa 368 

and Nsua RHG very locally in Uganda. Conversely, we find relatively much shorter genetic 369 

differentiation among pairs of RHG neighbors from West to East of the entire Congo Basin. Finally, 370 

results also show substantial differentiation across Southern African Khoe-San populations, albeit these 371 

populations are relatively closer from one another than the different RHG populations. 372 

NJT and MDS based on the ASD pairwise matrix provide an important view of the major axes of 373 

genetic differentiation and variation across samples, but do not easily allow to visually describe higher-374 

order axes of genomic variations. To do so, we conducted an ADMIXTURE analysis (Alexander et al. 375 

2009), on the same entire worldwide dataset for increasing values of K (FigureF4x). This descriptive 376 

method is known to capture the same information as ASD-MDS and ASD-NJT, but allows to explore 377 

multiple axes of variation at the same time (Pritchard, Stephens and Donnelly, 2000; Rosenberg, 2002; 378 

Falush, Stephens and Pritchard, 2003; Alexander, Novembre and Lange, 2009; Lawson, van Dorp and 379 

Falush, 2018; Peter, 2022; Laurent et al., 2023). 380 

 381 

--------------------------------------------------------------------------------------------------------------------------- 382 
FigureF4x: 383 
Worldwide interindividual genetic diversity patterns with ADMIXTURE 384 
Each individual is represented by a single vertical line divided in K colors each proportional to an individual’s genotype 385 
membership proportion assigned by ADMIXTURE (Alexander, Novembre and Lange, 2009) into the virtual cluster of that 386 
color. Two individuals showing the same relative proportions of each color at a given value of K are genetically more 387 
resembling one another than two individuals with different relative proportions of the same colors. Population and regional 388 
geographic groupings are not considered for the calculations, individuals are a posteriori grouped by populations and ordered 389 
by the user. Each population is separated by a thin vertical black line. Unsupervised clustering conducted with 840,031 390 
genome-wide SNPs pruned for LD (r2 threshold 0.1) and minor allele frequency (0.1) using ADMIXTURE for values of K 391 
ranging from 2 to 10, considering 177 worldwide individuals. For each value of K separately, we performed 20 independent 392 
runs and used PONG (Behr et al., 2016), to identify groups of resembling results (called “modes”) based on Symmetric 393 
Similarity Coefficient measures of individual results. The number of runs among the 20 independent runs belonging to the 394 
same mode result (i.e. that have pairwise SSC above 0.998), is indicated below the number of K on the left of each barplot 395 
separately. Only those runs are averaged per individual to provide the barplot result for each value of K separately. 396 
--------------------------------------------------------------------------------------------------------------------------- 397 

 398 

  399 
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FigureF4x 400 

 401 

 402 

 403 

  404 
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At K=2 in FigureF4x, the green virtual genetic cluster is maximized in Northern KS populations 405 

while the gray cluster is maximized in non-African populations, consistent with largest genetic distances 406 

in the ASD-NJT in FigureF3x, with all other individuals in our dataset presenting intermediate, non-407 

resolved, genotype membership proportions to either cluster.  408 

At K=3, a novel red cluster is maximized in all Southern KS populations separating them from the 409 

rest of African individuals, also consistent with the ASD-NJT. At K=4, the novel blue cluster 410 

differentiates Central African RHG populations, and in particular certain Eastern RHG populations who 411 

maximize their membership proportions to this cluster.  412 

The new dark and darker gray clusters respectively at K=5 and K=6 differentiate Oceanian Papuan 413 

individuals and South American Karitiana individuals from one another and from all other non-African 414 

individuals, without affecting substantially genotype membership proportions from African individuals.  415 

At K=7, the novel light blue cluster differentiates Eastern and Western RHG populations, as 416 

observed in FigureF3x.  417 

At K=8, the novel orange cluster differentiates mainly among Northern and Southern Khoe-San 418 

populations, with the Central Khutse San showing substantial membership proportions to both the red 419 

and the orange clusters, respectively maximized in Northern and Southern KS.  420 

At K=9, an alternative clustering solution is shown where East Asian Dai, Oceania Papuan, and 421 

South American Karitiana individuals are all clustering separately in three fully resolved clusters, 422 

affecting the African clustering patterns where the differentiation previously observed at K=8 among 423 

Northern and Southern Khoe-San individuals disappears to the benefit of a novel clustering solution 424 

where Ba.Twa cluster separately from all RHG and from Eastern RHG with whom they shared closer 425 

genotype membership proportions to the medium blue clusters at previous values of K in particular.  426 

Finally, at K=10, these alternative clustering solutions are resolved into seven different virtual 427 

genetic clusters maximized in different groups of African individuals. The light blue cluster is 428 

maximized in certain Western RHG populations. The dark blue cluster is maximized in the Ba.Twa 429 

Eastern RHG individuals only, while the medium blue cluster is maximized in the two other Eastern 430 

RHG populations mostly. The red cluster is mainly represented in the Northern KS individuals, while 431 

the orange cluster is maximized in Southern KS. Finally, the green cluster is maximized in all other 432 

African populations, albeit note that it is not fully resolved at this value of K since no individual exhibits 433 

100% genotype membership to this cluster. 434 

Most importantly, note that numerous Central and Southern African individuals retain, from K=2 435 

to 10, intermediate genotype membership proportions in between certain clusters. This should be 436 

interpreted primarily as these individuals being at intermediate genetic distance between individuals 437 

presenting 100% membership to either cluster, which is consistent with ASD-MDS and ASD-NJT 438 

projections (FigureF3x). In turn, such intermediate distances may be either due to yet-unresolved 439 

ADMIXTURE clustering, which may appear at higher values of K, or can be due to admixture having 440 

occurred between ancestors respective to each cluster, the latter interpretation being likely but not 441 

formally tested by the ADMIXTURE method. The possible occurrence of gene-flow events across pairs 442 

of lineages and their influence on tree-topologies are incorporated explicitly in our Approximate 443 

Bayesian Computation inferences detailed below (Tavaré et al., 1997; Pritchard et al., 1999; Beaumont, 444 

Zhang and Balding, 2002; Blum and François, 2010; Csilléry, François and Blum, 2012; Pudlo et al., 445 

2016; Raynal et al., 2019). 446 

 447 

Altogether, our descriptive results highlight the vast genetic diversity and differentiation of African 448 

populations, maximized in certain groups of Central and Southern African populations, as previously 449 

reported (e.g. (Meyer et al., 2012; Rasmussen et al., 2014; Mallick et al., 2016; Choudhury et al., 2017; 450 

Fan et al., 2023; Ragsdale et al., 2023; Fortes-Lima et al., 2024)). Finally, and most importantly, our 451 

results highlight in particular the vast genetic diversity and differentiation of populations at a very local 452 
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scale in Africa, including among immediate neighbors, not trivially correlated with geographical 453 

distances among populations, linguistic classification, nor mode of subsistence. In fact, these results 454 

anticipate that historical and demographic inferences in Africa may substantially differ when 455 

considering different population samples across the continent and even at a local scale, as well as 456 

advocate for extreme caution when grouping individuals and populations samples into larger categories. 457 

 458 

2. Demographic and migration histories in Central and Southern African 459 

2.A. Summary of the ABC inference design 460 

We aimed at reconstructing the demographic and migration history that produced extant genomic 461 

patterns observed within and among Central and Southern African populations (FigureF2x, FigureF3x, 462 

FigureF4x), with machine-learning ABC scenario-choices followed by posterior-parameter 463 

estimations. To do so, we considered eight competing possible tree-topologies among five extant 464 

Northern and Southern Khoe-San, Western and Eastern Rainforest Hunter-Gatherer, and Rainforest 465 

Hunter-Gatherer neighboring populations (FigureF5x). Furthermore, for each topology, we considered 466 

two possible gene-flow processes among recent and ancient genetic lineages: instantaneous asymmetric 467 

gene-flow corresponding to instantaneous unidirectional introgression events between pairs of lineages; 468 

and recurring asymmetric gene-flow corresponding to unidirectional recurring migrations among pairs 469 

of lineages (scenarios “i” and “r” respectively, FigureF5x). Finally, we considered, for each topology 470 

and each gene-flow process, three nested gene-flow intensities for each event among pairs of lineages 471 

separately: no to very high gene-flow rates (scenarios “i1” and “r1”); no to moderate rates (scenarios 472 

“i2” and “r2”); and no to limited rates (scenarios “i3” and “r3”).  473 

This led to 8x2x3=48 competing scenarios in total which can be grouped in different ways to 474 

address formally two nested major questions:  475 

 476 

i) which ancestral lineages to extant populations diverged first from the others and when did they do so, 477 

when considering complex gene-flow events among recent and ancient lineages? 478 

 479 

ii) did gene-flow events occur recurrently or more instantaneously among pairs of lineages during the 480 

evolutionary history of Central and Southern African populations? When did these events occur? How 481 

intense were they? 482 

 483 

Importantly, we aimed at considering the vast genetic diversity and differentiation within and 484 

among populations and groups of populations at a local and regional scale (FigureF2x, FigureF3x, 485 

FigureF4x, and (Tishkoff et al., 2009; Skoglund and Mathieson, 2018; Pfennig et al., 2023)). 486 

Therefore, we replicated the same ABC scenario-choice and posterior-parameter estimation procedures 487 

considering, in turn, 54 different combinations of five sampled populations of five individuals’ whole 488 

autosomal genomes each (FigureF5x). 489 

We thus conducted a total of 240,000 coalescent simulations under these 48 competing scenarios 490 

(5000 simulations per scenario), by drawing parameter values from prior distributions set by the user 491 

(FigureF5x, TableT2x). For each simulation, we then calculated a vector of 337 summary-statistics 492 

(TableT3x), within and among the five simulated populations; each vector of summary-statistics thus 493 

corresponds to a vector of parameter values drawn randomly from prior distributions and used for one 494 

simulation. We then deployed Random Forest ABC procedures (Pudlo et al., 2016; Estoup et al., 2018), 495 

to identify the winning scenario or group of scenarios for each 54 combinations of five sampled “real” 496 

populations separately. Finally, under the winning scenario, we produced 100,000 simulations, 497 

computed 202 summary-statistics for each simulation (TableT3x), and performed Neural Network 498 



20 

ABC posterior parameter joint-estimation (Blum and François, 2010; Csilléry, François and Blum, 499 

2012), providing posterior-parameter distributions most likely to have produced observed genomic data, 500 

for each scenario-parameter. 501 

 502 

--------------------------------------------------------------------------------------------------------------------------- 503 
FigureF5x: 48 competing scenarios for the history of Central and Southern African populations. 504 
(A) Eight competing topologies for the demographic history of five Central and Southern African extant lineages. The Northern 505 
Khoe-San lineage (nKS) is represented by either the Ju|’hoansi or the !Xun population. The Southern Khoe-San lineage (sKS) 506 
is represented by either the Karretjie People or the Nama population. The Rainforest Hunter-Gatherer Neighbors lineage 507 
(RHGn) is represented either by the Western Congo Basin Nzime or Ngumba populations, or the Eastern Ba.Konjo or Ba.Kiga 508 
populations. The Western Rainforest Hunter-Gatherer lineage (wRHG) is represented by either the Baka, the Ba.Kola, or the 509 
Bi.Aka_Mbati population. The Eastern Rainforest Hunter-Gatherer lineage (eRHG) is represented by either the Nsua, the 510 
Ba.Twa, or the Mbuti population. As indicated in legend in the bottom right corner of the panel, the eight topologies can be 511 
grouped according to i) which ancestral lineage diverged first from the two others, or ii) whether the nKS and sKS lineages 512 
split earlier or later than the split of the wRHG and eRHG lineages. For each topology, we consider possible changes in 513 
lineages’ constant effective population size, Ne, after each divergence event, t. For each topology, we considered possible 514 
gene-flow events among ancestral lineages and among recent lineages, represented as horizontal uni-directional arrows. (B) 515 
Example for a given topology (1a), of the fact that each one of the eight topologies are considered under two alternative 516 
competing “instantaneous” (Scenario i-1a) or “recurring” (Scenario r-1a) gene-flow processes. Instantaneous gene-flow 517 
processes consider that genes can be exchanged among pairs of ancestral or recent lineages at a single parameterized time, tad, 518 
with independent parameters of gene-flow intensity, m, from lineage “A” to “B” and from lineage “B” to “A”. Recurring gene-519 
flow processes consider instead that gene-flow occur at each generation between pairs of lineages with a constant independent 520 
rate, m, from lineage “A” to “B” and from lineage “B” to “A”. Note that for all eight topologies and for both instantaneous 521 
and recurring gene-flow processes, we parameterized separately the gene-flow from lineage “A” into lineage “B”, and the 522 
gene-flow from lineage “B” into “A”, in order to allow for possibly asymmetrical gene-flow events among pairs of lineages. 523 
For both instantaneous and recurring gene-flow processes, we considered three nested intensities of gene-flow parameters 524 
indicated at the bottom of (B). Scenarios i1 or r1 consider that the gene-flow parameters m in each topology are independently 525 
drawn in Uniform distributions between 0 and 1 or 0 and 0.05, respectively, thus allowing for the possibility of no to high 526 
gene-flows from one lineage to the other. Scenarios i2 or r2 consider that the gene-flow parameters m in each topology are 527 
independently drawn in Uniform distributions between 0 and 0.125 or 0 and 0.0125, respectively, thus allowing only for the 528 
possibility of no to intermediate gene-flow from one lineage to the other. Finally, scenarios i3 or r3 consider that the gene-529 
flow parameters m in each topology are independently drawn in Uniform distributions between 0 and 0.01 or 0 and 0.001, 530 
respectively, thus only allowing for the possibility of no to reduced gene-flow from one lineage to the other. Altogether we 531 
thus considered 8x2x3=48 competing scenarios for the demographic and migration history of Central and Southern African 532 
populations inferred with machine-learning Approximate Bayesian Computation. We conducted Random-Forest ABC 533 
scenario choice procedures among groups of these 48 scenarios in turn for 54 different sets of five observed populations each, 534 
represented as grey lines between population names, each population comprising five whole-genome sequenced individuals. 535 
Sampled-population names considered in the 54 combinations are given below each tree-leave, and combinations are limited 536 
to those pairing one RHGn with the specific eastern or western RHG population with whom they share complex socio-537 
economic interactions, as indicated in TableT1x. See the detailed description of scenarios and their grouping, their parameters 538 
and their respective prior distributions used for ABC inference in Material and Methods and TableT2x. 539 
--------------------------------------------------------------------------------------------------------------------------- 540 

 541 

  542 
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FigureF5x 543 

 544 

 545 

  546 
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--------------------------------------------------------------------------------------------------------------------------- 547 
TableT2x: 48 competing scenarios parameters’ description and prior distributions 548 
Codes for scenarios topologies and gene-flow processes and all scenario parameters are detailed in FigureF5x and in Material 549 
and Methods. 550 
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Parameter Description Prior 
Scenario 
topology 

Scenari
o gene-
flow 

Condition 

tRHG Time of divergence between wRHG and eRHG Uniform[1,15000] 
1a-2a-2c-3a i1-i2-i3 

and 
r1-r2-r3 

tRHG>tKS 

1b-1c-2b-3b tKS>tRHG 

tKS Time of divergence between nKS and sKS Uniform[1,15000] 
1a-2a-2c-3a i1-i2-i3 

and 
r1-r2-r3 

tRHG>tKS 

1b-1c-2b-3b tKS>tRHG 

tRHG-RHGn Time of divergence between the RHGn lineage and the lineage ancestral to all RHG lineages Uniform[1,15000] 1a-1b-1c 
i1-i2-i3 
and 
r1-r2-r3 

tRHG-RHGn>tRHG 

tKS-RHGn Time of divergence between the RHGn lineage and the lineage ancestral to all KS lineages Uniform[1,15000] 2a-2b-2c 
i1-i2-i3 
and 
r1-r2-r3 

tKS-RHGn>tKS 

tKS-RHG Time of divergence between the KS and RHG ancestral lineages Uniform[1,15000] 3a-3b 
i1-i2-i3 
and 
r1-r2-r3 

tKS-RHG>tKS and  
tKS-RHG>tRHG 

tKS-RHG-RHGn Time of the divergence event ancestral to all lineages Uniform[1,15000] all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

tKS-RHG-RHGn> all other times 

tadnKS-sKS Time for both the unidirectional instantaneous gene-flow events between nKS and sKS Uniform[1,15000] all 8 topol. i1-i2-i3 tKS>tadnKS-sKS 

m(nKS-sKS) or 
m(sKS-nKS) 

Instantaneous gene-flow intensity from sKs into nKS, or from nKS into sKS independantly 

Uniform[0,1] 

all 8 topol. 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(nKS-sKS) or 
m(sKS-nKS) 

Recurring gene-flow intensity from sKS into nKS, or from nKS into sKs independantly 

Uniform[0,0.05] 

all 8 topol. 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadnKS-RHGn Time for both the unidirectional instantaneous gene-flow events between nKS and RHGn Uniform[1,15000] all 8 topol. i1-i2-i3 
tKS>tadnKS-RHGn and 
tRHG-RHGn>tadnKS-RHGn 

m(nKS-RHGn) or 
m(RHGn-nKS) 

Instantaneous gene-flow intensity from RHGn into nKS, or from nKS into RHGn 
independantly 

Uniform[0,1] 

all 8 topol. 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(nKS-RHGn) or 
m(RHGn-nKS) 

Recurring gene-flow intensity from RHGn into nKS, or from nKS into RHGn independantly 

Uniform[0,0.05] 

all 8 topol. 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadsKS-RHGn 
Time for both the unidirectional instantaneous gene-flow events between sKS and RHGn 
lineages 

Uniform[1,15000] all 8 topol. i1-i2-i3 
tKS>tadsKS-RHGn and 
tRHG-RHGn>tadsKS-RHGn 

m(sKS-RHGn) or 
m(RHGn-sKS) 

Instantaneous gene-flow intensity from RHGn into sKS, or from sKS into RHGn 
independantly 

Uniform[0,1] 

all 8 topol. 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(sKS-RHGn) or 
m(RHGn-sKS) 

Recurring gene-flow intensity from RHGn into sKS, or from sKS into RHGn independantly 

Uniform[0,0.05] 

all 8 topol. 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadwRHG-eRHG Time for both the unidirectional instantaneous gene-flow events between wRHG and eRHG Uniform[1,15000] all 8 topol. i1-i2-i3 tRHG>tadwRHG-eRHG 

m(wRHG-eRHG) or 
m(eRHG-wRHG) 

Instantaneous gene-flow intensity from eRHG into wRHG, or from wRHG into eRHG 
independantly 

Uniform[0,1] 

all 8 topol. 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(wRHG-eRHG) or 
m(eRHG-wRHG) 

Recurring gene-flow intensity from eRHG into wRHG, or from wRHG into eRHG 
independantly 

Uniform[0,0.05] 

all 8 topol. 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadwRHG-RHGn Time for both the unidirectional instantaneous gene-flow events between wRHG and RHGn Uniform[1,15000] all 8 topol. i1-i2-i3 
tRHG>tadwRHG-RHGn and 
tKS-RHGn>tadnwRHG-RHGn 

m(wRHG-RHGn) or 
m(RHGn-wRHG) 

Instantaneous gene-flow intensity from RHGn into wRHG, or from wRHG into RHGn 
independantly 

Uniform[0,1] 

all 8 topol. 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(wRHG-RHGn) or 
m(RHGn-wRHG) 

Recurring gene-flow intensity from RHGn into wRHG, or from wRHG into RHGn 
independantly 

Uniform[0,0.05] 

all 8 topol. 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadeRHG-RHGn Time for both the unidirectional instantaneous gene-flow events between eRHG and RHGn Uniform[1,15000] all 8 topol. i1-i2-i3 
tRHG>tadeRHG-RHGn and 
tKS-RHGn>tadeRHG-RHGn 

m(eRHG-RHGn) or 
m(RHGn-eRHG) 

Instantaneous gene-flow intensity from RHGn into eRHG, or from eRHG into RHGn 
independantly 

Uniform[0,1] 

all 8 topol. 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(eRHG-RHGn) or 
m(RHGn-eRHG) 

Recurring gene-flow intensity from RHGn into eRHG, or from eRHG into RHGn 
independantly 

Uniform[0,0.05] 

all 8 topol. 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadARHG-RHGn 
Time for both the unidirectional instantaneous gene-flow events between the RHGn and the 
lineage ancestral to wRHG and eRHG lineages 

Uniform[1,15000] 
all 8 topol. 
except 2c 

i1-i2-i3 tadRHGn-ARHG>tRHG 

m(RHGn-ARHG) or 
m(ARHG-RHGn) 

Instantaneous gene-flow intensity from the ancestral lineage ARHG into RHGn, or from 
RHGn into ARHG independantly 

Uniform[0,1] 
all 8 topol. 
except 2c 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(RHGn-ARHG) or 
m(ARHG-RHGn) 

Recurring gene-flow intensity from the ancestral lineage ARHG into RHGn, or from RHGn 
into ARHG independantly 

Uniform[0,0.05] 
all 8 topol. 
except 2c 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadAKS-RHGn 
Time for both the unidirectional instantaneous gene-flow events between the lineage 
ancestral to nKS and sKS, and the RHGn lineage 

Uniform[1,15000] 
all 8 topol. 
except 1c 

i1-i2-i3 tadAKS-RHGn>tKS 

m(RHGn-AKS) or 
m(AKS-RHGn) 

Instantaneous gene-flow intensity from the ancestral lineage AKS into RHGn, or from RHGn 
into AKS independantly 

Uniform[0,1] 
all 8 topol. 
except 1c 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(RHGn-AKS) or 
m(AKS-RHGn) 

Recurring gene-flow intensity from the ancestral lineage AKS into RHGn, or from RHGn 
into AKS independantly 

Uniform[0,0.05] 
all 8 topol. 
except 1c 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadAKS-ARHG 
Time for both the unidirectional instantaneous gene-flow events between the lineage 
ancestral to nKS and sKS, and the lineage ancestral to wRHG and eRHG lineages 

Uniform[1,15000] 
all 8 topol. 
except 1c-2c 

i1-i2-i3 
tadAKS-ARHG>tKS and 
tadAKS-ARHG>tRHG 

m(AKS-ARHG) or 
m(ARHG-AKS) 

Instantaneous gene-flow intensity from the ancestral lineage ARHG into the ancestral lineage 
AKS, or from AKS into ARHG independantly 

Uniform[0,1] 
all 8 topol. 
except 1c-2c 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 
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m(AKS-ARHG) or 
m(ARHG-AKS) 

Recurring gene-flow intensity from the ancestral lineage ARHG into the ancestral lineage 
AKS, or from AKS into ARHG independantly 

Uniform[0,0.05] 
all 8 topol. 
except 1c-2c 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadnKS-ARHG-RHGn 
Time for both the unidirectional instantaneous gene-flow events between the nKS and the 
lineage ancestral to ARHG and RHGn lineages 

Uniform[1,15000] 1c i1-i2-i3 
tKS>tadnKS-ARHG-RHGn and 
tadnKS-ARHG-RHGn>tRHG-RHGn  

m(nKS-ARHG-RHGn) 
or 
m(ARHG-RHGn-nKS) 

Instantaneous gene-flow intensity from the lineage ARHG-RHGn ancestral to lineages 
RHGn and ARHG into nKS, or from nKS into ARHG-RHGn independantly 

Uniform[0,1] 

1c 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(nKS-ARHG-RHGn) 
or 
m(ARHG-RHGn-nKS) 

Recurring gene-flow intensity from the lineage ARHG-RHGn ancestral to lineages RHGn 
and ARHG into nKS, or from nKS into ARHG-RHGn independantly 

Uniform[0,0.05] 

1c 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadsKS-ARHG-RHGn 
Time for both the unidirectional instantaneous gene-flow events between the sKS and the 
lineage ancestral to ARHG and RHGn lineages 

Uniform[1,15000] 1c i1-i2-i3 
tKS>tadsKS-ARHG-RHGn and 
tadsKS-ARHG-RHGn>tRHG-RHGn  

m(sKS-ARHG-RHGn) 
or 
m(ARHG-RHGn-sKS) 

Instantaneous gene-flow intensity from the lineage ARHG-RHGn ancestral to lineages 
RHGn and ARHG into sKS, or from sKS into ARHG-RHGn independantly 

Uniform[0,1] 

1c 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(sKS-ARHG-RHGn) 
or 
m(ARHG-RHGn-sKS) 

Recurring gene-flow intensity from the lineage ARHG-RHGn ancestral to lineages RHGn 
and ARHG into sKS, or from sKS into ARHG-RHGn independantly 

Uniform[0,0.05] 

1c 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadAKS-RHGn-wRHG 
Time for both the unidirectional instantaneous gene-flow events between the wRHG and the 
lineage ancestral to AKS and RHGn lineages 

Uniform[1,15000] 2c i1-i2-i3 
tRHG>tadAKS-RHGn-wRHG and 
tadAKS-RHGn-wRHG>tKS-RHGn  

m(wRHG-AKS-RHGn) 
or 
m(AKS-RHGn--wRHG) 

Instantaneous gene-flow intensity from the lineage AKS-RHGn ancestral to lineages AKS 
and RHGn into wRHG, or from wRHG into AKS-RHGn independantly 

Uniform[0,1] 

2c 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(wRHG-AKS-RHGn) 
or 
m(AKS-RHGn--wRHG) 

Recurring gene-flow intensity from the lineage AKS-RHGn ancestral to lineages AKS and 
RHGn into wRHG, or from wRHG into AKS-RHGn independantly 

Uniform[0,0.05] 

2c 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadAKS-RHGn-eRHG 
Time for both the unidirectional instantaneous gene-flow events between the eRHG and the 
lineage ancestral to AKS and RHGn lineages 

Uniform[1,15000] 2c i1-i2-i3 
tRHG>tadAKS-RHGn-eRHG and 
tadAKS-RHGn-eRHG>tKS-RHGn  

m(eRHG-AKS-RHGn) 
or 
m(AKS-RHGn--eRHG) 

Instantaneous gene-flow intensity from the lineage AKS-RHGn ancestral to lineages AKS 
and RHGn into eRHG, or from eRHG into AKS-RHGn independantly 

Uniform[0,1] 

2c 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(eRHG-AKS-RHGn) 
or 
m(AKS-RHGn--eRHG) 

Recurring gene-flow intensity from the lineage AKS-RHGn ancestral to lineages AKS and 
RHGn into eRHG, or from eRHG into AKS-RHGn independantly 

Uniform[0,0.05] 

2c 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadAKS-ARHG-RHGn 
Time for both the unidirectional instantaneous gene-flow events between the lineage 
ancestral to KS and the lineage ancestral to RHG and RHGn lineages Uniform[1,15000] 1a-1b-1c i1-i2-i3 

tadAKS-ARHG-RHGn>tRHG-RHGn 
and 
tadAKS-ARHG-RHGn>tKS and 
tKS-RHG-RHGn>tadAKS-ARHG-RHGn 

m(AKS-ARHG-RHGn) 
or 
m(ARHG-RHGn-AKS) 

Instantaneous gene-flow intensity from the lineage ARHG-RHGn ancestral to lineages 
ARHG and RHGn into the ancestral lineage AKS, or from AKS into ARHG-RHGn 
independantly 

Uniform[0,1] 

1a-1b-1c 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(AKS-ARHG-RHGn) 
or 
m(ARHG-RHGn-AKS) 

Recurring gene-flow intensity from the lineage ARHG-RHGn ancestral to lineages ARHG 
and RHGn into the ancestral lineage AKS, or from AKS into ARHG-RHGn independantly 

Uniform[0,0.05] 

1a-1b-1c 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadAKSRHGn-ARHG 
Time for both the unidirectional instantaneous gene-flow events between the lineage 
ancestral to KS and RHGn, and the lineage ancestral to RHG lineages 

Uniform[1,15000] 2a-2b-2c i1-i2-i3 
tadAKSRHGn-ARHG>tKS-RHGn and 
tadAKSRHGn-ARHG>tRHG and 
tKS-RHG-RHGn>tadAKSRHGn-ARHG 

m(AKSRHGn-ARHG) 
or 
m(ARHG-AKSRHGn) 

Instantaneous gene-flow intensity from the ancestral lineage ARHG into the lineage 
AKSRHGn ancestral to AKS and RHGn, or from AKSRHGn into ARHG independantly 

Uniform[0,1] 

2a-2b-2c 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(AKSRHGn-ARHG) 
or 
m(ARHG-AKSRHGn) 

Recurring gene-flow intensity from the ancestral lineage ARHG into the lineage AKSRHGn 
ancestral to AKS and RHGn, or from AKSRHGn into ARHG independantly 

Uniform[0,0.05] 

2a-2b-2c 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

tadAKSARHG-RHGn 
Time for both the unidirectional instantaneous gene-flow events between the lineage 
ancestral to KS and RHG, and the RHGn lineage 

Uniform[1,15000] 3a-3b i1-i2-i3 
tadAKSARHG-RHGn>tKS-RHG and 
tKS-RHG-RHGn>tadAKSARHG-RHGn 

m(AKSARHG-RHGn) 
or 
m(RHGn-AKSARHG) 

Instantaneous gene-flow intensity from the lineage RHGn into the lineage AKSRHG 
ancestral to AKS and ARHG, or from AKSRHG into RHGn independantly 

Uniform[0,1] 

3a-3b 

i1 

x Uniform[0,0.125] i2 

Uniform[0,0.01] i3 

m(AKSARHG-RHGn) 
or 
m(RHGn-AKSARHG) 

Recurring gene-flow intensity from the lineage RHGn into the lineage AKSRHG ancestral to 
AKS and ARHG, or from AKSRHG into RHGn independantly 

Uniform[0,0.05] 

3a-3b 

r1 

x Uniform[0,0.0125] r2 

Uniform[0,0.001] r3 

NnKS Effective population size for the nKS lineage 

Uniform[10,100000] 

all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

x 

NsKS Effective population size for the sKS lineage all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

x 

NAKS Effective population size for the lineage ancestral to the nKS and the sKS all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

x 

NRHGn Effective population size for the RHGn lineage all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

x 

NwRHG Effective population size for the wRHG lineage all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

x 

NeRHG Effective population size for the eRHG lineage all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

x 

NARHG Effective population size for the lineage ancestral to the wRHG and the eRHG all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

x 

NARHG-RHGn Effective population size for the lineage ancestral to the RHGn and the ARHG 1a-1b-1c 
i1-i2-i3 
and 
r1-r2-r3 

x 

NAKS-RHGn Effective population size for the lineage ancestral to the RHGn and the AKS 2a-2b-2c 
i1-i2-i3 
and 
r1-r2-r3 

x 
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NAKS-ARHG Effective population size for the lineage ancestral to the AKS and the ARHG 3a-3b 
i1-i2-i3 
and 
r1-r2-r3 

x 

NA Effective population size for the lineage ancestral to all lineages all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

x 

Mutation rate Fixed mutation rate 1.25*10-8 all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

x 

Recombination rate Fixed recombination rate 1*10-8 all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

x 

Transition to 
transversion ratio 

Fixed transition to transversion rate 0.33 all 8 topol. 
i1-i2-i3 
and 
r1-r2-r3 

x 

--------------------------------------------------------------------------------------------------------------------------- 551 
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--------------------------------------------------------------------------------------------------------------------------- 554 
TableT3x: Summary-statistics used in Random-Forest ABC scenario-choice and Neural-Network ABC posterior-555 
parameter estimation. 556 

Name of statistic (or group of statistics) What was computed 
Numbe

r of 
values 

RF-
ABC 

scenari
o-

choice 

NN-ABC 
posterior-

parameter 
estimation 

Total number of biallelic sites among the five populations sum 1 yes yes 

Total number of multiallelic sites among the five 
populations 

sum 1 yes yes 

ASD distance within population for each five population 
separately 

average and variance 10 yes no 

First five dimensions of the projection of the ASD matrix 
within population for each five population separately 

average and variance 50 yes yes 

Proportion of biallelic sites within each five population 
separately 

sum in a population divided by total 
number of biallelic sites in the dataset (no 
missing data) 

5 yes yes 

Proportion of homozygous sites within each five 
population separately 

sum in a population divided by total 
number of biallelic sites in the dataset (no 
missing data) 

5 yes yes 

Proportion of homozygous ancestral sites within each five 
population separately 

sum in a population divided by total 
number of homozygous sites in the 
population (no missing data) 

5 yes no 

Proportion of private biallelic sites within each five 
population separately 

sum in a population divided by total 
number of biallelic sites in the dataset (no 
missing data) 

5 yes yes 

Frequency of the minor allele of the private biallelic sites 
within each five population separately 

average and variance 10 yes no 

Expected heterozygosity at a segregating site within each 
five population separately 

average and variance 10 yes no 

Tajima’s D within each five population separately 
average and variance for chromosomes 
with at least one variant 

10 yes yes 

Unfolded site frequency spectrum (SFS) within each five 
population separately 

proportion for each of 9 classes 45 yes no 

Watterson’s theta within each five population separately 
sum of biallelic sites divided by the 
harmonic number of the sample size (n=10) 

5 yes no 

Total number of runs of homozygosity (ROH) within each 
five population separately 

sum 5 yes no 

Total number of ROH by length class (<200 kbp, 200-500 
kbp, >500 kbp) within each five population separately 

sum 15 yes yes 

ROH length for each length class within each five 
population separately 

average 15 yes no 

Total ROH length within each five population separately average and variance 10 yes no 

ASD distance between each pair of five populations average and variance 20 yes no 

First five dimensions of the projection of the ASD matrix 
between each pair of five populations 

average and variance 100 yes yes 

Pairwise FST between each pair of five population Pairwise FST (Weir and Cockerham 1984) 10 yes yes 

TOTAL number of statistics used in ABC inference 337 202 

--------------------------------------------------------------------------------------------------------------------------- 557 

 558 

 559 

  560 



27 

2.B. Are we able to mimic observed data with simulations under the 48 competing scenarios? 561 

In order to conduct ABC inferences, we first checked whether we were able to simulate data, under the 562 

48 competing scenarios, for which vectors of summary statistics could mimic those obtained separately 563 

from the 54 different combinations of five sampled populations each. 564 

We first conducted goodness-of-fit permutation tests, separately for the 54 combinations of five 565 

populations, and found that the observed vectors of 337 summary statistics were never significantly 566 

different (54 goodness-of-fit permutation p-values > 0.56), from the 240,000 vectors of 337 summary 567 

statistics computed from simulations under the 48 competing scenarios. Second, we computed a two-568 

dimensional PCA on the vectors of summary-statistics obtained from simulations on which we 569 

projected, separately, the 54 vectors of these summary-statistics computed on observed data, and found 570 

that observations each fell well within the space of simulations (SupplementaryFigureSF1x).  571 

Both results show that we empirically were able to simulate data for which summary-statistics 572 

were reasonably close to the observed ones, at least in parts of the parameter space used for simulations 573 

under the 48 competing scenarios, for each one of the 54 separate combinations of five sampled 574 

populations each. We could therefore reasonably proceed with Random Forest ABC scenario-choice 575 

and Neural Network ABC posterior-parameter estimation procedures. 576 

 577 

2.C. Which historic scenario best explains genomic patterns in extant African populations? 578 

2.C.1. Instantaneous or recurring gene-flows of which intensity among African lineages? 579 

Panel A in FigureF6x shows that gene-flow processes among recent or ancient genetic lineages most 580 

likely occurred during very limited “instantaneous” periods of time, rather than recurrently, throughout 581 

the entire evolutionary history of Central and Southern African populations. Indeed, for each one of the 582 

54 different combinations of five sampled populations, the group of 24 scenarios considering 583 

instantaneous gene-flow processes provides vectors of summary statistics systematically closest to the 584 

observed ones, whichever the tree-topology or intensity of the gene-flow considered.  585 

Furthermore, we find that we imperatively need these gene-flow processes to be potentially high 586 

in order to best explain the observed data for each one of the 54 combinations of population samples, 587 

whichever the tree-topology and gene-flow process (Panel B in FigureF6x), whichever the tree-588 

topology but considering gene-flow processes separately (Panel C in FigureF6x), or even considering 589 

24 competing scenarios under instantaneous gene-flow processes only, whichever the tree-topology 590 

(SupplementaryFigureSF6xPart1). Finally, note that when considering all 48 competing-scenarios 591 

separately, a very challenging task a priori given the number of competing scenarios and the high level 592 

of nestedness among scenarios, the winning scenarios predicted by the RF-ABC procedure is, among 593 

the 54 tests conducted, systematically found for scenarios considering an instantaneous gene-flow 594 

process allowing for possibly highly intense gene-flow rates (SupplementaryFigureSF6xPart2-3). 595 

Overall, for all the above analyses, the a priori discriminatory powers of the RF, estimated as 596 

cross-validation procedures based on simulations used as pseudo-observed data, were overall good 597 

across groups of scenarios, despite increased confusion among scenarios based on gene-flow intensity 598 

within groups of instantaneous or recurring processes, as expected due to increased scenario-nestedness 599 

among classes of no-to-low, no-to-moderate, or no-to-high intensities 600 

(SupplementaryFigureSF6xPart0-PanelA-B-C, SupplementaryFigureSF6xPart1-2-3). 601 

 602 
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--------------------------------------------------------------------------------------------------------------------------- 604 
FigureF6x: Random-Forest ABC scenario-choices among 48 competing scenarios. 605 
Random Forest Approximate Bayesian Computation scenario-choice results (Pudlo et al., 2016; Estoup et al., 2018), are 606 
conducted, for each analysis in each panel, separately for 54 different combinations of five Central and Southern African 607 
sampled populations each. Posterior proportions of votes obtained for each 54 sampled-populations combinations, and for RF-608 
ABC analysis in each panel respectively, are provided as box-plots indicating the median in between the first and third quartile 609 
of the box-limits, whiskers extending to data points no more than 1.5 times the interquartile range of the distribution, and 610 
empty circles for all more extreme points beyond this limit, if any. In each RF-ABC analysis in each panel, proportion of votes 611 
(indicated in the y-axis) are obtained using 1,000 decision trees in the random forest for each group of competing scenarios 612 
(indicated in the x-axis table and labels), using 5,000 simulations per scenario and 337 summary-statistics (see Material and 613 
Methods and TableT3x for details). Detailed competing-scenarios grouped in each group are indicated in the two bottom lines 614 
of the x-axis table, with topology and gene-flow processes codes provided in FigureF5x and explained in detail in Material 615 
and Methods. The top-line of the x-axis table indicates, for each group of competing scenarios in each analysis, the number 616 
of times the corresponding group of scenarios was predicted as the winning one among the 54 different combinations of five 617 
sampled-populations. (A) Scenario-choice results for the two groups of instantaneous or recurring gene-flow processes (24 618 
scenarios and 120,000 simulations in each two competing groups), all gene-flow intensities and all topologies “being equal”. 619 
(B) Scenario-choice results for the three groups of intensities for gene-flow processes (16 scenarios and 80,000 simulations in 620 
each three competing groups), all topologies and both instantaneous and recurring gene-flow processes “being equal”. (C) 621 
Scenario-choice results for the six groups of gene-flow processes and intensities separately (8 scenarios and 40,000 simulations 622 
in each six competing groups), all topologies “being equal”. (D) Scenario-choice results for the three groups of scenario 623 
topologies differing in the order of ancient lineages divergence (differing number of scenarios in each three competing groups 624 
are evened by randomly sampling the same number of simulations, equal to 60,000, in each group, see Material and 625 
Methods), all gene-flow processes and intensities “being equal”. (E) Scenario-choice results for the same test as (D) restricted 626 
to the 24 competing scenarios considering instantaneous gene-flow processes only (differing number of scenarios in each three 627 
competing groups are evened by randomly sampling the same number of simulations, equal to 30,000, in each group, see 628 
Material and Methods), all gene-flow intensities “being equal”. (F) Scenario-choice results for the two groups of scenario 629 
topologies differing in the relative order of divergences between Northern and Southern KS, and Western and Eastern RHG 630 
lineages, respectively (24 competing scenarios and 120,000 simulations in each two groups), all gene-flow processes and 631 
intensities “being equal”. (G) Scenario-choice results for the same test as (F) restricted to the 24 competing scenarios 632 
considering instantaneous gene-flow processes only (12 competing scenarios and 60,000 simulations in each two groups), all 633 
gene-flow intensities “being equal”. 634 
--------------------------------------------------------------------------------------------------------------------------- 635 
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FigureF6x 638 

 639 

 640 

 641 
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2.C.2. Ancient tree-topology among African lineages? 644 

FigureF6x shows that, overall, the RF-ABC scenario-choice procedures vote in favor of an ancient 645 

tree-topology where the ancestral Khoe-San lineage diverged first followed by the divergence between 646 

the ancient Rainforest Hunter-Gatherer lineage and that of their neighbors (Scenarios tree-topologies 647 

1a-1b-1c, FigureF5x), in a large majority (45/54) of the 54 combinations of observed populations tested 648 

here, whichever the gene-flow process and intensity (FigureF6x-PanelD), or when considering 649 

instantaneous gene-flow processes, only, whichever their intensities (FigureF6x-PanelE). Note that 650 

the tree-topologies where the RHGn lineage diverge first from the lineage ancestral to that of the RHG 651 

and the KS (Scenarios tree-topologies 3a-3b, FigureF5x), is winning in a minority of the tests (9 out of 652 

54 combinations of sampled populations), whichever the gene-flow process and/or intensity. 653 

Interestingly, we found that tree-topologies where the ancient lineage for RHG populations diverges 654 

first from the two others (Scenarios tree-topologies 2a-2b-2c, FigureF5x), is never favored in our 655 

analyses, whichever the gene-flow process and/or intensity. 656 

 657 

2.C.3. Recent tree-topology among African lineages? 658 

Finally, FigureF6x shows that Northern and Southern Khoe-San extant lineages likely diverged from 659 

one-another before the divergence between Eastern and Western Rainforest Hunter-Gatherer lineages 660 

(Scenarios tree-topologies 1b-1c-2b-3b, FigureF5x), whichever the ancient tree-topology and gene-661 

flow process and intensity (FigureF6x-PanelF), and whichever the ancient tree-topology for 662 

instantaneous gene-flow processes only, all classes of intensities “being equal” (FigureF6x-PanelG). 663 

Interestingly, while the “b” group of tree-topologies wins for 38 out of 54 combinations of sampled 664 

populations, this majority of RF-ABC votes is larger (47/54) when considering only the group of 24 665 

competing scenarios for which gene-flows are instantaneous rather than recurring. 666 

 667 

2.C.4. Conclusion: intersecting scenario-choice results for the history of Africa. 668 

Altogether, when intersecting RF-ABC scenario-choice inferences in groups of gene-flow processes 669 

and tree-topologies (FigureF6x), with inferences considering all competing-scenarios separately 670 

(SupplementaryFigureSF6x-Part2-3), and among 54 combinations of five sampled populations, we 671 

find that Scenario i1-1b (FigureF5x), systematically wins in all conformations of scenario-choice tests 672 

for 25 combinations of populations (SupplementaryTableST3x), while the second best scenario 673 

(Scenario i1-3b) wins consistently across tests for only four combinations of population out of 54.  674 

Therefore, our results point to a scenario for the history of Central and Southern African 675 

populations where the ancestral KS lineage diverged first, followed by the divergence between the 676 

ancestral RHG and the RHGn lineages, with a divergence between the extant Northern and Southern 677 

KS lineages occurring independently before that of the extant Eastern and Western RHG lineages. Most 678 

importantly, the winning scenario necessarily involves gene-flow events among all pairs of lineages 679 

throughout history which occurred during relatively short “instantaneous” periods of time, rather than 680 

recurrently over larger periods of time. Furthermore, these instantaneous gene-flow events must each 681 

have been possibly of high intensity, rather than all limited to moderate or low intensities, and possibly 682 

asymmetrical between pairs of lineages, to best explain the observed data. Finally, our results also 683 

highlight that considering different combinations of extant populations separately in the analyses may 684 

provide contrasted results where alternative evolutionary scenarios may best explain observations. 685 

For conservativeness and to further consider the genetic diversity of extant Central and Southern 686 

African populations at a local or regional scale, we will henceforth conduct all Neural-Network ABC 687 

posterior-parameter estimations separately for the 25 combinations of sampled populations 688 

systematically providing the Scenario i1-1b as the winner. 689 

 690 

 691 
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2.D. Which scenario-parameters best explain genomic patterns in extant African populations? 692 

2.D.1. Divergence times. 693 

Divergence times are most often well estimated by our Neural Network ABC posterior parameter 694 

inferences (FigureF7x and SupplementaryTableST4x), with relatively narrow 90% Credibility 695 

Intervals (CI) and posterior distributions very often largely departing from the priors. Interestingly, we 696 

find relatively consistent posterior estimates across the 25 different combinations of five populations 697 

for, separately, the Eastern and Western RHG divergence between 383 generations before present (gbp) 698 

(mode point estimate, 90%CI=[220-934]) and 2174 gbp (90%CI=[1,226-4,373], 699 

SupplementaryTableST4x), and for the Northern and Southern KS divergence between 1,486 gbp 700 

(mode point estimate, 90%CI=[844-3,798]) and 6,201 gbp (90%CI=[4,465-8,126]). Combining the 701 

posterior distributions for these two parameters (FigureF7x-PanelA-B, TableT4x), respectively, 702 

provides, synthetically, a modal point-estimate divergence time between eRHG and wRHG of 892 gbp 703 

(90%CI =[422-2,531]), and one between nKS and sKS, largely more ancient, having occurred some 704 

2,623 gbp (90%CI=[1,481-5,763]). 705 

In a more remote past, the divergence time between the lineage ancestral to all RHG populations 706 

and the RHG neighbors’ lineage is also most often well estimated, based on CI-width and departure 707 

from prior distributions, for each 25 combinations of populations respectively, albeit results are more 708 

variable across sets of population combinations than for more recent divergence times (FigureF7x-709 

PanelC and SupplementaryTableST4x). Indeed, ancient RHG and RHGn lineages diverged between 710 

3,904 gbp (mode point estimate, 90%CI=[2,828-6,636]) and 10,727 gbp (90%CI =[9,268-12,736], 711 

SupplementaryTableST4x) across population combinations, and synthetically combining results 712 

together 6,726 gbp (90%CI=[3,876-10,748], FigureF7x-PanelC and TableT4x).  713 

Finally, we also find relatively variable posterior estimates for the most ancient divergence time in 714 

our tree-topology, between the ancestral lineages to all extant KS lineages and the ancestral lineages to 715 

all RHG and the RHG neighbors; with, again, posterior-parameter distributions across 25 combinations 716 

of sampled populations very often satisfactorily estimated, with relatively reduced 90%CI and 717 

substantial departure from the priors (FigureF7x-PanelD, SupplementaryTableT4x). Overall, we find 718 

that the original most ancient divergences in our tree-topology occurred some 12,117 gbp 719 

(90%CI=[8,875-14,538]), when all results are combined together synthetically (FigureF7x-PanelD and 720 

TableT4x). 721 

Altogether, the relatively large variation in divergence times posterior estimates further back in 722 

time across combinations of sampled populations empirically highlights that demographic and historical 723 

reconstructions largely depend on the specific samples considered when investigating highly 724 

differentiated Sub-Saharan populations. Our results thus explicitly advocate for caution when 725 

summarizing results obtained across population sets and further likely explain the, sometimes, apparent 726 

discrepancies that arise across studies considering different sample sets and/or artificially merging 727 

several samples from relatively differentiated populations (e.g. (Fan et al., 2023; Ragsdale et al., 2023)). 728 

 729 
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--------------------------------------------------------------------------------------------------------------------------- 732 
FigureF7x: Neural Network ABC posterior parameter distributions of divergence times. 733 
Neural Network Approximate Bayesian Computation posterior parameter joint estimations (Blum and François, 2010; 734 
Csilléry, François and Blum, 2012), of topological divergence-times (in generations before present) for 25 sets of five Central 735 
and Southern African populations for which the winning scenario identified by RF-ABC was Scenario i1-1b (FigureF5x). NN 736 
ABC posterior parameter estimation procedures were conducted using 100,000 simulations under Scenario i1-1b, each 737 
simulation corresponding to a single vector of parameter values drawn randomly from prior distributions provided in 738 
TableT2x. We considered 42 neurons in the hidden layer of the NN and a tolerance level of 0.01, corresponding to the 1,000 739 
simulations providing summary-statistics closest to the observed one. NN posterior estimates are based on the logit 740 
transformation of parameter values using an Epanechnikov kernel between the corresponding parameter’s prior bounds (see 741 
Material and Methods and TableT2x). Posterior parameter densities are represented with solid blue lines. 50% Credibility 742 
Intervals are represented as the light blue area under the density. The median and mode values are represented as a solid and 743 
dotted blue vertical line, respectively. Parameter prior distributions are represented as dotted gray lines. For all panels, the left 744 
plots represent the NN-ABC posterior parameter distributions for each 25 sets of five Central and Southern African populations 745 
winning under Scenario i1-1b, separately (SupplementaryTableST3x and SupplementaryTableST4x). For all panels, the 746 
right plots represent a single parameter posterior distribution obtained from combining the 25 posterior distributions together. 747 
(A) Results for parameter tRHG corresponding to the split time between the Western and Eastern Rainforest Hunter-Gatherer 748 
(RHG) lineages (FigureF5x). (B) Results for parameter tKS corresponding to the split time between Northern Khoe-San (nKS) 749 
and Southern Khoe-San (sKS) lineages (FigureF5x). (C) Results for parameter tRHG-RHGn corresponding to the split time 750 
between the Rainforest Hunter-Gatherer neighboring population lineage (RHGn) and the lineage ancestral to Western and 751 
Eastern RHG (FigureF5x). (D) Results for parameter tKS-RHG-RHGn corresponding to the split time between the lineage ancestral 752 
to KS populations and the lineage ancestral to all RHG and RHGn lineages; this event thus corresponding to the split time of 753 
all lineages in the history of Central and Southern African populations (FigureF5x). Results for all left panels are summarized 754 
in TableT4x. 755 
--------------------------------------------------------------------------------------------------------------------------- 756 
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FigureF7x 759 
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--------------------------------------------------------------------------------------------------------------------------- 763 
TableT4x: NN-ABC posterior parameter estimation of all parameters in Scenario i1-1b for results from 25 sets of five 764 
populations each, combined altogether. 765 
Entire posterior distributions for each 25 analyses separately, for which summary statistics are presented in 766 
SupplementaryTableT2x, are combined together before re-computing the Mode, Median, Mean, 50%CI and 90%CI 767 
presented in this table. Therefore, values in the table correspond to posterior densities plotted in the right panels of FigureF7x, 768 
FigureF8x, and SupplementaryFigureF7xPart1-Part2. Parameter definitions and priors are provided in TableT2x and 769 
represented graphically in the corresponding scenario panel of FigureF5x. Values in this table are used for the synthetic 770 
schematic representation of the demographic and migration history of Central and Southern African populations presented in 771 
FigureF9x. Values in italic are not satisfactorily departing from the priors for the results from 25 sets of five populations each 772 
when combined together. In the case of the parameters NAKS, NARHG, and NARHG-RHGn, this is due to parameter un-identifiability 773 
for all 25 analyses separately as almost none of these posterior distributions depart from their respective priors 774 
(SupplementaryFigureF7xPart1). In the case of all the migration rates parameters, SupplementaryFigureF7xPart2 clearly 775 
shows both an overall lack of identifiability of parameters in the majority of the 25 analyses, separately, and a large variability 776 
of posterior estimates among those sets of analyses for which posterior distributions satisfactorily depart from the priors. 777 
 778 

  779 
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 780 
Parameter Mode Median Mean 50% CI 90% CI 

NnKS 14184 23881 29908 14721-39894 7825-73423 

NsKS 11042 19672 26050 11059-35737 4623-68767 

NwRHG 9461 20586 26551 11506-36934 5074-67317 

NeRHG 12592 15735 19968 10059-24368 3993-53065 

NRHGn 18022 28739 33965 18076-45474 9150-77157 

NAKS 86572 61359 59978 41254-80294 19523-94743 

NARHG 57397 55256 54989 36771-73803 16922-91847 

NARHG-RHGn 46968 48438 48585 30042-66886 9894-88177 

NA 18507 24995 28406 17135-35537 9399-60616 

tKS 2623 2960 3199 2287-3921 1481-5763 

tRHG 892 1111 1255 773-1574 422-2531 

tRHG-RHGn 6726 6729 6931 5393-8271 3876-10748 

tKS-RHG-RHGn 12117 12152 12001 10797-13422 8875-14538 

tadnKS-sKS 395 532 597 347-786 147-1232 

tadnKS-RHGn 1383 1659 1835 1140-2333 591-3710 

tadsKS-RHGn 1142 1378 1533 928-1970 418-3165 

tadwRHG-RHGn 302 348 418 227-550 97-944 

tadeRHG-RHGn 393 520 616 342-801 171-1358 

tadwRHG-eRHG 411 555 653 367-851 157-1429 

tadRHGn-ARHG 2756 3193 3523 2352-4347 1369-6828 

tadAKS-RHGn 4490 4588 4831 3731-5590 2828-7892 

tadAKS-ARHG 4408 4458 4730 3629-5498 2658-7963 

tadAKS-ARHG-RHGn 9679 9532 9524 7888-11066 6358-12919 

m(nKS-sKS) 0.6727 0.6018 0.5685 0.3770-0.7830 0.0892-0.9385 

m(sKS-nKS) 0.7330 0.6314 0.6072 0.4481-0.7911 0.1851-0.9346 

m(nKS-RHGn) 0.4827 0.5336 0.5324 0.3595-0.7206 0.1277-0.9082 

m(RHGn-nKS) 0.3668 0.4842 0.4966 0.2930-0.7092 0.0875-0.9153 

m(sKS-RHGn) 0.4810 0.5093 0.5082 0.3190-0.6977 0.1062-0.9089 

m(RHGn-sKS) 0.4920 0.4525 0.4587 0.2549-0.6432 0.0771-0.8880 

m(RHGn-wRHG) 0.6461 0.5674 0.5482 0.3609-0.7438 0.1142-0.9258 

m(wRHG-RHGn) 0.3925 0.4341 0.4447 0.2729-0.6058 0.0873-0.8413 

m(RHGn-eRHG) 0.3305 0.4140 0.4365 0.2319-0.6291 0.0618-0.8750 

m(eRHG-RHGn) 0.6072 0.5726 0.5507 0.3583-0.7577 0.1073-0.9243 

m(wRHG-eRHG) 0.5034 0.4724 0.4766 0.2736-0.6758 0.0802-0.8891 

m(eRHG-wRHG) 0.5453 0.5396 0.5340 0.3291-0.7465 0.1069-0.9388 

m(RHGn-ARHG) 0.5802 0.4897 0.4851 0.2797-0.6870 0.0781-0.8904 

m(ARHG-RHGn) 0.4081 0.5080 0.5110 0.2993-0.7299 0.0853-0.9345 

m(ARHG-AKS) 0.4734 0.5082 0.5056 0.3033-0.7097 0.0850-0.9212 

m(AKS-ARHG) 0.5824 0.5220 0.5121 0.3036-0.7210 0.0773-0.9255 

m(RHGn-AKS) 0.7032 0.5235 0.5139 0.3053-0.7261 0.0887-0.9158 

m(AKS-RHGn) 0.4066 0.5027 0.5066 0.3136-0.7197 0.0929-0.8935 

m(AKS-ARHG-RHGn) 0.5357 0.5008 0.4916 0.3017-0.6756 0.0834-0.8904 

m(ARHG-RHGn-AKS) 0.3359 0.4501 0.4680 0.2424-0.6856 0.0663-0.9148 

--------------------------------------------------------------------------------------------------------------------------- 781 
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2.D.2. Effective population sizes. 785 

Effective population sizes (Ne) for all recent Northern and Southern KS, Western and Eastern RHG, 786 

and RHG neighbors’ lineages are often reasonably well estimated with relatively reduced 90%CI and 787 

substantial departure from their priors, for each 25 sets of sampled population combinations 788 

(SupplementaryFigureSF7xPart1, SupplementaryTableST4x). Combining posterior distributions 789 

among the 25 separate tests, we find Ne posterior estimates ranging from modal point-estimates of 790 

9,461 diploid effective individuals (90%CI=[5,074-67,317]) in the wRHG to 18,022 (90%CI=[9,150-791 

77,157]) in the RHGn extant lineages (SupplementaryFigureSF7xPart1, TableT4x). Importantly, we 792 

were unable to satisfactorily estimate, for almost all 25 combinations of sampled populations, the three 793 

effective population sizes for, respectively, the ancient KS lineage, the ancient RHG lineage, and the 794 

lineage ancestral to all RHG and RHG neighbors’ extant lineages (TableT4x, 795 

SupplementaryFigureSF7xPart1, SupplementaryTableST4x).  796 

Conversely, our posterior estimates of the effective size of the lineage most ancestral to all our 797 

populations was satisfactorily estimated, with relatively narrow 90%CI and substantial departure from 798 

the prior distributions, for almost all 25 sets of population combinations. Combining posterior 799 

distributions, despite a noteworthy variation across the 25 tests (SupplementaryFigureSF7xPart1, 800 

SupplementaryTableST4x), we find an ancestral effective size for the lineage ancestral to all our 801 

Central and Southern African extant populations of 18,507 diploid effective individuals 802 

(90%CI=[9,399-60,616]), the largest posterior estimate across all recent and ancient lineages in our 803 

analyses (TableT4x). Note that we considered large priors (Uniform[100-100,000] diploid individuals) 804 

for constant effective population sizes in all lineages with possible changes at each divergence time, for 805 

simplicity. Therefore, the posterior estimates here found may be different in future procedures 806 

considering more complex effective demographic regimes likely to have occurred in certain lineages, 807 

such as possible bottlenecks and/or population expansions (e.g. (Patin et al., 2014; Schlebusch et al., 808 

2020; Seidensticker et al., 2021)). 809 

 810 

2.D.3. Instantaneous gene-flow times. 811 

In between each lineage divergence times, we estimated the time of occurrence of instantaneous and 812 

potentially asymmetric gene-flow exchanges across pairs of lineages (FigureF5x), for each 25 813 

combinations of sampled populations separately. For four out of the six recent gene-flow times between 814 

pairs of extant lineages (tadnKS-sKS, tadwRHG-eRHG, tadwRHG-RHGn, tadeRHG-RHGn, FigureF5x, TableT2x), we 815 

find relatively consistent posterior estimates across the 25 tests, almost all with relatively reduced 816 

90%CI and substantial departure from the priors (FigureF8x-PanelA-D, SupplementaryTableST4x, 817 

TableT4x). Note that, while we also obtain similarly satisfactory posterior distributions among the 25 818 

tests for gene-flows among Northern KS and RHGn lineages (tadnKS-RHGn), and among Southern KS and 819 

RHGn lineages (tadsKS-RHGn), respectively, we found much larger variance across the 25 different 820 

population sets (FigureF8x-PanelE-F, SupplementaryTableST4x). 821 

Interestingly, we also obtain satisfactory posterior estimates of gene-flow timing among ancient 822 

lineages for almost all 25 sets of population combinations (tadARHG-RHGn, tadAKS-RHGn, tadAKS-ARHG, tadAKS-823 

ARHG-RHGn, FigureF5x, TableT2x). Nevertheless, note that posterior estimates are increasingly variable 824 

from one set of sampled populations to the other as the estimated parameter is further back in time in 825 

the tree-topology (FigureF8x-PanelG-J, TableT4x).  826 

These results further illustrate that different sample sets used in genetic inferences can provide 827 

substantially differing demographic inferences, sometimes for even the most recent gene-flow events, 828 

but most often for more ancient gene-flow events across ancestral lineages. 829 

 830 

  831 
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--------------------------------------------------------------------------------------------------------------------------- 832 
FigureF8x: ABC posterior parameter distribution of gene-flow times. 833 
Neural Network Approximate Bayesian Computation (Blum and François, 2010; Csilléry, François and Blum, 2012), posterior 834 
parameter joint estimations of gene-flow instantaneous times tad (in generations before present) for 25 sets of five Central and 835 
Southern African populations for which the winning scenario identified by RF-ABC was Scenario i1-1b (FigureF5x, 836 
SupplementaryTableST3x). Methodological details are provided in FigureF7x caption and detailed in Material and 837 
Methods. 838 
--------------------------------------------------------------------------------------------------------------------------- 839 
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FigureF8x 843 
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2.D.4. Gene-flow intensities. 847 

We obtain overall unsatisfactory posterior estimates of the 20 separate unidirectional gene-flow rates 848 

for the 10 separate instantaneous gene-flow events, for a majority of the 25 sets of population 849 

combinations (SupplementaryFigureSF7xPart2, SupplementaryTableST4x), with relatively large 850 

90%CI and reduced posterior distributions’ departure from priors. Considering only the several 851 

satisfactory posterior estimates for each gene-flow parameter separately, we notice their very large 852 

variability across the sets of population combinations for each parameter, making it unreasonable to 853 

combine posterior distributions to obtain a synthetic value (TableT4x). The strong parameter-854 

estimation limitation encountered here is extensively discussed in the Discussion section below. 855 

 856 

2.D.5. A synthesis of the demographic history of Central and Southern African populations. 857 

We propose, in FigureF9x, a schematic synthesis of all the above inference results for the demographic 858 

history of 25 out of 54 combinations of five Central and Southern African populations, for which all 859 

our RF-ABC scenario-choice procedures provided systematically consistent results. 860 

 861 

 862 

 863 

 864 

 865 

--------------------------------------------------------------------------------------------------------------------------- 866 
FigureF9x: Schematic inferred demographic and migration history of Central and Southern African populations. 867 
Schematic representation of the winning Scenario i1-1b (FigureF5x), and Neural Network ABC posterior parameter mode 868 
estimates summarizing results obtained separately for 25 sets of five Central and Southern African populations 869 
(SupplementaryTableST3x), represented by the gray lines in between population names. For the time of each divergence and 870 
gene-flow event, mode point estimates are provided in generations before present (gbp) in bold, and 90% credibility intervals 871 
are provided between parentheses (TableT4x). We provide two estimates of the divergence times estimates in years before 872 
present (ybp), one (upper) corresponding to 30 years per generation and the other (lower) to 20 years per generation. Mode 873 
point estimates of effective population sizes Ne are provided in numbers of diploid effective individuals and width of lineages 874 
are proportional to the estimated Ne (TableT4x, SupplementaryFigureSF7xPart1). Note that NN-ABC posterior 875 
distributions for the effective population sizes of the ancestral Khoe-San lineage (AKS), for the ancestral RHG lineage 876 
(ARHG), and for the lineage ancestral to RHGn and ARHG, were all three poorly distinguished from their respective prior 877 
distributions; they were therefore considered them to be un-estimated (TableT4x, SupplementaryFigureSF7xPart1). Note 878 
that posterior distributions for instantaneous asymmetric gene-flow rates were overall poorly departing from their priors, or 879 
highly variable when substantially departing from their priors, among the 25 sets of population combinations 880 
(SupplementaryFigureSF7xPart2, SupplementaryTableST4x). Instantaneous asymmetric gene-flow intensities are 881 
therefore considered to be un-estimated. All posterior distributions are shown graphically in FigureF7x, FigureF8x, 882 
SupplementaryFiguresSF7xPart1-2, and detailed in TableT4x and SupplementaryTablesST4x.  883 
--------------------------------------------------------------------------------------------------------------------------- 884 
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Discussion 891 

We aimed at inferring jointly the tree-topology, instantaneous or recurring gene-flow processes, 892 

and asymmetric gene-flow intensities across pairs of recent and ancient lineages that most likely 893 

produced genome-wide genetic patterns in 54 different combinations of five Central and Southern 894 

African populations. Therefore, we explicitly considered the large genetic differentiation observed 895 

across African populations at regional and local scales, and the possible confounding effects of complex 896 

gene-flow processes on tree-topologies’ predictions among 48 complex scenarios in formal statistical 897 

competition.  898 

First, our results altogether show that, in fact, considering different sets of populations at a regional 899 

and local scale in Africa highlights different aspects of the demographic histories of African 900 

populations, sometimes substantially divergent. This demonstrates in practice that apparently discrepant 901 

results obtained across previous studies may not necessarily be absolutely reconciled, but rather 902 

interpreted as separate illustrations of the large diversity of demographic histories experienced by our 903 

species in Africa since its emergence in a remote past. This further strongly advocates for avoiding 904 

artificially merging individual samples in un-discriminated a priori categories based on geography, 905 

subsistence-strategy, and/or linguistics criteria. Instead, we recommend developing novel approaches, 906 

probably at a large computational cost as experienced here, to explicitly take into account African 907 

genetic diversity at the continental, regional, and/or local scales, and a posteriori interpreting the 908 

diversity of results obtained separately. 909 

 910 

Short periods of gene-flow rather than recurring migrations in the ancient history of Africa 911 

As pointed out here and in numerous previous theoretical or empirical studies (e.g. (Verdu and 912 

Rosenberg, 2011; Gravel, 2012; Lachance et al., 2012; Harris and Nielsen, 2016; Lorente-Galdos et al., 913 

2019; Fan et al., 2023; Ragsdale et al., 2023)), whether ancient gene-flow processes occurred 914 

recurrently or more instantaneously across lineages has fundamental consequences on the biologic and 915 

cultural evolution of our species. Indeed, recurrent gene-flow processes allow for continuous allelic 916 

exchanges across populations -thus never reproductively isolated throughout entire periods of 917 

evolution-, which may strongly influence the relative influence of drift and selection across populations 918 

and the notion of ancient tree-like evolution in human populations in Africa. Conversely, we found that 919 

instantaneous gene-flow processes systematically vastly outperformed recurring migration processes, 920 

whichever the tree-topology for ancient and recent Central and Southern African lineages divergences, 921 

and for all combinations of five observed populations. Therefore, our results unambiguously favor an 922 

evolutionary history of African lineages ancestral to a variety of Central and Southern African 923 

populations where Homo sapiens populations experienced long periods of isolation and drift, followed 924 

by short periods of possibly asymmetric gene-flow, which may in turn have induced some reticulations 925 

among lineages (Mazet et al., 2016; Ragsdale et al., 2023). Notably, this scenario further allows for 926 

differential selection and adaptation processes across lineages (e.g. (Lachance et al., 2012; Schlebusch 927 

et al., 2012; Perry et al., 2014)), and for ancient admixture-related selection processes within Africa, 928 

analogous to previous findings of such processes having occurred more recently throughout the 929 

continent (Breton et al., 2014; Patin et al., 2017; Hamid et al., 2021; Cuadros-Espinoza et al., 2022)). 930 

Nevertheless, it is certain that Homo sapiens evolutionary history of ancient and recent gene-flow 931 

in Africa has involved more complex processes among pairs of lineages than the ones here identified. 932 

Previous studies unquestionably considered arguably more realistic models to explain their data, with 933 

either a conjunction of recurring symmetric migrations among pairs of lineages with possible 934 

instantaneous introgressions among certain pre-specified recent and/or ancient lineages (Lorente-935 

Galdos et al., 2019; Ragsdale et al., 2023), or only pre-specified instantaneous introgressions without 936 
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recurring gene-flows (Lachance et al., 2012; Fan et al., 2023), including specific events involving the 937 

contributions from Homo sapiens or non-Homo sapiens unsampled lineages. In this context, our results 938 

highlight that complex instantaneous introgression scenarios should probably be preferred as a starting-939 

point from where one could then increase complexity, for instance by considering more than a single 940 

instantaneous gene-flow event among pairs of ancient lineages. 941 

Moreover, our results advocate for the possibility of at least some such introgressions to be 942 

relatively intense, as scenarios considering low or moderate gene-flows, whether instantaneous or 943 

recurring, are systematically poorly mimetic of observed genomic patterns. Echoing this result, a 944 

previous study identified such high levels of instantaneous introgressions across African lineages (Fan 945 

et al., 2023), albeit the authors considered very different maximum-likelihood approaches based on 946 

different statistics and scenario specifications, as well as different population samples, sometimes 947 

artificially merged in larger categories at a continental scale. 948 

Nevertheless, our approach failed to provide satisfactory posterior estimates of gene-flow 949 

intensities, a serious limitation which we discuss extensively in the following methodological limits and 950 

perspectives section below. Importantly, previous studies investigating conjunctions of recurring and 951 

more instantaneous migrations overall estimated that symmetric recurring gene-flows were weak, 952 

whether recent or ancient (e.g. (Ragsdale et al., 2023)). Although our results are difficult to compare 953 

with previous studies due to strong differences in model specifications, statistics used and 954 

methodological approaches as well as population samples, this latter previous result may be reflected 955 

in ours that disfavor recurring migration models as being poorly explicative of our data. 956 

 957 

Inferred demographic history in Central and Southern Africa 958 

Extensive previous work agrees that divergences among lineages ancestral respectively to extant Khoe-959 

San, Rainforest Hunter-Gatherers, and Rainforest Hunter-Gatherer neighbors were among the most 960 

ancient in Homo sapiens evolution (e.g. reviewed in (Schlebusch and Jakobsson, 2018; Pfennig et al., 961 

2023)). However, the relative order of their divergences as well as their timing has been a matter of 962 

extensive debate (Schlebusch et al., 2020; Lipson et al., 2022; Fan et al., 2023). This is due in part to 963 

split-time inferences conducted on tree-like topologies considering gene-flow or no gene-flow, using 964 

ancient DNA data or not, and to differing methods, statistics, and population samples. 965 

 966 

Most ancient divergences in Africa 967 

Here, we formally tested, with Random-Forest ABC scenario-choice, which ancient tree-topology best 968 

explained extant genomic patterns, whichever the gene-flow processes and intensities across pairs of 969 

recent and ancient lineages, for 54 different combinations of five different Khoe-San, Rainforest 970 

Hunter-Gatherer, and Rainforest Hunter-Gatherer neighboring populations. It is the first time to our 971 

knowledge that such formal comparison of numerous competing-scenarios is conducted systematically 972 

for a variety of sets of population samples at a regional and local scale, rather than comparing 973 

maximum-likelihood values from vastly differing models, each obtained separately using differing 974 

population samples (Lipson et al., 2022; Fan et al., 2023; Ragsdale et al., 2023). Importantly, note that 975 

(Lorente-Galdos et al., 2019) also explored highly complex demographic scenarios in Africa with ABC, 976 

focusing on varying unidirectional introgression processes among certain lineages for a fixed tree-shape 977 

among, in particular, three extant African populations at the continental scale. 978 

 Our results show that whichever the gene-flow processes considered, the lineage ancestral to 979 

extant KS populations diverged first from the lineage ancestral to RHG and RHGn, for almost all 980 

combinations of sampled populations. Furthermore, we estimated with Neural Network ABC posterior-981 

parameter inferences that this original divergence likely occurred in a remote past ~300,000 years ago, 982 

followed by the divergence between ancestral RHG and RHGn lineages ~165,000 years ago, 983 

considering between 20 and 30 years per generations.  984 
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Both estimates fell within the upper bound of previously obtained results considering a variety of 985 

similar population samples, genetic data, inference methods, and statistics, albeit scenarios may not 986 

have always been specified in analogous ways (Patin et al., 2009, 2014; Verdu et al., 2009, 2013; 987 

Schlebusch et al., 2012, 2020; Lipson et al., 2022; Fan et al., 2023). Note however, that considering 988 

different combinations of populations at the regional and local scales allowed us to identify a small 989 

minority (4/54) of such combinations for which an alternative scenario (Scenario i1-3b), where RHGn 990 

lineages diverged first from a lineage ancestral to all RHG and KS extant populations, somewhat 991 

analogous to those proposed in (Fan et al., 2023), would better explain the data consistently across our 992 

analyses, again whichever the gene-flow processes and range of intensities considered. This latter result 993 

may explain apparently discrepant results across some previous studies, which would then be due to 994 

differing population samples used for demographic inferences and/or to artificial merging of 995 

differentiated populations into larger groups (Lorente-Galdos et al., 2019; Lipson et al., 2022; Fan et 996 

al., 2023; Ragsdale et al., 2023), thus advocating for further accounting for the vast genetic diversity 997 

among African populations even at a local scale in future studies. 998 

Note that, in (Ragsdale et al., 2023), the fundamental divergence between their Nama Khoe-San 999 

sample and other Sub-Saharan populations was dated to ~110,000-135,000 years ago under their two 1000 

best-fitting models, thus strongly discrepant with our findings. However, these important results are 1001 

very difficult to compare with ours, since the authors did not consider any Central African Rainforest 1002 

Hunter-Gatherers nor their neighbors in their inferences, and since they investigated highly complex 1003 

models specified completely differently from those here envisioned. In particular, Ragsdale and 1004 

colleagues included in their models possible very ancient genetic structures, long before Homo sapiens 1005 

emergence, a feature that is unspecified in our scenarios which considered simply a single ancestral 1006 

population in which all extant lineages ultimately coalesce. Nevertheless, note that substructure and 1007 

reticulation within the ancestral population is not per se incompatible with our scenarios. In fact, it may 1008 

be compatible with our posterior estimates of a large effective population ancestral to all extant 1009 

populations here investigated, the largest among all inferred ancient and recent Central and Southern 1010 

African effective population sizes. Therefore, it will be reasonable in future work to complexify the 1011 

scenarios here proposed to evaluate whether very ancient substructures and reticulations within our 1012 

ancestral population, prior to the original divergence between Southern and Central African 1013 

populations, may improve the fit to the observed genomic data, as proposed by (Ragsdale et al., 2023). 1014 

 1015 

More recent divergences in Central and Southern Africa 1016 

More recently during the evolutionary history of Sub-Saharan Africa, we found that the divergence 1017 

among Northern and Southern Khoe-San populations largely pre-dated the divergence of Western and 1018 

Eastern Congo Basin Rainforest Hunter-Gatherers, a question rarely addressed to our knowledge. First, 1019 

we found that KS divergence dated sometime between 50,000 and 80,000 years ago, thus substantially 1020 

more recently than estimates previously proposed (Schlebusch and Jakobsson, 2018). Beyond vast 1021 

differences in models, methods, and statistics used to provide either inferences, note that our results for 1022 

this divergence time were substantially variable across pairs of sampled populations used in each 1023 

analysis, some specific sets of populations providing posterior estimates consistent with previous result. 1024 

It thus further highlights that complex inferences in Africa imperatively need to explicitly consider 1025 

population variation at a local scale. 1026 

Interestingly, our synthesized estimates for the Northern and Southern Khoe-San population 1027 

divergence were relatively synchronic to the genetic onset of the Out-of-Africa (e.g. (Schlebusch and 1028 

Jakobsson, 2018)). Population genetics inferences only provide possible mechanisms to explain 1029 

observed genetic patterns and are, in essence, not addressing the possible causes underlying the inferred 1030 

mechanisms. In this context, we may hypothesize that the global climatic shifts inducing massive 1031 

ecological changes that have occurred in Africa at that time (e.g. (Beyer et al., 2021)), sometimes 1032 
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proposed to have triggered ancient Homo sapiens movements Out-of-Africa, may also have triggered, 1033 

independently, the genetic isolation among ancestral Khoe-San populations. Nevertheless, where the 1034 

ancestors of extant Khoe-San populations lived at that time remains unknown and is nevertheless crucial 1035 

to further elaborate possible scenarios for the causes of the genetic divergence here inferred. 1036 

Long after this divergence, we found that Rainforest Hunter-Gatherer populations across the 1037 

Congo Basin diverged roughly between 17,000 and 27,000 years ago, relatively consistently across 1038 

pairs of sampled populations used for inferences; estimates highly consistent with previous studies 1039 

(Patin et al., 2009, 2014; Lopez et al., 2018), despite major differences in gene-flow specifications 1040 

across RHG groups between studies. Interestingly, this divergence time is relatively synchronic with 1041 

absolute estimates for the Last-Glacial Maximum in Sub-Saharan Africa (e.g. (Bartlein et al., 2011)). 1042 

The fragmentation of the rainforest massif during this period in the Congo Basin may have induced 1043 

isolation between Eastern and Western RHG extant populations, as plausibly previously proposed 1044 

(Patin et al., 2009). However, similarly as above for the Northern and Southern Khoe-San populations 1045 

divergence, where the ancestors of extant Eastern and Western Rainforest Hunter-Gatherers lived 1046 

remains unknown, which prevents us from formally testing this hypothesis (Perry and Verdu, 2017). 1047 

Altogether, these results show that Central African Rainforest Hunter-Gatherer and Southern 1048 

African Khoe-San populations have had, respectively, extensive time for selection processes, including 1049 

adaptive introgression processes, to have influenced independently both groups of populations as well 1050 

as populations within each group separately (e.g. (Schlebusch et al., 2012; Breton et al., 2014; Perry et 1051 

al., 2014; Patin et al., 2017)).  1052 

 1053 

Ancient and recent instantaneous gene-flow times in Africa 1054 

We obtained reasonably well estimated instantaneous asymmetric gene-flow times among almost all 1055 

pairs of ancient and recent lineages, albeit the variation of estimates across sets of Central and Southern 1056 

African sampled populations increased substantially with most ancient times. In this context, we deem 1057 

it hard to confidently try to interpret the most ancient event of instantaneous gene-flow between the two 1058 

most ancestral lineages in our tree-topology. However, other instantaneous gene-flow time estimates 1059 

throughout the topology were more consistently estimated overall, and showed relative synchronicity 1060 

in some cases, which has never been reported before to our knowledge, even if they were specified 1061 

independently in our models and drawn from large distribution a priori.  1062 

Interestingly, we found strong indications for almost synchronic events of introgressions having 1063 

occurred during the Last Interglacial Maximum in Africa (Mazet et al., 2016), between ~90,000 and 1064 

~135,000 years ago (when considering 20 or 30 years per generation). They involved gene-flow 1065 

between lineages ancestral to Khoe-San populations and ancestors of Rainforest Hunter-Gatherer 1066 

neighbors on the one hand and, on the other hand, between lineages ancestral to Khoe-San populations 1067 

and the lineage ancestral to all Rainforest Hunter-Gatherers. An increase in material-based culture 1068 

diversification and innovation, possibly linked to climatic and environmental changes locally, has 1069 

previously been observed during this period of the Middle Stone Age in diverse regions of continental 1070 

Africa; prompting a long-standing debate as to its causes if human populations were subdivided and 1071 

isolated biologically and culturally at the time (Ziegler et al., 2013; Scerri et al., 2018; Gosling, Scerri 1072 

and Kaboth-Bahr, 2022; Thomas et al., 2022).  1073 

In this context, our results instead may suggest that population movements at that time among 1074 

previously isolated populations may itself have triggered the observed increased cultural diversification 1075 

locally, even if obvious signs of pan-African cultural spread at the time are difficult to assess (Gosling, 1076 

Scerri and Kaboth-Bahr, 2022). In turn, it would interestingly echo the known effect of within-1077 

population genetic diversity increase induced by genetic admixture between previously isolated 1078 

populations (e.g. (Long, 1991; Verdu and Rosenberg, 2011; Gravel, 2012; Laurent et al., 2023)). 1079 
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Then, note that we estimated that the instantaneous gene-flow event between the ancestral 1080 

Rainforest Hunter-Gatherers lineage and that of their extant neighbors seemingly occurred 1081 

synchronically to the genetic Out-of-Africa ((Beyer et al., 2021); see above). This would imply that 1082 

possible climatic and ecological shifts at that time may not have only induced population divergences 1083 

and displacement, but may also have triggered population gene-flow. 1084 

Relatively more recently, around 30,000 years ago, we found two loosely synchronic gene-flow 1085 

events between ancestors to extant Central African Rainforest Hunter-Gatherer neighbors’ lineages and, 1086 

separately, Northern and Southern Khoe-San lineages. This corresponds to the end of the Interglacial 1087 

Maximum and a period of major cultural changes and innovations during the complex transition from 1088 

Middle Stone Age to Late Stone Age in Central and Southern Africa (Cornelissen, 2002; Ziegler et al., 1089 

2013; Mesfin, Oslisly and Forestier, 2021; Bader et al., 2022; Thomas et al., 2022). Nevertheless, 1090 

connecting the two lines of genetic and archaeological evidence to conclude for increased population 1091 

movements at the time and their possible causes should be considered with caution. Indeed, in addition 1092 

to genetic-dating credibility-intervals being inherently much larger than archaeological dating, this 1093 

period remains highly debated in paleoanthropology mainly due to the scarcity and complexity of the 1094 

material-based culture records, and that of climatic and ecological changes locally, across vast regions 1095 

going from the Congo Basin to the Cape of Good Hope (Cornelissen, 2002; Ziegler et al., 2013; Mesfin, 1096 

Oslisly and Forestier, 2021; Bader et al., 2022; Thomas et al., 2022). 1097 

Finally, we found strong signals for multiple instantaneous gene-flow events having occurred 1098 

between almost all five recent Central and Southern African lineages between 6000 and 12,000 years 1099 

ago, during the onset of the Holocene in that region,  shortly before or during the beginning of the last 1100 

Post Glacial Maximum climatic crisis in Western Central Africa (Lézine et al., 2019), the emergence 1101 

and spread of agricultural techniques (Phillipson, 2005), and the demic expansion of now-Bantu-1102 

speaking populations from West Central Africa into the rest of Central and Southern Africa (Bostoen 1103 

et al., 2015; Patin et al., 2017; Fortes-Lima et al., 2024). These results are consistent with previous 1104 

investigations that demonstrated the determining influence of Rainforest Hunter-Gatherer neighboring 1105 

populations’ migrations through the Congo Basin in shaping complex socio-culturally determined 1106 

admixture patterns (Patin et al., 2009, 2014; Verdu et al., 2009, 2013), including admixture-related 1107 

natural selection processes (Perry et al., 2014; Patin et al., 2017; Lopez et al., 2018, 2019). As our 1108 

estimates for introgression events are in the upper bound of previous estimates for the onset of the so-1109 

called “Bantu expansion” throughout Central and Southern Africa, we may hypothesize here that major 1110 

climatic and ecological changes that have occurred at that time may have triggered increased population 1111 

mobility and gene-flow events between previously isolated populations, rather than consider that the 1112 

Bantu-expansions themselves were the cause for all the gene-flow events here identified.  1113 

Finally, we did not find signals of more recent introgression events from Bantu-speaking 1114 

agriculturalists populations into Northern or Southern Khoe-San populations, in particular among the 1115 

!Xun, albeit such events have been identified in several previous studies (see (Schlebusch and 1116 

Jakobsson, 2018)). This is likely due to the fact that we considered only a limited number of individual 1117 

samples from each population, and therefore may lack power to detect these very recent events with our 1118 

data and approach. 1119 

 1120 

Conceptual, methodological, and empirical limitations and perspectives for inferring ancient 1121 

histories from observed genomic data 1122 

All previous attempts at reconstructing the human evolutionary histories which led to genomic patterns 1123 

observed today across African populations have faced major conceptual, methodological, and empirical 1124 

challenges. Conceptually, large amounts of more-or-less nested scenarios can be envisioned a priori to 1125 

explain extant genetic diversity, based on previous results from paleo-anthropology, population 1126 

genetics, and paleogenomics. These scenarios may range from tree-like models without gene-flow 1127 
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events among ancient or recent lineages to complex networks of weakly differentiated populations 1128 

exchanging migrants over large periods of time, with or without the contribution of ancient Homo or 1129 

non-Homo now extinct or unsampled lineages. Systematically exploring all possible models is often 1130 

methodologically out of reach due to differing fundamental scenario-specifications or, when scenarios 1131 

are specified and parameterized in analogous ways, due to scenarios’ nestedness and un-identifiability 1132 

in certain parts of their parameter spaces (e.g. (Robert, Mengersen and Chen, 2010)). Empirically, 1133 

formal scenario comparisons are first hampered by necessarily limited amounts of genomic data 1134 

representative, at continental, regional, and local scales, of the known diversity and differentiation of 1135 

human populations in Africa; in addition to yet limited amounts of ancient DNA data throughout the 1136 

continent. Finally, empirical limitations also emerge from the use of different statistics to explore 1137 

genomic diversity patterns, which possibly each capture different facets of human evolutionary 1138 

histories, thus providing discrepant results and interpretations only in appearances. While machine-1139 

learning ABC procedures provide significant advantages over other maximum-likelihood approaches, 1140 

in particular concerning the formal exploration of competing scenarios’ fit to observed data across 1141 

numerous highly complex sometimes nested scenarios and using numerous summary-statistics (Blum 1142 

and François, 2010; Robert, Mengersen and Chen, 2010; Pudlo et al., 2016; Estoup et al., 2018), the 1143 

above challenges are also largely faced in this study. 1144 

While most divergence and gene-flow times, as well as effective sizes, were inferred satisfactorily 1145 

in our results, the lack of satisfactory posterior estimates for all 20 gene-flow rates parameters consistent 1146 

among the 25 sets of population combinations likely stems from different limitations. First, considering 1147 

only five individual genomes per population is inherently limiting when trying to estimate gene-flow 1148 

rates from inter-population summary-statistics in ABC (Fortes‐Lima et al., 2021). In future studies, 1149 

increasing sample sizes and adding statistics based on the inter and intra-individual distribution of 1150 

admixture fractions (Verdu and Rosenberg, 2011; Gravel, 2012; Ragsdale and Gravel, 2019; Fortes‐1151 

Lima et al., 2021), will likely improve the posterior estimation of these parameters using machine-1152 

learning ABC approaches (Lorente-Galdos et al., 2019). Note, however, that these statistics require 1153 

non-trivial computation time in ABC frameworks comprising hundreds of thousands of simulations 1154 

(Boitard et al., 2016; Jay, Boitard and Austerlitz, 2019). Furthermore, in all cases, considering multiple 1155 

sets of different and substantially genetically diverse populations as the ones here considered from sub-1156 

Saharan Africa may inevitably leads to large variation across gene-flow rates’ posterior estimates 1157 

depending on the specific population-combinations. 1158 

Second, for simplicity, we considered a single instantaneous time for the two separate 1159 

unidirectional gene-flow events, for each gene-flow event between pairs of lineages separately. 1160 

Therefore, while our RF-ABC scenario-choice results strongly support instantaneous asymmetric gene-1161 

flow events rather than recurring asymmetric gene-flows to best explain extant genomic patterns, it is 1162 

plausible that scenarios where each unidirectional gene-flow event may occur at a different time 1163 

(Lorente-Galdos et al., 2019), will more realistically explain the observed data. If this is the case, it is 1164 

possible that the choice of a unique time for two separate gene-flow events rendered the corresponding 1165 

gene-flow rates harder to identify with our joint NN-ABC posterior parameter estimation procedure. 1166 

Furthermore, we explored two extreme gene-flow processes, establishing an open competition between 1167 

only instantaneous gene-flow and only recurring gene-flow processes. While we demonstrated that only 1168 

instantaneous gene-flow processes vastly outperformed only recurring gene-flow processes, whichever 1169 

the range of intensities for each event, we only established here a starting point for the future 1170 

complexification of evolutionary scenarios to be tested. For instance, it will be of natural interest to 1171 

consider, next, more than a single “pulse” of gene-flow between any two ancient or recent lineage. 1172 

Third, the neural-networks used here may have been unable to satisfactorily identify the 20 gene-1173 

flow parameters among the 43 jointly-estimated parameters, due to their lack of complexity when 1174 

considering a unique layer of hidden neurons. For instance, and as a first step, considering Multilayer-1175 
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Perceptrons in the future, i.e. more complex neural-networks with additional layers of hidden neurons, 1176 

may help posterior estimations of these parameters (e.g. (Wang, Czerminski and Jamieson, 2021)), at 1177 

the known cost of non-trivial parameterization of the neural-networks themselves (e.g. (Leung et al., 1178 

2003; Jay, Boitard and Austerlitz, 2019; Huang et al., 2024)).  1179 

Altogether, joint posterior estimation of numerous gene-flow rates parameters and the timing of 1180 

their occurrence under highly complex demographic scenarios remains one of the most challenging 1181 

tasks in population genetics. It will unquestionably benefit from future analytical theoretical 1182 

developments (Mooney et al., 2023; Agranat-Tamir, Mooney and Rosenberg, 2024), and the 1183 

improvement of machine-learning-based inference procedures (e.g. (Murtagh, 1991; Chen et al., 2020; 1184 

Yelmen and Jay, 2023; Huang et al., 2024)). 1185 

 1186 

Ancient admixture with Homo sapiens or non-Homo sapiens unsampled lineages? 1187 

We did not explore possible contributions from unsampled lineages, whether from non-Homo sapiens 1188 

or from ancient “ghost” human populations, and therefore cannot formally evaluate the likeliness of the 1189 

occurrence of such events to explain observed data. In all cases, our results demonstrate that explicitly 1190 

considering ancient admixture from unsampled populations is not a necessity to explain satisfactorily 1191 

large parts of the observed genomic diversity of extant Central and Southern African populations, 1192 

consistently with a previous study (Ragsdale et al., 2023), and conversely to others (Lipson et al., 2022; 1193 

Fan et al., 2023; Pfennig et al., 2023); at least when considering jointly the 337 relatively classical 1194 

population genetics summary-statistics used here for demographic inferences. As discussed above, our 1195 

results formally comparing competing-scenarios rather than comparing posterior likelihoods of highly 1196 

complex yet vastly differing models, provide a clear and reasonable starting point for future 1197 

complexification of scenarios comprising possible contributions from ancient or ghost unsampled 1198 

populations, which will unquestionably benefit from the explicit use of additional novel summary-1199 

statistics ((Ragsdale and Gravel, 2019; Fan et al., 2023; Ragsdale et al., 2023); see also above).  1200 

In any case, the complexification of scenario-specifications to account for possible past “archaic” 1201 

or “ancient” introgressions will not fundamentally solve the issue of the current lack of reliable ancient 1202 

genomic data older than a few hundreds or thousands of years from Sub-Saharan Africa (Skoglund et 1203 

al., 2017; Vicente and Schlebusch, 2020; Pfennig et al., 2023). Indeed, analogously to archaic 1204 

admixture signals that were unambiguously identified outside Africa only when ancient DNA data were 1205 

made available for Neanderthals and Denisovans (e.g. (Meyer et al., 2012; Prüfer et al., 2014)), we 1206 

imperatively need to overcome this lack of empirical ancient DNA data in Africa to formally test 1207 

whether, or not, ancient human or non-human now extinct lineages have contributed to shaping extant 1208 

African diversity. 1209 

 1210 

 1211 

  1212 
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Material and Methods 1213 

Population samples 1214 

Central and Southern Africa dataset 1215 

We investigated high-coverage whole genomes newly generated for 74 individual samples (73 after 1216 

relatedness filtering, see below), from 14 Central and Southern African populations (FigureF1x, 1217 

TableT1x). Based on extensive ethno-anthropological data collected from semi-directed interviews 1218 

with donors and their respective communities, we grouped a posteriori the 73 individual samples from 1219 

14 populations in three larger categories.  1220 

The Baka, Ba.Kola, Bi.Aka_Mbati, Ba.Twa, and Nsua individuals were categorized as Rainforest 1221 

Hunter-Gatherers (RHG), based on several criteria including self-identification and relationships with 1222 

other-than-self, socio-economic practices and ecology, mobility behavior, and musical practices (Verdu 1223 

et al., 2009; Hewlett, 2017).  1224 

The Nzime, Ngumba, Ba.Kiga, and Ba.Konjo individuals were categorized as Rainforest Hunter-1225 

Gatherer neighbors (RHGn), based on the same set of categorization-criteria as RHG. Indeed, RHG and 1226 

RHGn populations in Central Africa are known to identify themselves separately and to live in different 1227 

ways in the Central African rainforest, whilst often sharing languages locally as well as complex socio-1228 

economic relationships and interactions that may include intermarriages (Verdu et al., 2013). 1229 

Historically, RHG populations have been designated as “Pygmies” by European colonists, an 1230 

exogenous term from ancient Greek that is sometimes used derogatorily by the RHGn.  1231 

Finally, the Nama, Ju|’hoansi, Karretjie People, !Xun, and Khutse_San individuals were 1232 

categorized as Khoe-San populations (KS) based primarily on self-identification and relationships with 1233 

other-than-self locally, lifestyle, and languages (Schlebusch, 2010). Note that research was approved 1234 

by the South African San Council. Individuals from these populations were whole-genome sequenced 1235 

anew with improved methods (see below), compared to previous work (Schlebusch et al., 2020). 1236 

Note that the three groups can be further subdivided based on geography into Western and Eastern 1237 

RHG and RHGn, and into Northern, Central, and Southern KS (FigureF1x, TableT1x). 1238 

Comparative dataset 1239 

The 74 genomes were analyzed together with 105 (104 after relatedness filtering, see below) high-1240 

coverage genomes from 32 worldwide populations (FigureF1x, TableT1x). 64 samples from the 1241 

Simon's Genome Diversity Project (SGDP) (Mallick et al., 2016)⁠; 9 HGDP samples (Meyer et al., 1242 

2012)⁠; 7 samples from the 1000 Genomes project (KGP) (The 1000 Genomes Project Consortium et 1243 

al., 2015)⁠; one Karitiana sample (Rasmussen et al., 2014); 24 samples from the South African Human 1244 

Genome Project (SAHGP) (Choudhury et al., 2017). Selection criteria were: Illumina paired-end reads, 1245 

high-coverage (>30X), access to raw data and no (known) population substructure. 1246 

Note that, although samples from these datasets have not been collected by us for the purpose of 1247 

this study, based on previous knowledge and publications, the Biaka and Mbuti HGDP samples can be 1248 

categorized as RHG and the #Khomani and Ju|’hoansi_comp samples as KS (FigureF1x, TableT1x). 1249 
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Data generation 1250 

DNA extraction 1251 

DNA was extracted from saliva with the DNA Genotek OG-250 kit for the Baka, Nzime, Bi.Aka Mbati, 1252 

Nsua, and Ba.Konjo samples. DNA was extracted from buffy coats with DNeasy Blood&Tissue spin-1253 

column QiagenTM kits for the Ba.Kola, Ngumba and Ba.Kiga samples. Both extraction methods were 1254 

used for the Ba.Twa samples. For the Nama, Ju|’hoansi, Karretjie People, !Xun, and Khutse_San 1255 

samples, DNA was extracted from EDTA-blood using the salting-out method (Miller, Dykes and 1256 

Polesky, 1988) ⁠.  1257 

Library preparation and sequencing 1258 

Library preparation and sequencing was performed by the SciLifeLab SNP&SEQ Technology platform 1259 

in Uppsala, Sweden. Libraries were prepared with TruSeq DNA preparation kits, and paired-end 1260 

sequencing (150 bp read length), was performed on Illumina HiSeqX machines with v2 sequencing 1261 

chemistry, to a coverage of 30X or more. For the Southern African samples, we included paired-end 1262 

data (100 bp read length) sequenced on Illumina HiSeq2000 machines obtained previously for the same 1263 

libraries (Schlebusch et al., 2020). 1264 

Sequencing data quality-control processing and relatedness filtering 1265 

The processing pipeline used in the present study is adapted from the Genome Analyses Toolkit⁠ 1266 

(GATK) “Germline short variant discovery (SNPs + Indels)” Best Practices workflow (McKenna et al., 1267 

2010; DePristo et al., 2011; Van Der Auwera et al., 2013)⁠. It is described and compared to the original 1268 

GATK Best Practices workflow in (Breton et al., 2021). SupplementaryFigureSF8x gives an 1269 

overview of the pipelines used for the processing; all template codes with accompanying detailed 1270 

explanations for all processing steps are provided below and in the corresponding GitHub repository 1271 

(https://github.com/Gwennid/africa-wgs-descriptive). 1272 

Reads were mapped to a decoy version of the human reference genome, GRCh38 (1000 Genomes 1273 

Project version), with BWA-MEM (Li and Durbin, 2009) from BWAKIT v0.7.12 using a strategy 1274 

appropriate for ALT contigs. The input was either FASTQ or BAM files that were reverted to unmapped 1275 

BAM or to FASTQ prior to mapping. Mapped reads were selected with SAMtools version 1.1 and 1276 

Picard version 1.126 (https://broadinstitute.github.io/picard/). 1277 

Duplicate reads were marked (at the lane level) with Picard version 1.126 MarkDuplicates. 1278 

Realignment around indels was performed (at the lane level) with GATK version 3.5.0 1279 

RealignerTargetCreator and IndelRealigner. We then performed a “triple mask base quality score 1280 

recalibration (BQSR)”, where the sample’s variation is used together with dbSNP, as described in 1281 

(Schlebusch et al., 2020; Breton et al., 2021). This step includes merging the reads from a given sample 1282 

with SAMtools version 1.1; calling variants with GATK version 3.5.0 HaplotypeCaller with “--1283 

genotyping_mode DISCOVERY”; and (in a parallel track) standard BQSR with GATK version 3.5.0 1284 

BaseRecalibrator and PrintReads, and dbSNP version 144. Following triple mask BQSR (performed at 1285 

the lane level), the recalibrated reads from a given sample are merged with SAMtools version 1.1, sorted 1286 

and indexed with Picard version 1.126 SortSam. Duplicate marking and realignment around indels were 1287 

performed again, at the sample level. 1288 

Variant calling was performed independently for the autosomes and the X chromosomes, due to 1289 

the difference in ploidy. SNP and short indels were first called with GATK version 3.7 HaplotypeCaller 1290 

in each genome, with the “--emitRefConfidence BP_RESOLUTION” option. Multi-sample GVCFs 1291 
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were then generated with CombineGVCF, and variants were finally jointly called with GATK 1292 

GenotypeGVCFs. Genotypes were emitted for each site (option “allSites”). 1293 

Variants were filtered with GATK version 3.7 Variant Quality Score Recalibration (VQSR) using 1294 

recommended resources from the GATK bundle: HapMap (version 3.3), 1000 Genomes Project 1295 

Illumina Omni 2.5M SNP array, 1000 Genomes Project phase 1 high confidence SNPs, and dbSNP 1296 

version 151 for the SNPs; and (Mills et al., 2011) gold standard indels and dbSNP version 151 for the 1297 

indels. For the X chromosome, autosomal variants were included for training the VQSR model 1298 

(VariantRecalibrator step). 1299 

We controlled the dataset for related individuals with KING (Manichaikul et al. 2010) “--kinship” 1300 

and plink version 1.90b4.9 (Purcell et al., 2007) “--genome --ppc-gap 100”. The dataset was pruned for 1301 

linkage disequilibrium (LD) before relatedness estimation with plink, using plink “--indep-pairwise” 1302 

with sliding windows of 50 SNPs, shifting by five SNPs, and a r2 threshold of 0.5. Both methods 1303 

identified two pairs of first-degree relatives. We excluded the sample with greatest missingness from 1304 

each pair to produce the family unrelated working datasets henceforth used. 1305 

The callset was then further refined; two samples with a first degree relative in the dataset were 1306 

excluded with GATK version 3.7 SelectVariants; a “FAIL” filter status was set on sites that are 1307 

ambiguous in the reference genome (base “N”) or had greater than 10% missingness, identified with 1308 

VCFtools version 0.1.13 “--missing-site” (Danecek et al., 2011). Moreover, for the autosomes, variants 1309 

heterozygous in all samples were marked as failed (Hardy Weinberg Equilibrium -HWE- filter, 1310 

identified with VCFtools version 0.1.13 “--hardy”). 1311 

Coverage was computed with QualiMap version 2.2 (Okonechnikov, Conesa and García-Alcalde, 1312 

2016) including or not duplicates (“-sd” option for the latter). The average coverage (without duplicates) 1313 

across individuals within populations is provided in SupplementaryTableST2x. 1314 

Descriptive analyses 1315 

Variant counts 1316 

We obtained per-sample and aggregated metrics of variant counts (FigureF2x), with the tool 1317 

CollectVariantCallingMetrics of the software package  Picard v2.10.3 1318 

(https://broadinstitute.github.io/picard/), applied to the full 177 worldwide individuals dataset after 1319 

VQSR, relatedness, HWE and 10% site missingness filtering. We conducted variant counts procedures 1320 

for chromosomes 1 to 22. We used dbSNP 156 as a reference; we downloaded 1321 

“GCF_000001405.40.gz” and modified the contig names to match contig names in the VCFs. 1322 

Separately, we applied the same variant counts pipeline as above to the Central and Southern African 1323 

73 individuals’ original dataset extracted from the full dataset with BCFtools version 1.17 1324 

(https://github.com/samtools/bcftools), using view with the option “-S”. All scripts are provided in the 1325 

corresponding GitHub repository (https://github.com/Gwennid/africa-wgs-descriptive). 1326 

Genome-wide Heterozygosity 1327 

We calculated observed and expected heterozygosities, for the autosomes and for the X-chromosome 1328 

separately using custom Python, Bash, and R scripts (full pipeline available at GitHub 1329 

https://github.com/Gwennid/africa-wgs-descriptive), for the 177 worldwide individuals after variant-1330 

counts filtering described above. For autosomes, we considered the main contigs (“chr1” to “chr22”). 1331 

For the X chromosome, we excluded the Pseudo-Autosomal Regions with coordinates from GRCh38 1332 

(PAR1: 10,000 to 2,781,480, PAR2: 155,701,382 to 156,030,896).  1333 
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For each population with more than one individual and for each autosome and X-chromosome 1334 

separately, we counted the number of variable and non-variable sites and excluded multi-allelic sites, 1335 

indels, and sites with missing genotypes in at least one individual in the population for simplicity and 1336 

conservativeness. For each autosome and each individual, we then counted separately the numbers of 1337 

observed homozygous and heterozygous sites of each configuration compared to the reference (0/0; 1338 

0/1; 1/0; 1/1). Based on these counts, for each population and each chromosome separately, we first 1339 

calculated observed heterozygosities simply as the average proportion of heterozygous individuals per 1340 

variable sites with no-missing data in the population sample. We also computed unbiased expected 1341 

multi-locus heterozygosities for all variable loci with no missing genotypes in the population as in 1342 

equations (2) and (3) in (Nei, 1978). We averaged this value across all sites with no missing information 1343 

in the population sample including both variable and non-variable sites, and finally corrected it for 1344 

haploid population sample sizes (FigureF2x). All scripts are provided in the corresponding GitHub 1345 

repository (https://github.com/Gwennid/africa-wgs-descriptive). 1346 

Runs of homozygosity 1347 

We identified runs of homozygosity (ROH) using the homozyg tool from PLINK version 1.90b4.9 1348 

(Purcell et al., 2007). We selected autosomal biallelic SNPs from the variant-counts pipeline described 1349 

above with GATK version 3.7 SelectVariants with options “-selectType SNP -restrictAllelesTo 1350 

BIALLELIC -excludeFiltered”. We converted the VCF to TPED and then binary plink fileset with 1351 

VCFtools version 0.1.13 “-plink-tped” and plink. For the 177 individuals worldwide, we considered 1352 

only ROHs measuring more than 200 Kb (--homozyg-kb 200), containing at least 200 SNPs (--homozyg-1353 

snp 200), containing at least one variable  site per 20 Kb on average (--homozyg-density 20), and with 1354 

possible gaps of up to 50 Kb (--homozyg-gap 50). Default values were considered for all other 1355 

parameters: --homozyg-window-het 1 --homozyg-window-snp 50 --homozyg-window-threshold 0.05. 1356 

Finally, the total mean ROH lengths were calculated for each population separately using the “.hom” 1357 

output-file for each of four length categories: 0.2 to 0.5 Mb,  0.5 to 1 Mb, 1 to 2 Mb, and 2 to 4 Mb 1358 

(FigureF2x). Corresponding pipelines are provided in the corresponding GitHub repository 1359 

(https://github.com/Gwennid/africa-wgs-descriptive). 1360 

Individual pairwise genome-wide genetic differentiation 1361 

We explored genome-wide genetic differentiation between pairs of individuals with Neighbor-Joining 1362 

Tree (NJT) (Saitou and Nei, 1987; Gascuel, 1997), and Multi-Dimensional Scaling (MDS) approaches 1363 

based on the pairwise matrix of Allele-Sharing Dissimilarities (ASD) (Bowcock et al., 1991) computed 1364 

using 14,182,615 genome-wide autosomal SNPs pruned for low LD, with PLINK version 1.90b4.9 1365 

(Purcell et al., 2007) indep-pairwise function (--indep-pairwise 50 5 0.1). We considered at first all 177 1366 

unrelated individuals in our dataset to calculate the ASD matrix, and then subset this ASD matrix for 1367 

the 73 Central and Southern African unrelated individuals original to this study before computing NJT 1368 

and MDS analyses anew (FigureF3x).  1369 

We computed the ASD matrix considering, for each pair of individuals, only those 14,182,615 1370 

SNPs without missing data, using the asd software (v1.1.0a; https://github.com/szpiech/asd; Szpiech, 1371 

2020). We computed the unrooted NJT using the bionj function of the R package ape and setting the 1372 

branch-length option to “true”. We computed the MDS using the cmdscale function in R. 1373 

The clustering software ADMIXTURE (Alexander, Novembre and Lange, 2009) allows 1374 

researchers to further explore inter-individual genome-wide levels of dissimilarity and resemblance. 1375 

Indeed, while it is tedious and often cognitively difficult to explore multiple combinations of 1376 

dimensions of genetic variation using an MDS or a NJT approach, ADMIXTURE instead allows 1377 

exploring K higher such dimensions at once (Pritchard, Stephens and Donnelly, 2000; Rosenberg, 2002; 1378 
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Falush, Stephens and Pritchard, 2003; Alexander, Novembre and Lange, 2009; Lawson, van Dorp and 1379 

Falush, 2018). However, note that the visual representation of relative “distances” across pairs of 1380 

individuals is lost in the classical bar-plot representation of ADMIXTURE, hence showing the 1381 

complementarity of this descriptive analysis to the above MDS and NJT. 1382 

We considered here only 840,031 genome-wide autosomal SNPs pruned for LD (r2 threshold 0.1) 1383 

and with Minimum Allele Frequency above 0.1, for the 177 worldwide unrelated individuals, using 1384 

PLINK indep-pairwise and maf functions. We computed unsupervised ADMIXTURE version 1.3.0 1385 

clustering with values of K ranging from 2 to 10, considering 20 independent runs for each value of K 1386 

separately. We then calculated ADMIXTURE results symmetric-similarity-coefficient SSC for each 1387 

value of K separately in order to find the groups of runs providing highly similar results (SSC>99.8%). 1388 

Individual’s genotype membership proportions to each K cluster were then averaged, per individual, 1389 

across such highly resembling runs, and then plotted (FigureF4x). SSC calculations, averaging results 1390 

across similar runs, and producing barplots were conducted using the software PONG with the “greedy” 1391 

algorithm (Behr et al., 2016). Corresponding pipelines are provided in the corresponding GitHub 1392 

repository (https://github.com/Gwennid/africa-wgs-descriptive). 1393 

Machine-Learning Approximate Bayesian Computation scenario-1394 

choice and posterior parameter estimation 1395 

We reconstructed the complex demographic history of Central and Southern African populations using 1396 

machine-learning Approximate Bayesian Computation (Tavaré et al., 1997; Beaumont, Zhang and 1397 

Balding, 2002; Blum and François, 2010; Csilléry, François and Blum, 2012; Pudlo et al., 2016). In 1398 

principle, in ABC, researchers first simulate numerous genetic datasets under competing scenarios by 1399 

drawing randomly a vector of parameter values for each simulation in distributions set a priori by the 1400 

user. For each simulation separately, we then calculate a vector of summary statistics, thus 1401 

corresponding to a vector of parameter values used for the simulation. The same set of summary 1402 

statistics is then computed on the observed data. ABC scenario-choice then allows the researcher to 1403 

identify which one of the competing scenarios produces the simulations for which summary-statistics 1404 

are closest to the observed ones. Under this winning scenario, ABC posterior-parameter inference 1405 

procedures allow the researcher to estimate the posterior distribution of parameter values most likely 1406 

underlying the observed genetic patterns. 1407 

48 competing scenarios for the demographic history of Central and Southern 1408 

African populations 1409 

We designed 48 competing demographic-history scenarios possibly underlying the genetic patterns 1410 

observed in five Central and Southern African populations of five individuals each (TableT1x, 1411 

FigureF5x); one Eastern Rainforest Hunter-Gatherer population (eRHG: Nsua, Ba.Twa, or Mbuti), one 1412 

Western Rainforest Hunter-Gatherer population (wRHG: Baka, Ba.Kola, or Aka Mbati), one Eastern 1413 

or Western RHG neighboring population (eRHGn: Ba.Kiga or Ba.Konjo; wRHGn: Nzimé or Ngumba), 1414 

one Northern Khoe-San population (nKS: Ju|’hoansi or !Xun), and one Southern Khoe-San population 1415 

(sKS: Karretjie People or Nama). Note that we did not include the Khutse-San population in ABC 1416 

inferences for simplicity, as this population is located at intermediate geographic distances between the 1417 

nKS and sKS groups of populations. 1418 

The 48 competing scenarios differed in their ancient tree-topologies and relative timing of the more 1419 

recent divergence events, combined with different (duration and intensities) possibly asymmetric gene-1420 

flow processes among ancient and recent lineages (FigureF5x). This design, while complex, allowed 1421 
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us, for the first time to our knowledge, to consider explicitly the expected confounding effects of gene-1422 

flow processes on otherwise different tree-topologies, which may also possibly induce certain 1423 

reticulations among ancient lineages, while jointly estimating divergence times, gene-flow events’ 1424 

timing and intensities, and effective population size changes over time. 1425 

Importantly, we relied on extensive previous findings having formally demonstrated the common 1426 

origin of Congo Basin RHG populations (Patin et al., 2009; Verdu et al., 2009), and that of KS 1427 

populations (Schlebusch et al., 2012, 2020), respectively, and thus did not consider all possible tree-1428 

topologies for five tree-leaves. Moreover, we considered only a single RHGn sample in each 1429 

combination, in turn from the East or the West of Central Africa, in order to simplify already highly 1430 

complex scenarios, as we were not interested here in the detailed demographic history of RHGn which 1431 

has been extensively studied previously (e.g. (Patin et al., 2017; Fortes-Lima et al., 2024)). This 1432 

simplification was deemed reasonable as RHGn populations throughout the Congo Basin and into 1433 

Southern Africa have previously been shown to be strongly more genetically resembling one another, 1434 

compared to RHG and KS neighboring populations, or compared to much more genetically dissimilar 1435 

RHG and KS populations, respectively (e.g. (Verdu et al., 2009, 2013; Patin et al., 2014, 2017; Lopez 1436 

et al., 2018, 2019; Fortes-Lima et al., 2024)); a result that we also obtained here (FigureF5x). 1437 

  1438 

Eight competing topologies 1439 

We investigated eight competing topologies starting with a single ancestral population and resulting in 1440 

five different sampled populations in the present (FigureF5x). The eight topologies differ in which 1441 

lineage ancestral to modern KS, RHG, or RHGn diverged first from the two others, and in the relative 1442 

order of divergence events internal to KS (nKS-sKS divergence) and internal to RHG (wRHG-eRHG 1443 

divergence), in order to consider the known variable demographic histories of Sub-Saharan populations 1444 

at a regional scale. 1445 

Note that divergence and introgression times (all t and tad, see FigureF5x, TableT2x), were each 1446 

randomly drawn in uniform prior distributions between 10 and 15,000 generations, thus effectively 1447 

setting an upper limit for the most ancient divergence times among lineages at roughly 450,000 years 1448 

ago considering an upper-bound of 30 years for human generation duration (Fenner, 2005). This was 1449 

vastly anterior to the current estimates for the genetic or morphological emergence of Homo sapiens 1450 

(Hublin et al., 2017; Richter et al., 2017), which allowed us to estimate a posteriori the most ancient 1451 

divergences among our populations, without constraining our assumptions based on previous results 1452 

obtained with different methods, data, and models. Furthermore, these prior-distribution boundaries 1453 

allowed for gene-flow events among ancient lineages (see next section), to influence, potentially, the 1454 

timing of the earliest divergence events among human lineages previously estimated (Schlebusch and 1455 

Jakobsson, 2018; Fan et al., 2023; Ragsdale et al., 2023). Note that we retained for simulations only 1456 

those vectors of randomly-drawn parameter-values that satisfied the chronological order of lineage 1457 

divergences set for each eight topologies, respectively (Figure5x, TableT2x) 1458 

In each eight topologies, we incorporated the possibility for changes in effective population sizes, 1459 

N (FigureF5x), during history along each lineage separately by defining constant diploid effective 1460 

population sizes parameters separately for each tree-branch, each drawn randomly in U[10-100,000] 1461 

(Figure5x, TableT2x). 1462 

  1463 

Asymmetric instantaneous or recurring gene-flows and their intensities 1464 

Migration of individuals between populations is ubiquitous in human history (for an overview in Africa, 1465 

see e.g. (Schlebusch and Jakobsson, 2018; Pfennig et al., 2023)). Here we aimed at disentangling the 1466 

nature of migration processes that may have occurred across pairs of lineages throughout the history of 1467 

Central and Southern African populations. 1468 
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In particular, we first aimed at determining whether gene-flow events during history occurred 1469 

relatively instantaneously, leading to reticulations in tree-topologies, or, conversely, occurred 1470 

recurrently over longer periods of time leading to un- or weakly-differentiated lineages throughout 1471 

history (Henn, Steele and Weaver, 2018; Hollfelder et al., 2021; Ragsdale et al., 2023). To do so, for 1472 

each eight topologies described above (FigureF5x), we simulated gene-flow either as single-generation 1473 

gene-flow pulses across pairs of lineages, or as constant recurring gene-flow across pairs of lineages in-1474 

between each lineage-divergence event. This design resulted in 16 competing scenarios encompassing 1475 

eight different possible topologies, contrasting instantaneous gene-flow events with recurring gene-1476 

flows. Note that, for simplicity, we did not consider possible gene-flows between KS and RHG recent 1477 

lineages, as genetic signatures of such recent migrations have never been identified in previous genetic 1478 

studies nor in historical records to our knowledge. 1479 

Importantly, we aimed at determining whether gene-flow occurred symmetrically, or not, across 1480 

pairs of lineages, in particular in the past. Indeed, previous studies already identified recent asymmetric 1481 

admixture processes between RHG and RHGn (Patin et al., 2009, 2014; Verdu et al., 2009, 2013), and 1482 

such possible asymmetries have not been explored among ancient lineages in previous studies (Fan et 1483 

al., 2023; Ragsdale et al., 2023), although they may be influencing ancient tree-topologies or 1484 

reticulations across lineages and the subsequent past evolution of extant populations.  1485 

To do so, for each gene-flow event in each 16 competing scenarios (FigureF5x), we parameterized 1486 

separately the introgression of lineage A into lineage B, from that of lineage B into lineage A, by 1487 

drawing randomly the corresponding parameter values independently in the same prior distribution 1488 

(TableT2x). ABC posterior-parameter estimations would thus reveal possible asymmetries in gene-1489 

flows across pairs of lineages for each event separately, if identifiable from genomic data. 1490 

Finally, for each one of the 16 competing combinations of topologies and gene-flow processes, we 1491 

considered three classes of gene-flow intensities by setting different boundaries of gene-flow 1492 

parameters’ uniform prior-distributions (TableT2x): no to low possible gene-flow (U[0, 0.001] for 1493 

recurring processes, and U[0, 0.01] for instantaneous processes), no to moderate gene-flow 1494 

(U[0,0.0125] for recurring processes, and U[0, 0.25] for instantaneous processes), or no to intense gene-1495 

flow events (U[0,0.05] for recurring processes and U[0,1] for instantaneous processes). Note that, for 1496 

each three classes of gene-flow intensities, each gene-flow parameter from one lineage to another at 1497 

each point or period in time was drawn independently in the above prior-distributions’ boundaries, and 1498 

thus may differ across events within a scenario, and across scenarios (FigureF5x, TableT2x). 1499 

Altogether, this design resulted in 16x3 = 48 competing scenarios for the complex demographic 1500 

history of Central and Southern African populations. Importantly, note that for any given class of gene-1501 

flow process or intensity, the eight topologies are highly nested in certain parts of the space of parameter 1502 

values (Robert, Mengersen and Chen, 2010). In particular, despite the fact that we did not consider 1503 

competing scenarios with explicitly trifurcating ancient tree-topologies, scenarios in which the 1504 

parameter values for the oldest and second oldest divergence times are similar are expected to provide 1505 

results highly resembling those obtained with ancient trifurcation scenarios. 1506 

All scenario-parameters are represented schematically in FigureF5x, and their prior distributions 1507 

and constraints are indicated in TableT2x. 1508 

  1509 

Simulating genomic datasets 1510 

We performed simulations under the coalescent using fastsimcoal2 (Excoffier and Foll, 2011; Excoffier 1511 

et al., 2013), for each one of the 48 scenarios described above, separately. For each simulation, we 1512 

generated a vector of parameter values randomly drawn in prior-distributions and satisfying the 1513 

topological constraints as described above and in TableT2x, with custom-made Python and Bash scripts 1514 

available in the GitHub repository for this article (https://github.com/Gwennid/africa-wgs-abc). The 1515 
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genetic mutation model is based on the model deployed in (Jay, Boitard and Austerlitz, 2019). We 1516 

simulated 100 independent loci (or “chromosomes”) with the same structure. Each such “chromosome” 1517 

corresponds to a linkage block, with the following properties: the type of marker was “DNA”, the length 1518 

of the loci 1 Mb, the recombination rate was 1×10−8 per base pair, the mutation rate 1.25 × 10−8 per 1519 

base pair, and there was no transition bias (transition rate of 0.33). 1520 

We performed 5,000 such simulations for each 48 competing scenarios separately in order to 1521 

conduct Random Forest ABC scenario-choice, hence producing 240,000 separate simulated dataset 1522 

each corresponding to a single vector of parameter values randomly drawn in prior distributions 1523 

(TableT2x). Then we performed an additional 95,000 separate simulations under the winning scenario 1524 

obtained with RF-ABC for each 54 separate combinations of observed population samples (see below). 1525 

We thus reached 100,000 simulations under each winning scenario identified for each 54 observed 1526 

datasets respectively, to be used for Neural Network ABC posterior parameter inference. 1527 

 1528 

Building observed genome-wide data-sets for 54 sets of five Central and Southern 1529 

African populations 1530 

We considered 54 separate combinations of four eRHG, wRHG, nKS, sKS, and one eRHGn or wRHGn 1531 

populations, each with five unrelated individuals (TableT1x). We prepared a callset of high-quality 1532 

regions by applying the 1000 Genomes phase 3 accessibility mask and filtering out indels. We pieced 1533 

high quality windows together to create 1 Mb-long windows. We selected 100 of these regions for 1534 

which the total length from start to end is less than 1.2 Mb. We then extracted these 100 independent 1535 

autosomal loci of 1 Mb each from the 25 individuals, hence mimetic of the simulated data. 1536 

 1537 

Calculating 337 summary statistics 1538 

For each simulated genetic dataset, we computed 337 summary statistics. 41 summary statistics were 1539 

computed within each five populations separately (hence 205 statistics for five populations), 132 1540 

summary statistics were computed across the five populations, for each one of the 54 combinations of 1541 

five populations separately. In brief, all summary statistics were calculated with plink v1.90b4.9 1542 

(Purcell et al., 2007), R v3.6.1 (R Core Team, 2015), Python v2.7.15, bash, awk[1], and scripts 1543 

developed by (Jay, Boitard and Austerlitz, 2019), available at 1544 

https://gitlab.inria.fr/ml_genetics/public/demoseq/-/tree/master, and using the software asd 1545 

(https://github.com/szpiech/asd). The list of calculated summary statistics is provided in TableT3x. The 1546 

same statistics were computed for each one of the 54 observed data-sets separately, using the same 1547 

computational tools and pipeline. Custom-made Python and Bash scripts for computations of all 1548 

summary-statistics for each simulation and for the observed data are available in the GitHub repository 1549 

for this article in the “fsc-simulations/code” folder (https://github.com/Gwennid/africa-wgs-abc). 1550 

We used the complete set of 337 statistics to perform Random-Forest ABC scenario-choice, as this 1551 

method is relatively fast and is unaffected by correlations among statistics (Pudlo et al., 2016). We then 1552 

considered a subset of 202 statistics among the 337 for Neural-Network ABC posterior-parameter 1553 

estimation, in order to diminish computation time (TableT3x). 1554 

 1555 

Prior-checking simulations’ fit to the observed data 1556 

Before conducting ABC scenario-choice and posterior parameter estimation inferences, we checked 1557 

that summary-statistics calculated on the observed data fell within the range of values of summary-1558 

statistics obtained from our simulations. First, we visually verified that each observed vector of 1559 

summary-statistics computed separately from 54 combinations of five populations each, clustered with 1560 

the 240,000 vectors of summary-statistics obtained from simulations under the 48 competing scenarios, 1561 
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using two-dimensional PCA calculated with the prcomp function R (SupplementaryFigureSF1x). 1562 

Second, we used the gfit function in R to perform goodness-of-fit 100-permutations tests between the 1563 

240,000 vectors of summary-statistics obtained from simulations under the 48 competing scenarios and, 1564 

in turn, each vector of summary-statistics obtained from the 54 observed datasets respectively. 1565 

Results both showed that our simulation design could successfully mimic summary-statistics 1566 

observed in our five-population sample sets, for each 54 combinations of five populations separately. 1567 

Hence, ABC inferences could be confidently conducted a priori based on the simulations and observed 1568 

data here considered. 1569 

 1570 

Random Forest ABC grouped scenario-choice 1571 

We conducted series of Random Forest ABC scenario-choice procedures for different groups of 1572 

scenarios (Pudlo et al., 2016; Estoup et al., 2018), elaborated specifically to address our different 1573 

questions of interest regarding gene-flow processes, their intensities, and topological features of the 1574 

history of Central and Southern African populations. Random Forest-ABC scenario-choice has proven 1575 

to be performing efficiently and satisfactorily with a significantly lower number of simulations 1576 

compared to any other ABC scenario-choice procedure. Moreover, RF-ABC scenario choice is 1577 

insensitive to correlations among summary-statistics (Pudlo et al., 2016; Estoup et al., 2018). 1578 

Each RF-ABC scenario-choice procedure presented below was conducted using the predict.abcrf 1579 

and the abcrf functions with the “group” option of the abcrf package in R (Pudlo et al., 2016), with 1580 

1000 decision trees to train the algorithm after checking that error rates were appropriately low with the 1581 

err.abcrf function, separately for each 54 combinations of five sampled populations (FigureF6x).  1582 

We conducted cross-validation procedures considering in turn each one of the simulations as 1583 

pseudo-observed data and all remaining simulations to train the algorithm, for each RF-ABC analysis 1584 

separately (SupplementaryFigureSF6xPart0). While not necessarily predicting the outcome of the 1585 

scenario-choice for the observed data, these cross-validation procedures provide us with a sense of the 1586 

discriminatory power, a priori, of RF-ABC for our set of competing-scenarios, as well as empirical 1587 

levels of nestedness among scenarios or groups of scenarios (Robert, Mengersen and Chen, 2010; 1588 

Fortes‐Lima et al., 2021).  1589 

  1590 

Instantaneous or recurring gene-flows in the history of Central and Southern African populations? 1591 

The 5,000 simulations performed under each one of the 48 competing scenarios were first gathered into 1592 

two groups of 24 scenarios each (FigureF5x), corresponding to either instantaneous asymmetric gene-1593 

flow processes or to recurring constant asymmetric gene-flow between each pair of lineages, 1594 

respectively. Both groups thus contained all simulations from the eight competing topologies and all 1595 

three sets of possible gene-flow intensities (low, moderate, or high, see above), and only differed in the 1596 

process of gene-flow itself. For each 54 combinations of five sampled populations separately, we 1597 

performed such RF-ABC scenario-choice to determine the winning group of scenarios (FigureF6x-1598 

panelA). 1599 

  1600 

Low, moderate, or high gene-flow intensities? 1601 

For each 54 combinations of five sampled populations separately, we performed RF-ABC scenario-1602 

choice in order to determine which class of intensities of gene-flows best explained the data, everything 1603 

else (topology and gene-flow process) being-equal. We thus considered three groups of scenarios in our 1604 

RF-ABC scenario-choice, each corresponding to “low”, “moderate”, or possibly “high” intensities, and 1605 

each grouping the 16 scenarios corresponding to eight topologies and instantaneous or recurring gene-1606 

flow processes indiscriminately (FigureF6x-panelB). 1607 
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Then, we conducted, for each 54 population combinations separately, the same RF-ABC scenario-1608 

choice procedure to disentangle groups of gene-flow intensities “all topologies being equal”, 1609 

considering here only the 24 scenarios from the winning group among instantaneous or recurring gene-1610 

flow processes obtained from the above scenario-choice procedure 1611 

(SupplementaryFigureSF6xPart1). 1612 

Finally, we performed, for each 54 combinations of five populations separately, RF-ABC scenario 1613 

choice for the 48 competing scenarios grouped in six different groups (encompassing eight scenarios 1614 

each), combining instantaneous or recurring processes with the three classes of intensities respectively 1615 

(FigureF6x-panelC), thus “intersecting” the two corresponding group analyses (see above). 1616 

  1617 

Which ancestral Central or Southern African lineage diverged first? 1618 

The eight topologies considered in the 48 competing scenarios can also be grouped according to their 1619 

ancient topologies, by considering which ancestral lineage diverged first from all others at the oldest 1620 

divergence event in the tree (FigureF5x). The ancient lineage which separated first from the two others 1621 

can either be the lineage ancestral to Northern and Southern Khoe-San populations (AKS, scenario 1622 

topologies 1a, 1b, 1c in FigureF5x), the lineage ancestral to eastern and western Rainforest Hunter-1623 

Gatherer populations (ARHG, scenario topologies 2a, 2b, 2c in FigureF5x), or the lineage leading to 1624 

Rainforest Hunter-Gatherer Neighboring populations (RHGn, scenario topologies 3a, 3b in  1625 

FigureF5x). 1626 

For each 54 combinations of five populations separately, we conducted RF-ABC scenario-choice 1627 

across these three groups of scenarios, randomly drawing 2/3 of the 5,000 simulations per scenario for 1628 

the scenarios 1a, 1b, and 1c, and for the scenarios 2a, 2b, and 2c, respectively, and kept all simulations 1629 

for the scenarios 3a and 3b, in order to even the total number of simulations in competition among the 1630 

three groups of scenarios. We thus performed RF-ABC scenario-choice across the three groups of 1631 

topologies “all gene-flow processes and intensities being equal” (FigureF6x-panelD). 1632 

Then we restricted the RF-ABC scenario-choice of the three-competing groups of topologies only 1633 

for the 24 scenarios from the winning instantaneous or recurring gene-flow processes obtained above, 1634 

all gene-flow intensities being equal (FigureF6x-panelE). 1635 

  1636 

Northern and Southern Khoe-San populations diverged before or after the divergence between 1637 

Eastern and Western RHG? 1638 

The eight topologies considered in the 48 competing scenarios can alternatively be grouped according 1639 

to the relative order of divergence-time between the divergence event among Northern and Southern 1640 

KS populations, and that among Eastern and Western RHG populations; an important question to 1641 

understand the relative duration of separate evolution of each groups of populations. 1642 

To address this specific question we thus conducted, for the 54 combinations of five populations 1643 

separately, RF-ABC scenario-choice procedures by grouping the 48 competing scenarios in two 1644 

separate groups of 24 scenarios each. One group corresponded to KS populations diverging from one-1645 

another before the RHG divergence (scenario topologies 1b, 2b, 3b, and 1c in FigureF5x), and the other 1646 

group where RHG diverged from one another before the KS divergence (scenario topologies 1a, 2a, 3a, 1647 

and 2c in FigureF5x), instantaneous or recurring gene-flow and all “low”, “moderate”, or “high” gene-1648 

flow intensities being equal among the two groups (FigureF6x-panelF). Last, we conducted the same 1649 

RF-ABC scenario-choice procedure between two groups of four topologies each, but restricted to the 1650 

24 scenarios winning among the instantaneous or recurring gene-flow processes as determined from 1651 

above procedures (FigureF6x-panelG). 1652 

Finally, we conducted RF-ABC scenario choice procedures considering, respectively, all 48 1653 

competing scenarios separately (SupplementaryFigureSF6xPart2), and all 24 scenarios winning 1654 
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among the instantaneous or recurring gene-flow processes as determined above 1655 

(SupplementaryFigureSF6xPart3). 1656 

  1657 

Neural Network ABC posterior-parameter estimation 1658 

We intersected all the RF-ABC scenario-choice results considering the different groups of scenarios or 1659 

all scenarios independently, as described above, in order to determine, which single scenario was 1660 

winning in the majority of the 54 combinations of five Central and Southern African populations. We 1661 

found that the Scenario i1-1b conservatively produced simulations whose observed summary-statistics 1662 

most resembled those obtained in 25 out of the 54 possible population combinations here tested (see 1663 

Results, the detailed list of 25 population combinations is provided in SupplementaryTableST3x). 1664 

The second most often winning scenario, Scenario i1-3b, only succeeded for four population 1665 

combinations among the 54 tested. 1666 

Based on this a posteriori winning Scenario i1-1b, we performed an additional 95,000 simulations 1667 

considering the same prior distributions and constraints among parameters, in order to obtain 100,000 1668 

simulations for further ABC posterior parameter inferences, separately for each one of the 25 population 1669 

combinations for which it was identified confidently as the winner, separately. As it remains difficult 1670 

to estimate jointly the posterior distribution of all parameters of the complex scenarios here explored 1671 

with RF-ABC (Raynal et al., 2019), we instead conducted Neural Network ABC joint posterior 1672 

parameter inferences using the abc package in R (Blum and François, 2010; Csilléry, François and 1673 

Blum, 2012), following best-practices previously bench-marked for highly complex demographic 1674 

scenarios (Jay, Boitard and Austerlitz, 2019; Fortes‐Lima et al., 2021). There are no rules of thumb in 1675 

order to determine a priori the best number of neurons and tolerance rate to be set for training the neural 1676 

network in NN-ABC (Jay, Boitard and Austerlitz, 2019).  1677 

There are no evident criteria to choose a priori the best tolerance level and numbers of neurons in 1678 

the neural network’s hidden layer for parameterizing the NN-ABC posterior-parameter estimation 1679 

procedure (Jay, Boitard and Austerlitz, 2019; Huang et al., 2024). As the total number of parameters in 1680 

the winning Scenario i1-1b was large (43, FigureF5x and TableT2x), and as the number of summary-1681 

statistics considered was also large (202, TableT3x), we chose to conduct the 25 NN-ABC posterior-1682 

parameter inferences for the 25 combinations of sampled populations considering, in-turn, 7, 14, 21, 1683 

28, 35, 42, or 43 neurons in the hidden layer (43 being the assumed number of dimensions equal to the 1684 

number of parameters for this scenario (Blum and François, 2010; Jay, Boitard and Austerlitz, 2019)), 1685 

and a tolerance level of 0.01, thus considering the 1,000 simulations closest to each observed dataset 1686 

out of the 100,000 performed, respectively. We found a posteriori that, considering 42 neurons in the 1687 

hidden layer provided overall posterior parameter distributions departing from their priors, and in 1688 

particular for divergence-times parameters which we were highly interested in, and therefore decided 1689 

to provide all posterior parameter distributions’ results using this parameterization (tolerance = 0.01, 1690 

number of hidden neurons = 42) for the training of the neural network. 1691 

We thus performed 25 separate NN-ABC joint parameter posterior inferences, using the 1692 

“neuralnet” method option in the function abc of the abc package in R (Csilléry, François and Blum, 1693 

2012), with logit-transformed (“logit” transformation option), an “epanechnikov” kernel, parameter 1694 

values within parameter-priors’ boundaries, a tolerance level of 0.01, and 42 neurons in the hidden 1695 

layer. Adjusted posterior parameter distributions obtained with this method were then plotted for each 1696 

parameter separately using a gaussian kernel truncated at the boundaries of the parameter prior-1697 

distributions. We then estimated the mode, median, mean, and 50% and 95% Credibility Intervals of 1698 

these distributions a posteriori. We provide all posterior-parameter distributions together with their 1699 

priors in figure-format (FigureF7x, FigureF8x, SupplementaryFigureSF7xPart1-2), and in table-1700 

format (TableT4x, SupplementaryTableST4x). 1701 
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SupplementaryTableST1x: Whole genome total variant counts among 177 unrelated worldwide individuals 1724 
Variant counts compared to the reference sequence for the human genome GRCh38 and previously reported variants in dbSNP 1725 
156. “SD” stands for “standard deviation”. See Material and Methods for details about the quality control, relatedness 1726 
filtering, and variant count procedures. 1727 
 1728 

 1729 

 Total variant count 
Per individual variant count among 177 

worldwide unrelated individuals 

 

Original dataset:  
73 Central and 

Southern African 
unrelated individuals 

Entire dataset:  
177 worldwide 

unrelated 
individuals 

Total SD Min Max 

Number of biallelic SNPs 26,780,319 36,272,545 4,245,000 375,379 3,093,785 4,642,544 
Number of biallelic SNPs not 
in dbSNP 156 

854,114 1,055,245 8,052 4,563 1,152 27,406 

Number of multiallelic SNPs 241,428 257,906 56,330 5,162 38,057 61,716 
Number of simple indels 2,454,965 3,159,306 385,391 35,522 278,237 421,976 
Number of novel simple 
indels not in dbSNP 156 

114,362 189,124 1,651 514 771 627 

Number of complex indels 969,025 977,542 414,037 71,029 289,993 566,951 
Number of variants appearing 
in a single sample 

8,404,499 12,638,316 71,403 15,094 22,444 104,211 

Number of filtered SNPs 2,940,629 3,296,775 247,172 48,579 66,597 350,377 

 1730 
  1731 
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SupplementaryTableST2x: Whole genome biallelic SNPs counts in 46 worldwide populations 1732 
Mean number of bi-allelic SNPs across unrelated individuals from 46 worldwide populations, and associated standard 1733 
deviations (when applicable), compared to the reference sequence for the human genome GRCh38 and compared to previously 1734 
reported variants in dbSNP 156. See Material and Methods for details about the quality control, relatedness filtering, and 1735 
variant count procedures. Populations are ordered in increasing mean number of SNPs per pop. The information original to 1736 
this study is indicated in bold. “SD” stands for standard deviation. “na” stands for not applicable. Additional population 1737 
information and geographical location of samples can be found in FigureF1x and TableT1x. 1738 
 1739 

Population 
Name1 Sampling location Dataset2 N3 

Mean 
coverage X 
(SD) 

Mean number of 
biallelic SNPs (SD) 

Mean number of 
biallelic SNPs not in 
dbSNP 156 (SD) 

Karitiana Brazil SGDP, HGDP 5 31.1  (7.8) 3,214,086  (69,241) 1,030  (547) 
Papuan Papua New Guinea SGDP, HGDP 6 35.8  (7.8) 3,414,518  (74,893) 841  (290) 
French France SGDP, HGDP 4 33.8  (8.7) 3,455,358  (77,954) 652  (225) 
Dai China SGDP, KGP 6 37.7  (10.5) 3,480,744  (67,644) 695  (407) 
CEU United States of America KGP 2 67.3  (0.2) 3,551,792  (7,819) 1,539  (57) 
Saharawi Western Sahara SGDP 2 43.7  (2.2) 3,726,018  (27,793) 590  (21) 
Mozabite Algeria SGDP 2 34.9  (1.6) 3,736,308  (69,393) 563  (11) 
Somali Kenya SGDP 1 37.7  (na) 3,940,793  (na) 540  (na) 
Coloured South Africa SAHGP 8 44.9  (2.2) 4,000,396  (97,447) 10,169  (2,319) 
Dinka Sudan SGDP, HGDP 4 31.3  (5.8) 4,142,138  (97,001) 3,146  (4,811) 
Maasai Kenya SGDP 2 38.6  (5.5) 4,169,732  (5,281) 654  (27) 
Mandinka Gambia KGP 1 27.2  (na) 4,193,651  (na) 1,602  (na) 
Mandenka Senegal SGDP, HGDP 4 30  (7.6) 4,217,398  (107,847) 914  (464) 
Yoruba Nigeria SGDP, HGDP 4 31.1  (5) 4,233,500  (11,5371) 755  (195) 
Ba.Kiga Mukono (Uganda) this study 5 39.4  (4.6) 4,274,466  (25,201) 5,391  (191) 
Gambian Gambia SGDP 2 35.5  (0.8) 4,277,874  (12,976) 816  (107) 
Esan Nigeria SGDP, KGP 3 39.7  (9.5) 4,284,041  (18,359) 704  (67) 
Bantu_Kenya Kenya SGDP 2 38.7  (6.8) 4,288,533  (10,954) 611  (88) 
Luo Kenya SGDP 2 34  (0.2) 4,293,632  (1,003) 722  (4) 
Luhya Kenya SGDP, KGP 3 40.6  (12.1) 4,294,198  (28,096) 704  (37) 
Igbo Nigeria SGDP 2 36.3  (8) 4,294,870  (1,867) 1,166  (9) 
Lemande Cameroon SGDP 2 36.3  (0.5) 4,306,880  (5,284) 1,530  (37) 
Bantu_Herero Namibia SGDP 2 38.4  (2.2) 4,318,604  (33,525) 690  (161) 
Ba.Konjo Mulimassenge (Uganda) this study 5 43  (6.4) 4,322,177  (6,336) 5,349  (773) 
Nzime Messea (Cameroon) this study 5 35.5  (2.6) 4,322,734  (18,671) 5,305  (208) 
Ngumba Dispersed between Lolodorf 

and Kribi (Cameroon) 
this study 5 40.2  (2.2) 4,332,324  (9,273) 4,810  (552) 

Kongo Cameroon SGDP 1 42.8  (na) 4,336,731  (na) 1233  (na) 
Mende Sierra Leone SGDP, KGP 3 39.6  (8.3) 4,341,512  (13,486) 866  (180) 
Zulu South Africa SAHGP 1 42.8  (na) 4,376,691  (na) 8,146  (na) 
Xhosa South Africa SAHGP 8 42.4  (1.1) 4,385,032  (56,902) 10,085  (1,300) 
Ba.Twa Kebiremu, Byumba, Kitariro, 

Mgungu, Nteko (Uganda) 
this study 6 53.8  (17.7) 4,426,223  (32,552) 20,251  (1,022) 

Bantu_Tswana South Africa SGDP 2 36.7  (3.1) 4,430,870  (55,537) 720  (37) 
Mbuti Democratic Republic of Congo SGDP, HGDP 5 32.1  (7.4) 4,434,425  (110,658) 1,227  (488) 
Sotho South Africa SAHGP 7 42.9  (6.4) 4,446,796  (23,172) 12,040  (1,150) 
Ba.Kola Dispersed between Lolodorf 

and Kribi (Cameroon) 
this study 5 39.2  (1.9) 4,475,922  (50,261) 6,995  (1,948) 

Nsua Bundimassoli (Uganda) this study 5 37.6  (4.9) 4,486,217  (22,774) 16,443  (984) 
Baka Bosquet (Cameroon) this study 7 40.7  (3.5) 4,503,977  (23,946) 3,927  (144) 
Bi.Aka_Mbati Bombeketi section of Bagandou 

(Central African Republic) 
this study 5 43.4  (13.6) 4,514,318  (17,376) 4,587  (198) 

Biaka Central African Republic SGDP 2 39.1  (0.3) 4,521,140  (8,155) 726  (52) 
Nama Windhoek (Namibia) this study 5 48.9  (4.3) 4,530,168  (18,807) 27,902  (462) 
Ju|’hoansi_comp Namibia SGDP, HGDP 4 33.9  (7) 4,554,593  (103,099) 1,382  (273) 
#Khomani South Africa SGDP 2 44.7  (2.8) 4,559,846  (79,851) 1,364  (48) 
Khutse_San Kutse Game reserve 

(Botswana) 
this study 5 46.3  (6.7) 4,592,852  (27,794) 27,989  (1,353) 

Karretjie Colesberg (South Africa) this study 5 46.6  (5.4) 4,601,724  (26,951) 27,720  (1,968) 
!Xun Omega camp (Namibia) and 

Schmidtsdrift (Sout Africa)4 
this study 5 45.6  (1.9) 4,614,835  (10,047) 28,923  (1,371) 

Ju|’hoansi Tsumkwe (Namibia) this study 5 49  (4.6) 4,628,957  (8,139) 26,665  (6,491)) 

 1740 
1Population Names are self reported for the original dataset presented in this study 1741 
2SGDP: Mallick et al 2016; KGP: Auton et al. 2015; HGDP: Meyer et al. 2012, Rasmussen et al. 2014; SAHGP: Choudhury et al. 2017 1742 
3Number of unrelated individuals considered in all analyses in this study (see Material and Methods) 1743 
4The place of origin of the !Xun is around Menongue in Angola. 1744 
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SupplementaryTableST3x: 25 combinations of five population samples out of 54 combinations tested for which 1747 
Scenario i1-1b is winning with Random-Forest ABC among the 48 competing scenarios. 1748 
Values in the table correspond to posterior densities plotted in the left panels of FigureF7x, FigureF8x, and 1749 
SupplementaryFigureSF7xPart1-Part2. Parameter definitions and priors are provided in TableT2x and represented 1750 
graphically in the corresponding scenario panel of FigureF5x. Values in italic are not satisfactorily departing from the priors.  1751 
 1752 

 1753 
 1754 

 nKS sKS RHGn wRHG eRHG 

Combination 1 Ju|'hoansi Karretjie Nzime Baka Nsua 

Combination 2 Ju|'hoansi Karretjie Ngumba Ba.Kola Nsua 

Combination 3 Ju|'hoansi Karretjie Ngumba Ba.Kola Ba.Twa 

Combination 4 Ju|'hoansi Karretjie Nzime Bi.Aka_Mbati Nsua 

Combination 5 Ju|'hoansi Karretjie Nzime Bi.Aka_Mbati Ba.Twa 

Combination 6 Ju|'hoansi Karretjie Ngumba Ba.Kola Mbuti 

Combination 7 Ju|'hoansi Karretjie Nzime Bi.Aka_Mbati Mbuti 

Combination 8 Ju|'hoansi Karretjie Ba.Konjo Baka Mbuti 

Combination 9 Ju|'hoansi Karretjie Ba.Konjo Ba.Kola Mbuti 

Combination 10 Ju|'hoansi Karretjie Ba.Konjo Bi.Aka_Mbati Mbuti 

Combination 11 Ju|'hoansi Nama Ba.Konjo Baka Nsua 

Combination 12 !Xun Nama Ba.Konjo Baka Nsua 

Combination 13 Ju|'hoansi Nama Nzime Baka Nsua 

Combination 14 Ju|'hoansi Nama Ngumba Ba.Kola Nsua 

Combination 15 Ju|'hoansi Nama Nzime Baka Ba.Twa 

Combination 16 Ju|'hoansi Nama Ngumba Ba.Kola Ba.Twa 

Combination 17 Ju|'hoansi Nama Nzime Bi.Aka_Mbati Ba.Twa 

Combination 18 Ju|'hoansi Nama Ba.Konjo Ba.Kola Nsua 

Combination 19 Ju|'hoansi Nama Ba.Kiga Ba.Kola Ba.Twa 

Combination 20 Ju|'hoansi Nama Ba.Kiga Bi.Aka_Mbati Ba.Twa 

Combination 21 !Xun Nama Nzime Bi.Aka_Mbati Nsua 

Combination 22 !Xun Nama Nzime Bi.Aka_Mbati Ba.Twa 

Combination 23 !Xun Karretjie Nzime Bi.Aka_Mbati Nsua 

Combination 24 !Xun Karretjie Nzime Bi.Aka_Mbati Ba.Twa 

Combination 25 !Xun Karretjie Ba.Konjo Bi.Aka_Mbati Nsua 
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SupplementaryTableST4x: NN-ABC posterior parameter estimation of all parameters in Scenario i1-1b for results 1755 
from each 25 sets of five populations each, separately. 1756 
Each sampled-population combination is provided as a single line. Table-headers in bold indicate the categorization of sampled 1757 
populations into Northern Khoisan (nKS), Southern Khoisan (sKS), Rainforest Hunter-Gatherer neighbors (RHGn), Western 1758 
Rainforest Hunter-Gatherer (wRHG), or Eastern Rainsforest Hunter-Gatherer (eRHG) groups, as per scenario topology and 1759 
simulation design explicated in Material and Methods and in FigureF5x. Note that each sampled populations considered in 1760 
the RF-ABC scenario choice analyses are represented twice or more in the 25 combinations. See “.xlsx” file as the table is to 1761 
large to reasonably fit in a A4 page format. 1762 

 1763 

 1764 
  1765 
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SupplementaryFigureSF1x: PCA for ABC prior-checking of simulations fit to the observed data. 1766 
We calculated 337 summary-statistics for each one of the 240 000 simulated data sets, 5000 under each one of the 48 competing 1767 
scenarios (FigureF5x and Material and Methods), which we projected on the first two axes of a principal component analysis. 1768 
Each vector (corresponding thus to a single simulation) is represented by a gray cross. We separately computed the same 337 1769 
summary-statistics, separately for each one of the 54 sets of five observed Central and Southern African populations included 1770 
in our analyses. Each observed vector is then projected, in turn, on the PCA obtained from simulations only. Each such 1771 
observed vector is represented as a single yellow dot. We can see that all the 54 observed sets of populations fall well within 1772 
the space of simulated dataset, thus allowing us a priori to conduct machine-learning ABC scenario choice and posterior 1773 
parameter estimation procedures. 1774 
 1775 

 1776 
  1777 
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SupplementaryFigureSF1x  1778 
 1779 
  1780 
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SupplementaryFigureSF6xPart0: Out-of-bag cross-validation errors for Random-Forest ABC scenario-choices among 1781 
48 competing scenarios. 1782 
All RF-ABC cross-validation analyses are conducted a priori, without using any observed data, by considering, in-turn, each 1783 
simulation as observed data while all remaining simulations are used to train the Random Forest. Each panel provides the a 1784 
priori cross-validation errors for the corresponding RF-ABC scenario-choice analysis detailed in each panel in FigureF6x. 1785 
While these cross-validation errors do not predict the specific outcome of RF-ABC prediction for the observed data, they 1786 
provide levels of scenarios and groups of scenarios nestedness a priori for the entire space of parameters used for simulations. 1787 
(A) shows that intermediate and recurring gene-flow processes are, all topologies and gene-flow intensities “being equal”, 1788 
clearly differentiable by RF-ABC and little nested. (B) and (C) show that different classes of gene-flow intensities are also 1789 
relatively clearly identifiable, albeit more nested, as expected by design since the “high gene-flow” class comprises parameter 1790 
values of the moderate and the low intensity classes of gene-flows (Material and Methods, TableT2x). (D) and (E) show 1791 
that ancient tree topologies are relatively well distinguishable a priori all gene-flow processes “being equal”, despite some 1792 
amounts of errors due to the expected nestedness in the space of parameter values where ancient divergence times are 1793 
resembling and thus undistinguishable. (F) and (G) show that the chronological order between the divergence-time of Northern 1794 
and Southern KS lineages, and that of Western and Eastern RHG lineages, are also relatively well distinguishable a priori with 1795 
RF-ABC scenario-choice, albeit with an increased cross-validation error expected due to high levels of nestedness in the spaces 1796 
of parameter-values where both separate events may occur at similar time. 1797 
 1798 
 1799 
  1800 
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SupplementaryFigureSF6xPart0 1801 
 1802 
 1803 
  1804 
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SupplementaryFigureSF6xPart1: RF-ABC scenario choice among 24 competing scenarios with instantaneous 1805 
asymmetric gene-flow processes, for three groups of gene-flow intensities, all topologies being equal. 1806 
(A) corresponds to the scenario-choice results for the same test as in FigureF6x-PanelC, restricted to the 24 competing 1807 
scenarios considering instantaneous gene-flow processes only, all scenarios topologies “being equal”. Description of the x and 1808 
y axis legends are provided in FigureF6x. (B) corresponds to the RF-ABC cross-validation prior error for the scenario-choice 1809 
procedure conducted in (A). Errors were obtained without considering observed data and using, instead, all simulations in turn 1810 
as pseudo-observed data and the remaining simulations to train the RF. 1811 
 1812 
 1813 
  1814 
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SupplementaryFigureSF6xPart1 1815 
 1816 
 1817 
  1818 
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SupplementaryFigureSF6xPart2: RF-ABC scenario choice among 48 competing scenarios without groups. 1819 
(A) corresponds to the RF-ABC scenario-choice results obtained when considering all 48 scenarios (5,000 simulations per 1820 
scenario), as separate competitors without grouping them, for each 54 combinations of five sampled-populations separately. 1821 
Description of the x and y axis legends are provided in FigureF6x. (B) corresponds to the RF-ABC cross-validation prior error 1822 
for the scenario-choice procedure conducted in (A). Errors were obtained without considering observed data and using, instead, 1823 
all simulations in turn as pseudo-observed data and the remaining simulations to train the RF. Note that, in (B), whichever the 1824 
intensity of the gene-flow, when considering only recurring gene-flow processes, topologies are harder to distinguish from one 1825 
another a priori. Conversely, such difficulty to distinguish a priori among topologies remains overall limited for instantaneous 1826 
gene-flow processes, and errors increase only when considering the possibility of intense instantaneous gene-flows. However, 1827 
as mentioned throughout the article, the capacity to distinguish a priori among scenarios in the entire space of summary-1828 
statistics values does not predict the power to predict a winning scenario in the specific space occupied by observed data (Pudlo 1829 
et al. 2016). 1830 
 1831 

 1832 
  1833 
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SupplementaryFigureSF6xPart2 1834 
 1835 
 1836 
  1837 
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SupplementaryFigureSF6xPart3: RF-ABC scenario choice among 24 competing scenarios without groups. 1838 
(A) corresponds to the RF-ABC scenario-choice results obtained when considering all 24 instantaneous gene-flow scenarios 1839 
(5,000 simulations per scenario), as separate competitors without grouping them, for each 54 combinations of five sampled-1840 
populations separately. Description of the x and y axis legends are provided in FigureF6x. (B) corresponds to the RF-ABC 1841 
cross-validation prior error for the scenario-choice procedure conducted in (A). Errors were obtained without considering 1842 
observed data and using, instead, all simulations in turn as pseudo-observed data and the remaining simulations to train the 1843 
RF. Note that prediction and cross-validation error results resemble those obtained for these 24 specific scenarios obtained 1844 
when considering instead all the 48 scenarios in competition (SupplementaryFigureSF6xPart2). 1845 
 1846 
 1847 
  1848 
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SupplementaryFigureSF6xPart3 1849 
 1850 
 1851 
  1852 



75 

SupplementaryFigureSF7xPart1: ABC posterior distribution of effective population size parameters. 1853 
Neural Network Approximate Bayesian Computation (Csilléry et al. 2012), posterior parameter joint estimations of Effective 1854 
population sizes Ne (in generations before present) for 25 sets of five Central and Southern African populations for which the 1855 
winning scenario identified by RF-ABC was Scenario i1-1b (FigureF5x, SupplementaryTableST3x). NN ABC posterior 1856 
parameter estimation procedures were conducted using 100,000 simulations under Scenario i1-1b, each simulation 1857 
corresponding to a single vector of parameter values drawn randomly from prior distributions provided in TableT2x. We 1858 
considered 42 neurons in the hidden layer of the NN and a tolerance level of 0.01, corresponding to the 1,000 simulations 1859 
providing summary-statistics closest to the observed ones, for each 25 separate analyses. NN posterior estimates are based on 1860 
the logit transformation of parameter values using an Epanechnikov kernel between the corresponding parameter’s prior 1861 
bounds (see Material and Methods and TableT2x). Posterior parameter densities are represented with solid blue lines. 50% 1862 
Credibility Intervals are represented as the light blue area under the density. The median and mode values are represented as 1863 
a solid and dotted blue vertical line, respectively. Parameter prior distributions are represented as dotted grey lines. For all 1864 
panels, the left plots represent the NN-ABC posterior parameter distributions for each 25 sets of five Central and Southern 1865 
African populations winning under Scenario i1-1b, separately (SupplementaryTableST3x and SupplementaryTableST4x). 1866 
See FigureF5x and TableT2x for all parameters’ descriptions in each panel. Results are also provided in TableT4x. 1867 
 1868 
 1869 
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SupplementaryFigureSF7xPart1 1871 
 1872 
 1873 
  1874 
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SupplementaryFigureSF7xPart2: ABC posterior distribution of potentially asymmetric instantaneous gene-flow 1875 
intensity parameters. 1876 
Neural Network Approximate Bayesian Computation (Csilléry et al. 2012), posterior parameter joint estimations of gene-flow 1877 
intensity parameters m (in generations before present) for 25 sets of five Central and Southern African populations for which 1878 
the winning scenario identified by RF-ABC was Scenario i1-1b (FigureF5x, SupplementaryTableST3x). NN ABC posterior 1879 
parameter estimation procedures were conducted using 100,000 simulations under Scenario i1-1b, each simulation 1880 
corresponding to a single vector of parameter values drawn randomly from prior distributions provided in TableT2x. We 1881 
considered 42 neurons in the hidden layer of the NN and a tolerance level of 0.01, corresponding to the 1,000 simulations 1882 
providing summary-statistics closest to the observed ones, for each 25 separate analyses. NN posterior estimates are based on 1883 
the logit transformation of parameter values using an Epanechnikov kernel between the corresponding parameter’s prior 1884 
bounds (see Material and Methods and TableT2x). Posterior parameter densities are represented with solid blue lines. 50% 1885 
Credibility Intervals are represented as the light blue area under the density. Parameter prior distributions are represented as 1886 
dotted grey lines. For all panels, the plots represent the NN-ABC posterior parameter distributions for each 25 sets of five 1887 
Central and Southern African populations winning under Scenario i1-1b, separately (SupplementaryTableST3x and 1888 
SupplementaryTableST4x). See FigureF5x and TableT2x for all parameters’ descriptions in each panel. Note that, overall, 1889 
parameters are relatively little departing from their priors for numerous sets of population combinations among the 25. Also, 1890 
posterior parameter distributions that are substantially departing from their priors are often highly differing from one another 1891 
for each parameter. Therefore, we considered these parameters as unsatisfactorily estimated in our analyses and discuss this 1892 
limitation in the Discussion section of the main text. 1893 
 1894 
 1895 
  1896 
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SupplementaryFigureSF7xPart2 1897 
 1898 
 1899 
  1900 



79 

SupplementaryFigureSF8x: Schematic overview of the sequencing data processing pipeline. 1901 
All template codes with accompanying detailed explanations for all steps are provided in Material and Methods and in the 1902 
corresponding GitHub repository (https://github.com/Gwennid/africa-wgs-descriptive). 1903 
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SupplementaryFigureSF8x 1906 
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