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Abstract 30 

Two obligately acidophilic, mesophilic and aerobic soil ammonia-oxidising archaea were 31 

isolated from a pH 4.5 arable sandy loam (UK) and pH 4.7 acidic sulphate paddy soil (China) 32 

and designated strains Nd1T and Nd2T, respectively. Strains share >99% 16S rRNA gene 33 

sequence identity and their genomes are <2 Mb in length, sharing 79% average nucleotide 34 

identity, 81% average amino acid identity and a G+C mol% ~37%. Strains are 35 

chemolithotrophs that fix carbon dioxide and gain energy by oxidising ammonia to nitrite with 36 

no evidence of mixotrophic growth. Neither strain is capable of using urea as a source of 37 

ammonia. Strains are non-motile in culture although Nd1T does possess genes encoding flagella 38 

and therefore may be motile under certain conditions. Cells are small angular rods 0.5 - 1 μm 39 

in length and grow in the pH range 4.0 – 6.1 and temperature range 20 – 40oC. Strains Nd1T 40 

and Nd2T are distinct in genomic and physiological features and are assigned as the type strains 41 

for the species Nitrosotalea devaniterrae sp. nov. (type strain, Nd1T=NCIMB 15248T=DSM 42 

110862T) and Nitrosotalea sinensis sp. nov. (type strain, Nd2T=NCIMB 15249T=DSM 43 

110863T), respectively, within the genus Nitrosotalea gen. nov. The family Nitrosotaleaceae 44 

fam. nov. and order Nitrosotaleales ord. nov. are also proposed officially. 45 

Introduction 46 

Nitrification, the oxidation of ammonia to nitrite and subsequently to nitrate, is a key process 47 

within the terrestrial and aquatic nitrogen cycles and in aerobic wastewater treatment processes. 48 

The first step in this process, ammonia oxidation to nitrite, was considered to be performed 49 

exclusively by ammonia-oxidising bacteria (AOB), following their initial cultivation from soil 50 

in 1890 (1). Ammonia oxidation provides energy to these chemolithoautotrophs and their 51 

presence and activity have been demonstrated in a wide range of environments. This view of 52 

ammonia oxidation was overturned by isolation of the first ammonia-oxidising archaeon, 53 

Nitrosopumilus maritimus SCM1T (2), from a tropical marine aquarium, after earlier evidence 54 
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from marine and soil metagenomes (3,4). All currently isolated ammonia-oxidising archaea 55 

(AOA) are autotrophic and belong to the phylum Nitrososphaerota (5) (formally 56 

Thaumarchaeota (6) and within the Thermoproteota phylum in GTDB taxonomy (7)), within 57 

the Archaea. Extensive molecular ecology studies have provided evidence for ubiquity of AOA 58 

in terrestrial and aquatic environments. They appear to dominate ammonia-oxidising activity 59 

in marine ecosystems (8,9) and contribute to ammonia oxidation in soil systems together with 60 

AOB and complete ammonia-oxidising Nitrospira (10).  61 

Fundamental physiological differences between members of the archaeal and bacterial domains 62 

stimulated investigation of potential niche specialisation and differentiation of AOA and AOB 63 

(11,12) and physiological diversity within these two groups has led to their co-existence in the 64 

majority of soils. All isolated betaproteobacterial AOB grow optimally at near neutral pH 65 

although some Nitrosospira strains can demonstrate growth down to pH 5.0 (13,14) and an 66 

acid-tolerant gammaproteobacterial AOB has recently been cultivated from soil (15). However, 67 

there is strong evidence for significant contributions of AOA to ammonia oxidation in acid 68 

soils (16,17). Here we describe the isolation and taxonomic placement of two obligately 69 

acidophilic AOA belonging to the class Nitrososphaeria that provide a convincing explanation 70 

for this observation.  71 

Habitat and isolation 72 

Strains Nd1T and Nd2T were both isolated from acidic soils. Strain Nd1T was enriched from an 73 

acidic agricultural soil (loamy sand) sampled from Scotland’s Rural College Craibstone 74 

Woodlands Field pH plots (latitude/longitude: 57.18 N/2.21 W), with an 8-year crop rotation 75 

cycle (18). Soil pH had been maintained at pH 4.5 since 1961 and other soil characteristics are 76 

described in Kemp et al. (19) and Paterson et al. (20). Isolation of a pure culture of strain Nd1T 77 

from this enrichment is described in Lehtovirta-Morley et al. (21). Strain Nd2T was isolated 78 

from an acidic sulphate paddy soil (pH 4.7) sampled in Taishan County, Guangdong Province 79 
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(latitude/longitude: 22.11 N/112.81 E) in Southern China that had been subjected to urea 80 

fertilisation and double rice-cropping since 2003 (21). 81 

While autotrophic soil ammonia oxidisers can form colonies on solidified medium after several 82 

weeks or months (22,23) they are difficult to separate from faster growing heterotrophs. 83 

Ammonia oxidisers are therefore typically enriched by inoculation of liquid mineral salts 84 

medium, containing ammonium, with soil and incubated for several weeks, with or without 85 

shaking. Enrichment of strain Nd1T was achieved by inoculation of soil (1% w/v) into 100 ml 86 

glass bottles containing 50 ml mineral salts medium (18) with 500 µM ammonium chloride 87 

and 50 mg l-1 streptomycin, adjusted to pH 4.5 with HCl and incubation at 28oC in the dark 88 

without shaking. Ammonia oxidation was assessed by an increase in nitrite concentrations and 89 

Nd1T enriched by routinely transferring 2% of mid-exponential culture (~50 µM nitrate 90 

produced). After repeated subcultures in liquid medium to reduce the richness and abundance 91 

of contaminating heterotrophs, a highly enriched culture was obtained with Nd1T representing 92 

approximately 90% of all cells as assessed by using double labelled oligonucleotide probes and 93 

fluorescence in situ hybridization (DOPE-FISH) and 4′,6-diamidino-2-phenylindole (DAPI) 94 

staining (18). Growth of Nd1T was also assessed by quantification of ammonia monooxygenase 95 

sub-unit A (amoA) gene abundance (18). A pure culture was obtained by filtering out larger 96 

contaminating bacteria (pore size 0.45 µm) but growth was initially only possible following 97 

supplementation of medium with 80 mg l-1 casamino acids or with filter-sterilised (pore size 98 

0.22 µm) spent medium from the mixed enrichment culture previously incubated for 2 days. 99 

After a further 10 subcultures, however, autotrophic growth in mineral salts medium containing 100 

ammonium was achieved without supplementation with organic carbon (21). Purity of cultures 101 

was confirmed by plating on 10% Tryptone Soya Agar plates for growing potential 102 

heterotrophic contaminants, DOPE-FISH fluorescence microscopy for bacterial and archaeal 103 

cells and a lack of PCR amplification of bacterial 16S rRNA genes. 104 
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A similar approach was used to enrich strain Nd2T, but with incubation at 37oC and replacement 105 

of streptomycin with 50 mg l-1 kanamycin. A pure culture of this strain was obtained after 106 

several subcultures without the need for filtration or supplementation with organic carbon (21).  107 

Both species are routinely cultured by 2% (v/v) inoculation of late exponential phase cultures 108 

into mineral salts medium containing 500 µM ammonium chloride adjusted to pH 5.3 with the 109 

addition of 5 mM MES (2-(N-morpholino)ethanesulfonic acid) buffer. Cultures are incubated 110 

at 25oC (strain Nd1T) and 37oC (strain Nd2T).  111 

Phylogeny 112 

The two strains possess a close phylogenetic relationship with 99.2% 16S rRNA identity. These 113 

sequences were placed within the well-supported monophyletic Group I.1a-associated cluster 114 

(candidatus order Nitrosotaleales) and share a maximum of 90% 16S rRNA gene identity with 115 

organisms placed within the Group I.1a cluster (order Nitrosopumilales) (Fig. 1a). The 16S 116 

rRNA gene phylogeny was also congruent with phylogenomic analysis based on concatenated 117 

single copy genes genes (Fig. 1b). The strains shared 95.5% amoA gene sequence identity and 118 

were placed within the C14 (24) and NT-a-1 (25) amoA gene-defined lineages. Despite the 119 

high identity of the marker gene sequences, the average nucleotide identity (ANI) between 120 

Nd1T, Nd2T and the Nitrosotalea strain Ca. Nitrosotalea okcheonensis (26) all ranged between 121 

79-83% (27), which is considerably below the species threshold of 95% (28). All three strains 122 

(including Ca. Nitrosotalea okcheonensis) have an ANI lower than 70% with representatives 123 

of the order Nitrosopumilales, which is the minimum level of identity between 11 124 

representatives of the Nitrosopumilales (27). We therefore propose that strains Nd1T and Nd2T 125 

be assigned to two different species as Nitrosotalea devaniterrae sp. nov. (formally described 126 

as ‘Ca. Nitrosotalea devanaterra’ (18)) and Nitrosotalea sinensis sp. nov., respectively. We 127 

also propose Nitrosotalea as the type genus within the family Nitrosotaleaceae fam. nov. (29) 128 

and order Nitrosotaleales ord. nov. within the class Nitrososphaeria (30).  129 
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Genome features  130 

The genomes of Nd1T and Nd2T were 1.81 and 1.60 Mb in length, which is comparable to type 131 

strains from the order Nitrosopumilales, but smaller than soil-derived isolates from the order 132 

Nitrososphaerales which are >2.5 Mb in size. The G+C mol% content of both genomes was 133 

37% and slightly higher than seven type strains of the Nitrosopumilales (33-34%) of both 134 

marine and soil origin but lower than Nitrososphaera viennensis EN76T (52.7%) (Table 1). 135 

Initial characterisation of the N. devaniterrae genome is described in Lehtovirta-Morley et al. 136 

(31), with subsequent comparative analysis by Herbold et al. (27) of genomes of strains Nd1T 137 

and Nd2T, the enrichment culture Ca. Nitrosotalea okcheonensis and a Nitrosotalea 138 

metagenome-assembled genome (SbT1) with 19 other Nitrososphaerota. This analysis 139 

identified a nitrososphaerotal core genome of 743 gene families, of which 103 formed a 140 

Nitrosotalea core genome. This core is smaller than that of Nitrososphaera but larger than 141 

those of other nitrososphaerotal genera. Within this core genome, 46 gene families were 142 

homologous to genes in other Nitrososphaerota and there was evidence that 8 gene families 143 

had been recruited by horizontal gene transfer from non-Nitrososphaerota, mainly acidophilic 144 

organisms, suggesting their potential roles in acidophily adaptation.  145 

Phenotypic characterisation 146 

Characterisation of the initial enrichment culture of N. devaniterrae is described in Lehtovirta-147 

Morley et al. (18) and characterisation of pure cultures of both species is described in 148 

Lehtovirta-Morley et al. (21). Cells of strains Nd1T and Nd2T are morphologically 149 

indistinguishable under light or scanning electron microscopy and are rod-shaped (Fig. 2). 150 

Cells have a slightly angular appearance, typical of AOA within the order Nitrosopumilales 151 

(32), but distinct from the cocci or irregular cocci of the order Nitrososphaerales (33,34) and 152 

Ca. Nitrosocaldales (35,36). The cells have electron-dense poles at which ribosomes are 153 

concentrated (18) and have apparent intracellular particles and inclusion bodies the function of 154 
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which is unknown (Fig. 2c,d). Pure cultures of both species grow on inorganic, mineral salts 155 

medium containing ammonium, obtaining cell carbon by CO2 fixation and energy through 156 

oxidation of ammonia to nitrite. Both are obligate acidophiles, with similar pH ranges for 157 

growth, similar pH optima and no growth above pH 6.1. Maximum specific growth rates are 158 

similar to (strain Nd2T) or slightly lower than (strain Nd1T) those of other Nitrososphaerota. 159 

Cell yields are similar to those of other Nitrososphaerota, but cell-specific activities are lower 160 

(21), and Nd1T growth is inhibited at much lower concentrations of nitrite compared to 161 

neutrophilic type strains (Table 1), likely due to the higher proportion of nitrite converted to 162 

nitrous acid at low pH. 163 

Membrane lipid compositions of strain Nd1T and other AOA indicate that there is a 164 

characteristic lipid profile specific to Nitrososphaerota that is distinct from that found in other 165 

major archaeal phyla Crenarchaeota and Euryarchaeota. The cell membranes of all 166 

Nitrososphaerota investigated to date contain a relatively complex pattern of core lipids, with 167 

glycerol dibiphytanyl glycerol tetraethers (GDGT), glycerol diphytanyl diethers (archaeols, 168 

AR), hydroxylated GDGTs (OH-GDGTs) and glycerol trialkyl glycerol tetraethers (GTGTs), 169 

with intact polar lipids (IPL) consisting of monoglycosyl, diglycosyl, phosphohexose and 170 

hexose-phosphohexose headgroups (37). GDGTs and GTGTs are found in all three archaeal 171 

phyla, but the GDGT lipid crenarchaeol and methoxy archaeol (MeO-AR) are exclusive to 172 

Nitrososphaerota (37). The relative abundance of MeO-AR in strain Nd1T is highest (20.9%) 173 

of all AOA strains investigated (31,37). The composition of core lipids is consistent with 16S 174 

rRNA-gene phylogeny, providing both a basis for chemotaxonomy and potential links to 175 

phenotype, adaptation and niche specialisation. There are also some correlations between IPL 176 

content and habitat, with similarities between IPLs in strain Nd1T, other terrestrial mesophiles 177 

and terrestrial thermophiles. These results provide good evidence for phylogenetic 178 

relationships between lipid composition and archaeal phyla. However, the importance of lipid 179 
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composition in Nitrosotalea species, its correlation with phylogeny and robust links between 180 

phenotype and ecological distributions require analysis of more isolates.  181 

A number of nitrification inhibitors have been developed for physiological studies but also for 182 

commercial use to reduce loss of ammonia-based fertilisers in agricultural soils (38). Although 183 

originally designed to target AOB, these inhibitors are generally similarly effective against 184 

AOA. The sensitivity of strain Nd1T to three such inhibitors, allylthiourea (ATU), 185 

dicyandiamide (DCD) and nitrapyrin, has been investigated by Lehtovirta-Morley et al. (39) 186 

at concentrations that lead to inhibition of AOB. Inhibition of ammonia oxidation by strain 187 

Nd1T in liquid batch culture by DCD and nitrapyrin is similar to that typically observed in AOB 188 

(38), with complete inhibition at concentrations of 5 mM and 10 μM, respectively. ATU, 189 

however, is less effective, with only 85% inhibition at a concentration of 100 μM, which would 190 

typically inhibit AOB activity. Nitrapyrin has a similar inhibitory effect on growth as for AOB. 191 

ATU and DCD reduce, but do not stop increases in cell abundance, even when ammonia 192 

oxidation is significantly inhibited, possibly due to utilisation of storage compounds. These 193 

results are consistent with other reports of reduced sensitivity of AOA to ATU (40,41,42).  194 

There is currently no direct evidence of mixotrophic growth of AOA, including Nitrosotalea. 195 

Early suggestions of mixotrophy arose through stimulation of growth of another soil AOA, N. 196 

viennensis EN76T, by pyruvate (33) and of N. maritimus SCM1T by pyruvate and a-197 

ketoglutarate (32). There is now strong evidence that the α-keto acids pyruvate and 198 

oxaloacetate are not assimilated but stimulate growth by detoxifying intracellular H2O2 199 

produced during ammonia oxidation (43). Intermediates of the tricarboxylic acid cycle have 200 

differing effects on growth of strain Nd1T and strain Nd2T (21) and, in some cases, effects of 201 

individual organic acids on specific growth rate and yield differ within the same species. 202 

Pyruvate reduces the growth yield of both species and reduces the maximum specific growth 203 

rate of strain Nd1T, but not strain Nd2T. In general, strain Nd1T is more sensitive to inhibition 204 
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by organic acids than strain Nd2T. Both species are inhibited by nitrous acid and strain Nd1T is 205 

inhibited at ammonia concentrations >50 mM.  206 

Ecology 207 

The major ecological significance of the Nitrosotalea genus is its contribution to explaining 208 

the paradoxical occurrence of high rates of ammonia oxidation and nitrification in acidic soils, 209 

which comprise approximately 30% of soil globally. There is evidence of adaptation of some 210 

AOB phylogenetic lineages to acidic conditions (44), the growth range or activity of cultivated 211 

neutrophilic AOB can extend down to pH 5.0 such as for Nitrosospira sp. AF (13) and 212 

Nitrosospira lacus (14) and AOB can been isolated from acid soils (45). However, with 213 

exception of the gammaproteobacterial genera Candidatus Nitrosoglobus (15,46) and 214 

Candidatus Nitrosacidococcus (47), no cultivated AOB grow optimally on ammonium at pH 215 

values below 7 or are obligately acidophilic. This was believed to be through increasing 216 

ionisation of NH3 (the proposed substrate for ammonia monooxygenase) to NH4+ with 217 

decreasing pH, thus reducing available substrate concentration. Consistent with the substrate 218 

limitation at low pH, strains Nd1T and Nd2T have remarkably low half-saturation constants and 219 

high affinities for ammonia (Km(app) = ~0.6–2.8 nM NH3) (48). Molecular data provided 220 

evidence that AOA were more abundant and active than AOB in acidic soils (16,17) and the 221 

potential existence of acidophilic AOA. This was confirmed by cultivation of the acidophile 222 

strain Nd1T (18), subsequent isolation and enrichment of other acidophilic Nitrosotalea strains 223 

(21,26) and demonstration of autotrophic growth of Nitrosotalea phylotypes in acid soil 224 

(17,18). This therefore provides the most parsimonious explanation for this paradox, with 225 

consequences for mitigation of fertiliser loss and nitrous oxide emissions in acid soils (49).  226 

Description of Nitrosotalea gen. nov. 227 
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Nitrosotalea (Ni.tro.so.ta’le.a. N.L. masc. adj. nitrosus, nitrous; L. fem. n. talea, slender rod; 228 

N.L. fem. n. Nitrosotalea, a slender rod producing nitrite). Aerobic. Chemolithoautotrophic 229 

growth by ammonia oxidation to nitrite. Organic carbon obtained by CO2 fixation. Mesophilic, 230 

with optimal temperatures between 25oC and 37oC. Acidophilic, growing in the pH range 4.2 231 

– 6.1. Free living in terrestrial ecosystems, particularly acidic soils. Nitrosotalea strains possess 232 

>99% 16S rRNA gene identity with each other and 89-90% 16S rRNA gene identity within 233 

representatives of the order Nitrosopumilales. G+C content is low, as is typical for many AOA, 234 

ranging from 37.1-37.4 mol%. Currently comprises two isolates in pure culture, the type 235 

species Nitrosotalea devaniterrae, Nitrosotalea sinensis and an enrichment culture, Ca. 236 

Nitrosotalea okcheonensis CS (27). 237 

Description of Nitrosotalea devaniterrae sp. nov.  238 

Nitrosotalea devaniterrae sp. nov. (de.va.ni.ter′rae. L. fem. n. Devana the Roman name for 239 

Aberdeen; L. fem. n. terra soil; N.L. gen. n. devaniterrae of soil from Aberdeen, describing its 240 

habitat of isolation).  241 

Displays the following properties in addition to those described for the genus. Rod-shaped cells 242 

0.33 μm × 0.89 μm. Maximum specific growth rate 0.011 h-1, cell yield 6.45 x 104 cells (μM 243 

NH4+)-1 and specific cell activity 0.072 fmol NO2- cell-1 h-1 (equivalent to approx. 7 μmol (NH4+ 244 

mg protein-1 h-1). Growth in the pH range 4.2 – 5.6, optimum pH 5.2 and temperature range 245 

20oC - 30oC, optimum 25oC. Yield increased by oxaloacetate and decreased by pyruvate and 246 

citrate. Specific growth rate reduced by pyruvate, citrate, α-ketoglutarate, succinate, fumarate, 247 

and malate. Growth inhibited by 0.91 – 3.5 μM HNO2. 248 

The genome is a single circular 1.81-Mb chromosome with 2,103 coding sequences and a G+C 249 

content of 37.1 mol% and an ANI of £83% with other cultivated representatives of the 250 
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Nitrosotalea. NCBI accession numbers for complete genome and 16S rRNA gene sequences 251 

are PRJEB10948 and JN227488, respectively. 252 

The type strain is Nitrosotalea devaniterrae Nd1T (=NCIMB 15248T=DSM 110862T), which 253 

was isolated from an acidic (pH 4.5) agricultural soil located near Aberdeen (Scotland, UK).  254 

Description of Nitrosotalea sinensis sp. nov. 255 

Nitrosotalea sinensis sp. nov. (si.nen’sis. N.L. fem. adj. sinensis, from China, describing its 256 

habitat of isolation).  257 

Displays the following properties in addition to those described for the genus. Rod-shaped cells 258 

0.22 μm × 0.76 μm. Maximum specific growth rate 0.025 h-1, cell yield 7 x 104 cells (μM 259 

NH4+and specific cell activity 0.065 fmol NO2- cell-1 h-1 (equivalent to approx. 6.3 μmol NH4+ 260 

mg protein-1 h-1). Growth in the pH range 4.0 – 6.1, optimum pH 5.2, and temperature range 261 

20oC – 42oC, optimum 35oC. Yield simulated by oxaloacetate and inhibited by pyruvate and 262 

fumarate. Growth inhibited by 1.61 - 5.7 μM HNO2.  263 

The genome is a 1.60-Mb chromosome with 1,888 coding sequences and a G+C content of 264 

37.4 mol% and an ANI of £79% with other cultivated representatives of the Nitrosotalea. 265 

NCBI accession numbers for draft genome and 16S rRNA gene sequences are 266 

GCF_900143675 and KJ540205, respectively. 267 

The type strain is Nitrosotalea sinensis Nd2T (=NCIMB 15249T=DSM 110863T), which was 268 

isolated from an acidic sulphate paddy soil (pH 4.7) sampled in Taishan County, Guangdong 269 

Province in Southern China. 270 
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Description of Nitrosotaleaceae fam. nov. 271 

Nitrosotaleaceae (Ni.tro.so.ta.le.a.ce’ae. N.L. fem. n. Nitrosotalea, type genus of the family; -272 

aceae, ending to denote a family; N.L. fem. pl. n. Nitrosotaleaceae, the family of the genus 273 

Nitrosotalea). 274 

Mesophilic, rod-shaped cells. Obligately acidophilic and obligately aerobic, 275 

Chemolithoautotrophic, fixing carbon dioxide and oxidising ammonia to nitrite. Phylogeny of 276 

both amoA and 16S rRNA genes provides support for a distinct branch within the phylum 277 

Nitrososphaerota. Currently comprises a single genus, Nitrosotalea. Further details of the 278 

family are provided in the description of the order Nitrosotaleales. 279 

Description of Nitrosotaleales ord. nov. 280 

Nitrosotaleales (Ni.tro.so.ta.le.a’les. N.L. fem. n. Nitrosotalea, type genus of the order; -ales, 281 

ending to denote an order; N.L. fem. pl. n. Nitrosotaleales, the order of the genus Nitrosotalea). 282 

Small rods, 0.5 - 1 μm in length with a slight angular appearance and electron-dense poles. 283 

Obligate aerobes and obligate acidophiles, growing in the pH range 4.0 – 6.1 and the 284 

temperature range 20 – 40oC. Chemolithotrophs that fix carbon dioxide and gain energy by 285 

oxidising ammonia to nitrite. The order Nitrosotaleales refers to the Group I.1a-associated 286 

Nitrososphaerota, which is phylogenetically distinct from the orders Nitrosopumilales (which 287 

refers to Group I.1a and is represented by Nitrosopumilus maritimus SCM1T) (32), 288 

Nitrososphaerales (which refers to Group I.1b and is represented by Nitrososphaera viennensis 289 

EN76T) (30) and ‘Candidatus Nitrosocaldales’ (50) (which refers to the ThAOA group and is 290 

represented by ‘Candidatus Nitrosocaldus yellowstonensis’ HL72) (51) within the class 291 

Nitrososphaeria. Found in soil, particularly acidic soil. This order contains the family 292 

Nitrosotaleaceae. The type genus is Nitrosotalea. 293 
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Figure legends 485 

Figure 1. Phylogenetic relationship of strains Nd1T and Nd2T with other candidate or validated 486 

strains of the class Nitrososphaeria. Maximum likelihood phylogenies were generated using 487 

PhyML (52) with automatic model selection. (a) Phylogenetic analysis of 16S rRNA genes 488 

using 1,423 unambiguously aligned positions using the general time reversible (GTR) 489 

substitution model with estimated gamma and invariant distribution of sites. The scale bar 490 

represents an estimated 0.05 changes per nucleotide position and circles at nodes describe 491 

bootstrap support (1,000 replicates). (b) Phylogenetic analysis of concatenated protein 492 

sequences (7,951 unambiguously aligned amino acid positions) inferred from 45 single copy 493 

genes generated using GToTree (53) and determined using the LG substitution model with 494 

freerate variation across sites. The scale bar represents an estimated 0.1 changes per nucleotide 495 

position and circles at nodes describe bootstrap support (100 replicates).  496 

Figure 2. Scanning electron micrographs (a, b) and transmission and electron micrographs (c, 497 

d) of strains Nd1T (a, c) and Nd2T (b, d). Scale bars are 1 µm (a, b) and 0.5 µm (c, d) and arrows 498 

indicate subcellular particles. (From (21), with permission.) 499 
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Table 1. Characteristics of ND1T and ND2T compared to validated strains within the class Nitrososphaeria. Data for Nitrosopumilus maritimus 
SCM1T, Nitrosopumilus cobalaminigenes HCA1T, Nitrosopumilus oxyclinae HCE1T and Nitrosopumilus ureiphilus PS0T were previously 
reported by Qin et al. [32], Nitrosopumilus piranensis DC3T and Nitrosopumilus adriaticus NF5T by Bayer et al. [54], Nitrosopumilus zosterae 
NM25T by Nakagawa et al. [55], Nitrosarchaeum koreense MY1T by Jung et al. [42] and Nitrososphaera viennensis EN76T by Stieglmeier et al. 
[30]. ND, no data; -, negative; +, positive. 

 
Characteristic Nd1T Nd2T D3CT HCA1T HCE1T NF5T NM25T PS0T SCM1T MY1T EN76T 

Validated genus Nitrosotalea Nitrosotalea Nitrosopumilus Nitrosopumilus Nitrosopumilus Nitrosopumilus Nitrosopumilus Nitrosopumilus Nitrosopumilus Nitrosoarchaeum Nitrososphaera 

Habitat source Soil (pH 4.5) Soil (pH 4.7) 
 

Seawater 
 

Seawater 
 

Seawater 
 

Seawater 
 

Sediment Sediment Marine aquarium Soil (pH 5.6) 
 

Soil (pH 8.0) 

Growth temperature (oC)            

Range 20-30 
 

20-42 
 

15–37  
 

10-30 04-30 15–34 
 

20-37 
 

10-30 16-35 
 

15-30 
 

28–47  
 

Optimum 25 
 

35 
 

32 
 

25 
 

25 
 

30-32 
 

30 
 

26 
 

32 
 

25 
 

42 
 

Growth pH             

Range 4-5.5 
 

4-6.1 
 

6.8-8.0 
 

6.8-8.1 
 

6.4-7.8 
 

6.8-8.0 
 

6.1-7.7 
 

5.9-8.1 
 

6.8-8.1 
 

6.0-8.0 
 

6.0-8.0 
 

Optimum 5.2 
 

5.2 
 

7.1-7.3 
 

7.3 
 

7.3 
 

7.1 
 

7.1 
 

6.8 
 

7.3 
 

7 
 

7.5 
 

Max. ammonia oxidation (fmol cell-1 day-1) 1.7 
 

1.5 
 

10.9 
 

6 
 

5.8 
 

9.6 
 

ND 
 

2.9 
 

12.7 
 

12.7 
 

ND 
 

Min. generation time (h) 57 
 

28 
 

27 
 

30 
 

33 
 

34 
 

28 
 

28 
 

45 
 

19 
 

28 
 

Ammonium tolerance (mM) >10 mM 
 

ND 
 

30 
 

10 
 

1 
 

25 
 

ND 
 

20 
 

12.7 
 

10 
 

15 
 

Nitrite tolerance (mM) <0.1 
 

ND 
 

10 
 

ND 
 

ND 
 

15 
 

ND 
 

ND 
 

2 
 

5 
 

10 
 

Use of urea - - + - - - - + - - + 

Genome size (Mb) 1.81 

 

1.60 

 

1.71 

 

1.56 

 

1.59 

 

1.8 

 

1.76 

 

2.17 

 

1.65 

 

1.61 

 

2.52 

 

DNA G+C content (mol%) 37.1 
 

37.4 
 

33.8 
 

33.0 
 

33.1 
 

33.4 
 

33.8 
 

33.4 
 

34.2 
 

32.7 
 

52.7 
 

 


