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Graphene-based Hall effect magnetic field sensors hold great promise for the development of ultrasensitive 

magnetometers with very low power consumption. Their performance is frequently analyzed using the so-called 

two-channel model where electron and hole conductivities are simply added. Unfortunately, this model is unable to 

capture all the sensor’s characteristics, particularly the bias current dependence of the magnetic field sensitivity. 

Here, we present an advanced model that provides an in-depth understanding of how graphene-based Hall sensors 

operate and demonstrate its ability to quantitatively assess their performance. First, we report on the fabrication of 

sensors based on different qualities of graphene, with the best devices achieving magnetic field sensitivities as high 

as 5000 Ω/𝑇, outperforming the best silicon and narrow-gap semiconductor-based sensors. Then, we examine their 

performance in detail using the proposed numerical model, which combines Boltzmann formalism with distinct 

Fermi levels for electrons and holes, and a new method for the introduction of substrate-induced electron–hole 

puddles. Importantly, the dependences of magnetic field sensitivity on bias current, disorder, substrate, and Hall bar 

geometry are quantitatively reproduced for the first time. In addition, the model emphasizes that the performance 

of devices with widths of the order of the charge carrier diffusion length is significantly affected by the bias electric 

current due to the occurrence of charge carrier accumulation and depletion areas near the edges of the Hall bar, 

much larger than conventional Hall effect predictions. The formation of these areas induces a transverse diffusion 

charge carrier flux capable of counterbalancing the one induced by the Lorentz force when the Hall electric field 

cancels out in the ambipolar regime. Finally, we discuss how sensor performance can be enhanced by Fermi velocity 

engineering, paving the way for future ultrasensitive graphene-based Hall effect sensors. 

 

Keywords: Graphene, Graphene Hall sensor, magnetic field sensor, Hall effect, Boltzmann formalism, Fermi 

velocity renormalization, electron-hole puddles 

I. INTRODUCTION 

 

The market for magnetic field sensors is currently very large, representing about 3 billion euros in 2023, with 

applications in a wide range of fields such as automotive, consumer electronics, position and motion sensing, 

magnetic storage, magnetic field mapping, and biosensing. It also concerns fundamental research on magnetic [1] 

or superconducting [2] materials. To date, the most utilized magnetic field sensor technology is based on the 

measurement of the well-known transverse Hall voltage 𝑈ℎ, which appears in a thin, long, bar-shaped conductive 

material supplied with a bias current 𝐼 and immersed in a perpendicular magnetic field 𝐵 [3]. The success of Hall 

effect sensors is based on this very simple and nonperturbative measurement scheme, combined with a linear 

response over a wide range of magnetic fields and temperatures [3–5]. Such versatility is not accessible with 

superconducting quantum interference devices [6] or magnetoresistive sensors based on giant or tunnel 

magnetoresistance effects [6], which are limited to cryogenic temperatures and low magnetic fields, respectively.  

 

New directions for the development of Hall sensors were made possible by the first isolation of graphene in 2004 

[7]. With an intrinsic one-atom thick structure, very high charge carrier mobility [8] and low charge carrier density, 

graphene Hall sensors (GHSs) show an unprecedented magnetic field sensitivity (𝑆𝐼  =  𝑈ℎ/(𝐵 ×  𝐼)) and 

outperform state-of-the-art silicon and narrow-gap semiconductor Hall sensors [4,6,9–13]. As a result, GHSs have 

been demonstrated as either ultrasensitive magnetic field sensors for magnetometry [14,15] and nanoscale magnetic 
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field mapping [13] or sensors having Hall voltages of the same order of magnitude as those obtained with silicon 

sensors but with 100 times lower power consumption [6]. This latter point represents a significant advance and 

paves the way for the development of ultralow power devices. 

 

The trend toward ever-improving sensor performance requires a thorough understanding of the physical 

principles that govern their operation. In the case of GHSs, the Hall effect is frequently analyzed through the so-

called two-channel model [4,11,16,17], which intrinsically possesses limitations in the capture of all the GHSs 

reported features. In particular, the bias current dependence of 𝑆𝐼 observed in several previous works [6,11,17–19] 

cannot be explained since the two-channel model equations were obtained for an electrodeless Hall bar with uniform 

charge carrier doping and infinite length. In this paper, we analyze the Hall effect in GHSs of different quality and 

size fabricated with graphene grown by chemical vapor deposition (CVD) or graphene exfoliated from a crystal of 

highly orientated pyrolytic graphite (HOPG) using a more advanced physical model combining several approaches. 

The charge carrier transport properties are described through the Boltzmann formalism, where electrons and holes 

are treated with distinct Fermi levels in contrast to the two-channel model. A local field effect model is used to 

account for the effect of gate voltage and bias current on electron and hole doping, and a new semiempirical model 

of electron and hole puddles is developed to account for the effect of impurities. As a result, we can quantitatively 

describe all the galvanomagnetic features of GHSs for the first time. In particular, we highlight and explain how the 

bias current affects the spatial profile of the electron and hole doping inside the GHSs, resulting in a significant 

modification of the shape of 𝑆𝐼 as a function of gate voltage and bias current, especially for devices having a width 

comparable to the charge carrier diffusion length. This later point, which is a consequence of the ambipolar nature 

of graphene, has never been addressed before. Also, we shed light on the role of electron–hole puddles and substrates 

on 𝑆𝐼, thus revealing a new way to improve GHS performance by engineering the Fermi velocity of graphene. 

II. EXPERIMENTAL RESULTS 

A. Electrical characteristics of Hall bars  

 

GHSs were fabricated either from CVD graphene monolayers (from Graphenea) transferred using a semidry 

technique onto 90 ±  10 nm-thick SiO2/Si-doped substrates (referred to as CVD-GHSs in the following) or from 

HOPG graphene monolayers (from HQ Graphene) deposited by mechanical exfoliation onto 285 ±  10 nm-thick 

SiO2/Si heavily-doped substrates (referred to as HOPG-GHSs in the following). A third kind of GHSs were 

fabricated by encapsulation of a HOPG graphene monolayer in hexagonal boron nitride (h-BN, from HQ Graphene) 

using a pick-up technique [20] and which was subsequently transferred onto 285 ±  10 nm-thick SiO2/Si heavily-

doped substrates (referred to as hBN-GHSs in the following). Polymethylmethacrylate masks, typically 8-branch 

Hall bars (defined through electron-beam lithography), were used to etch the graphene with successive SF6 and O2 

plasma, the former being used only for hBN-GHSs. Electrodes were then patterned by electron-beam lithography 

followed by Cr (5 nm) then Au (25 nm for HOPG and hBN-GHSs and 200 nm for CVD-GHSs) Joule heating 

evaporation. The typical GHS width and length dimensions are 5 and 60 μm, 1 and 17 μm, and 2 and 11 μm for 

CVD, HOPG, and hBN-GHSs, respectively. Finally, electrical measurements were performed at low He pressure 

under a magnetic field at 0.1 and 1 T. CVD-GHSs were measured at 200 K to avoid hysteresis on the gate voltage 

while HOPG and hBN-GHSs, for which there is no hysteresis, were measured at 300 K. 

 

Several samples of each kind (i.e., CVD-GHSs, HOPGGHSs, and hBN-GHSs) were fabricated, and their 

characteristics were highly reproducible. Figures 1(a)–1(f) show typical Raman spectra and optical images of our 

devices. The Raman spectra [Figs. 1(a)–1(c)] display G (≈ 1580 𝑐𝑚−1) and 2D peaks (≈ 2680 𝑐𝑚−1) with ratios 

𝐼2𝐷/𝐼𝐺 ≈ 2.41, 𝐼2𝐷/𝐼𝐺 ≈ 2.82 and 𝐼2𝐷/𝐼𝐺 ≈ 3.9 for CVD-GHSs, HOPG-GHSs, and hBN-GHSs, respectively, 

confirming that our devices are made of monolayer graphene [21]. Note that the presence of the D (1342 𝑐𝑚−1) 

and D′ (1623 𝑐𝑚−1)  peaks in Fig. 1(a) is characteristic of monolayers containing impurities and grain boundaries 

obtained by CVD. Figures 1(g)–1(l) show typical compensated longitudinal resistance 𝑅𝐿𝐶 = (𝑅𝐿(𝐵) + 𝑅𝐿(−𝐵))/

2  and typical compensated magnetic field sensitivity 𝑆𝐼𝐶 = (𝑆𝐼(𝐵) + 𝑆𝐼(−𝐵))/2 for different bias current values. 

We observe the expected shapes for 𝑅𝐿𝐶 and 𝑆𝐼𝐶 [4,6,10–12] with a maximum 𝑆𝐼𝐶 reaching 5000 Ω/𝑇 for hBN-

GHSs [black line on Fig. 1(l)], a value identical to the best report to date on similar structures [10]. Moreover, on 

Figs. 1(j)–1(l), we observe a pronounced effect of the bias current on the shape of 𝑆𝐼𝐶, as previously reported in 

similar devices [6,11,17–19]. The gate voltage position of the charge neutrality point (CNP), where 𝑆𝐼𝐶 inverts, 

shifts toward positive voltages as the current increases that results, in the case of CVD-GHSs, in a quasirigid 
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translation of 𝑆𝐼𝐶 as a function of 𝑉𝑔. For HOPG and hBN-GHSs, the increase in bias current also leads to a CNP 

shift but is accompanied by a drop of the maximum |𝑆𝐼𝐶| as well as an increase in the distance separating 𝑆𝐼𝐶  

extrema. This effect is very significant for hBN-GHSs since it results in a large shape 𝑆𝐼𝐶 modification, as previously 

reported by Shaeffer et al. [6]. 
 

 
FIG. 1. Typical Raman spectra of CVD-GHS (a), HOPG-GHS (b) and hBN-GHS (c). Typical optical images of 

CVD-GHS (d), HOPG-GHS (e) and hBN-GHS (f). (g), (h) and (i) Typical compensated longitudinal 4 probe 

resistance 𝑅𝐿𝐶 measured between contacts 1 and 3 as a function of gate voltage 𝑉𝑔 and for different bias current 

values. ((g) 200 K, 1 T, 𝑉𝐶𝑁𝑃 = 5.32 𝑉 ; (h) 300 K, 0.1 T, 𝑉𝐶𝑁𝑃 = 7.73 𝑉 ; (i) 300 K, 0.1 T, 𝑉𝐶𝑁𝑃 = −2.88 𝑉). (j), 

(k) and (l) Typical compensated magnetic field sensitivity 𝑆𝐼𝐶 as a function of 𝑉𝑔 for different bias current values 

(measured between contacts 1 and 4 for (j) and (k) and 2 and 5 for (l), same T and B values as for 𝑅𝐿𝐶). The red line 

curves are the fit of the low-bias current 𝑆𝐼𝐶 using Eq. 1 and 2 and obtained with the following fit parameters: (j) 

𝑡𝑜𝑥 = 105 𝑛𝑚, 𝑛0 = 2.24 × 1011 𝑐𝑚−2, (k) 𝑡𝑜𝑥 = 280 𝑛𝑚 and 𝑛0 = 1.08 × 1011 𝑐𝑚−2 and (l) 𝑡𝑜𝑥 = 310 𝑛𝑚 

and 𝑛0 = 8.5 × 1010 𝑐𝑚−2. 

 

B. Analysis with the two-channel model 

 

In a first step, we analysed 𝑆𝐼 at low bias current using the two-channel model, as previously 

reported [4,11,16,17]. This model provides a fairly simple expression for 𝑆𝐼, when the charge carrier mobility 𝜇𝑛 

and 𝜇𝑝 are equal and 𝜇𝑛(𝑝)𝐵 ≪ 1, which is written as follows 

 

𝑆𝐼 = −
1

𝑒

(𝑛 − 𝑝)

(𝑛 + 𝑝)2
 (1) 
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where 𝑒 is the elementary charge; n and p are the electron and hole densities, respectively. The gate voltage 

dependence of 𝑆𝐼 is taken into account using empirical relationships established by Meric et al. [22] so that 

 

𝑛 + 𝑝 ≈ √𝑛0
2 + 𝑛(𝑉𝑔)

2
 (2𝑎) 

𝑛 − 𝑝 = 𝑛(𝑉𝑔) =
𝐶𝑔

𝑒
(𝑉𝑔 − 𝑉𝐶𝑁𝑃) (2𝑏) 

 

where 𝑛0 is the minimal charge carrier doping determined by temperature and residual impurities, 𝐶𝑔 is the gate 

capacitance per surface unit, 𝑉𝑔 is the gate voltage and 𝑉𝐶𝑁𝑃 is the gate voltage at CNP. The red line curves on the 

Figs. 1(j)-(l) are the fits of the experimental data using Eqs. 1 and 2. The oxide thicknesses 𝑡𝑜𝑥 were determined 

from the gate capacitance values and equal to 105 𝑛𝑚,  280 𝑛𝑚, and 310 𝑛𝑚 for the CVD, HOPG and hBN-GHS 

respectively. Regarding the residual doping 𝑛0, we obtained values of 2.24 × 1011𝑐𝑚−2, 1.08 × 1011𝑐𝑚−2 and 

8.5 × 1010𝑐𝑚−2 for CVD, HOPG, and hBN-GHSs respectively, which is consistent with the fact that CVD 

graphene monolayers have more defects and the hBN encapsulation protects graphene from charged impurities and 

process contamination. Equations 1 and 2 are quite convenient for an initial analysis of 𝑆𝐼 at a low bias current, as 

they allow for both an understanding of the effect of the doping on the GHS sensitivity and extract important 

parameters such as the residual doping value or the gate capacitance. Unfortunately, this approach remains limited, 

particularly for anticipating the device geometry and bias current effects on 𝑆𝐼. Therefore, further developments 

require an advanced model that should consider the exact GHS geometry as well as the influence of the gate voltage 

and bias current on the charge carrier doping spatial distribution. 

III. ADVANCED MODEL 
 

The model we developed is based on the combination of several approaches used to describe the graphene 

transport properties in the diffusive regime. Thermal charge carrier doping and transport properties are described 

using the Boltzmann formalism and electrostatic doping is taken into account thanks to a field effect model, which 

has been undertaken previously for graphene field effect transistors [22–25]. In the present work, some refinements 

have been made. Distinct electron and hole Fermi levels have been used and recombination-generation processes 

have been added to describe the operation of the GHSs in the ambipolar regime more precisely. We have also 

developed a new method to account for the presence of impurities. 

 

A. Charge carrier thermal statistics and electric charge  

 

The temperature dependence of the electron and hole doping n and p is taken into account by the following 

expressions:  

𝑛(𝐸𝑓𝑛) = ∫ 𝑓𝑛(𝐸)𝐷(𝐸)𝑑𝐸

∞

𝐸𝐶𝑁𝑃 

 (3𝑎) 

 

𝑝(𝐸𝑓𝑝) = ∫ (1 − 𝑓𝑝(𝐸))𝐷(𝐸)𝑑𝐸

𝐸𝐶𝑁𝑃

−∞

(3𝑏) 

 

where 𝐷(𝐸) = 2|𝐸 − 𝐸𝐶𝑁𝑃|/𝜋(ℏ𝑣𝑓)
2
 is the graphene density of states, 𝐸 is the electron energy for a state with a 

wave vector �⃗� , 𝐸𝐶𝑁𝑃 is the energy at the CNP, ℏ is the reduced Plank constant, and 𝑣𝑓 is the Fermi velocity. 

Moreover, 𝑓𝑛(𝐸)  and 𝑓𝑝(𝐸) are the Fermi-Dirac distribution of the electrons and holes, respectively, given by 

𝑓𝑛(𝑝)(𝐸) = 1/ (1 + 𝑒𝑥𝑝 ((𝐸 − 𝐸𝑓𝑛(𝑝))/𝑘𝐵𝑇)) with 𝑘𝐵 as the Boltzmann’s constant, 𝑇 the temperature, and 𝐸𝑓𝑛(𝑝) 

the electron (hole) Fermi level. We also define the shift of the Fermi level ∆𝐸𝑓𝑛(𝑝) as ∆𝐸𝑓𝑛(𝑝) = 𝐸𝑓𝑛(𝑝) − 𝐸𝐶𝑁𝑃 

[Fig. 2(b)]. 
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FIG. 2. (a) Typical device geometry. 𝑉𝐷 is the drain electrostatic potential, the source is the reference electrostatic 

potential set to zero. (b) Band diagram of the graphene and gate electrode. 𝐸𝑣𝑎𝑐 corresponds to the electron energy 

in vacuum. 
 

Regarding the effect of the gate voltage and bias current on the electron and hole doping in graphene, we used a 

field effect model [22–25]. In this framework, the source is used as the reference electrostatic potential. Its Fermi 

level represents the origin of the energy; thus, its electrochemical potential 𝛾𝑆 is equal to 0 𝑒𝑉 and the 

electrochemical potential 𝛾𝐷 of the drain electrode, with tunable electrostatic potential 𝑉𝐷, is equal to −𝑒𝑉𝐷 [Fig. 

2(a)]. For the sake of simplicity, the doped silicon substrate that serves as the back-gate electrode is modeled by a 

metallic electrode [Fig. 2(a)] having an electrochemical potential 𝛾𝑔 equal to −𝑒𝑉𝑔 [Fig. 2(b)]. Finally, the 

electrochemical potentials 𝛾𝑛 and 𝛾𝑝 of the electrons and holes in graphene are defined by 𝛾𝑛(𝑝) = 𝐸𝑓𝑛(𝑝) − 𝑒𝑉𝑔𝑟, 

with 𝑉𝑔𝑟 as the electrostatic potential in graphene [Fig. 2(b)]. The graphene CNP energy [red line in Fig. 2(b)] is 

defined as 𝐸𝐶𝑁𝑃 = 𝑊𝑀 − 𝑊𝑔𝑟 − 𝑒𝑉𝑔𝑟, with 𝑊𝑀 and 𝑊𝑔𝑟 as the metal and graphene work function, respectively. 

Then, using Gauss’s law [24–26], a simple and local relationship between 𝑉𝑔, 𝑉𝑔𝑟 and the charge carrier density in 

the graphene sheet 𝑄𝑔𝑟 = −𝑒(𝑛(𝛾𝑛 + 𝑒𝑉𝑔𝑟) − 𝑝(𝛾𝑝 + 𝑒𝑉𝑔𝑟)) can be found so that 

 
𝑄𝑔𝑟(𝑥, 𝑦) + 𝑄𝑔(𝑥, 𝑦) + 𝑄0(𝑥, 𝑦) = 0 (4) 

 

where 𝑄𝑔 = 𝐶𝑔(𝑉𝑔 − 𝑉𝑔𝑟) is the local electric charge density in the gate electrode and 𝑄0 is a possible residual 

electric charge density coming from contamination, impurities or work function differences.  
 

B. Transport properties 

 

To describe the galvanomagnetic properties of GHSs in a perpendicular magnetic field [along z, Fig. 2(a)], we 

used the Boltzmann formalism [3,23]. The electric current density 𝐽   in graphene is the sum of the contribution of 

the electrons, 𝐽 𝑛 , and holes, 𝐽 𝑝, i.e., 𝐽 = 𝐽 𝑛 + 𝐽 𝑝 with 

𝐽 𝑛(𝑝) = �̿�𝑛(𝑝)

�⃗� 𝛾𝑛(𝑝)

𝑒
 (5) 

 

�̿�𝑛(𝑝) is the antisymmetric conductivity tensor for electrons (holes). Its components 𝜎𝑥𝑥𝑛(𝑝)
 and 𝜎𝑥𝑦𝑛(𝑝)

 are given 

by, 
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𝜎𝑥𝑥𝑛(𝑝)
=

𝜂𝑒

𝜋𝑣𝑓
2ℏ2

∫
(𝐸 − 𝐸𝐶𝑁𝑃)

2𝜇(𝐸)

1 + 𝜇2(𝐸)𝐵2

𝜕𝑓𝑛(𝑝)

𝜕𝐸
𝑑𝐸

−𝜂×∞

𝐸𝐶𝑁𝑃

 (6𝑎) 

 

𝜎𝑥𝑦𝑛(𝑝)
=

𝑒𝐵

𝜋𝑣𝑓
2ℏ2

∫
(𝐸 − 𝐸𝐶𝑁𝑃)2𝜇2(𝐸)

1 + 𝜇2(𝐸)𝐵2

𝜕𝑓𝑛(𝑝)

𝜕𝐸
𝑑𝐸

−𝜂×∞

𝐸𝐶𝑁𝑃

 (6𝑏) 

 

where 𝜂 = −1 for electrons and 𝜂 = 1 for holes. The charge carrier mobility 𝜇(𝐸) depends on the charge carrier 

scattering mechanisms (i.e., charged impurities, vacancies, ripples, phonons…) [26,27] and is expressed in terms of 

the scattering time 𝜏𝑖 of each mechanism by 𝜇(𝐸) = 𝑒𝑣𝑓
2|𝐸 − 𝐸𝐶𝑁𝑃|

−1(∑ 1/𝜏𝑖(𝐸)𝑖 )−1. Equations 5 and 6, where 

the electrochemical potentials are considered unequal for electrons and holes, allow for both conduction and 

diffusion currents. The latter can have a significant contribution when a p-n junction forms in the GHS [23] or when 

charge carriers accumulate and deplete near the edges of the Hall bar, especially in the ambipolar regime [28] (see 

Sec. IV).   

 

In this work we focus on the stationary regime, hence conservation of electric charge implies that the divergences 

of electron and hole current densities are given by 

 

�⃗� . 𝐽 𝑛(𝑝) = −𝜂𝑒𝑅 = −𝜂𝑒𝑘(𝑛𝑝 − 𝑛𝑒𝑞𝑝𝑒𝑞) (7) 

 

Here, 𝑅 is the recombination-generation rate of the charge carriers. Different processes can participate in the 

electron-hole pair recombination-generation such as Auger scattering, optical and acoustic phonon scattering, or 

impurity assisted scattering [29,30] but the use of the exact 𝑅 expression is beyond the scope of this article. Instead, 

we use a linear expression (see Eq. 7) characterized by a constant k, specific of the recombination-generation process 

and by 𝑛𝑒𝑞 and 𝑝𝑒𝑞 the electron and hole doping at the equilibrium. This latter expression gives a fairly good account 

of the dependence of the recombination-generation rate on electron and hole doping for a small deviation from 

equilibrium. Finally, 𝛾𝑛, 𝛾𝑝 and 𝑉𝑔𝑟, the solutions of the coupled Eqs. 4, 5 and 7, are obtained using the finite-

element method with appropriate geometry and boundary conditions. 
 

C. Electron-hole puddle model 

 

Electron-hole puddles in graphene have been observed experimentally via scanning tunnelling microscopy 

(STM) [31,32]. They originate from charged impurities in the substrate and/or fabrication process 

contamination [26], or from graphene sheet deformation [33]. These electron-hole puddles play an important role 

in the electronic transport properties of graphene, introducing long-range type charge carrier scattering and residual 

charge carrier doping, which lead to a non-universal minimum conductivity [26,27,34]. 

  

To account for this effect, we developed a semi-empirical method to generate maps of random electron-hole 

puddles that was guided by experimental observations [31,32,35], theoretical calculations based on the Thomas-

Fermi-Dirac formalism [36] and empirical modelling [22,37]. This method consists of generating maps of random 

Fermi level fluctuations ∆𝐸𝑓𝑟 by adding a given density 𝑛0𝑙  of Lorentzian like function 𝐿𝑖(𝑥, 𝑦) =

(1 + ‖𝑂𝑖𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
2
/𝑟0𝑖

2 )
−1/2

 with x, y, the M coordinates, 𝑟0𝑖 as a random radius  and 𝑂𝑖(𝑥𝑜𝑖, 𝑦𝑜𝑖), as a random position. 

The map of ∆𝐸𝑓𝑟 was calculated using the following ansatz 

 

∆𝐸𝑓𝑟(𝑥, 𝑦) = ∆𝐸𝑓𝑟𝑚𝑎𝑥  𝑡𝑎𝑛ℎ( ∑ 𝐿𝑖(𝑥, 𝑦)

𝑛0𝑙×𝐴

𝑖=1

) (8) 

 

where ∆𝐸𝑓𝑟𝑚𝑎𝑥 is the maximum amplitude of the fluctuations of the Fermi level and A is the area of the sensor. As 

explained by Rossi et al. [36], who developed an effective medium theory to study the electronic transport in 

disordered graphene, the puddles that primarily contribute to the charge carrier transport concern wide regions 
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spanning the system size, presenting a low charge carrier density and an almost uniform conductivity. Equation (8) 

is perfectly adapted to generate such wide charge carrier puddles [Fig. 10(a)] and to reproduce qualitatively Fermi-

level fluctuations observed experimentally [31,32,35]. Finally, to include the effect of electron–hole puddles in the 

previously presented model, the map of random Fermi-level fluctuations is converted into a map of random gate 

voltage fluctuations ∆𝑉𝑔(𝑥, 𝑦) [see Sec. I, Eq. (s1) of the Supplemental Material [38]] and added to Eq. (4), through 

the electric charge density in the gate, as follows: 𝑄𝑔(𝑥, 𝑦) = 𝐶𝑔(𝑉𝑔 + ∆𝑉𝑔(𝑥, 𝑦) − 𝑉𝑔𝑟(𝑥, 𝑦)). 

IV. RESULTS OF THE ADVANCED MODEL 

 

In this section, we report on the main findings of the physical model presented in Sec. III. First, an in-depth 

comparison with the two-channel model highlights what new physical mechanisms our advanced model brings. 

Then, a focus is made on how the puddles, bias current, and geometry affect 𝑅𝐿 and 𝑆𝐼. For all the explanations 

given in the following, the simulations were performed on 8-branch Hall bars of width 𝑊, electrode width 𝑊ℎ =
𝑊/𝑖ℎ, total transversal length 𝑊′ = 𝑖′ × 𝑊 with 𝑖ℎ and 𝑖′ as positive integers, and total longitudinal length 𝐿 =
8𝑊 + 3𝑊ℎ [Fig. 2(a)], which allows the aspect ratio and resistance to remain constant as 𝑊 varies. Each branch of 

the Hall bar was connected to a metallic electrode of length 𝑊/2 with a constant conductivity 𝜎𝑐 = 1 𝑆 

corresponding to a 25-nm-thick gold film. For the sake of simplicity, 𝑊𝑀 and 𝑊𝑔𝑟 were considered equal and 𝑄0 

was set to zero, the main effect of these parameters being to shift the CNP gate position. We fixed 𝛾𝑛 = 𝛾𝑝 = 𝛾𝐷 at 

the drain electrode and 𝛾𝑛 = 𝛾𝑝 = 0 at the source electrode. Moreover, we imposed 𝛾𝑛 = 𝛾𝑝 on the boundaries 

between graphene and metallic electrodes in order to keep them equal inside the electrodes. The Hall voltage was 

defined as −𝑒𝑈ℎ = 𝛾𝑛(𝑝)(0,−𝑊′/2) − 𝛾𝑛(𝑝)(0,𝑊′/2) and the longitudinal four-probe voltage as −𝑒𝑈𝐿 =

𝛾𝑛(𝑝)(−2𝑊 − 𝑊ℎ,𝑊′/2) − 𝛾𝑛(𝑝)(2𝑊 + 𝑊ℎ ,𝑊′/2) [Fig. 2(a)]. In the simulations presented below, we used the 

following parameters: 𝑣𝑓 = 106 𝑚/𝑠, 𝐵 = 100 𝑚𝑇, 𝑇 = 300 𝐾 and 𝐶𝑔 = 1.15 𝐹/𝑚2 corresponding to an oxide 

thickness 𝑡𝑜𝑥 of 300 nm. Regarding 𝑘, we used a value equal to 10−4 𝑚2/𝑠 corresponding to recombination times 

𝜏𝑟 ≈ 1/𝑘(𝑛𝑒𝑞 + 𝑝𝑒𝑞) ranging from 1 ps to 10 ps depending on the doping [see Sec. II, Eq. (s7) of the Supplemental 

Material [38]]. These values agreed with the theoretical predictions at room temperature for pristine graphene 

[29,30]. The scattering of charge carriers was considered to originate from long range disorder, which means the 

charge carrier mobility 𝜇 is constant and equal for electrons and holes [26,27]. Regarding 𝑛𝑒𝑞 and 𝑝𝑒𝑞, they were 

determined considering that electrons and holes have the same Fermi level 𝐸𝑓𝑒𝑞 and that the equilibrium electric 

charge 𝑄𝑒𝑞(𝐸𝑓𝑒𝑞) = −𝑒(𝑛𝑒𝑞(𝐸𝑓𝑒𝑞) − 𝑝𝑒𝑞(𝐸𝑓𝑒𝑞))  is equal to 𝑄𝑔𝑟(𝐸𝑓𝑛, 𝐸𝑓𝑝). 

 

A. Comparison with the two-channel model 

 

A major difference between our advanced model and the two-channel model is that the electron and hole currents 

are calculated using different electrochemical potentials in the former case and only the electrostatic potential for 

the latter, meaning that the electric current densities are simply written in the two-channel model as 𝐽 𝑛(𝑝) =

−�̿�𝑛(𝑝)�⃗� 𝑉𝑔𝑟. To understand why the two-channel model is not sufficient to correctly capture the operation of a 

GHS, we need to consider not only the electric charge and associated electric current densities but also the charge 

carrier densities and associated fluxes �⃗� 𝑛(𝑝) = 𝜂𝐽 𝑛(𝑝)/𝑒. At a low bias current and a low magnetic field, the total 

transverse electric current density 𝐽𝑦 and total charge carrier flux 𝑃𝑦 in the two-channel model are written as [see 

Sec. II, Eqs. (s2) and (s3) of the Supplemental Material [38]] 

 

𝐽𝑦 = −𝑒(𝑛 − 𝑝)𝜇2𝐵
𝜕𝑉𝑔𝑟

𝜕𝑥
− 𝑒(𝑛 + 𝑝)𝜇

𝜕𝑉𝑔𝑟

𝜕𝑦
(9𝑎) 

𝑃𝑦 = (𝑛 + 𝑝)𝜇2𝐵
𝜕𝑉𝑔𝑟

𝜕𝑥
+ (𝑛 − 𝑝)𝜇

𝜕𝑉𝑔𝑟

𝜕𝑦
 (9𝑏) 

Equations (9a) and (9b) reveal why the two-channel model is inconsistent when describing the GHS operation, 

in particular, at the CNP when 𝑛 = 𝑝 and the electric charge on the Hall bar edges is null. Indeed, even if 𝐽𝑦  is 

nullified by the removal of the transverse electric field 𝜕𝑉𝑔𝑟/𝜕𝑦 due to the absence of electric charge and the equality 

of 𝑛 and 𝑝, 𝑃𝑦 is not and is written as 𝑃𝑦 = 2𝑛𝜇2𝐵 × 𝜕𝑉𝑔𝑟/𝜕𝑥. It is inconsistent for a finite structure. This 
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contribution to the charge carrier flux is caused by the Lorentz force, which deflects both types of charge carriers 

in the same transverse direction [28], normally leading to an excess of charge carriers near one edge and a deficit 

on the opposite one, consistent with a zero electric charge. This issue is not taken into account by the two-channel 

model, which is focused on the electric charge and not the charge carrier densities. It can be solved by the 

introduction of different electrochemical potentials for electrons and holes, allowing for their accumulation or 

depletion near the edges. In our advanced model, the total transverse electric current density 𝐽𝑦 and total charge 

carrier flux 𝑃𝑦 are written as follows [see Sec. II, Eqs. (s4) and (s5) of the Supplemental Material [38]]: 

 

𝐽𝑦 = −𝑒(𝑛 − 𝑝)𝜇2𝐵
𝜕𝑉𝑔𝑟

𝜕𝑥
+ 𝜇 (𝑛

𝜕𝐸𝑓𝑛

𝜕𝑦
+ 𝑝

𝜕𝐸𝑓𝑝

𝜕𝑦
) − 𝑒(𝑛 + 𝑝)𝜇

𝜕𝑉𝑔𝑟

𝜕𝑦
 (10𝑎) 

𝑃𝑦 = (𝑛 + 𝑝)𝜇2𝐵
𝜕𝑉𝑔𝑟

𝜕𝑥
−

𝜇

𝑒
(𝑛

𝜕𝐸𝑓𝑛

𝜕𝑦
− 𝑝

𝜕𝐸𝑓𝑝

𝜕𝑦
) + (𝑛 − 𝑝)𝜇

𝜕𝑉𝑔𝑟

𝜕𝑦
 (10𝑏) 

 

As seen in Eq. (9b), the first term of Eq. (10b) is caused by the Lorentz force (noted as 𝑃𝑦𝐿 in the following), 

while the second term, which depends on the transverse gradient of the Fermi levels (𝜕𝐸𝑓𝑛/𝜕𝑦, 𝜕𝐸𝑓𝑝/𝜕𝑦), is a 

transverse diffusion flux induced by the accumulation and depletion of charge carriers near the edges of the Hall 

bar (noted as 𝑃𝑦𝐷 in the following) and the third term is simply the Hall electric field term (noted as 𝑃𝑦𝐻 in the 

following). At the CNP (where 𝑛 = 𝑝), as seen previously, 𝑃𝑦𝐻 cancels and only 𝑃𝑦𝐷 can counterbalance 𝑃𝑦𝐿, 

solving the inconsistency of the two-channel model. We can also note that when 𝑛 = 𝑝, 𝜕𝐸𝑓𝑝/𝜕𝑦 = − 𝜕𝐸𝑓𝑛/𝜕𝑦, 

which ensures that the electric current density also cancels. 

 

 
FIG. 3. (a) and (b) Different contributions of 𝑃𝑦 for two 𝑉𝑔 along one transverse cut of the Hall bar (see insert in 

(b)). 𝑃𝑦𝐿 is the Lorentz component, 𝑃𝑦𝐷, the diffusion component and 𝑃𝑦𝐻 the Hall component. Electron and hole 

current densities (c) and (d) and charge carrier fluxes (e) and (f) for two 𝑉𝑔 calculated with our model (solid line) 

and in the case 𝛾𝑛 = 𝛾𝑝 = 𝛾 (dotted lines).  
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To illustrate the above discussion, simulations were performed at a low bias current (i.e., 1 µA) on a Hall bar 

having a 𝜇 = 2 𝑚2/(𝑉. 𝑠) and a width 𝑊 =  5 𝜇𝑚. We used 𝑊′ = 2𝑊 and 𝑊ℎ = 𝑊/10  to ease the comparison 

with the two-channel model, which was established for an electrodeless Hall bar. Figures 3(a) and 3(b) show the 

different contributions of 𝑃𝑦 for two gate voltages (𝑉𝑔 = −5 𝑉 and 𝑉𝑔 = 0 𝑉) along one transverse cut of the Hall 

bar [see the insert in Fig. 3(b)]. We can note that the shape of the different contributions of 𝑃𝑦  is almost uniform 

along the x-direction (see Sec. II, Fig. S1 of the Supplemental Material [38]). When one kind of charge carrier 

dominates the doping (here holes at 𝑉𝑔 = −5 𝑉), 𝑃𝑦𝐿 is principally counterbalanced by 𝑃𝑦𝐻; while at the CNP (𝑉𝑔 =

0 𝑉), only 𝑃𝑦𝐷 counterbalances 𝑃𝑦𝐿. We observe that the total charge carrier flux is rigorously null at the edges 

while it is not in the central part of the Hall bar. Figures 3(c)–3(f) show the transverse electron and hole electric 

current densities and charge carrier fluxes for two gate voltages along the same cut, as used previously, for our 

advanced model and when the electrochemical potentials are identical, i.e., 𝛾𝑛 = 𝛾𝑝 = 𝛾. This latter case (indicated 

by the dotted line) corresponds to the two-channel model. Clearly, the electron and hole electric current densities 

and charge carrier fluxes cancel out at the edges of the Hall bar with our advanced model but they do not when 

𝛾𝑛 = 𝛾𝑝 = 𝛾, which is inconsistent for a finite Hall bar. 

 

FIG. 4. (a) and (b), color map of ∆𝑛 + ∆𝑝 for two gate voltages. (c) ∆𝑛 + ∆𝑝 along the transverse cut (black dotted 

lines) represented on (a). The blue curve is the analytical expression (Eq. 11) and the red dotted lines is the simulated 

curve. 

Figures 4(a) and 4(b) show the variation of doping ∆𝑛 + ∆𝑝 = 𝑛 − 𝑛𝑒𝑞 + 𝑝 − 𝑝𝑒𝑞 for two gate voltages to focus 

on the occurrence of accumulation and depletion areas near the edges of the Hall bar. These areas are the sources 

of the transverse electron and hole diffusion fluxes 𝑃𝑦𝐷. At low bias in the ambipolar regime (𝑉𝑔 = 0 𝑉), these areas 

are perfectly opposite in amplitude with respect to the plane y = 0 [Fig. 4(a)]. At 𝑉𝑔 = −5 𝑉, where hole doping is 

dominant, these areas are negligible. It can be demonstrated that the shape of ∆𝑛 + ∆𝑝 along the transverse direction 

fits very well at a low bias current and a low magnetic field (𝜇𝐵 ≪ 1)  with the following expression given (see 

Sec. II of the Supplemental Material [38]) [blue curve in Fig. 4(c)] 

 

∆𝑛 + ∆𝑝 = 𝜇2𝐵
𝜕𝑉𝑔𝑟

𝜕𝑥
(𝑛𝑒𝑞

𝐿𝑛

𝐷𝑛

𝑠ℎ (
𝑦
𝐿𝑛

)

𝑐ℎ (
𝑊
2𝐿𝑛

)
+ 𝑝𝑒𝑞

𝐿𝑝

𝐷𝑝

𝑠ℎ (
𝑦
𝐿𝑝

)

𝑐ℎ (
𝑊
2𝐿𝑝

)
) (11) 
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With 𝐷𝑛(𝑝) as the diffusion coefficients of electrons (holes) which is written as 

𝐷𝑛(𝑝) = 𝜂
𝜋ℏ2𝑣𝑓

2𝜇

𝑒 ∫ 2|𝐸 − 𝐸𝐶𝑁𝑃|
𝜕𝑓
𝜕𝐸

𝑑𝐸
−𝜂∞

𝐸𝐶𝑁𝑃 

𝑛𝑒𝑞(𝑝𝑒𝑞) (12) 

And 𝐿𝑛(𝑝) = √𝐷𝑛(𝑝)𝜏𝑟 is the diffusion length of the charge carriers (see Supplementary material [38] Sect. II). 

Equation 11 shows that the size of the accumulation and depletion areas are given by the diffusion length and their 

amplitude increases with magnetic field, bias current and charge carrier mobility. 

B. Bias current effect 

 

In this section, we focus on the effect of the bias current on the magnetic field sensitivity shape. We performed 

simulations on Hall bars having a 𝜇 = 2 𝑚2/(𝑉. 𝑠)  and two different widths, 𝑊 = 1 𝜇𝑚 and 𝑊 =  5 𝜇𝑚. We used 

𝑊′ = 2𝑊 and 𝑊ℎ = 𝑊/10  to ease the comparison with the two-channel model, which was established for an 

electrodeless Hall bar. Figure 5 shows simulated 𝑆𝐼(𝑉𝑔) and 𝑅𝐿(𝑉𝑔) for two different bias current values, 1 µA 

(black lines) and 200 µA (red lines), and the two widths. First, we observe that the position of the CNP, where 𝑅𝐿 

is maximum and 𝑆𝐼 cancels out, shifts toward positive voltage values as the bias current increases. For the largest 

Hall bar, the maximum of 𝑅𝐿 slightly decreases and the overall shape of 𝑆𝐼 is not affected. For the smallest Hall bar, 

the maximum resistance strongly decreases and the shape of 𝑆𝐼 is modified with the current. In particular, the 

amplitudes of the sensitivity extrema decrease and their gate voltage separation increases. These observations are 

very similar to our experimental ones (Fig. 1) and those reported elsewhere [6,11,17–19]. 

 

 
FIG. 5. (a), (b) Simulated 𝑆𝐼(𝑉𝑔) for 5 𝜇𝑚  and  1 𝜇𝑚 width Hall bars at 2 different bias current values, 1 𝜇𝐴 (black 

curve) and 200 𝜇𝐴 (red curve). (c), (d) Corresponding simulated 𝑅𝐿(𝑉𝑔). The green dotted lines correspond to 

curves calculated using equation (1) for 𝑆𝐼 and 𝑅 = 𝐿/𝑊𝑒𝜇(〈𝑛〉 + 〈𝑝〉) for 𝑅𝐿  with 〈𝑛〉 and 〈𝑝〉 the simulated 

average values of n and p in the Hall bar. 
 

To understand the CNP shift in Fig. 6, the electrostatic potential 𝑉𝑔𝑟, 𝑛 and 𝑝 are represented along the x-axis at 

𝑦 = 0 𝜇𝑚, for the two considered bias currents and three gate voltages corresponding to strong positive doping 

(black and red star symbols), doping where 𝑆𝐼 is maximum (black and red triangular symbols), and doping where 

𝑆𝐼 = 0 (black and red circular symbols), i.e., at the CNP (only the 5-μm-width Hall bar is considered, but results 

are similar for the 1-μm-width Hall bar; see Sec. III, Fig. S3 of the Supplemental Material [38]). We observe that 

𝑉𝑔𝑟 decreases almost linearly along the bar, whatever the bias current value. Regarding the doping, at low bias 

current, it is uniform in the channel and, as 𝑉𝑔𝑟 is of the order of a few tenths of mV, it depends only on the gate 

voltage, 𝑄𝑔𝑟 ≈ −𝐶𝑔𝑉𝑔 [see Eq. (4) and Figs. 6(a)–6(c)]. Hence, the CNP gate voltage position corresponds to 𝑄𝑔𝑟 =
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0 is 𝑉𝐶𝑁𝑃 ≈ 0 𝑉, where 𝑛 = 𝑝 and they are minimum in all the channels [Fig. 6(c)]. At a low bias current, our 

approach and the two-channel model are equivalent, confirming that the two-channel model is a good approximation 

in this case. Concerning a high bias current, 𝑉𝑔𝑟 is of the order of magnitude of 𝑉𝑔. Hence, the doping is no longer 

uniform [Figs. 6(d)–6(f)]. For a negative value of 𝑉𝑔, the electric charge and, hence, the doping increase near the 

drain electrode where the gate voltage is added to the drain voltage, 𝑄𝑔𝑟 = −𝐶𝑔(𝑉𝑔 − 𝑉𝑔𝑟) [see Eq. (4) and Figs. 

6(d) and 6(e)]. For a positive value of 𝑉𝑔, the drain voltage and gate voltage have an opposite role, i.e., a p–n junction 

appears in the channel [Fig. (6f)] whose spatial position can be evaluated depending on 𝑉𝑔 and 𝑉𝑔𝑟 using Eq. (4) 

with 𝑄𝑔𝑟 = 0. Thus, for a given 𝑉𝑔, the x-position of the p–n junction is obtained when 𝑉𝑔𝑟(𝑥) = 𝑉𝑔. Therefore, 

observing that the CNP corresponds to the formation of the p–n junction in the middle of the channel where 𝑉𝑔𝑟(𝑥) ≈

𝑉𝐷/2 [Fig. 6(f)], we deduce that 𝑉𝐶𝑁𝑃 ≈ 𝑉𝐷/2 = 𝑅𝑚𝑎𝑥𝐼/2 with 𝑅𝑚𝑎𝑥 as the two probes maximum resistance. This 

conclusion agrees with previous experimental works [18]. It clearly confirms that the CNP gate voltage position is 

directly related to the bias current due to a doping modulation inside the device, as reported for graphene field effect 

transistors [23,24]. 
 

 
FIG. 6. Charge carrier doping n (blue curves) and p (red curves), electrostatic potential 𝑉𝑔𝑟 (violet curves) along x 

for 𝑦 = 0 𝜇𝑚 for the 5 𝜇𝑚 width Hall bar at three different gate voltage values (see star, triangular and circular 

symbols on Fig. 3) and for two bias current values, 1 𝜇𝐴  (a), (b), (c) and 200 𝜇𝐴  (d), (e), (f). Insert Fig. 6(c): 

location of the profiles on the Hall bar. 
 

Regarding the bias current-induced evolution of the shape of 𝑆𝐼 and 𝑅𝐿, in particular, for the smallest Hall bar 

[Figs. 5(b) and 5(d)], it will be demonstrated in the following that it is a direct consequence of the occurrence of the 

accumulation and depletion areas near the edges of the Hall bar, as discussed in Sec. A. Their size is of the order of 

the charge carrier diffusion length 𝐿𝑛(𝑝), which is identical for electrons and holes at the CNP and equals 616 nm 

with the parameters used for the simulation. To obtain insights into this phenomenon, Figs. 7(a)–7(h) show color 

maps of 𝑛 + 𝑝 and ∆𝑛 + ∆𝑝 at gate voltages maximising 𝑆𝐼 in the hole regime (black and red triangular symbols in 

Fig. 5) for both widths and both bias current values, while Figs. 7(i)–7(l) display profiles along the y-axis of 𝑛 + 𝑝 

and ∆𝑛 + ∆𝑝 in the central part of the Hall bar (at 𝑥 = 0 𝜇𝑚). At a low bias current and for both Hall bar widths, 

the hole accumulation and depletion areas are uniform along the Hall bar and opposite in amplitude with respect to 

the plane 𝑦 = 0 (Fig. 7(b) and 7(f)) which is consistent with the observation that the electric charge, which is 

principally controlled by the gate voltage at low bias current (𝑄𝑔𝑟 ≈ −𝐶𝑔𝑉𝑔, see Eq. 4), must remain uniform. 

However, their amplitudes are negligible compared with the average value of the charge carrier doping [Figs. 7(a), 

7(b), 7(i), 7(e), 7(f), and 7(k)], which is thus almost uniform inside both Hall bars, as we can observe in Figs. 7(a) 

and 7(e). In Figs. 7(i) and 7(k), a focus is made on the central part of the Hall bar (at x = 0 µm); we clearly observe 

that the average total charge carrier doping 〈𝑛 + 𝑝〉 along the y-direction [marked by a black transverse dotted line 

in Figs. 7(a) and 7(e)] is equal in both Hall bars at a low bias current [red dotted lines in Figs. 7(i) and 7(k)]. It takes 

the value 2.28 × 1015 𝑚−2, which is uniform in the Hall bar [Figs. 7(a) and 7(e)]. At a high bias current, the 

situation is more complex. For the largest Hall bar, we observe that the accumulation and depletion areas are almost 

opposite in amplitude with respect to the plane where 𝑦 = 0 but they are not uniform. Their amplitudes increase 

toward the source electrode [Fig. 7(d)] and are also more pronounced than at a low bias current, as expected [Figs. 

7(c), 7(d), and 7(j)]. However, the accumulation and depletion areas do not strongly affect the total charge carrier 

doping inside the Hall bar [Fig. 7(c)], whose nonuniformity is mainly induced by the amplitude of 𝑉𝑔𝑟, as explained 

in the previous paragraph [𝑄𝑔𝑟 = −𝐶𝑔(𝑉𝑔 − 𝑉𝑔𝑟), see Eq. (4)]. Figure 7(j) provides a focus on the central part [Fig. 
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7(c)]. As explained for the low bias current case, the almost opposite amplitudes of the accumulation and depletion 

areas still lead to an average 〈𝑛 + 𝑝〉  along the y-direction that almost equals (2.32 × 1015 𝑚−2) the one at the low 

bias current [red dotted lines in Figs. 7(i) and 7(j)]. Therefore, since 𝑆𝐼 is inversely proportional to 𝑛 + 𝑝 in the 

central part of the Hall bar, its amplitude barely varies at a high bias current for the largest Hall bar [Fig. 5(a)]. For 

the smallest Hall bar, Fig. 7(h) shows that the accumulation and depletion areas are nonuniform and have different 

amplitudes with a strongly dominant accumulation area on the bottom edge of the Hall bar, whose amplitude is now 

of an order of magnitude of the total average charge carrier doping [Fig. 7(h)]. Consequently, an important 

modification of the shape of 𝑛 + 𝑝 along the Hall bar compared with the case at low bias current is observed [Figs. 

7(e) and 7(g)]. This phenomenon relates to the amplitude of 𝐿𝑛(𝑝), which is of an order of magnitude of the Hall 

bar width leading to an important spreading of the accumulation and depletion areas inside the Hall bar. This results 

in a strong increase in the total charge carrier doping inside the Hall bar [Fig. 7(g)] and, as we observe in Fig. 7(l), 

〈𝑛 + 𝑝〉 averaged along the y-direction [red line in Fig. 7(l)] increases strongly to 2.8 × 1015 𝑚−2. Hence, a large 

decrease of 𝑆𝐼 is observed [Fig. 5(b)]. It is possible to quantitatively reproduce the shape of 𝑆𝐼 as a function of gate 

voltage and bias current using the average simulated doping values 〈𝑛〉 and 〈𝑝〉 on the entire Hall bar combined with 

Eq. (1) [green dotted lines in Figs. 5(a) and 5(b)]. Thus, this analysis demonstrates the key role of the spatial profiles 

of the charge carrier doping n and p inside the Hall bar, which depends on bias current, gate voltage, and Hall bar 

geometry. 

 
FIG. 7. Colour maps of 𝑛 + 𝑝 and ∆𝑛 + ∆𝑝 at the maximum amplitude of 𝑆𝐼 in the hole regime for the large Hall 

bar at low bias current (a) and (b) and high bias current (c) and (d) and for the small Hall bar at low bias current (e) 

and (f) and high bias current (g) and (h). Transverse cut of 𝑛 + 𝑝 in the central part of the Hall bar (black dotted 

lines on figures (a)-(h)) for the large Hall bar at low bias current (i) and high bias current (j), and for the small Hall 

bar at low bias current (k) and high bias current (l). 

 

Concerning 𝑅𝐿, a similar analysis can be undertaken with maps of 𝑛 + 𝑝 at 𝑉𝑔 = 𝑉𝐶𝑁𝑃. Figures 8(b) and 8(f) 

show that at a low bias current and for both Hall bar widths, the accumulation and depletion areas are perfectly 

opposite in amplitude with respect to the plane where 𝑦 = 0 As for 𝑆𝐼, it leads to a uniform and minimum average 

doping along the two Hall bars equal to 1.62 × 1015 𝑚−2 [red dotted lines in Figs. 8(i) and 8(k)]. For the largest 

Hall bar at a high bias current, as explained previously, we still observe opposite accumulation and depletion areas 

[Fig. 8(d)] with minimum doping in the center of the Hall bar corresponding to the apparition of the p–n junction 

[Fig. 8(c)]. In addition, 〈𝑛 + 𝑝〉 along the y-direction in the central part is equal to 1.65 × 1015 𝑚−2  [black dotted 
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lines in Fig. 8(c)], a value barely equal to the one at a low bias current [Figs. 8(i) and 8(j)]. As a result, the resistance, 

which is inversely proportional to 𝑛 + 𝑝, is nearly equal for both low and high bias currents. For the smallest Hall 

bar, the shape of 𝑛 + 𝑝 is strongly affected by the bias current with a dominant accumulation area at the bottom 

edge of the Hall bar, resulting in an increase in the average value of 𝑛 + 𝑝 compared with the value at a low bias 

current [red lines in Figs. 8(k) and 8(l)], which is consistent with the maximum resistance decreases at a high bias 

current [Fig. 5(d)]. In the same way as for 𝑆𝐼, it is possible to quantitatively reproduce the shape of 𝑅𝐿 as a function 

of gate voltage and bias current using the average simulated doping values 〈𝑛〉 and 〈𝑝〉 on the entire Hall bar and 

combined with the equation 𝑅 = 𝐿/𝑊𝑒𝜇(〈𝑛〉 + 〈𝑝〉) (green dotted lines in Fig. 5). 
 

 
FIG. 8. Colour maps of 𝑛 + 𝑝 and ∆𝑛 + ∆𝑝 at the maximum amplitude of 𝑅𝐿 for the large Hall bar at low bias 

current (a) and (b) and high bias current (c) and (d) and for the small Hall bar at low bias current (e) and (f) and 

high bias current (g) and (h). Transverse cut of 𝑛 + 𝑝 in the central part of the Hall bar (black dotted lines on figures 

(a)-(h)) for the large Hall bar at low bias current (i) and high bias current (j), and for the small Hall bar at low bias 

current (k) and high bias current (l). 

 

To conclude this section, we performed simulations with an increased recombination-generation rate 𝑅′ (using 

𝑘′ = 10𝑘) in order to clearly demonstrate that when the accumulation and depletion area amplitudes are decreased, 

𝑆𝐼 and 𝑅𝐿 gate voltage and bias current dependences are less affected. We focused on the smallest GHSs where the 

effect is more pronounced. Figure 9(a) shows that, with 𝑘′ = 10𝑘, the shape of 𝑆𝐼 is less affected at a high bias 

current (blue curve), its maximum amplitude does not decrease strongly compared with the case at a low bias 

current. Figure 9(b) shows the profile of 𝑛 + 𝑝 along a transverse cut at 𝑥 = 0 𝜇𝑚 for 𝑘 and 𝑘′. It is clear that the 

accumulation and depletion areas are less pronounced when the recombination rate is high (for 𝑘′, blue curve), 

resulting in an average value of 𝑛 + 𝑝 closer to the equilibrium value. This observation is consistent with the 

decrease of 𝐿𝑛(𝑝), which is equal to 195 nm for 𝑘′. Finally, this comparison of our model and the two-channel model 

clearly points out the shortcomings of the two-channel model. It reveals the important role of the accumulation and 

depletion areas on the electrical characteristics of GHSs. 
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FIG. 9. (a) Magnetic field sensitivity 𝑆𝐼 for two values of the bias current and two values of 𝑘. (b) Profile of 𝑛 + 𝑝 

along a transverse cut at 𝑥 = 0 𝜇𝑚 at high bias current for two values of 𝑘. 

 

C. Electron-hole puddle effect 

 

 
FIG. 10. (a) Colour map of the Fermi level fluctuations in the Hall bar induced by the random gate voltage 

fluctuations. The parameters used to generate the map were ∆𝐸𝑓𝑚𝑎𝑥 = 45 𝑚𝑒𝑉 , 20 𝑛𝑚 < 𝑟0𝑖  < 50 𝑛𝑚 and 𝑛0𝑙 =

3 × 109 𝑐𝑚−2. (b) and (c) Simulated longitudinal resistance 𝑅𝐿𝐶 and magnetic field sensitivity 𝑆𝐼𝐶 with puddles 

(blue curves) and without puddles (black curves). (d) Total average doping 〈𝑛 + 𝑝〉 as a function of 𝑉𝑔 with puddles 

(blue curves) and without puddles (black curves). The GHS being now strongly inhomogeneous, the positions of 

the CNP are slightly different for 𝑅𝐿𝐶, 𝑆𝐼𝐶 and 〈𝑛 + 𝑝〉 and are noted 𝑉𝐶𝑁𝑃𝑅
, 𝑉𝐶𝑁𝑃𝑆

 and 𝑉𝐶𝑁𝑃𝑛0+𝑝0
. 

 

Figure 10(a) shows a typical map of the Fermi-level fluctuations generated using Eq. (8) at 𝑉𝑔 = 0 𝑉. The 

parameters used are  ∆𝐸𝑓𝑟𝑚𝑎𝑥 = 45 𝑚𝑒𝑉, 𝑟0𝑖 ranging from 20 nm to 50 nm and 𝑛0𝑙 = 3 × 109 𝑐𝑚−2. The Fermi-

level fluctuations have a root mean square of 31 meV and induce a mean residual charge carrier doping 〈𝑛 + 𝑝〉 of 

2.32 × 1011 𝑐𝑚−2, a value above the thermal one equal to 1.61 × 1011 𝑐𝑚−2. The FWHM of the autocorrelation 

map function allows for an extraction of a mean puddle size of 1 μm, meaning the puddles span the Hall bar. Figures 

10(b) and 10(c) show the compensated longitudinal resistance 𝑅𝐿𝐶 and magnetic field sensitivity 𝑆𝐼𝐶 simulated with 

and without the puddles for 𝑊 = 2 µ𝑚, 𝑊′ = 3𝑊, 𝑊ℎ = 𝑊/2  and 𝜇 = 1 𝑚2/(𝑉. 𝑠). While the overall shape of 
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𝑅𝐿𝐶 and 𝑆𝐼𝐶 is preserved, the main effect of the introduction of the puddle is to decrease both the resistance and 

sensitivity near the CNP, as expected. For large gate voltages, corresponding to high doping and single charge 

carrier type behavior (at |𝑉𝑔| ≳ 5 𝑉), there are no significant changes as the Fermi-level fluctuations become 

negligible [26] [Fig. 10(d)]. The chosen values of 𝑛0𝑙 and 𝑟0𝑖 were based on experimental observations of the 

puddles [31,32,35] and the requirement that the Boltzmann formalism must remain valid. This implies that the 

conductivity should not vary on a length scale greater than the mean free path 𝑙𝑚 [36], which mathematically means 

that 𝜎/‖∇⃗⃗ 𝜎‖ > 5𝑙𝑚 with 𝑙𝑚 = ℏ√𝜋𝜇(𝑛 + 𝑝)/𝑒(√𝑛 + √𝑝). Under these conditions, 95% of the Hall bar surface 

satisfies the criterion. 

V. ANALYSIS OF THE EXPERIMENTAL RESULTS 

 
For a proper comparison between the experiments and simulations, the dimensions of the measured GHSs were 

obtained with a Nano-Observer atomic force microscope from CSI (see Fig. S4 of the Supplemental Material [38]). 

In addition, it is important to note that the input parameters 𝜇, 𝑣𝑓, ∆𝐸𝑓𝑟𝑚𝑎𝑥 and 𝑛0𝑙, which correspond to the charge 

carrier mobility, the Fermi velocity, the maximum amplitude of the fluctuations of the Fermi level, and the 

Lorentzian density, respectively, were evaluated at a small bias current and the base temperature of the experiment 

(i.e., 200 K for CVD-GHSs and 300 K for HOPG and hBN-GHSs). Then, these values were used to model the 

behavior of the GHSs at a high bias current while keeping the temperature of the devices at the base temperature of 

the experiment, meaning that the Joule effect heating was neglected. As will be detailed in the following, this 

procedure allows us to reproduce quantitatively the experimental data, which is a strong argument to neglect the 

Joule effect at a high bias current. However, to justify this hypothesis beyond any doubt, numerical simulations of 

the temperature increase induced by the Joule effect heating were performed and confirmed that this effect can be 

neglected. The detailed procedure is explained in Part V of the Supplemental Material [38]. 

 

 
 

FIG. 11.  Experimental maps of (a) 𝑅𝐿𝐶 and (b) 𝑆𝐼𝐶 for CVD-GHS (𝐵 = 1 𝑇, 𝑇 = 200 𝐾), compared with 

simulations of (c) 𝑅𝐿𝐶 and (d) 𝑆𝐼𝐶 (see Table 1). The black dot lines in figures (a), (b) represent the simulated 𝑉𝐶𝑁𝑃 

extracted from (c), (d). 𝑉𝐶𝑁𝑃0 is the CNP gate voltage position at the smallest bias current. 
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A. Analysis of the CVD GHS 

 

Figure 11 shows the experimental and simulated maps of 𝑅𝐿𝐶 and 𝑆𝐼𝐶 of the CVD-GHSs as a function of bias 

current and gate voltage at T = 200 K and B = 1 T. Table I lists the parameters used for the simulation. For this 

device, in addition to long-range scatterers, short-range scatterers were introduced to reproduce the sublinear 

behavior of the longitudinal conductance as a function of the gate voltage [see Fig. S6(a) of the Supplemental 

Material [38]]. Short-range scatterers induce resistivity 𝜌𝑠𝑟 independent of the electron and hole doping [39]; hence, 

the short-range scatterer charge carrier mobility is written as 𝜇𝑠𝑟(𝐸) = 𝜋(ℏ𝑣𝑓)
2
/𝑒𝜌𝑠𝑟|𝐸 − 𝐸𝐶𝑁𝑃|2. The simulated 

data effectively agree with the experimental ones: the amplitudes of 𝑅𝐿𝐶 and 𝑆𝐼𝐶 are almost perfectly reproduced 

together with their overall shapes, especially the CNP shift (see Fig. S6 of the Supplemental Material [38]). Indeed, 

the dotted lines that appear in Figs. 11(a) and 11(b) represent the 𝑉𝐶𝑁𝑃 extracted from the simulations. The mean 

residual charge carrier doping 〈𝑛 + 𝑝〉 is about 2.3 × 1015 𝑚−2, a value much larger than the thermal one (i.e., 

7.4 × 1014 𝑚−2), which means that there is an extensive number of electron–hole puddles. This observation is 

coherent with the presence of impurities and defects observed from the Raman measurements [Fig. 1(a)] and the 

low mobility and large recombination-generation rate used for the simulations (Table I). For this device, 

accumulation and depletion areas are negligible due to a diffusion length of 39 nm. The very good agreements 

between the simulations and experiments show that our method of introducing electron–hole puddles is sufficiently 

effective for analyzing large samples with an extensive number of impurities. 

 

TABLE I. Parameters used for the comparison between experiments and simulations. 

Parameters CVD HOPG hBN 

𝒕𝒐𝒙(𝒏𝒎) 105 280 300 

𝒗𝒇(𝟏𝟎𝟔 𝒎/𝒔) 1 1.2 1.4 

𝝁𝒍𝒓(𝒎
𝟐/𝑽𝒔) 0.7 1.5 5 

𝝆𝒔𝒓(𝜴) 1000 0 0 

𝒏𝟎𝒍(𝟏𝟎𝟗𝒄𝒎−𝟐) 3 3 3 

𝒓𝟎𝒊(𝒏𝒎) 50 − 80 60 − 100 60 − 100 

𝜟𝑬𝒇𝒎𝒂𝒙(𝒎𝒆𝑽) 85 18 15 

𝒌(𝒎𝟐/𝒔) 10−2 3.10−4 1.10−5 

 

 

B. Analysis of the HOPG and hBN GHS 

 

Figure 12 shows the experimental and simulated 𝑅𝐿𝐶 and 𝑆𝐼𝐶 of the HOPG and hBN-GHSs for two bias current 

values, 1 µA (black lines) and 100 µA (red lines) for HOPG-GHSs and 2 µA (black lines) and 200 µA (red lines) 

for hBN-GHSs at 𝑇 = 300 𝐾 and 𝐵 = 0.1 𝑇. With the exception of the 𝑅𝐿𝐶 amplitude of hBN-GHSs at a high bias 

current, the simulated data effectively agrees with the experimental ones. Importantly, the maxima of 𝑆𝐼𝐶 reaches 

3 𝑘Ω/𝑇 and 4 𝑘Ω/𝑇 at a low bias current for HOPG and hBN-GHSs, respectively. These values are larger than 

2 𝑘Ω/𝑇, the value expected at 300 K for a pristine graphene considering 𝑣𝑓 = 106 𝑚/𝑠 (the most frequently used 

value of the Fermi velocity). This discrepancy means that the charge carrier density must be lower, i.e., the density 

of states must be lower and the Fermi velocity higher. Several studies of the electronic properties of graphene using 

angle-resolved photoemission spectroscopy (ARPES), STM, or Terahertz measurements have shown that 𝑣𝑓 can 

reach values as high as 1.5 × 106 𝑚/𝑠 [40–42]. Such renormalization of the Fermi velocity is mainly due to poorly 

screened electron-electron interactions in suspended graphene [43] and h-BN encapsulated graphene [40]. 

Accordingly, our simulations lead to 𝑣𝑓 = 1.2 × 106 𝑚/𝑠 and 𝑣𝑓 = 1.4 × 106 𝑚/𝑠 for HOPG and hBN-GHSs, 

respectively. These values agree with previous works [40–42]. However, despite the fact that the total charge carrier 

density must be lower to explain the 𝑆𝐼𝐶 amplitude, it is still necessary to introduce electron–hole puddles to 

reproduce the measured 𝑅𝐿𝐶 and 𝑆𝐼𝐶 gate voltage dependences, especially at a high bias current. For HOPG-GHSs, 

the combination of a higher Fermi velocity and electron–hole puddles leads to a mean residual charge carrier doping 

〈𝑛 + 𝑝〉 of 1.2 × 1015 𝑚−2, a value slightly superior to 1.1 × 1015 𝑚−2, the value expected without puddles. For 

hBN-GHSs, the mean residual charge carrier doping of 8.3 × 1014 𝑚−2 remains almost unaffected, although the 

presence of electron–hole puddles plays a role in the amplitude of the resistance at a high bias current. Both values 
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are lower than 1.61 × 1015 𝑚−2, the expected value for pristine graphene with 𝑣𝑓 = 106 𝑚/𝑠. It is noteworthy that 

it was not necessary to introduce a Fermi velocity renormalization for the CVD-GHSs because the number of charge 

carriers is larger, meaning that the electron-electron interaction is efficiently screened. Concerning the shape of 𝑆𝐼𝐶, 

its large modulation at a high bias current for both devices is effectively reproduced by our model. This means that 

the accumulation and depletion areas play an important role in these devices, as described in Sec. B. Indeed, unlike 

CVD-GHSs, the diffusion lengths at the CNP are 345 nm and 4.32 µm for HOPG and hBN-GHSs, respectively, 

which is of the order or larger than the device width, as a direct consequence of larger mobility and a lower 

recombination rate for both samples compared with the CVD-GHSs (Table I). 

 

 
FIG. 12. Experimental (a) and (b) and simulated (e) and (f) 𝑅𝐿𝐶 and 𝑆𝐼𝐶 of the HOPG-GHS (black lines 1 𝜇𝐴, red 

lines 100 𝜇𝐴). Experimental (c) and (d) and simulated (g) and (h) 𝑅𝐿𝐶 and 𝑆𝐼𝐶 of the hBN-GHS (black lines 2 𝜇𝐴, 

red lines 200 𝜇𝐴). Both samples were measured at 𝑇 = 300 𝐾 and 𝐵 = 0.1 𝑇. 

 

Thus, the good agreement between our advanced model and experiments highlights the importance of 

considering distinct electron and hole Fermi levels and recombinationgeneration processes in order to address the 

evolution of 𝑆𝐼𝐶 at a high bias current. In addition, a coherent evolution of the mean residual charge carrier, mobility, 

and recombination rate is observed for the three samples (Table I). Indeed, as expected, the mobility increases as 

the mean residual charge carrier decreases [26,27], and the recombination rate decreases as the Fermi velocity and 

the quality of the device increase [29,30]. Moreover, the thermal charge carrier statistics used in our model allow 

us to emphasize the importance of considering the renormalization of the Fermi velocity to explain the amplitude 

of 𝑆𝐼𝐶. Regarding the amplitude of 𝑅𝐼𝐶, which our model does not reproduce quantitatively for hBN-GHSs, we 

believe that it may be related to the size of the electron–hole puddles, whose amplitude is similar to the width of the 

device, and their shapes, which have been shown to elongate at the edges, a feature that our method cannot take into 
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account quantitatively [35]. This may also be linked to the use of linear recombination-generation rates, whereas 

nonlinear processes are expected when the electron and hole populations are far from equilibrium near the edges of 

the Hall bar, particularly for GHSs with high charge carrier mobility such as hBN-GHSs. 

VI. CONCLUSION 
 

In summary, we have developed a comprehensive numerical model with several improvements over the two-

channel model: (i) our model considers the effect of temperature and different processes of charge carrier scattering, 

(ii) our model takes into account the spatial modulation of the charge carrier doping as a function of bias current, 

gate voltage, and geometry by using distinct Fermi levels for electrons and holes and a local field effect model for 

electrostatic doping, (iii) our model accounts for charge carrier inhomogeneities introduced by substrates and 

contamination by using a semiempirical method to locally introduce electron–hole puddles, unlike previous works 

where the influence of the puddles is treated on average [22,37]. Consequently, our advanced model can 

quantitatively reproduce the galvanomagnetic properties of GHSs at different qualities and different conditions of 

biasing, contrary to the two-channel model. In addition, an in-depth understanding of the operation principles and 

limitations of GHSs is obtained. In particular, our model reveals how accumulation and depletion areas that form 

near the edges of the Hall bar in the ambipolar regime can affect and degrade the performance of GHSs with widths 

of the order of the charge carrier diffusion length (see Fig. S7 of the Supplemental Material [38]). It would, therefore, 

be interesting to compare the predicted performance of GHSs that are a few hundred nanometers wide with their 

actual performance. Additionally, we demonstrated how the substrate and, more generally, the electrostatic 

environment of the graphene can affect the GHSs performance through the variation of the Fermi velocity. This 

means that the use of substrates or encapsulation materials with low relative dielectric constants [42] or the use of 

suspended graphene [43] should improve performance. It is worth noting that Fermi velocity can also be modulated 

by in-plane uniform strain [44]. It could constitute another method to increase the magnetic field sensitivity of 

GHSs. 

 

Despite the good agreements between the simulations and the experiments presented in the paper, further 

improvements can still be made. Indeed, our model has three input parameters: the value of the Fermi velocity, the 

expression of the recombination rate, and the map of the electron–hole puddles. First, regarding the value of the 

Femi velocity, it will be very helpful to perform ARPES measurements on our samples to obtain a precise estimation 

and confirm its role. Second, the linear expression of the recombination-generation rate used in our model may not 

be relevant when the electron and hole populations are far from the equilibrium, especially for small high-quality 

samples biased with high bias current. Better agreements between simulations and experiments, particularly 

concerning the amplitude of the resistance, should be obtained for high-quality samples if realistic and nonlinear 

processes are included, such as the recombination-generation induced by optical phonons [30]. Future work will be 

carried out in this sense. Regarding the map of the electron–hole puddles, it should be helpful to integrate real maps 

measured under various conditions and different substrates using, for example, nearfield photocurrent nanoscopy 

[35], especially to obtain proper modeling of the electron–hole puddle size and shape inside the Hall bar [35]. This 

last point would allow us to obtain improved agreements between simulations and experiments, particularly for 

small high-quality samples where the exact map of electron–holes puddles, whose sizes are of the order of 

magnitude of the width of the Hall bar, can have a strong influence on the shape of 𝑅𝐿𝐶 and 𝑆𝐼𝐶. Finally, it is 

noteworthy that, recently, a Hall sensor made with a heterostructure of h-BN/MoS2 was realized [45]. Our advanced 

model could be very helpful in studying, in detail, the operation of such a sensor since it is straightforward to adapt 

it to account for a different electronic band structure, charge carrier mobility energy dependence, and recombination 

generation rate. 
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I. Random gate voltage fluctuations 

 
To convert the Fermi level fluctuations into gate voltage fluctuations we used Eq. 4 at zero gate voltage and zero 

bias current. Hence, the electrochemical potentials of electrons and holes are null, 𝛾𝑛 = 𝛾𝑝 = 0 and as 𝑊𝑀 = 𝑊𝑔𝑟,  

∆𝐸𝑓𝑟 = 𝑒𝑉𝑔𝑟. Using 𝑄0 = 0, we can write 

∆𝑉𝑔 =
∆𝐸𝑓𝑟

𝑒
+ 

𝑒

𝐶𝑔
(𝑛(∆𝐸𝑓𝑟) − 𝑝(∆𝐸𝑓𝑟)) (𝑠1) 

 

 
II. Comparison with the two-channel model 

 

At low magnetic field, low bias current and for a constant 𝜇, the conductivity components write 

 

𝜎𝑥𝑥𝑛(𝑝)
≈

𝜂𝑒𝜇

𝜋𝑣𝑓
2ℏ2

∫ (𝐸 − 𝐸𝐶𝑁𝑃)2
𝜕𝑓𝑛(𝑝)

𝜕𝐸
𝑑𝐸

−𝜂×∞

𝐸𝐶𝑁𝑃

= 𝑒𝑛(𝑝)𝜇  

 

𝜎𝑥𝑦𝑛(𝑝)
≈

𝑒𝜇2𝐵

𝜋𝑣𝑓
2ℏ2

∫ (𝐸 − 𝐸𝐶𝑁𝑃)
2
𝜕𝑓𝑛(𝑝)

𝜕𝐸
𝑑𝐸

−𝜂×∞

𝐸𝐶𝑁𝑃

= 𝜂𝑒𝑛(𝑝)𝜇2𝐵  

 

The electric current densities and the charge carrier flux write in the two-channel model as follow 

 

𝐽 𝑛 = −𝑒�⃗� 𝑛 = −𝑒𝑛𝜇 ||

𝜕𝑉𝑔𝑟

𝜕𝑥
− 𝜇𝐵

𝜕𝑉𝑔𝑟

𝜕𝑦

𝜇𝐵
𝜕𝑉𝑔𝑟

𝜕𝑥
+

𝜕𝑉𝑔𝑟

𝜕𝑦

 (𝑠2𝑎) 

mailto:lassagne@insa-toulouse.fr
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𝐽 𝑝 = 𝑒�⃗� 𝑝 = −𝑒𝑝𝜇 ||

𝜕𝑉𝑔𝑟

𝜕𝑥
+ 𝜇𝐵

𝜕𝑉𝑔𝑟

𝜕𝑦

−𝜇𝐵
𝜕𝑉𝑔𝑟

𝜕𝑥
+

𝜕𝑉𝑔𝑟

𝜕𝑦

 (𝑠2𝑏) 

 

Hence the total electric current density and the total charge carrier flux write 

 

𝐽 = ||
−𝑒𝑛𝜇(𝑛 + 𝑝)

𝜕𝑉𝑔𝑟

𝜕𝑥
+ 𝑒(𝑛 − 𝑝)𝜇2𝐵

𝜕𝑉𝑔𝑟

𝜕𝑦

−𝑒(𝑛 − 𝑝)𝜇2𝐵
𝜕𝑉𝑔𝑟

𝜕𝑥
− 𝑒(𝑛 + 𝑝)𝜇

𝜕𝑉𝑔𝑟

𝜕𝑦

(𝑠3𝑎) 

 

�⃗� = ||
(𝑛 − 𝑝)𝜇

𝜕𝑉𝑔𝑟

𝜕𝑥
− (𝑛 + 𝑝)𝜇2𝐵

𝜕𝑉𝑔𝑟

𝜕𝑦

(𝑛 + 𝑝)𝜇2𝐵
𝜕𝑉𝑔𝑟

𝜕𝑥
+ (𝑛 − 𝑝)𝜇

𝜕𝑉𝑔𝑟

𝜕𝑦

(𝑠3𝑏) 

 

In our advanced model, the electric current densities and charge carrier flux write  

 

𝐽 𝑛 = −𝑒�⃗� 𝑛 = 𝑛𝜇 ||

𝜕𝛾𝑛
𝜕𝑥

− 𝜇𝐵
𝜕𝛾𝑛
𝜕𝑦

𝜇𝐵
𝜕𝛾𝑛
𝜕𝑥

+
𝜕𝛾𝑛
𝜕𝑦

 (𝑠4𝑎) 

𝐽 𝑝 = 𝑒�⃗� 𝑝 = 𝑝𝜇 ||

𝜕𝛾𝑝

𝜕𝑥
+ 𝜇𝐵

𝜕𝛾𝑝

𝜕𝑦

−𝜇𝐵
𝜕𝛾𝑝
𝜕𝑥

+
𝜕𝛾𝑝
𝜕𝑦

 (𝑠4𝑏) 

 
Hence, the total electric current density and charge carrier flux expressions are 

 

 

𝐽 = |
|
𝜇 (𝑛

𝜕𝐸𝑓𝑛

𝜕𝑥
+ 𝑝

𝜕𝐸𝑓𝑝

𝜕𝑥
) − 𝑒(𝑛 + 𝑝)𝜇

𝜕𝑉𝑔𝑟

𝜕𝑥
− 𝜇2𝐵 (𝑛

𝜕𝐸𝑓𝑛

𝜕𝑦
− 𝑝

𝜕𝐸𝑓𝑝

𝜕𝑦
) + 𝑒(𝑛 − 𝑝)𝜇2𝐵

𝜕𝑉𝑔𝑟

𝜕𝑦

𝜇2𝐵 (𝑛
𝜕𝐸𝑓𝑛

𝜕𝑥
− 𝑝

𝜕𝐸𝑓𝑝

𝜕𝑥
) − 𝑒(𝑛 − 𝑝)𝜇2𝐵

𝜕𝑉𝑔𝑟

𝜕𝑥
+ 𝜇 (𝑛

𝜕𝐸𝑓𝑛

𝜕𝑦
+ 𝑝

𝜕𝐸𝑓𝑝

𝜕𝑦
) − 𝑒(𝑛 + 𝑝)𝜇

𝜕𝑉𝑔𝑟

𝜕𝑦

(𝑠5𝑎) 

 

�⃗� = |
|
−

𝜇

𝑒
(𝑛

𝜕𝐸𝑓𝑛

𝜕𝑥
− 𝑝

𝜕𝐸𝑓𝑝

𝜕𝑥
) + (𝑛 − 𝑝)𝜇

𝜕𝑉𝑔𝑟

𝜕𝑥
+

𝜇2𝐵

𝑒
(𝑛

𝜕𝐸𝑓𝑛

𝜕𝑦
+ 𝑝

𝜕𝐸𝑓𝑝

𝜕𝑦
) − (𝑛 + 𝑝)𝜇2𝐵

𝜕𝑉𝑔𝑟

𝜕𝑦

−
𝜇2𝐵

𝑒
(𝑛

𝜕𝐸𝑓𝑛

𝜕𝑥
+ 𝑝

𝜕𝐸𝑓𝑝

𝜕𝑥
) + (𝑛 + 𝑝)𝜇2𝐵

𝜕𝑉𝑔𝑟

𝜕𝑥
−

𝜇

𝑒
(𝑛

𝜕𝐸𝑓𝑛

𝜕𝑦
− 𝑝

𝜕𝐸𝑓𝑝

𝜕𝑦
) + (𝑛 − 𝑝)𝜇

𝜕𝑉𝑔𝑟

𝜕𝑦

(𝑠5𝑏) 

 

 

At low bias current, all the first terms of Eqs. s5(a) and s5(b) depending on the gradient of the Fermi levels along 𝑥 

(
𝜕𝐸𝑓𝑛

𝜕𝑥
,
𝜕𝐸𝑓𝑝

𝜕𝑥
) can be neglected as they are almost null.  
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In the following, we consider the device operating at the CNP and supplied with a low bias current, typically few 

µA. The electron and hole doping spatial variations are expressed as follows 

 
𝑛 = 𝑛𝑒𝑞 + ∆𝑛 

𝑝 = 𝑝𝑒𝑞 + ∆𝑝 

 
𝑛𝑒𝑞 and 𝑝𝑒𝑞 are the electron and hole doping at equilibrium. At low bias current, the doping variations are small, 

meaning that ∆𝑛 ≪ 𝑛𝑒𝑞 and ∆𝑝 ≪ 𝑝𝑒𝑞. 

 
FIG. S1. (a) and (e), Lorentz component of the transverse charge carrier flux, (b) and (f), Diffusion component, (c) 

and (g) Hall component, (d) and (h) components depending on 
𝜕𝐸𝑓𝑛

𝜕𝑥
 and 

𝜕𝐸𝑓𝑝

𝜕𝑥
 for two gate voltages.  

 

The spatial dependences of the charge carrier flux �⃗� 𝑛 and �⃗� 𝑃 are governed by the following relationships 

 

−∇⃗⃗ . �⃗� 𝑛(𝑝) − 𝑅 = 0 (𝑠6) 

 

With 𝑅 = 𝑘(𝑛𝑝 − 𝑛𝑒𝑞𝑝𝑒𝑞). At the CNP we assume that ∆𝑛 = ∆𝑝, therefore we can write 

 

𝑅 ≈ 𝑘(∆𝑛𝑝𝑒𝑞 + ∆𝑝𝑛𝑒𝑞) =
∆𝑛

𝜏𝑟
=

∆𝑝

𝜏𝑟
 (𝑠7) 

 

With 𝜏𝑟 = 1/ 𝑘(𝑝𝑒𝑞 + 𝑛𝑒𝑞) the recombination rate. Injecting the relationships �⃗� 𝑛(𝑝) =
𝜂

𝑒
𝐽 𝑛(𝑝) and Eq. s7 into Eq. 

s6, and assuming that 
𝜕2𝛾𝑛(𝑝)

𝜕𝑥𝜕𝑦
=

𝜕2𝛾𝑛(𝑝)

𝜕𝑦𝜕𝑥
 we can obtain the following relationships 

 
𝑛𝑒𝑞𝜇

𝑒
(
𝜕2𝛾𝑛
𝜕𝑥2

+
𝜕2𝛾𝑛
𝜕𝑦2 ) −

∆𝑛

𝜏𝑟
= 0 (𝑠8𝑎) 

−
𝑝𝑒𝑞𝜇

𝑒
(
𝜕2𝛾𝑝
𝜕𝑥2

+
𝜕2𝛾𝑝
𝜕𝑦2 ) −

∆𝑝

𝜏𝑟
= 0  (𝑠8𝑏) 
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The simulations performed at the CNP (𝑉𝑔 = 0𝑉) reveal that in almost the entire Hall bar (Fig. S2): 

 

𝜕𝐸𝑓𝑛

𝜕𝑥
,
𝜕𝐸𝑓𝑝

𝜕𝑥
,
𝜕𝑉𝑔𝑟

𝜕𝑦
,
𝜕2𝑉𝑔𝑟

𝜕𝑥2
≈ 0 

 

FIG. S2. Color maps of 
𝜕𝐸𝑓𝑛

𝜕𝑥
 (a), 

𝜕𝐸𝑓𝑝

𝜕𝑥
 (b) 

𝜕𝑉𝑔𝑟

𝜕𝑦
 (c) and 

𝜕𝑉𝑔𝑟

𝜕𝑥
 (d).  

 
Hence the Eqs. s8(a) and s8(b) become 

 

𝑛𝑒𝑞𝜇

𝑒

𝜕2𝐸𝑓𝑛

𝜕𝑦2
−

∆𝑛

𝜏𝑟
= 0 (𝑠9𝑎) 

−
𝑝𝑒𝑞𝜇

𝑒

𝜕2𝐸𝑓𝑝

𝜕𝑦2
−

∆𝑝

𝜏𝑟
= 0  (𝑠9𝑏) 

 
We remind that 

 

𝑛 = ∫ 𝑓(𝐸 − 𝐸𝑓𝑛)
2|𝐸 − 𝐸𝐶𝑁𝑃|

𝜋(ℏ𝑣𝑓)
2 𝑑𝐸

∞

𝐸𝐶𝑁𝑃 

 

𝑝 = ∫ (1 − 𝑓(𝐸 − 𝐸𝑓𝑝))
2|𝐸 − 𝐸𝐶𝑁𝑃|

𝜋(ℏ𝑣𝑓)
2 𝑑𝐸

𝐸𝐶𝑁𝑃

−∞ 

 

 
Hence, the first derivatives of 𝑛 and 𝑝 write 
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𝜕𝑛

𝜕𝑦
= −

𝜕𝐸𝑓𝑛

𝜕𝑦
∫

2|𝐸 − 𝐸𝐶𝑁𝑃|

𝜋(ℏ𝑣𝑓)
2

𝜕𝑓

𝜕𝐸
𝑑𝐸

∞

𝐸𝐶𝑁𝑃 

 (𝑠10𝑎) 

𝜕𝑝

𝜕𝑦
=

𝜕𝐸𝑓𝑝

𝜕𝑦
∫

2|𝐸 − 𝐸𝐶𝑁𝑃|

𝜋(ℏ𝑣𝑓)
2

𝜕𝑓

𝜕𝐸
𝑑𝐸

𝐸𝐶𝑁𝑃

−∞ 

  (𝑠10𝑏) 

And the second derivatives write 

 

𝜕2𝑛

𝜕𝑦2
= −

𝜕2𝐸𝑓𝑛

𝜕𝑦2
∫

2|𝐸 − 𝐸𝐶𝑁𝑃|

𝜋(ℏ𝑣𝑓)
2

𝜕𝑓

𝜕𝐸
𝑑𝐸

∞

𝐸𝐶𝑁𝑃 

+ (
𝜕𝐸𝑓𝑛

𝜕𝑦
)

2

∫
2|𝐸 − 𝐸𝐶𝑁𝑃|

𝜋(ℏ𝑣𝑓)
2

𝜕2𝑓

𝜕𝐸2
𝑑𝐸

∞

𝐸𝐶𝑁𝑃 

 (𝑠11𝑎) 

𝜕2𝑝

𝜕𝑦2
=

𝜕2𝐸𝑓𝑝

𝜕𝑦2
∫

2|𝐸 − 𝐸𝐶𝑁𝑃|

𝜋(ℏ𝑣𝑓)
2

𝜕𝑓

𝜕𝐸
𝑑𝐸

𝐸𝐶𝑁𝑃

−∞ 

− (
𝜕𝐸𝑓𝑝

𝜕𝑦
)

2

∫
2|𝐸 − 𝐸𝐶𝑁𝑃|

𝜋(ℏ𝑣𝑓)
2

𝜕2𝑓

𝜕𝐸2
𝑑𝐸

𝐸𝐶𝑁𝑃

−∞ 

 (𝑠11𝑏) 

 
The second terms of the Eqs. s11(a) and s11(b) are negligible, then we can convert the Eqs. s9(a) and s9(b) as follow 

 

𝐷𝑛

𝜕2𝑛

𝜕𝑦2
−

∆𝑛

𝜏𝑟
= 0  (𝑠12𝑏) 

𝐷𝑝

𝜕2𝑝

𝜕𝑦2
−

∆𝑝

𝜏𝑟
= 0  (𝑠12𝑏) 

 
Where 𝐷𝑛 and 𝐷𝑝 are the diffusion coefficient of electrons and holes which write 

 

𝐷𝑛 =
𝜋(ℏ𝑣𝑓)

2
𝑛𝑒𝑞𝜇

𝑒 ∫ 2|𝐸 − 𝐸𝐶𝑁𝑃| (−
𝜕𝑓
𝜕𝐸

)𝑑𝐸
∞

𝐸𝐶𝑁𝑃 

 (𝑠13𝑎) 

𝐷𝑝 =
𝜋(ℏ𝑣𝑓)

2
𝑝𝑒𝑞𝜇

𝑒 ∫ 2|𝐸 − 𝐸𝐶𝑁𝑃| (−
𝜕𝑓
𝜕𝐸

)𝑑𝐸
𝐸𝐶𝑁𝑃

−∞ 

 (𝑠13𝑏) 

 

We can verify that at 𝑇 = 0 𝐾, 𝐷𝑛(𝑝) = ℏ𝑣𝑓√𝜋𝑛𝑒𝑞(𝑝𝑒𝑞)𝜇/2𝑒. The solutions of Eqs. s12(a) and s12(b) take the 

following forms 

 

∆𝑛 = 𝐴𝑒
𝑦
𝐿𝑛 + 𝐴′𝑒

−
𝑦
𝐿𝑛 (𝑠14𝑎) 

∆𝑝 = 𝐵𝑒
𝑦
𝐿𝑝 + 𝐵′𝑒

−
𝑦
𝐿𝑝

(𝑠14𝑏) 
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With 𝐿𝑛(𝑝) = √𝐷𝑛(𝑝)𝜏𝑟 the diffusion length of electrons(holes). Using the Eqs. s4(a) and s4(b), we can write the 

particle flux as follow 

 

𝑃𝑛𝑦 = −
𝑛𝜇

𝑒
(−𝑒𝜇𝐵

𝜕𝑉𝑔𝑟

𝜕𝑥
+

𝑒𝐷𝑛

𝑛𝑒𝑞𝜇

𝜕𝑛

𝜕𝑦
) (𝑠15𝑎) 

𝑃𝑝𝑦 =
𝑝𝜇

𝑒
(𝑒𝜇𝐵

𝜕𝑉𝑔𝑟

𝜕𝑥
−

𝑒𝐷𝑝

𝑝𝑒𝑞𝜇

𝜕𝑝

𝜕𝑦
) (𝑠15𝑏) 

Using the Eqs. s14(a), s14(b), s15(a) and s15(b) combined with the fact the charge carrier fluxes cancel at the edges 

of the Hall bar we can show after some calculations that the electron and hole doping write 

 

𝑛 = 𝑛𝑒𝑞 +
𝑛𝑒𝑞𝜇

2𝐿𝑛

𝐷𝑛
𝐵

𝜕𝑉𝑔𝑟

𝜕𝑥

𝑠ℎ (
𝑦
𝐿𝑛

)

𝑐ℎ (
𝑊
2𝐿𝑛

)
(𝑠16𝑎) 

𝑝 = 𝑝𝑒𝑞 +
𝑝𝑒𝑞𝜇

2𝐿𝑝

𝐷𝑝
𝐵

𝜕𝑉𝑔𝑟

𝜕𝑥

𝑠ℎ (
𝑦
𝐿𝑝

)

𝑐ℎ (
𝑊
2𝐿𝑝

)
(𝑠16𝑏) 

 
III. Longitudinal profile of 𝑽𝒈𝒓, 𝒏 and 𝒑 for the 1 µm wide Hall bar 

 

 

 

FIG. S3. Charge carrier doping n (blue curves) and p (red curves), electrostatic potential 𝑉𝑔𝑟 (violet curves) along x 

for 𝑦 = 0 𝜇𝑚 for the 1 𝜇𝑚 width Hall bar at three different gate voltage values (see star, triangular and circular 

symbols on figure 3) and for two bias current values, 1 𝜇𝐴 (a), (b), (c) and 200 𝜇𝐴 (d), (e), (f). Insert Fig. S1(d): 

location of the profiles on the Hall bar. 
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IV. AFM images of the GHS 

 

 

FIG. S4. (a), (b) and (c) AFM image of the CVD-GHS, HOPG-GHS and hBN-GHS respectively. The scratch 

observed in the middle of the image was made during the observation and after the electrical characterization. The 

images were obtained with a CSI Nano-Observer in resonant mode using a tip with a stiffness constant equal to 

1.6 𝑁/𝑚. 

V. Joule heating modelling 

 

Numerical simulations were performed to evaluate the temperature increase induced by Joule effect heating in the 

three kinds of devices. For this purpose, the heat equation in the steady state was solved numerically [1] 

 

−∇⃗⃗ . (−𝜅𝑔𝑟 × 𝑡𝑔𝑟 × ∇⃗⃗ 𝑇𝑔𝑟) + 𝑝𝐽 − 𝑔𝑡ℎ(𝑇𝑔𝑟 − 𝑇𝑠) = 0 (𝑠17) 

 

𝜅𝑔𝑟 is the in-plane thermal conductivity of graphene, 𝑡𝑔𝑟 = 0.34 𝑛𝑚 is the graphene thickness, 𝑇𝑔𝑟 is the graphene 

temperature, 𝑝𝐽 the Joule effect heating power per unit square, 𝑔𝑡ℎ is the thermal conductivity of the graphene-

substrate and 𝑇𝑠 is the base temperature of the experiment. 𝑝𝐽 = −∇⃗⃗ 𝑉𝑔𝑟. 𝐽 𝑐𝑜𝑛𝑑 was evaluated inside the graphene 

monolayer using the values of the graphene electrostatic potential 𝑉𝑔𝑟 and the conduction current density 𝐽 𝑐𝑜𝑛𝑑 =

−(�̿�𝑛 + �̿�𝑝)∇⃗⃗ 𝑉𝑔𝑟 determined by the numerical simulations modelling the galvanomagnetic properties of the GHS. 

Below the metallic contact, we estimate 𝑝𝐽, assuming the major part of the current is passing through the metallic 

contact, with 𝑝𝐽 = −∇⃗⃗ 𝑉𝑐 . 𝐽 𝑐𝑜𝑛𝑑, 𝑉𝑐 being the electrostatic potential inside the contact and 𝐽 𝑐𝑜𝑛𝑑 = −𝜎𝑐 ∇⃗⃗ 𝑉𝑐, with 𝜎𝑐 =

1 𝑆 being the metal conductivity. 𝑔𝑡ℎ was evaluated using the following relationships (s18a for CVD and HOPG-

GHS, s18b for hBN-GHS and s18c for three samples under the metallic contact) 

 

𝑔𝑡ℎ
−1 = 𝑅𝑔𝑟/𝑆𝑖𝑂2

+
𝑡𝑆𝑖𝑂2

𝜅𝑆𝑖𝑂2

+ 𝑅𝑆𝑖𝑂2/𝑆𝑖 (𝑠18𝑎) 

 

𝑔𝑡ℎ
−1 = 𝑅𝑔𝑟/ℎ𝐵𝑁 +

𝑡ℎ𝐵𝑁

𝜅ℎ𝐵𝑁
+ 𝑅ℎ𝐵𝑁/𝑆𝑖𝑂2

+
𝑡𝑆𝑖𝑂2

𝜅𝑆𝑖𝑂2

+ 𝑅𝑆𝑖𝑂2/𝑆𝑖 (𝑠18𝑏) 

 

𝑔𝑡ℎ
−1 = 𝑅𝑚𝑒𝑡𝑎𝑙/𝑔𝑟 (𝑠18𝑐) 

 

𝑅𝑔𝑟/𝑆𝑖𝑂2
 is the interfacial thermal resistivity between graphene and SiO2, 𝑅𝑆𝑖𝑂2/𝑆𝑖, between SiO2 and Si substrate, 

𝑅𝑔𝑟/ℎ𝐵𝑁, between graphene and hBN and 𝑅ℎ𝐵𝑁/𝑆𝑖𝑂2
, between hBN and SiO2. 𝜅𝑆𝑖𝑂2

 and 𝜅ℎ𝐵𝑁 are the thermal 

conductivity of SiO2 and hBN (out of plane) and 𝑡𝑆𝑖𝑂2
 and 𝑡ℎ𝐵𝑁 are the SiO2 and hBN thickness [2]. Using values 

reported in the literature (𝑅𝑔𝑟/𝑆𝑖𝑂2
= 2 × 10−8 𝐾.𝑚2/𝑊 [3], 𝑅𝑔𝑟/ℎ𝐵𝑁 = 10−7 𝐾.𝑚2/𝑊 [2], 𝑅ℎ𝐵𝑁/𝑆𝑖𝑂2

=

2.2 × 10−7 𝐾.𝑚2/𝑊 [2], 𝑅𝑆𝑖𝑂2/𝑆𝑖 = 10−8 𝐾.𝑚2/𝑊 [2], 𝜅𝑔𝑟 = 1000 𝑊/(𝑚.𝐾) [2], 𝜅ℎ𝐵𝑁 = 3 𝑊/(𝑚.𝐾) [2], 

𝜅𝑆𝑖𝑂2
= 1,3 𝑊/(𝑚. 𝐾) [2]) and 𝑡𝑆𝑖𝑂2

= 90 𝑛𝑚 for CVD-GHS, 285 𝑛𝑚 for HOPG and hBN-GHS and 𝑡ℎ𝐵𝑁 =

20 𝑛𝑚 for the hBN-GHS, we obtain 𝑔𝑡ℎ equals to 10 𝑀𝑊/(𝑚2. 𝐾) for the CVD-GHS, 4 𝑀𝑊/(𝑚2. 𝐾) for the 

HOPG-GHS and 2.8 𝑀𝑊/(𝑚2. 𝐾) for the hBN-GHS. Below the metallic contact we used 𝑅𝑚𝑒𝑡𝑎𝑙/𝑔𝑟 =
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4 × 10−8 𝐾.𝑚2/𝑊 [4]. It is important to note that the values of 𝑅𝑚𝑒𝑡𝑎𝑙/𝑔𝑟 and 𝜅𝑔𝑟 have low impact on the results, 

as the majority of the Joule effect heating power is dissipated through the dielectric substrate. 

 

FIG. S5 shows the average of the Joule effect heating power and the average of the temperature as a function of the 

gate voltage at high bias current for the three devices ((a) CVD-GHS, (b) HOPG-GHS and (c) hBN-GHS). We 

observe that the maximum temperature increase remains low, ∆𝑇𝑔𝑟 = 𝑇𝑔𝑟 − 𝑇𝑠 = 1.1 𝐾 for CVD-GHS with a 

maximum 𝑝𝐽 = 11.9 𝑀𝑊/𝑚2, ∆𝑇𝑔𝑟 = 6.4 𝐾 for HOPG-GHS with 𝑝𝐽 = 26.7 𝑀𝑊/𝑚2 and ∆𝑇𝑔𝑟 = 3.5 𝐾 with 

𝑝𝐽 = 10.1 𝑀𝑊/𝑚2, justifying to neglect the Joule effect heating. 

 

 

 
FIG. S5. Joule effect heating power, 𝑝𝐽 (red lines) and temperature 𝑇𝑔𝑟 (black lines) inside the graphene monolayer 

for CVD-GHS (a), HOPG-GHS (b) and hBN-GHS (c) as a function of gate voltage 𝑉𝑔, 𝑉𝐶𝑁𝑃 being the gate voltage 

position of the CNP at low bias current. 

 
VI. CVD electrical characteristics 

 

 

FIG. S6. Experimental (cross) and simulated (line) longitudinal conductance 𝐺𝐿 (a), resistance 𝑅𝐿 (b) and magnetic 

field sensitivity 𝑆𝐼 (c) of the CVD GHS at three different bias current, -500 µA (blue curves), 10 µA (black curves) 

and 500 µA (red curves) performed at 200 K and 1 T. 

 
VII. Performance degradation with width decrease 

 
Simulations were performed on pristine (without puddles) HOPG-GHS having 𝑊 = 2 𝜇𝑚, 𝑊 = 1 𝜇𝑚, 𝑊 =

0.5 𝜇𝑚 and 𝑊 =  0.25 𝜇𝑚 at 𝑇 = 300𝐾 and 𝐵 = 0.1 𝑇. The other dimensions are 𝑊ℎ = 𝑊, 𝑊′ = 2𝑊 and 𝐿 =

8𝑊 + 3𝑊ℎ. We used for the simulations parameters comparable to what is obtained experimentally:  𝜇 =

2 𝑚2/(𝑉. 𝑠), 𝑣𝑓 = 1.2 × 106 𝑚/𝑠 and 𝑘 = 10−4 𝑚2/(𝑉. 𝑠). We used for the oxide thickness 𝑡𝑜𝑥 = 280 𝑛𝑚. 
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FIG. S7. (a), (b), (c) and (d) Magnetic field sensitivity of a pristine HOPG-GHS with 4 different widths. 

We observe that the magnetic field sensitivity degrades (the maximum decreases and the distance separating the 

extrema increases) when the current increases and the width decreases. This effect is due to a more pronounced 

effect of the accumulation and depletion areas as the charge carrier diffusion length is 740 𝑛𝑚.  
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