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Abstract

This is the third in a series of three papers in which we study a lattice gas subject to
Kawasaki dynamics at inverse temperature β > 0 in a large finite box Λβ ⊂ Z2 whose volume
depends on β. Each pair of neighbouring particles has a negative binding energy −U < 0,
while each particle has a positive activation energy ∆ > 0. The initial configuration is
drawn from the grand-canonical ensemble restricted to the set of configurations where all
the droplets are subcritical. Our goal is to describe, in the metastable regime ∆ ∈ (U, 2U)
and in the limit as β → ∞, how and when the system nucleates, i.e., creates a critical droplet
somewhere in Λβ that subsequently grows by absorbing particles from the surrounding gas.

In the first paper we showed that subcritical droplets behave as quasi-random walks. In
the second paper we used the results in the first paper to analyse how subcritical droplets
form and dissolve on multiple space-time scales when the volume is moderately large, namely,
|Λβ | = eθβ with ∆ < θ < 2∆ − U . In the present paper we consider the setting where the
volume is very large, namely, |Λβ | = eΘβ with ∆ < Θ < Γ− (2∆−U), where Γ is the energy
of the critical droplet in the local model with fixed volume, and use the results in the first two
papers to identify the nucleation time and the tube of typical trajectories towards nucleation.
We will see that in a very large volume critical droplets appear more or less independently
in boxes of moderate volume, a phenomenon referred to as homogeneous nucleation. One
of the key ingredients in the proof is an estimate showing that no information can travel
between these boxes on relevant time scales. Prior to nucleation, the dynamics inside the
moderately large boxes spends most of its time in configurations consisting of a single quasi-
square surrounded by free particles, and makes transitions between these configurations at
rates that depend on the linear sizes of the quasi-square in a computable manner.
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1 Introduction and main results

1.1 Background

The present paper is the third in a series of three papers dealing with nucleation in a super-
saturated lattice gas in a large volume. In particular, we consider a two-dimensional lattice
gas at low density and low temperature that evolves under Kawasaki dynamics, i.e., particles
hop around randomly subject to hard-core repulsion and nearest-neighbour attraction. We are
interested in how the gas nucleates in large volumes, i.e., how the particles form and dissolve
subcritical droplets until they manage to build a critical droplet that is large enough to trigger
the nucleation.
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In the first paper [6] we showed that subcritical droplets behave as quasi-random walks. In
the second paper [1] we used the results in the first paper to analyse how subcritical droplets
form and dissolve on multiple space-time scales when the volume is moderately large. In large
volumes the evolution of the Kawasaki lattice gas is much more involved than in finite volumes
treated earlier [9], [10]. The main difficulty in analysing the metastable behaviour is a proper
description of the interaction between the droplets and the surrounding gas. As part of the
nucleation process, droplets grow and shrink by exchanging particles with the gas around them,
as is typical for conservative dynamics.

Our focus is on both the nucleation time and the tube of typical trajectories prior to nucle-
ation. In Section 1.4 we discuss the importance of the results obtained in the present paper and
the two preceding papers, and their relevance within the literature on metastability of interacting
particle systems. To derive our main theorems we distinguish between moderate volumes and
large volumes. We first consider moderate volumes and use the results obtained in [1] to describe
the escape from metastability. In particular, we show that this escape occurs via nucleation
rather than via coalescence. Subsequently, we consider large volumes and exploit the work in [7]
that derives an upper bound on the velocity of front propagation, from which we deduce that
essentially no information can travel between distant volumes on appropriate space-time scales.
This in turn implies that the nucleation in large volumes is homogeneous, i.e., occurs indepen-
dently and with equal probability in disjoint moderate volumes that are essentially independent.

We refer the reader to [1] for a description of what is achieved in the three papers together
(see [1, Items (1)–(7) in Section 1.1]) and what are the key challenges associated with Kawasaki
dynamics in large volumes (see [1, Remarks 1.1–1.3]). For more background on metastability
for interacting particle systems, we refer the reader to the monographs [11], [2] and references
therein.

1.2 Kawasaki dynamics

• Hamiltonian, generator and equilibrium. Let β > 0 denote the inverse temperature.
Let Λβ ⊂ Z2 be the square box with volume

|Λβ | = eΘβ , Θ > 0, (1.1)

centered at the origin with periodic boundary conditions. With each x ∈ Λβ associate an
occupation variable η(x), assuming the values 0 or 1. A lattice gas configuration is denoted by
η ∈ Xβ = {0, 1}Λβ . With each configuration η associate an energy given by the Hamiltonian

H(η) = −U
∑

{x,y}∈Λ∗
β

η(x)η(y), (1.2)

where Λ∗
β denotes the set of bonds between nearest-neighbour sites in Λβ , i.e., there is a binding

energy −U < 0 between neighbouring particles. Let

|η| =
∑
x∈Λβ

η(x) (1.3)

be the number of particles in Λβ in the configuration η, and let

XN = {η ∈ Xβ : |η| = N} (1.4)

be the set of configurations with N particles.
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We define Kawasaki dynamics as the continuous-time Markov chain X = (X(t))t≥0 with state
space XN given by the generator

(Lf)(η) =
∑

{x,y}∈Λ∗
β

c(x, y, η)[f(ηx,y)− f(η)], η ∈ Xβ , (1.5)

where

ηx,y(z) =

 η(z) if z ̸= x, y,
η(x) if z = y,
η(y) if z = x,

(1.6)

and
c(x, y, η) = e−β[H(ηx,y)−H(η)]+ . (1.7)

Equations (1.5)–(1.7) represent the standard Metropolis dynamics associated with H, and is
conservative because it preserves the number of particles, i.e., |X(t)| = |X(0)| for all t > 0. The
canonical Gibbs measure µN defined as

µN (η) =
e−βH(η) 1XN

(η)

ZN
, ZN =

∑
η∈XN

e−βH(η), η ∈ Xβ , (1.8)

is the reversible equilibrium of this stochastic dynamics for any N :

µN (η)c(x, y, η) = µN (ηx,y)c(x, y, ηx,y). (1.9)

We augment the energy H(η) of configuration η by adding a term ∆|η|, with ∆ > 0 an activation
energy per particle. This models the presence of an external reservoir that keeps the density of
particles in Λβ fixed at e−β∆.

• Subcritical, critical and supercritical droplets. The initial configuration is chosen ac-
cording to the grand-canonical Gibbs measure restricted to the set of subcritical droplets. More
precisely, denote by

ℓc =
⌈ U

2U −∆

⌉
(1.10)

the critical length introduced in [9] for the local model where Λβ = Λ does not depend on β (see
Fig. 1). The energy of the critical droplet in the local model equals

Γ = −U [(ℓc − 1)2 + ℓc(ℓc − 2) + 1] + ∆[ℓc(ℓc − 1) + 2] (1.11)

By defining a cluster as a connected component of nearest-neighbours particles, define

R =
{
η ∈ Xβ : all clusters of η have volume at most ℓc(ℓc − 1) + 2

}
(1.12)

and put

µR(η) =
e−β[H(η)+∆|η|]

ZR
1R(η), η ∈ Xβ , (1.13)

where
ZR =

∑
η∈R

e−β[H(η)+∆|η|] (1.14)

is the normalising partition sum. Write Pη for the law of X given X(0) = η. The initial
configuration X(0) is drawn from µR, i.e., the initial law is PµR =

∫
Xβ

µR(dη)Pη.
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ℓc

ℓc − 1
Λ

Figure 1: A critical droplet in a finite volume Λ: a protocritical droplet, consisting of an (ℓc − 1) × ℓc
quasi-square with a single protuberance attached to one of the longest sides, and a free particle nearby.
When the free particle attaches itself to the protuberance, the droplet becomes supercritical.

We will be interested in the regime

∆ ∈ (U, 2U), β → ∞. (1.15)

which corresponds to metastable behaviour. In this regime, droplets with side length smaller than
ℓc have a tendency to shrink, while droplets with a side length larger that ℓc have a tendency to
grow. We will refer to the former as subcritical droplets and to the latter as supercritical droplets.

1.3 Main theorems

• Nucleation time. Let
τRc = inf{t ≥ 0: X(t) /∈ R}. (1.16)

Theorem 1.1 [Nucleation time] Subject to (1.15), for every ∆ < Θ < Γ − (2∆ − U) and
every δ > 0,

lim
β→∞

1

β
lnPµR

(
τRc /∈

[
eΓβ

|Λβ |
e−δβ ,

eΓβ

|Λβ |
eδβ

])
< 0. (1.17)

• Tube of typical trajectories. We define quasi-squares as clusters of sizes ℓ1 × ℓ2 in the set

QS = {(ℓ1, ℓ2) ∈ N2 : ℓ1 ≤ ℓ2 ≤ ℓ1 + 1}

and let λ(β) be an unbounded but slowly increasing function of β satisfying

λ(β) log λ(β) = o(log β), β → ∞, (1.18)

e.g. λ(β) =
√
log β.

Theorem 1.2 [Tube of typical trajectories] Subject to (1.15), for every ∆ < Θ < Γ− (2∆−
U) and starting from the initial measure µR, with a probability that is exponentially close to 1 the
system nucleates a growing cluster that visits the full increasing sequence of quasi-squares, and
after the exit from R grows in the same way up to a

√
λ(β)/8 ×

√
λ(β)/8-square. This square

is reached after the exit from R in a time that is exponentially smaller than the time needed to
reach Rc.
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Figure 2: Cost of adding or removing a row of length ℓ in a finite volume.

In the proof of Theorems 1.1 and 1.2 the parameter Θ will play a crucial role. Indeed, in Section
5 we will see that the analysis for large volumes, i.e., Θ > θ, can be reduced to that for moderate
volumes, i.e., Θ ≤ θ, by using their near-independence, where the parameter θ is defined as
follows. Let r(ℓ1, ℓ2) be the resistance of the ℓ1 × ℓ2 quasi-square with 1 ≤ ℓ1 ≤ ℓ2 given by (see
Fig. 2)

r(ℓ1, ℓ2) = min{(2U −∆)ℓ1 − U + 2∆− U, 2∆− U}. (1.19)

Let θ = 2∆−U−γ be the resistance of the largest subcritical quasi-square. Since this quasi-square
has sizes (ℓc − 1)× ℓc, we have θ = 2U + (ℓc − 3)(2U −∆), and so

γ = (∆− U)− (ℓc − 2)(2U −∆) > 0. (1.20)

Remark 1.3 With the techniques developed in [1] it is possible to show that the growing cluster
in Theorem 1.2 triggering the nucleation is wandering, i.e., when the cluster has size ℓ1× ℓ2 with
|ℓ1 − ℓ2| ≤ 1 it exits any finite box around it with a volume that does not depend on β within a
time of order er(ℓ1,ℓ2)β .

1.4 Conclusion

1. Theorems 1.1–1.2 provide a detailed description of the escape from metastability for Kawasaki
dynamics in moderate and large volumes, in particular, how subcritical droplets form and dis-
solve on multiple space-time scales, and concludes the work initiated in [6] and [1]. The escape
occurs via nucleation and not via coalescence. The nucleation is homogeneous, in the sense that
a supercritical droplet appears for the first time more or less independently and with equal prob-
ability in disjoint boxes of moderate volume, and trigger the nucleation. The configurations in
moderately large boxes behave as if they are essentially independent and as if the surrounding
gas is ideal. The asymptotics of the nucleation time is identified on a time scale that is expo-
nential in β and depends on an entropic factor related to the size of the box. We find that the
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probability to deviate from the lower bound is exponentially small in β, while the probability to
deviate from the upper bound is SES(β), where we write SES(β) for any function of β that decays
to zero faster than any exponential of β. This asymmetry is due to the fact that nucleation after
a given time can only happen when an exponentially large number of particles does not manage
to trigger the nucleation before that time.

2. In [3] the average nucleation time was identified including a sharp prefactor, but only for a spe-
cific starting distribution called the last-exit-biased distribution, which is tuned to the potential-
theoretic approach to metastability. This distribution is unphysical, in the sense that it is unclear
how to prepare a low-density gas so that it starts from this distribution. In contrast, the Gibbs
distribution restricted to subcritical droplets in (1.13) employed here as starting distribution is
physical, because it can be obtained by rapidly cooling down a low-density gas. With extra work
the prefactor found in [3] can in principle be obtained here as well, but we do not push this point.

3. In [8] the transitions between the different ground states are analysed in a regime where there
is no pure-gas metastable state and the process is started from a large square droplet with no
surrounding gas. In that setting the interaction between the gas and the droplet, which is at the
core of the present work, is largely avoided.

4. Our theorems only concern the initial phase of the nucleation, until the critical droplet grows
into a droplet that is roughly

√
λ(β) times the size of the critical droplet. They provide no

information on what happens afterwards, when the droplet grows even further and becomes
macroscopically large. In that regime the gas around the droplet becomes depleted, smaller
droplets move around and coalesce into larger droplets, etc. It remains a major challenge to
describe what precisely happens in this regime, which lies beyond metastability.

Outline. The rest of the paper is organised as follows. In Section 2 we recall some definitions
and notations that will be used throughout the paper. In Section 3 we provide the lower bound
for the nucleation time for all ∆ < Θ < Γ − (2∆ − U), while in Section 4 (respectively, Section
5) we provide the upper bound for the nucleation time and the tube of typical trajectories for
all ∆ < Θ ≤ θ (respectively, θ < Θ < Γ − (2∆ − U)). In Sections 3 and 4 we use technical
arguments that are explained in more detail in [1], and focus on the relevant estimates only.
The lower bound for the nucleation time can be obtained for arbitrarily large volumes because
it requires the construction of a nucleation event only. The upper bound is much harder.

2 Definitions and notations

In this section we introduce some definitions and notations that will be needed throughout the
sequel.

Definition 2.1

1. As in [6], [1], α and d are two positive parameters that can be chosen as small as desired, and
λ(β) is an unbounded but slowly increasing function of β that satisfies (1.18). Moreover,
C⋆ is a positive parameter that can be chosen as large as desired. Once chosen, α, d, λ
and C⋆ are fixed. We write O(δ), O(α) and O(d) for quantities with an absolute value
that can be bounded by a constant times |δ|, |α| and |d|, for small enough values of these
parameters. We write O(δ, α, d) for the sum of three such quantities.

7



2. We use short-hand notation for a few quantities that depend on the old parameters ∆ ∈
( 32U, 2U), Θ ∈ (∆,Γ− (2∆− U)) and the new parameters α, d. Recall that

ϵ = 2U −∆, ℓc =
⌈U
ϵ

⌉
, γ = ∆− U − (ℓc − 2)ϵ, θ = 2∆− U − γ, (2.1)

and
D = U + d, ∆+ = ∆+ α,

and abbreviate
S =

4∆− θ

3
− α. (2.2)

For C > 0, write TC for the time scale TC = eCβ .

3. For convenience we identify a configuration η ∈ Xβ with its support supp(η) = {z ∈ Λβ :
η(z) = 1} and write z ∈ η to indicate that η has a particle at z. For η ∈ Xβ , denote by ηcl

the clusterised part of η:

ηcl = {z ∈ η : ∥ z − z′ ∥= 1 for some z′ ∈ η}. (2.3)

Call clusters of η the connected components of the graph drawn on ηcl obtained by con-
necting nearest-neighbour sites that are not a singleton.

4. Denote by B(z, r), z ∈ R2, r > 0, the open ball on R2 with center z and radius r in the
ℓ∞-norm defined by

|| · ||∞ : (x, y) ∈ R2 7→ |x| ∨ |y|. (2.4)

We denote by dist(·, ·) the distance induced by this norm.

5. The closure of A ⊂ R2 is denoted by A. For A ⊂ Z2 and s > 0, put

[A, s] =
⋃
z∈A

B(z, e
s
2β) ∩ Z2. (2.5)

Call A a rectangle on Z2 if there are a, b, c, d ∈ R such that

A = [a, b]× [c, d] ∩ Z2. (2.6)

Write RC(A) to denote the intersection of all the rectangles on Z2 containing A, called the
circumscribed rectangle of A. Denote by R the set of all finite collections of rectangles on
Z2.

7. Given σ ≥ 0 and S̄ = {R1, . . . , R|S|} ∈ R, two rectangles R and R′ in S̄ are said to be
in the same equivalence class if there exists a finite sequence R1, . . . , Rk of rectangles in S̄
such that

R = R1, R′ = Rk, dist(Rj , Rj+1) < σ ∀ 1 ≤ j < k.

Let C be the set of equivalent classes, define the map

ḡσ : S̄ ∈ R 7→

{
RC

(⋃
j∈c

Rj

)}
c∈C

∈ R,

and let (ḡ
(k)
σ )k∈N0

∈ RN be the sequence of iterates of ḡσ. Define

gσ(S̄) = lim
k→∞

ḡ(k)σ (S̄). (2.7)

As discussed in [5], the sequence (ḡ
(k)
σ (S̄))k∈N0

ends up being a constant, so the limit is
well defined.
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Figure 3: Each particle is represented by a unit square. A particle is free when it is not touching any
other particles and can be moved to infinity without doing so. A particle is clusterised when it is part
of a cluster. Particles 1–5 and 16 are free, particles 6–9, 10, 11–15 are not free. All other particles are
clusterised.

♠

As in [6], [1], the notion of active and sleeping particles will be crucial. For the precise
definition we refer to [1, Section 4.3.1]. The division of particles into active and sleeping is
related to the notion of free particles. Intuitively, a particle is free if it does not belong to
a cluster and can be moved to infinity without clusterisation, i.e., by moving non-clusterised
particles only (see Figure 3). For t > eDβ , a particle is said to be sleeping at time t if it was
not free during the time interval [t− eDβ , t]. Non-sleeping particles are called active. Note that
being active or sleeping depends on the history of the particle.

Recall the definition of the local energy H̄i(η̄i) given in [1, Section 2.3].

Definition 2.2 For any time t ≥ 0, given a configuration ηt = X(t) ∈ Xβ and the collection
Λ̄(t) = (Λ̄i(t))1≤i≤k(t) of finite boxes in Λβ constructed in [1, Definition 1.4], we say that ηt is
0-reducible (respectively, U -reducible) if for some i the local energy of η̄i can be reduced along
the dynamics with constant Λ̄(t) without exceeding the energy level H̄i(η̄i) + 0 (respectively,
H̄i(η̄i) + U). If ηt is not 0-reducible or U -reducible, then we say that ηt is 0-irreducible or

9



U -irreducible, respectively. We define

X0 = {ηt ∈ X ∗ : ηt is 0-irreducible},

XU = {ηt ∈ X0 : ηt is U -irreducible},

XD = {ηt ∈ XU : all the particles in Λ(t) are sleeping},

XS = {ηt ∈ XD : each box of volume eSβ contains three active particles at most},

X∆+ =

ηt ∈ XS :
η̄t is a union of at most λ(β) quasi-squares with
no particle inside

⋃
i[Λ̄i(t),∆− α] except for those

in the quasi-squares, one for each local box Λ̄i(t)

 ,

XE = {η ∈ X∆+ : η has no quasi-square},

where [Λ̄i(t),∆− α] are the boxes of volume e(∆−α)β with the same center as Λ̄i(t). ♠

Define the set

R′ :=

{
η ∈ Xβ :

all clusters of η have volume at most ℓc(ℓc − 1) + 2
except for at most one cluster with volume less than 1

8λ(β)

}
, (2.8)

where λ(β) satisfies (1.18). For C⋆ > 0 large enough, our theorem about the tube of typical
trajectories will hold up to time T ⋆ defined as

T ⋆ = eC
⋆β ∧min{t ≥ 0: X(t) /∈ R′}. (2.9)

In [1, Definition 2.3] we introduced a subset of configurations X ∗ ⊂ Xβ satisfying certain regu-
larity properties. We referred to this subset as the typical environment. In [1, Proposition 2.6]
we showed that if our system is started from the restricted ensemble µR, then with probability
SES it escapes from X ∗ within time T ⋆. Thus, effectively our system is confined to X ∗, which is
needed for certain arguments later on.

3 Lower bound

In this section we prove the lower bound for the time τRc stated in Theorem 1.1 for any ∆ <
Θ < Γ− (2∆− U).

Consider the partition of Λβ into boxes Λi of side 2ℓc, with i = 1, . . . ,
|Λβ |
4ℓ2c

, and set T− =

e(Γ−Θ−δ)β . If the system exits from R within time T−, then within that time there exists a box
Λi having a non-empty intersection with one free particle and ℓc(ℓc−1)+1 other particles. Given
a fixed box Λi and a configuration η, we define ηini as the configuration given by free particles
and clusters of η with a non-empty intersection with Λi. Note that the support of ηini may not
be completely contained in Λi. Indeed, clusters of η may intersect Λi, but not be contained
inside. Moreover, we define ηouti as the configuration such that η = ηouti + ηini , i.e., η(x) =
ηouti (x) ∨ ηini (x) for any x ∈ Λβ and ηouti (x) = 0 for any x ∈ Λβ such that ηini (x) = 1. Note that
ηouti and ηini have disjoint support. Define Ai := {η ∈ R : ηini has one free particle and ℓc(ℓc −
1) + 1 other particles} and Bi := {η ∈ R : ηini is a critical configuration for the local model}.
By using the invariance of µR, and considering the embedded discrete-time process we have
constructed with a Poisson process of rate 4ℓ2c , we have

PµR (τRc ≤ T−) ≤ SES + 2

|Λβ |
4ℓ2c∑
i=1

4ℓ2ce
δ
2
βT−∑

t=1

µR(Ai) ≤ SES + 2

|Λβ |
4ℓ2c∑
i=1

4ℓ2ce
δ
2
βT−∑

t=1

µR(Bi),
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where the second inequality holds because any configuration in Ai has energy at least that of
the configurations in Bi. Indeed, note that the configurations in the two sets have the same
total number of particles, and those in Ai have at least one free particle, which is the number
of free particles in the configurations in Bi. By the isoperimetric inequality, the configurations
with one free particle and ℓc(ℓc − 1) + 1 other particles that have minimal energy are those in
Bi, and so the claim follows. For fixed i, due to the decomposition of each η = ηouti + ηini ,
we have H(η) + ∆|η| = H(ηouti ) + ∆|ηouti | + H(ηini ) + ∆|ηini |. Moreover, we denote by Bin

i the
set of configurations ηini compatible with the event Bi, and by ηouti ∼ ηini a configuration ηouti

compatible with a given ηini . Let η0 be the configuration that is equal to zero everywhere. Since
|Bin

i | can be bounded by the number of possible configurations inside a box of side length at
most 3ℓ2c , we can write

µR(Bi) =

∑
ηin
i ∈Bin

i

e−β[H(ηin
i )+∆|ηin

i |]
∑

ηout
i ∼ηin

i

e−β[H(ηout
i )+∆|ηout

i |]

∑
ηin
i ∈R

e−β[H(ηin
i )+∆|ηin

i |]
∑

ηout
i ∼ηin

i

e−β[H(ηout
i )+∆|ηout

i |]
≤ |Bin

i | e−Γβ ≤ e−(Γ− δ
4 )β ,

where we use that the energy of the configurations in Bin
i is constant and equal to Γ and that

the denominator is bounded from below by
∑

ηout
i ∼η0 e−β[H(ηout

i )+∆|ηout
i |]. Thus, we deduce that

PµR

(
τRc ≤ e(Γ−Θ−δ)β

)
≤ SES + 2e−

δ
4β ,

and the desired lower bound follows.

4 Upper bound and tube: moderate volume

In this section we prove the upper bound for the time τRc in Theorem 1.1 and identify the
nucleation pattern stated in Theorem 1.2, both in the case of moderate volume, i.e., ∆ < Θ ≤ θ.

For Theorem 1.1 it is enough to provide an upper bound on the exit time from R, i.e., we
will prove that

PµR(τRc > e(Γ−Θ+δ)β) = SES. (4.1)

The proof of (4.1) is divided into two steps, which will be addressed in Sections 4.1 and 4.2,
respectively. In the first step, we prove a recurrence property to the set XE ∪ Rc within time
e(θ+δ)β (Section 4.1). In particular, by introducing the usual shift operator ϑs, s ≥ 0, defined by
ϑs(X) = X(s+ ·), for δ > 0 and a stopping time τ , we will show that

PµR(τXE∪Rc ◦ ϑτ ≥ Tθe
δβ , τ + τXE∪Rc ◦ ϑτ ≤ T ⋆) = SES. (4.2)

In the second step, we build a nucleation event for the exit from the set R starting from XE

within time e(Γ−Θ)βeδβ (Section 4.2). In particular, for any η ∈ XE we prove that

Pη(τRc ≤ Tθe
δ
3β) ≥ e(Θ−Γ)βeθβe−

δ
3β . (4.3)

This is enough to prove the desired upper bound for the time τRc . Indeed, by dividing the time
interval [0, e(Γ−Θ)βeδβ ] into e(Γ−Θ−θ)βe

2
3 δβ intervals of length Tθe

δ
3β and using (4.2) and (4.3)

together with the strong Markov property at the time τRc , we get

PµR(τRc > e(Γ−Θ)βeδβ) ≤
(
1− e(Θ−Γ)βeθβe−

δ
3β
)e(Γ−Θ−θ)βe

2
3
δβ

= SES.
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The proof of Theorem 1.2 will be given in Sections 4.3–4.5. We first rule out the possibility
of an exit from R by coalescence in Section 4.3. We subsequently construct the subcritical and
the supercritical tube of typical trajectories in Sections 4.4 and 4.5 respectively, which give us
the complete geometrical description of the tube of typical paths stated in Theorem 1.2 for
∆ < Θ ≤ θ.

4.1 Recurrence to vacuum

Here we show recurrence to the set XE∪Rc within time Tθe
δβ , where Tθ = eθβ , namely, we prove

(4.2). To this end, divide the time interval [0, Tθe
δβ ] into e

3
4 δβ intervals Ij of length Tθe

δ
4β . We

have

sup
η∈X∗

Pη(τXE∪Rc ∧ τXβ\X∗ > Tθe
δβ) ≤

∏
1≤j<e

3
4
δβ

sup
η∈X∗

Pη(τXE∪Rc , τXβ\X∗ /∈ Ij)

=
(
1− inf

η∈X∗
Pη(τXE∪Rc ∧ τXβ\X∗ ≤ Tθe

δ
4β)
)e 3

4
δβ

,

where we use the strong Markov property for the stopping time τXE∪Rc . By [1, Remark 2.5 and
Proposition 2.6], it suffices to prove that

inf
η∈X∗

Pη(τXE∪Rc ∧ τXβ\X∗ ≤ Tθe
δ
4β) ≥ e−

δ
4β . (4.4)

By the typical return time theorem ([1, Theorem 1.5]), we know that the dynamics reaches the set
X∆+ with probability 1− SES within time e(∆+α+δ)β without exiting the environment X ∗. If the
configuration X(τX∆+ ) contains a supercritical quasi square, namely, a ℓ1 × ℓ2 quasi-square with
ℓ1 ≥ ℓc, then the dynamics is already in Rc and therefore (4.4) directly follows. Otherwise, all
the quasi-squares in X(τX∆+ ) are subcritical. By the typical update time theorem ([1, Theorem
1.6]), we know that with probability 1 − SES the projected dynamics remains in π(X(τX∆+ ))

through successive visits in X∆+ within time e(r(ℓ1,ℓ2)+δ)β ≤ Tθe
δβ . Therefore, by the typical

transition theorem ([1, Theorem 1.8]), we know that with probability at least 1−e−δβ the smallest
quasi-square either decays into a smaller quasi-square or a coalescence occurs at time t, i.e., there
exist two sleeping particles in different local boxes at time t− that are in the same local box at
time t. In the first case, the volume of the droplets decreases. In the second case, two local boxes
become too close to each other at time t−, so that there is a non negligible probability that a
coalescence between clusters appears. Thus, the number of droplets decreases. By iterating this
argument for a non-exponential number of times, since the dynamics is in X ∗ and hence the
number of clusters is at most λ(β), from [1, Theorem 1.5] we obtain that the dynamics reaches
the set XE ∪Rc within time Tθe

δβ with probability at least e−
δ
4β , which proves (4.4).

4.2 Exit from the set of subcritical configurations

Here we provide the proof of (4.3). To this end, we estimate from below the probability that the
following event for the exit from R occurs. Let x be a fixed site in Λβ , and let Gx be the event
corresponding to the creation of a 2× 2 square droplet containing x that afterwards grows up to
the exit from R, visiting all the quasi-squares inbetween within time Tθe

δ
3β , without the creation

of other clusters. To prove (4.3), it is enough to show that, for any η ∈ XE and any x ∈ Λβ ,

Pη(Gx) ≥ e−Γβeθβe−
δ
3β . (4.5)

12



Indeed, since these nucleation events towards the exit from R around a given site x are disjoint
events, if we choose for example x as the first site in lexicographic order of the initial 2 × 2
droplet, then we get

Pη(τRc ≤ Tθe
δ
3β) ≥

∑
x∈Λβ

Pη(Gx) = e(Θ−Γ)βeθβe−
δ
3β .

Thus, it remains to prove (4.5).

To this end, for any δ̄ > 0 divide the time interval [0, Tθe
δ
3β ] into e(θ−∆−α)βe(

δ
3−δ̄)β intervals

Ij of length e(∆+α+δ̄)β . We can estimate from below the probability that the first 2× 2 droplet
containing a given site x ∈ Λβ appears during the time interval Ij as in the proof of [1, Proposition
3.1]. Since the creations of droplets in each time interval Ij are disjoint, by summing over j <

e(θ−∆−α)βe(
δ
3−δ̄)β and using [1, (4.2)-(4.3)], we get that the probability of the event constructed

is at least ∑
j<e(θ−∆−α)βe(

δ
3
−δ̄)β

e−3[∆−U+O(α,d,δ̄)]βe−[U+O(δ̄,d)]β ≥ eθβe−(4∆−2U)βe
δ
3βe−O(α,d,δ̄)β .

Starting from a 2×2 droplet, the nucleation event proceeds as follows. First, let the droplet grow
into a 2 × 3 droplet and so on, until the path reaches a (ℓc − 1) × ℓc quasi-square, which is the
last quasi-square visited by the path before exiting from R. The lower bound for this nucleation
event is controlled by the atypical transition theorem [1, Theorem 1.9]. In particular, using the
strong Markov property at the times corresponding to each return time in X∆+ , we get

Pη(Gx) ≥ eθβe−(4∆−2U)βe
δ
3β

ℓc−1∏
ℓ1=2

ℓ1+1∏
ℓ2=ℓ1

e−[(2∆−U)−r(ℓ1,ℓ2)]βe−O(α,d,δ̄)β

= eθβe−(4∆−2U)βe
δ
3β

ℓc−1∏
ℓ1=2

e−2[(2∆−U)−(ℓ1−2)(2U−∆)−2U ]βe−O(α,d,δ̄)β

= eθβe−(4∆−2U)βe−2
∑ℓc−1

ℓ1=2[(2∆−U)−(ℓ1−2)(2U−∆)−2U ]βe
δ
3βe−O(α,d,δ̄)β

≥ e−Γβeθβe−
δ
3β ,

where in the last step we use the fact that, after fixing any δ > 0, we can choose d, α, δ̄ > 0 small
enough such that 2

3δ > |O(α, d, δ̄)|. This is possible because O(α, d, δ̄) is a linear function of α,
d and δ̄.

4.3 Exclude escape via coalescence

In order to prove Theorem 1.2 for Θ ≤ θ, we first need to exclude the escape from R by
coalescence.

We say that the exit from R is via coalescence if there are two sleeping particles in different
clusters at time τ−Rc that are in the same supercritical cluster, with volume larger than ℓc(ℓc −
1) + 2, at time τRc . We prove that

PµR

(
τRc ≤ e(Γ−Θ+δ)β and the exit is via coalescence

)
≤ e−(∆−U)βe3δβ . (4.6)

Consider the partition of Λβ into boxes Λi of sidelength 2ℓc, with i = 1, . . . ,
|Λβ |
4ℓ2c

, and set
T+ = e(Γ−Θ+δ)β . If the exit from R within T+ is via coalescence, then within that time there
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exists a box Λi having a non-empty intersection with k ≥ 2 different clusters, say, C1
i , . . . , C

k
i , of

X(τ−Rc), with size less than ℓc(ℓc − 1) + 2 but such that |C1
i |+ . . .+ |Ck

i | > ℓc(ℓc − 1) + 2. First,
consider the case k = 2. Given a fixed box Λi and a configuration η, we define ηini and ηouti as
in Section 3. Moreover, we define Ai := {η ∈ R : ηini ⊇ C1

i ∪ C2
i }, with C1

i and C2
i two disjoint

subcritical clusters of η such that |C1
i | + |C2

i | > ℓc(ℓc − 1) + 2. By using the invariance of µR,
and considering the embedded discrete-time process, we have constructed a Poisson process with
rate 4ℓ2c and

PµR

(
τRc ≤ e(Γ−Θ+δ)β and the exit is via coalescence

)
≤ SES +

|Λβ |
4ℓ2c∑
i=1

4ℓ2ce
δβT+∑

t=1

µR(Ai) ≤ SES + e(Γ+2δ)β sup
i

µR(Ai).

For fixed i, due to the decomposition η = ηouti + ηini , we have H(η)+∆|η| = H(ηouti )+∆|ηouti |+
H(ηini ) + ∆|ηini |. Denote by Ain

i the set of configurations ηini compatible with the event Ai, and
by ηouti ∼ ηini a configuration ηouti compatible with a given ηini . Let η0 be the configuration that
is equal to zero everywhere. Since |Ain

i | can be bounded by the number of possible configurations
inside a box of side length at most 3ℓ2c , we can write

µR(Ai) =

∑
ηin
i ∈Ain

i

e−β[H(ηin
i )+∆|ηin

i |]
∑

ηout
i ∼ηin

i

e−β[H(ηout
i )+∆|ηout

i |]

∑
ηin
i ∈R

e−β[H(ηin
i )+∆|ηout

i |]
∑

ηout
i ∼ηin

i

e−β[H(ηout
i )+∆|ηout

i |]

≤ |Ain
i | sup

ηin
i ∈Ain

i

e−β[H(ηin
i )+∆|ηin

i |] ≤ |Ain
i |e−(Γ+∆−U)β ≤ e−(Γ+∆−U−δ)β ,

where we use that the denominator is bounded from below by
∑

ηout
i ∼η0 e−β[H(ηout

i )+∆|ηout
i |].

Moreover, H(ηini ) ≥ Γ + ∆ − U for any ηini ∈ Ain
i . Indeed, since C2

i is a subcritical cluster, we
get

H(ηini ) ≥ H(C1
i ) +H(C2

i ) ≥ H(C1
i ) +H(C̄2

i )

for a suitable choice of C̄2
i such that C̄2

i ⊂ Λi ∩ C2
i and |C1

i |+ |C̄2
i | = ℓc(ℓc − 1) + 3. To get the

claim, it remains to show that H(C1
i )+H(C̄2

i ) ≥ Γ+∆−U . To this end, using [4, Corollary 6.18],
we know that the perimeter of a cluster with volume n is bounded from below by 4

√
n. Assume

that |C1
i | = n1 and |C̄2

i | = n2, with 2 ≤ n1, n2 ≤ ℓc(ℓc−1)+1 and n1+n2 = ℓc(ℓc−1)+3. Thus,
we deduce that the total perimeter of the two disjoint clusters is at least 4(

√
n1 +

√
n2). Since

ℓc > 2, by direct computation we deduce that the minimum value of the perimeter is achieved
for either n1 = 2 and n2 = ℓc(ℓc− 1)+1 or n1 = ℓc(ℓc− 1)+1 and n2 = 2. For the isoperimetric
inequality applied to each cluster, we know that the minimal perimeter is achieved when one
cluster is a dimer and the other cluster is a (ℓc−1)× ℓc quasi-square with a protuberance. Thus,
the total energy of the two clusters is at least

(Γ−∆) + (2∆− U) = Γ + (∆− U),

which concludes the proof of (4.6) for k = 2.
The general case k ≥ 3 can be treated in a similar way by a simple induction argument.

Finally, by (4.6) we deduce that the exit from R via coalescence has a probability exponentially
small to occur within time T+, so that by using the lower bound T− obtained in Section 3 we
deduce that the exit via coalescence is typically excluded.
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4.4 Subcritical tube of typical trajectories

Here we describe the uphill motion of the dynamics. From the typical transition theorem for
subcritical quasi-squares ([1, Theorem 1.8]), we know that a ℓ1×ℓ2 quasi-square, with 2 ≤ ℓ1 < ℓc,
decays into a (ℓ2 − 1)× ℓ1 quasi-square, while a 2× 2 square dissolves, up to time T ⋆ defined in
(2.9). To construct the subcritical part of the tube of typical trajectories, we use the argument
carried out in [12] exploiting the reversibility of the dynamics. In particular, the first part of
the typical tube of exiting trajectories is the time-reversal of a typical evolution of a shrinking
subcritical quasi-square. Thus, with probability exponentially close to 1 the system nucleates
a wandering cluster that visits the full increasing sequence of quasi-squares up to the ℓc × ℓc
square. Note that the path described above is fully covered by the dynamics in a time at most
T ⋆. Indeed, during the last transition from the (ℓc − 1)× ℓc quasi-square to the ℓc × ℓc square,
the system remains in R′ but exits for the first time from R, and the time needed to escape from
R is shorter than T ⋆ by Theorem 1.1, provided C⋆ is large enough, where we recall (2.9) for the
definition of T ⋆ and C⋆.

4.5 Supercritical tube of typical trajectories

Here we describe the downhill motion of the dynamics. Using the subcritical part of the typical
trajectories described in Section 4.4, we know that with probability exponentially close to 1 the
dynamics nucleates a wandering cluster that visits all the quasi-squares up to the ℓc × ℓc square.
Afterwards, by the typical transition theorem for supercritical quasi-squares ([1, Theorem 1.8]),
we know that the wandering cluster grows in the same way up to time T ⋆. By Theorem 1.1
and the construction of the tube of typical trajectories given above, the time T ⋆ coincides with
the appearance time of a single large cluster of volume 1

8λ(β) with probability tending to 1.
Thus, our description of the supercritical part of the tube of typical trajectories holds up to
the formation of a

√
λ(β)/8 ×

√
λ(β)/8 square. Finally, note that the time used to reach this

square after the exit of R is of order e(b−Θ)β , where b is the largest depth of the valleys visited
afterwards, which is exponentially smaller than e(Γ−Θ)β , i.e., than the order used to reach Rc

(see Theorem 1.1).

5 Upper bound and tube: large volume

In this section we prove the upper bound for the time τRc in Theorem 1.1 and identify the
nucleation pattern stated in Theorem 1.2, in the case of large volume, i.e., θ < Θ < Γ−(2∆−U).
In Section 5.1 we first construct a toy model for our droplet dynamics on moderately large boxes
and identify the exit time from R for this model. In Section 5.2 we use the latter, together with
the near-independence of the dynamics in different boxes of moderate volume, to estimate the
nucleation time and identify the nucleation pattern.

5.1 Independence of moderately large boxes: a toy model

In [1] we showed that the process, seen at the return times in X∆+ after seeing an active particle
in the local boxes, is close, up to coalescence and exit from R, to a Markov chain ξ on the subset
of QS with dimensions (ℓ1, ℓ2) such that (ℓ1, ℓ2) = (0, 0) or 2 ≤ ℓ1 ≤ ℓ2 ≤ ℓ1 + 1 ≤ ℓc. These
dimensions in QS are either those of the smallest quasi-square at the return times in X∆+ , or
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(0, 0) in case there is no sleeping particle anymore. Letting s = (ℓ1, ℓ2), we set

s+ 1 =

{
(ℓ2, ℓ1 + 1), if 2 ≤ ℓ1 ≤ ℓ2 ≤ ℓ1 + 1 ≤ ℓc,
(2, 2), if s = (0, 0),

and
s− 1 =

{
(ℓ2 − 1, ℓ1), if 2 < ℓ2 ≤ ℓ1 + 1 ≤ ℓc,
(0, 0), if s = (2, 2).

Thus, ξ is a birth-death process with transition probability

p(s, s+ 1) =

{
e−(r(0,0)−∆)β , if s = (0, 0),
e−(∆−U)β , if s ̸= (0, 0),

where r(0, 0) = 4∆− 2U − θ is the resistance of a configuration in XE , and

p(s, s− 1) = e−(r(s)−∆)β , if s ̸= (0, 0).

Taking into account coalescence events, we provided an upper bound for the exit time from
R in case Θ ≤ θ, by relating it to an estimate of the hitting time in s = (ℓc, ℓc) for ξ. In case
Θ > θ we can relate back to a toy model that can be described as a birth-death process ζ of such
a chains ξ, independently from each other.

Toy model ζ. With each arrival in (0, 0) of a chain ξ on a subset of QS we associate the death
of the chain itself. Rather than considering transitions from (0, 0) to (2, 2) with probability
e−(r(0,0)−∆)β = eθβe(4∆−2U)βe∆β as in the case Θ = θ, at each step of the process ζ we add
a Poisson number of new chains ξ with mean b(β) = eΘβe−(4∆−2U)βe∆β . We associate a birth
event with each arrival of these chains. For ζk = (ξi)1≤i≤n ∈ ∪j≥0QSj , the next configuration
ζk+1 of the process ζ is constructed as follows:

(i) For any ξ = s ̸= (0, 0), we choose a new ξ′i ∈ {s−1, s, s+1} according to p(s, ·) independently
of everything else.

(ii) From the list (ξ′i)1≤i<n, we delete all the (0, 0), so that we eventually obtain a shorter list.

(iii) At the end of the reduced list, we add a Poisson number of (2, 2) with mean b(β).

Starting from a list of dimensions (ℓ1,i, ℓ2,i)1≤i≤n with 2 ≤ ℓ1 ≤ ℓ2 ≤ ℓ1 + 1 ≤ ℓc for any
1 ≤ i < n, each chain ξ typically dies and has a small probability to reach (ℓc, ℓc) before. We are
interested in the process ζ that is absorbed in every configuration for which there exists a chain
ξ that has reached (ℓc, ℓc) for. Each chain ξ of the process ζ either dies or is absorbed within
time e(θ−∆)βeδβ with probability 1−SES. Furthermore, the probability of reaching (ℓc, ℓc) within
time e(θ−∆)βeδβ is at least e−(Γ−(4∆−2U))β . Indeed,

P(2,2)

(
τ(ℓc,ℓc) < τ(0,0), τ(ℓc,ℓc) < e(θ−∆+δ)β

)
= P(2,2)

(
τ(ℓc,ℓc) < τ(0,0), τ(0,0) ∧ τ(ℓc,ℓc) < e(θ−∆+δ)β

)
= P(2,2)

(
τ(ℓc,ℓc) < τ(0,0)

)
− P(2,2)

(
τ(ℓc,ℓc) < τ(0,0), τ(0,0) ∧ τ(ℓc,ℓc) ≥ e(θ−∆+δ)β

)
≥ e−(Γ−(4∆−2U))β − SES.

(5.1)
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C1
C2

C3

Figure 4: Construction of the clouds (Ci)1≤i≤3 at time t = 0. Note that dist(Ci1 , Ci2) =
√
Tθe−κβ ,

with κ > 0 small enough, for 1 ≤ i1, i2 ≤ 3 and i1 ̸= i2.

Within k steps of ζ, with probability 1− SES we have that at least kb(β)e−
δ
4β new chains ξ are

born. Thus, for k ≫ e(θ−∆)β , the probability that no such chains ξ manages to reach (ℓc, ℓc)
before dying is at most(

1− e(Γ−(4∆−2U))β
)kb(β)e−(δ/4)β

= SES if k ≫ e(Γ−Θ−∆)β .

Thus, the exit time from the set R has the order claimed in Theorem 1.1 for this toy model,
thanks to [1, Theorem 1.8]. By excluding the escape from R via coalescence as in Section 4.3,
and by arguing as in Sections 4.4-4.5, together with the independence of the chains ξ, we deduce
that Theorem 1.2 holds for the toy model ζ. To resume, the three key properties of the toy
model, which imply Theorems 1.1 and 1.2, are the following:

(1) The evolutions of the chains ξi are independent.

(2) The probability that a chain ξi reaches (ℓc, ℓc) before dying within time e(θ−∆)βeδβ is at
least e−(Γ−(4∆−2U))βeδβ for any δ > 0.

(3) At each step a Poisson number with mean b(β) of new boxes appears.

In Section 5.2 we will show that for our model we can define a birth-death process that is
close to the toy model, i.e., up to negligible events properties (1)-(3) still hold. This will imply
Theorems 1.1 and 1.2 in the case θ < Θ < Γ− (2∆− U).

5.2 Near-independence of moderately large boxes in the original model

At time t = 0, we declare as sleeping all the particles that belong to a quasi-square (ℓ1, ℓ2) with
ℓ1 ≥ 2. We define A(0) as the set of sites in Λβ that are occupied by a sleeping particle, and put

S̄(0) = {B(a, r0) | a ∈ A(0)} , r0 = e
1
2 (θ−κ)β , κ > 0.

At time t = 0, we define the set of clouds (Ci)1≤i≤N(0) as gr0(S̄(0)), i.e., the collection of
rectangles at distance at least r0 from each other. (See Fig. 4.) Let Ξi be the restriction of the
process X to the cloud Ci. We couple Ξi with Ξpb

i , which is a Kawasaki dynamics on Ci with
periodic boundary conditions and initial condition Ξi(0). To construct this coupling we assign
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C1
0
× × × × ×

T ⋆

C2
0

×

τ∗0 τ∗1 τ∗2 τ∗3

× ×× × ×× × ×
T ⋆

C3
0

× ××× × × ×
T ⋆

C4 × × × × × ×
T ⋆

C5 × × ×× ×
T ⋆

Figure 5: We depict the construction of the times (τ∗
j,i)0≤j≤3 for i = 1, . . . , N(j), where N(0) = N(1) = 3

and N(2) = N(3) = N(4) = 5. In particular, each line corresponds to the time horizon for a cloud up
to time T ⋆ and each cross represents a return time τ̄j,i, where we highlight with a circle the times τ∗

j,i

and with a square the times τ∗
j .

colours to some particles, as follows. We paint black the particles of the process Ξi that visit
Λβ \ Ci or share a cluster with a black particle. We paint white the particles of the process Ξpb

i

that visit the internal boundary of Ci or share a cluster with a white particle. All the other
particles have no colour, both in Ξi and Ξpb

i . Let B(t) and W (t) be the sets of sites in Ci

that were visited by a black and a white particle, respectively, within time t. [7, Theorem 2
and Corollary 1.2] provide a control on the growth of these two sets. Indeed, for any t ≥ e∆β

and δ > 0, with probability 1 − SES the two zones remain contained within a distance te∆βeδβ

from the boundary of Ci. We use the natural coupling that ensures equality of Ξi and Ξpb
i in

Ci \ (B(t) ∪ W (t)) for any t ≥ 0. With any Ξpb
i we associate the sequence (τ̄k,i)k≥0 of return

times in X∆+ after seeing an active particle in the local boxes (see [1, Eq. (1.22)-(1.23)]). We
define the stopping times

τ∗0 = max
1≤i≤N(0)

τ̄0,i

and
τ∗0,i = max

k≥0
{τ̄k,i ≤ τ∗0 },

i.e., the last time before τ∗0 when Ξpb
i recurs in X∆+ .

At time t = τ∗j−1, j ∈ N, we similarly construct the set of clouds (Ci)1≤i≤N(j), where we now
replace r0 by rj = e−

1
2

κ

2j
βrj−1. We then define the stopping times

τ∗j = max
1≤i≤N(j)

min
k≥0

{τ̄k,i : τ̄k,i > τ∗j−1}, j ∈ N,

i.e., the first time after time τ∗j−1 when all the Ξpb
i have recurred in X∆+ , where we consider the

configuration at time τ∗j−1 as initial condition. (See Fig. 5.) Note that τ∗j,i > τ∗j−1 for any j, i.
We then define the process

Zj = (Ξi(τ
∗
j,i))1≤i≤N(j), 0 ≤ j ≤ J⋆,

where
J⋆ = max

j≥0
{τ∗j ≤ T ⋆}.
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It is important that we monitor the droplet dynamics at times (τ∗j,i)j∈N0,1≤i≤N(j) rather than at
times (τ̄j,i)j∈N0,1≤i≤N(j), because for the former all the clouds recur almost simultaneously, i.e.,
within a time interval of length T∆+ . This fact is needed to obtain the near independence of the
droplet dynamics in these boxes. In the same way we view ζ as a birth-death process of indepen-
dent Markov chains ξ, and view Z as a birth-death process of essentially independent histories
of configurations Ξ. To identify a history Ξ along the configurations Z0 = (Ξi(τ

∗
0,i))1≤i≤N(0),

Z1 = (Ξi(τ
∗
1,i))1≤i≤N(1), . . ., we have to

(i) decide which is the successor Ξ′
j in Zk+1 = (Ξ′

j)1≤j≤N(k+1) of Ξi in Zk = (Ξi)1≤i≤N(k) for
any k ≥ 0, if such a successor exists;

(ii) identify the death events of an history Ξ, i.e., the abscence of a successor Ξ′
j in Zk+1 of Ξi

in Zk;

(iii) associate with the appearance of each Ξ′
j in Zk+1 without predecessor Ξi in Zk a birth

event.

To this end, in each configuration Ξ in Zk we consider one of the clusters containing at least
one sleeping particle outside the black and the white zones (where the clusters coincide with the
quasi-squares of Ξpb

i ), and we choose the one with the smallest dimensions. In this cluster we
consider the particle that is asleep for a longer time (or one of these, if they are more than one).
As long as this particle is still sleeping in one of the Ξ′

j in Zk, we identify Ξ′
j as the successor

of Ξi. Otherwise, we say that Ξi has no successor, which corresponds to a death of a history Ξ.
We then associate with each Ξ′

j without predecessor the start of a new history Ξ.

Remark 5.1 The choice that (rk)k≥0 is a decreasing sequence allows us to control the appear-
ance of clusters outside or at the boundary of the clouds at the previous step without having
an increasing number of clusters along a history Ξ. (It may however happen that the number
of clusters decreases together with a birth event: this occurs whenever the clusters in the same
cloud become clusters in different clouds at the next time step.) Then the number of clusters
can increase along a history Ξ, but up to coalescence and with a negligible probability compared
to that of growing a row on the smallest quasi-square.

Remark 5.2 From [1, Theorem 1.5], up to an event of probability SES, there are no more than
e(α+δ)β return times in X∆+ of Ξpb

i between two successive configurations of the same history
Ξ for any δ > 0. This, together with [1, Theorems 1.6, 1.8 and 1.9], implies that, unless a
coalescence occurs, the smallest quasi-square (ℓ1, ℓ2) along a history Ξ

(i) typically resists for a time of order e(r(ℓ1,ℓ2)−∆)β if ℓ1 ≥ 2;

(ii) typically either decays in a quasi-square (ℓ2 − 1, ℓ1) if ℓ2 > 2 or dies if (ℓ1, ℓ2) = (2, 2);

(iii) grows into a quasi-square (ℓ2, ℓ1 + 1) with a probability of order e((2∆−U)−∆)β .

This shows that each history typically dies or exits from R within a time of order e(θ−∆)β with
probability 1− SES.

The proposition below is the core result of this section and ensures that the key properties
of the toy model ζ also hold for our model Z.

Proposition 5.3 Up to an event of probability SES:
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(1) The evolutions of the histories Ξi are independent.

(2) The probability that a history Ξi reaches (ℓc, ℓc) before dying within time e(θ−∆)βeδβ is at
least e−(Γ−(4∆−2U))βeδβ for any δ > 0.

(3) At each step a Poisson number with mean b(β) of new boxes appears.

Proof. Property (1) is immediate from [7, Theorem 3]. Indeed, at each step 0 ≤ j ≤ J⋆,
uniformly in 1 ≤ i1, i2 ≤ N(j), the distance between the clouds Ci1 and Ci2 is at least rj ≫
e

∆
2 βeδβ for any δ > 0, which implies that the condition in [7, Eq. (1.23)] is satisfied. Property (2)

readily follows from Remark 5.2 after arguing as in (5.1). Property (3) follows from the fact that
the number of new clouds that are created at each step dominates a Poisson random variable
with mean b(β) = eΘβe−(4∆−2U)βe∆β . This is related to creation of new local boxes and can be
obtained after arguing as in the proof of [1, Lemma 4.1]. ■

By Proposition 5.3, it is immediate that, for any δ > 0,

PµR

(
τRc >

eΓβ

|Λβ |
eδβ
)

≤
(
1− e−(Γ−(4∆−2U))βe−δβ

)e(Γ−(3∆−2U))βe−
δ
4
β

= SES.

This, together with the argument developed in Section 3, implies Theorem 1.1. Once we provide
the upper bound for the exit time from R, we can use the same argument as in Section 4.3 to
exclude the escape via coalescence in the case of large volumes, so that in this case Theorem 1.2
follows from the near-independence of the histories Ξi and from the arguments in Sections 4.4
and 4.5.
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