
HAL Id: hal-04797776
https://hal.science/hal-04797776v1

Submitted on 19 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analog memristive devices based on La2NiO4+δ as
synapses for spiking neural networks

Thoai-Khanh Khuu, Aleksandra Koroleva, Arnaud Degreze, Elena-Ioana
Vatajelu, Gauthier Lefèvre, Carmen Jiménez, Serge Blonkowski, Eric

Jalaguier, Ahmad Bsiesy, Mónica Burriel

To cite this version:
Thoai-Khanh Khuu, Aleksandra Koroleva, Arnaud Degreze, Elena-Ioana Vatajelu, Gauthier Lefèvre,
et al.. Analog memristive devices based on La2NiO4+δ as synapses for spiking neural networks.
Journal of Physics D: Applied Physics, 2023, 57 (10), pp.10LT01. �10.1088/1361-6463/ad1016�. �hal-
04797776�

https://hal.science/hal-04797776v1
https://hal.archives-ouvertes.fr


 1  
 

Analog Memristive Devices based on La2NiO4+δ as 

Synapses for Spiking Neural Networks  

Thoai-Khanh Khuu1,2, Aleksandra Koroleva1,3, Arnaud Degreze1,3, Elena-Ioana Vatajelu3, Gauthier 

Lefèvre2, Carmen Jiménez1, Serge Blonkowski4, Eric Jalaguier4, Ahmad Bsiesy2 and Mónica Burriel1,*  

 
1 Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, France 
2 Université Grenoble Alpes, CNRS, CEA/LETI Minatec, LTM, Grenoble, France 
3 Université Grenoble Alpes, CNRS, Grenoble INP, TIMA, Grenoble, France 
4 Université Grenoble Alpes, CEA, LETI, Grenoble, France 

 

*Email: Monica.Burriel@grenoble-inp.fr 

 

Received xxxxxx 

Accepted for publication xxxxxx 

Published xxxxxx 

Abstract 

Neuromorphic computing has recently emerged as a potential alternative to the conventional 

von Neumann computer paradigm, which is inherently limited due to its architectural 

bottleneck. Thus, new artificial components and architectures for brain-inspired computing 

hardware implementation are required. Bipolar analog memristive devices, whose resistance 

(or conductance) can be continuously tuned (as a synaptic weight), are potential candidates for 

artificial synapse applications. In this work, lanthanum nickelate (La2NiO4+δ, L2NO4), a mixed 

ionic electronic conducting oxide, is used in combination with TiN and Pt electrodes. The 

TiN/L2NO4/Pt devices show bipolar resistive switching with gradual transitions both for the 

SET and RESET processes. The resistance (conductance) can be gradually modulated by the 

pulse amplitude and duration, showing good data retention characteristics. A linear relationship 

between the resistance change and total applied pulse duration is experimentally measured. 

Moreover, synaptic depression and potentiation characteristics, one of the important functions 

of bio-synapses, are artificially reproduced for these devices, then modeled and successfully 

tested in a spiking neural network environment. These results indicate the suitability of using 

TiN/L2NO4/Pt memristive devices as long-term artificial synapses in neuromorphic 

computing. 

Keywords: resistive switching, artificial synapse, neuromorphic computing, lanthanum nickelate, La2NiO4, spiking neural 

network (SNN), valence change memory (VCM), mixed-ionic electronic conductor 

 

1. Introduction 

Artificial neural networks (ANN), brain-inspired computational architectures, have recently drawn considerable attention 

due to their fault tolerance and ability to learn processes or complicated tasks in artificial intelligence (AI) systems [1]. At the 

same time, many AI and machine learning applications are performed in software, which runs on conventional computation 

architecture. However, most on-market computers are based on the von Neumann architecture which is facing its drawbacks. 

Indeed, the limited bandwidth caused by the physical separation between the central processing unit (CPU) and memory unit 

in this architecture leads to many limits in the data processing procedure and thus makes the computational performance lower, 

especially when computing on large sets of data (e.g., learning tasks in ANN) [2]. On top of that, Moore's law is approaching 
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its end because of the physical limit of miniaturization, thus the ANN tasks running on CMOS-based computers with an 

enormous amount of transistors are not executed efficiently. Therefore, there is an urgent need for novel computation 

architectures. 

Neuromorphic computing systems that emulate the bio-physics of neurons and synapses in the human brain are expected to 

have very high energy efficiency and might be thus potential candidates for the new generation of beyond von Neumann 

paradigms [3,4]. The human brain consists of a great number of neurons and synapses, which are interconnected. Therefore, to 

construct an efficient neuromorphic computing system, the development of artificial elements to mimic the biological functions 

of synapses is a prerequisite. Synaptic plasticity, the capacity to modulate the synaptic weight, is one of the crucial properties 

that must be mimicked. Besides, long-term synaptic dynamics (long-term potentiation and depression, i.e., LTP/LTD) are also 

key features in neuromorphic computing, especially for learning and memory, making the artificial synapse remember 

important information.  

During the last decades, redox-based valence change memristive devices have become a very hot topic both in academia and 

in industry, presenting a very wide range of potential opportunities for different computing technologies, especially as random 

access memories and artificial synapses [5,6]. The prospects of these novel devices cover technological applications from non-

volatile high-density memories to advanced architectures for near- or even in-memory computing [7,8], opening the way to the 

hardware implementation of already existing neuromorphic software solutions used for machine learning applications and deep 

learning, in particular [9,10]. Among all these technologies, the highest potential gain is expected to occur by moving from 

state-of-the-art von Neumann architecture to new disruptive computing paradigms that are biologically inspired, with 

envisioned applications that span from ANN to real-time signal processing, robotics and cognitive reasoning [10]. Memristive 

devices that show an analog tunability of states in a wide range of resistance values, together with low energy consumption of 

the writing/reading processes and compact nanoscale dimensions, are considered very promising candidates for building high-

density neuromorphic systems [7,9].  

Valence-Change Memories (VCMs) are typically composed of an oxide material sandwiched between two different 

electrodes. The resistive switching in these devices is induced by the drift of oxygen anions (or metal cations in some cases) 

upon the application of an external bias, triggering redox reactions and, therefore, a change of valence in the cation sublattice 

[11,12]. These reactions can occur locally in a single filament, at the whole metal/oxide interface, or, in an intermediate case, 

in interconnected regions or multiple filaments [13]. VCMs can be either volatile or non-volatile depending on the device and 

operation mode, with time constants that can be tailored by interface engineering and have proven to be able to mimic both 

synapse-like and neuron-like functions [10]. While the most commonly used materials for VCMs are high-k binary oxides 

(HfO2 [14–18], TiO2 [19–22] and Ta2O5 [23–27]), ternary oxides such as perovskites with ABO3 structure (e.g. titanates 

[13,28,29], manganites [30,31], ruthenates [32] and cobaltites [33,34]), in which the oxidation state of the B cation can change 

to accommodate oxygen vacancies, are particularly interesting candidates for interface-type switching devices (i.e. showing 

area scaling). Pr1-xCaxMnO3 (PCMO)-based memristive devices have, for example, show forming-free, interface-type analog 

memory capabilities and are currently the most widely used perovskite-based devices for neuromorphic engineering. These 

devices have already been used as analog synapses for pattern recognition [35], as integrate-and-fire (IF) neurons [36] and as 

stochastic neurons [37].  

Several studies reported on the VCM capabilities of memristive devices based on La2NiO4 (L2NO4), a perovskite-related 

structure, using an ohmic Pt electrode and an active (i.e. easily oxidizable) Ti counter electrode (forming a rectifying and 

tunable Schottky contact) [38,39]. L2NO4 was selected as Mixed Ionic Electronic Conducting (MIEC) oxide due to its large 

oxygen mobility [40,41] to facilitate the storage and exchange of oxygen with the active electrode material (Ti). A gradual 

highly multilevel analog-type bipolar resistive switching, desirable for neuromorphic computing, was measured in 

Ti/L2NO4/Pt planar heterostructures without the need for a forming step and with resistance values that could be continuously 

varied over two orders of magnitude [38]. The L2NO4’s oxygen content (in the form of interstitial point defects) affects both 

its structure and electrical properties and was shown to play a crucial role in the memristive response of these devices [42].  

Furthermore, this MIEC material was also combined with a bottom perovskite film, forming LaNiO3/La2NiO4 bilayer planar 

devices (using Pt electrodes) [43]. This original device design showed interesting memristive properties, which were strongly 

affected by the film microstructure and oxygen content, which strongly depended on the oxygen partial pressure used during 

the pulsed-laser deposition of each of the layers. 

Recently, the previously mentioned L2NO4 planar memristive devices were successfully transferred to vertical Ti/L2NO4/Pt 

structures [39]. Nevertheless, these devices still presented certain cycle-to-cycle (c2c) and device-to-device (d2d) variability 

and resistance relaxation with time. In addition, the pulsed mode operation, as well as the capacity of L2NO4-based devices to 

present LTP/LTD for their evaluation as ANN memristive elements is still missing. In this work, the growth of high-quality 

L2NO4 thin films on Pt substrate has been carried out using previously optimized parameters and used to construct L2NO4-
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based devices using TiN as the top electrode for the first time. The TiN was chosen as an active electrode in this work due to 

its CMOS compatibility, relatively large work function and dry etching capabilities [18]. The active layer and the memristive 

devices were then structurally, chemically and electrically characterized. We present the memristive properties of such devices, 

which allow for better control of the c2c and d2d variability compared to the Ti-electrode-based devices, in addition to 

LTP/LTD characteristics suitable for artificial synapse applications. What is more, the behavior of these novel TiN/L2NO4/Pt 

devices was tested in a Spiking Neural Network (SNN) with online learning, resulting in a high system-level accuracy for 

optimized pulse voltage and duration combinations. 

2. Experimental section 

Polycrystalline La2NiO4+δ films were deposited on 1x1cm2 substrates which consist of Pt (100 nm)/TiO2 (20 nm)/SiO2 (500 

nm)/Si (750 µm)/SiO2 (500 nm) from top to bottom, supplied by CEA-Leti. The L2NO4 thin films were synthesized by pulsed 

injection – metal organic chemical vapor deposition (PI-MOCVD) [44,45]. La(tmhd)3 (tris(2,2,6,6-tetramethyl-3,5-

heptanedionato)lanthanum(III)) and [Ni(tmhd)2] (bis(2,2,6,6-tetramethyl-3,5-heptanedionato)nickel(II)) precursors from Strem 

Chemicals were mixed in a 0.02 M solution with m-xylene (1,3-dimethylbenzene) from Alfa Aesar. The L2NO4 growth 

conditions used in this work are detailed in Table 1 and correspond to the optimized deposition conditions for L2NO4 thin 

films grown on Pt [39].  

 

Table 1: Parameters used for the deposition of L2NO4 thin films by PI-MOCVD 

 

Parameters Value 

Injection frequency 1 Hz 

Opening time 2 ms 

Number of pulses 2000 

Evaporation temperature 220 - 280°C 

Substrate temperature 600°C 

Carrier gas 
218 sccm (34% Ar) + 

 418 sccm (66% O2) 

Total pressure inside the reactor 5 Torr 

 

For the phase identification of the L2NO4 thin films, X-ray diffraction in grazing incident mode (GI-XRD) was carried out 

in a 5-circle Rigaku Smartlab diffractometer. The surface morphology was studied by scanning electrode microscopy (SEM) 

in an SEM FEG ZEISS GeminiSEM 300 microscope. The surface roughness was investigated by atomic force microscope 

(AFM) in an AFM D3100 Veeco Instrument in tapping mode with a Si3N4 tip probe. Morphological and elemental 

characterization was performed by transmission electron microscopy (TEM) in an FEI Tecnai OSIRIS, working at 200kV and 

equipped with the SuperX EDX system. For this purpose, TEM lamellas were prepared by Focus Ion Beam (FIB) using an FEI 

Helios DualBeam FIB operating at 30 kV.   

The microfabrication of the devices was carried out in the PTA clean-room facilities (Grenoble), including laser lithography 

(Heidelberg instrument µPG 101) and TiN deposition by reactive sputtering equipment (PVD 100 Alliance Concept, the 

deposition rate is 0.2 nm/s). 

The current-voltage measurements were carried out on TiN/L2NO4/Pt devices using a Keithley 4200 semiconductor 

parameter analyzer in sweep mode and pulse modes using a source measurement unit and pulse measurement unit, respectively, 

and two external micromanipulators. The voltage was applied at the top TiN electrode while the bottom Pt electrode was 

grounded. In sweep mode, the bipolar triangular voltage sweeps always follow the sequence: 0 V  +Vmax  0 V  -Vmax  

0 V, with the step of 0.01 mV. After each half cycle (0 V  +Vmax  0 V or 0 V  -Vmax  0 V), a sweep (0 V  0.01 V) 

was applied to readout the resistance. The current compliance was set at 100 mA at the negative branch to avoid the device 

breakdown. The resistance state was read by measuring the current at 0.01 V (reading test: 0 V  +0.01 V). For high-

temperature retention measurements, the device was baked at the temperature of 85 °C for 30, 60, 90, 120, 150 and 180 min 

using a 1/2′′ ceramic heating stage in a high-temperature cell (Nextron). The surface temperature of the heater was calibrated 

beforehand using a Pt100 thermocouple. The resistance state was measured at RT in between baking by measuring the current 

at 0.1 V (reading test: 0 V  +0.1 V). In the pulse mode, the parameters used for the write and read pulses are varied depending 

on the tests and their range, which is detailed individually in the description of each test. 

3. Results and discussion 
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3.1. Structural characterization of TiN/L2NO4/Pt memristive devices 

The structure, microstructure and morphology of the L2NO4 thin films deposited on platinized substrates have been 

characterized by GI-XRD, SEM and AFM. Figure 1a shows the GI-XRD diffraction pattern of the L2NO4/Pt sample. The Pt 

diffraction peaks are marked by gray circles. The rest of the main diffraction peaks can be assigned to either the tetragonal 

phase I4/mmm (ICDD: 00-034-0314, presented at the bottom) or the orthorhombic phase Fmmm (ICDD: 01-086-8663, 

presented at the top) of La2NiO4+δ. The patterns of both structures are very similar and, therefore, it is extremely difficult to 

discriminate between them based on GI-XRD exclusively. However, it can be seen that all the films are polycrystalline, 

confirmed by the match of the peak positions between the L2NO4/Pt sample and those of the database plotted by drop lines in 

Figure 1a. The surface morphology of the L2NO4 film was analyzed by SEM and AFM. As can be seen from Figure 1b the 

thin film is dense, homogeneous and formed by small grains (average size of 23.4 nm). The AFM image confirms that the film 

is flat with an RMS (root mean square) value of 3.4 nm (Figure 1c). 

 

 
Figure 1. L2NO4 film deposited on a platinized silicon substrate: (a) GI-XRD pattern, main diffraction peaks attributed to 

the either La2NiO4+δ tetragonal phase (space group I4/mmm; ICDD: 00-034-0314; green lines at the bottom) or the 

orthorhombic phase (space group Fmmm; ICDD: 01-086-8663; orange lines at the bottom) in polycrystalline form (randomly 

oriented). The presence of Pt peaks is marked by their orientations (ICDD: 04-001-2680) and is indicated by the gray dots. 

(b) SEM image and (c) AFM image of the sample surface. 

 

The microfabrication of TiN electrodes was then performed to construct the memristive devices. A device in the pristine 

state prior to any electrical measurements was chosen to prepare a lamella for TEM observations. Figure 2a shows the STEM 

image of the TiN/L2NO4/Pt lamella, showing that the L2NO4 film and TiN layer are continuous and dense. A thickness of 

33.8 ± 1.7 nm was measured for the L2NO4 film. The EDX elemental maps (Figure 2Figure b) and EDX depth profile (Figure 

2c) show that the complete stack is composed of well-defined layers separated by sharp interfaces as follows (from top to 

bottom): the TiN top electrode, the L2NO4 switching layer, the Pt bottom electrode and the TiO2 adhesion layer underneath. A 

uniform distribution of the La, Ni and O elements is observed within the L2NO4 thin film. No element diffusion between these 

three layers is observed, except for a small amount of oxygen detected at the bottom part of the TiN electrode (distance of 

around 70 nm in Figure 2c). It is worth emphasizing that the lamella of the device was taken in the as-fabricated state prior to 

any electrical measurements. Therefore, the presence of oxygen at the TiN/L2NO4 interface suggests it is likely a TiNxOy 

interlayer (approximately 3 nm) which is spontaneously formed during the evaporation of TiN. The presence of a TiNxOy 

interlayer has been previously reported in other oxide memristive systems using TiN as an oxidizable electrode [46,47]. 
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Figure 2: Cross-section TEM analysis of a pristine (as-fabricated) TiN/L2NO4/Pt memristive device: a) STEM image 

showing the layer stack of the device, b) EDX elemental maps for Ti (pink), La (yellow), Pt (blue), Ni (cyan) and O (green), 

c) EDX atomic depth profile showing a small amount of oxygen at TiN/L2NO4 interface. 

 

3.2. Electrical characterization of TiN/L2NO4/Pt memristive devices 

Figure 3 shows the typical RS behavior of the TiN/L2NO4/Pt memristive device. At the first application of positive bias, the 

device is in the intermediate resistance state (IRS) with the mean value of ~20 kΩ calculated over 10 measured devices. Next, 

at the first cycle of the |Vmax| = 2.5 V sweep, a sudden increase in current occurs at the negative polarity, reaching current 

compliance, which is considered as a ‘soft-forming’ of the devices due to the lack of current overshoot and small but rapid 

change in current (Figure 3a). Figure 3b presents every 20th IV sweep from 200 consecutive sweeps at |Vmax| = 2.5 V after the 

“soft-forming” occurs, showing a counter eightwise RS for the TiN/L2NO4/Pt memristive devices with an HRS/LRS ratio of 

~37. Gradual transitions between the HRS and LRS occur both for the RESET and SET operations, suggesting that bipolar 

analog RS can be obtained on TiN/L2NO4/Pt memristive cells. The presence of a “soft-forming” step implies that a conductive 

filament (CF) was created in the device (filamentary RS mechanism). Another indication of the presence of a CF is the 

independence of HRS and LRS from the device’s area (inset in Figure 3b). The “soft-forming” step is different from the 

conventional forming step usually observed in the other oxide-based VCMs due to: i) the lack of current overshoot; ii) a small 

but rapid change in current; iii) the same voltage range as for the following sweeps; and iv) LRS resistance in the kΩ range.  

The presence of the “soft-forming” at the same voltage as the standard RS rather than the conventional forming at the much 

higher voltage is one of the advantages of our system in comparison to other materials where filamentary RS is usually observed, 

for example, HfO2 [48] or TaOx [49], since it allows to simplify the circuit design and the testing protocol. 

As shown by TEM and EDX measurements (Figure 2), the formation of the TiNxOy interlayer of ~ 3 nm thickness occurs at 

the TiN/L2NO4 interface due to the oxygen interstitials inside the L2NO4 layer. We believe that the formation of the CF 

consisting of oxygen vacancies could occur in the TiNxOy interlayer since it is expected to be nonstoichiometric. 

Simultaneously, L2NO4 would act as an oxygen reservoir layer. During the application of a positive bias to the TiN electrode, 

oxygen ions from the L2NO4 layer would drift towards the TiNxOy interlayer and the CF is ruptured which leads to HRS. 
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Conversely, at negative polarity, oxygen ions would move back to the L2NO4 layer and the CF is formed again, leading to 

LRS (Figure 3c). 

 

 

 
Figure 3. The IV characteristics of the TiN/L2NO4/Pt device corresponding to (a) the first cycle (after the first application 

of the bias) and (b) the regular cycling with 200 consecutive sweeps (every 20th sweep is shown). The inset shows the 

electrode size area independence resistance of the HRS (red) and LRS (blue). (c) The schematic image of the proposed RS 

mechanism in the TiN/L2NO4/Pt structures. Firstly, a CF is formed in the TiNxOy layer during the “soft-forming” process. 

During the application of the positive bias to the TiN electrode, the oxygen ions from the L2NO4 layer drift towards the 

TiNxOy layer and the CF is ruptured, which leads to HRS. In reverse, at the negative polarity, the oxygen ions move back to 

the L2NO4 layer and the CF is formed again which leads to LRS. 
 

A common issue for filamentary memristive devices is a cycle-to-cycle (c2c) and device-to-device (d2d) variability that is 

related to the stochastic nature of the CF formation [13,50,51]. To investigate the variability of the TiN/L2NO4/Pt device, we 

performed cumulative probability (CP) calculations. Figure 4a shows the CP plot for the c2c variability based on 256 convective 

IV sweeps for a single device. It can be seen that the device shows outstanding c2c variability of HRS, with the standard 

deviation (σ) being only 4 %. However, in the LRS the device is more volatile, with σ = 15 %. Next, the d2d variability was 

analyzed based on the data from 30 devices with 5-10 IV sweeps for each device (Figure 4b). The σ value of the resistance in 

LRS and HRS was found to be 67% and 78%, respectively. It can be seen that the d2d variability is significantly higher than 

c2c, which can be attributed to the variations in the CF formation process in different devices [50]. The L2NO4 film roughness 

(Figure 1c) can also contribute to the d2d variability. 
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Figure 4. Statistical distributions of RLRS and RHRS for the TiN/L2NO4/Pt device. (a) Cycle-to-cycle variability measured 

from 1 device with 256 DC sweeps. (b) Device-to-device variability measured from 30 devices with mean R values for each 

device. VREAD = 0.1 V 

 

The endurance of the TiN/L2NO4/Pt devices was measured by the application of a train of pulses, which allows for studying 

the behavior of the device from the perspective of the technological application (Figure 5a). In this test, the device was switched 

between the HRS and LRS using single pulses of 10 µs duration, with constant voltages for VSET = -3.2 V and VRESET = 2.8 V. 

It can be observed that the RS process takes place even with the application of pulses in the µs range. However, the memory 

window is much smaller compared to the one extracted from the IV characteristics (HRS/LRS ratio ~ 3). The distinguishable 

HRS and LRS could be observed throughout the pulse endurance test, however, the memory window starts decreasing after 

~5x104 switching cycles. Figure 5b shows the comparison between the IV characteristics of the device before cycling and the 

cycled device after 104 and 105 cycles. Even though a certain memory window degradation is observed in the pulse regime, the 

IV characteristics remain quite stable after cycling, even after 105 pulses. Therefore, we can conclude that the endurance of the 

device in the pulse regime is of about 5x104 switching cycles, after which a memory window degradation is observed. 

 
Figure 5. (a) Endurance test results for the TiN/L2NO4/Pt memristive device. (b) The IV characteristics of the 

TiN/L2NO4/Pt device obtained before the endurance test and after 104 and 105 switching cycles. 
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To evaluate the retention characteristics, a device was programmed to HRS (40 kΩ) by a half-cycle voltage sweep (0 V  

+2.5 0 V). The HRS was then measured (every 5 minutes) for 6 hours at room temperature (RT) by a read test. Next, an LRS 

of 0.7 kΩ was programmed by a half cycle of a voltage sweep (0 V  -2.5 0 V) and was then measured for 6 hours, using 

the same read test as for the HRS. The evolution of the HRS and LRS vs time (t) is shown in Figure 6a. The HRS state value 

slightly increased during 6 hours of the measurement, starting from 37.2 kΩ to 40.7 kΩ, while a very small relaxation (a slight 

increase from 750 Ω to 800 Ω) of the LRS was observed during the first 45 minutes of the measurements, and stayed stable 

until the end of the test. Hence, a very good differentiation of the two resistance states (HRS/LRS ratio of 50 at t = 0 h and 51 

at t = 6 h) was maintained for the 6h of the measurement. Furthermore, it was also possible to program the device to different 

resistance states by using pulses of different amplitude. Figure 6b shows four distinguishable resistance levels and their 

evolution with time (during 15 minutes), showing good retention after a slight resistance increase for the HRSs programmed at 

the highest voltages (+2.25 V and +2.5 V).  

To verify the non-volatile properties of the TiN/L2NO4/Pt device, we conducted the retention measurement at an elevated 

temperature. For this test, we programmed 3 devices in LRS and 3 devices in HRS by application of a half-cycle voltage sweep 

(0  V  0) in the negative and positive polarity, respectively, and then kept the devices at 85 °C to facilitate the degradation 

of the resistance. The resistance of the devices was measured every 30 min at RT in between baking at VREAD = 0.1 V.  The 

LRS and HRS resistance values shown in Figure 6c are averaged over the 3 devices at each state, showing that at 85 °C, the 

resistance of the TiN/L2NO4/Pt device stabilizes after ~ 1 hour of baking at ~ 4 kΩ for LRS and ~ 65 kΩ for HRS, with the 

HRS/LRS ratio being ~16. These results indicate good data retention characteristics and, thus, the suitability of using 

TiN/L2NO4/Pt as a non-volatile memory. 

 

 
Figure 6. Retention characteristics of a TiN/L2NO4/Pt memristive device measured for (a) 6 hours after programming the 

HRS and LRS by half-sweeps of |Vmax| = 2.5 V and for (b) 15 minutes at RT. Four different resistance states programmed 

by pulses of 250 ms for pulse amplitudes of +1.75 V, +2.00 V, +2.25 V, +2.5 V. (c) Retention characteristics of a 

TiN/L2NO4/Pt memristive device measured every 30 min at RT in between baking at 85 °C for 3 hours (>104 s). 

 

3.3. Analog properties of TiN/L2NO4/Pt memristive devices 

Gradual resistive switching observed in the TiN/L2NO4/Pt device (Figure 3b) allows for the achievement of multiple 

resistance states, which is necessary to emulate the synaptic plasticity effect. To further assess the analog properties of the 

device, the DC multi-states modulation was analyzed, with the control of the SET process by the application of different current 

compliance and the RESET process by the application of different voltage amplitude. Figure 7 shows multiple resistance levels 

reached during the gradual RESET and SET processes. The measurements were carried out by the consecutive increase of the 

RESET voltage in the positive polarity region (0 → VRESET1 → 0 → VRESET2 → 0… → VRESET8 → 0.) The gradual SET process 

was demonstrated with the application of current compliance varied at the negative polarity from -10-4 A to -2×10-2 A. For a 

more convenient interpretation, Figure 7 contains the numbers of the curves in the order they were obtained. It can be seen that 

a gradual increase in the VRESET leads to a gradual decrease in the HRS current, allowing one to get multiple discrete HRS 

levels. At the same time, positive current compliance alteration allows us to achieve multiple discrete LRS levels. A total of 16 

different resistance states in the range from ~1 kΩ to ~181 kΩ were achieved. The inset shows the resistance levels measured 

at VREAD
 = 0.1 V on the backward voltage sweep (V → 0). Therefore, the device demonstrated analog properties required for 

the potential neuromorphic applications. 
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Figure 7. Analog IV characteristics of the TiN/L2NO4/Pt device: different resistance states obtained by the current 

compliance increase in the negative polarity and by the RESET voltage increase in the positive polarity. Inset shows the 

resistance levels achieved with the gradual SET and RESET processes measured at VREAD
 = 0.1 V on the backward voltage 

sweep (V → 0). 

 

For use as non-volatile memories and for their application as artificial synapses, where the synaptic weight (conductance) is 

controlled by spikes, pulsed input signals are usually preferred. To this end, measurements using pulses were carried out to 

study the responses of the TiN/L2NO4/Pt memristive devices (Figure S2 in the Supplementary material). A staircase of write 

pulses was applied, followed by consecutive read pulses, following the so-called resistance hysteresis switching loop (RHSL) 

test. The IV values obtained by RHSL measurement (Figure S3a in the Supplementary material) were found to be perfectly 

consistent with the I-V measurements in continuous IV sweep mode, further confirming that the TiN/L2NO4/Pt memristive 

device can be used in both modes (pulse and sweep). Figure S3b in the Supplementary material presents the resistance window 

taken from the read pulses. The obtained HRS/LRS ratio is 35, which is comparable to that of continuous sweeps in Figure 3b. 

Moreover, multiple intermediate states can be measured between both extremes. These results show stable responses of 

TiN/L2NO4/Pt memristive devices under pulse input and confirm the reproducibility of the switching with multiple 

intermediate resistance states. The RHSL test also shows that a high linearity of the weight update curve can be achieved by 

the application of the pulse train with a gradual increase of the voltage amplitude. Figure 8a shows the data extracted from the 

rising edge of the curve in Figure S3b in the range from 0.25 V to 2.5 V for depression and from -0.25 V to -2.5 V for 

potentiation. It can be seen that a close to linear resistance update is observed in the range from 1.5 V to 2.5 V for depression. 

On the other hand, for potentiation, the resistance changes linearly almost in the whole investigated range (from -0.25 V to -

2.25 V). The high linearity of weight update in response to the gradually increasing pulse train was also reported in previous 

studies for other memristive devices [52,53]. However, in a neural network, the integration of non-identical spikes leads to 

over-complication of the circuit design, therefore, the use of identical spikes is preferred [54]. In addition, it has been previously 

reported that the SNNs have a strong tolerance for the device's non-linearity and keep the accuracy high for a wide range of 

non-linearity factors [55]. 

To study the suitability of TiN/L2NO4/Pt devices as artificial synapses with the pulse trains of fixed amplitude (Figure S4 

in the Supplementary material), the LTP/LTD measurements were performed using different pulse amplitude combinations 

between +1.25 V and +2 V for the positive pulses and between -0.75 V and -1.25 V for the negative pulses. Fifty (or one 

hundred) consecutive identical positive pulses (for LTP) were followed by fifty (or one hundred) identical negative pulses (for 

LTD). Non-linear asymmetric LTP/LTD curves were obtained in all cases, as shown in Figure 8b for the sequence of depression 

pulse [+2.00 V; 250 ms], potentiation pulse [-1.25 V; 250 ms] and read pulse [0.1 V; 50 ms]. Further results using different 
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voltage amplitudes and number of pulses are shown in Figure S5 in the Supplementary material. In all cases, the device 

resistance increased when applying repeatedly positive pulses and decreased when applying negative pulses. The resistance 

change is larger for the first LTP and LTD pulses, and gradually smaller for the last pulses at the end of each sequence. In 

addition, a steep jump from HRS with the first pulse is observed for LTP. We believe that the application of a single pulse with 

high voltage amplitude Vmax induces a steeper change in the device’s chemistry than the application of the DC sweep where 

the voltage is gradually increased from 0 to Vmax. In addition, in the filamentary mechanism, it is typical to have gradual RESET 

but abrupt SET [23]. These LTP/LTD measurements indicate that the potentiation/depression characteristics observed in 

biological synapses can be artificially performed in the TiN/L2NO4/Pt memristive devices. 

 

 
Figure 8. Evolution of resistance in TiN/L2NO4/Pt memristive devices as (a) a function of the voltage 

(depression/potentiation tests with gradually increasing voltage amplitude) and (b) a function of the number of pulses 

(depression/potentiation tests with fixed amplitude). The duration of the write and read pulses was 250 ms and 50 ms, 

respectively, for both tests. 

 

The effect of pulse duration was studied by three depression measurements of different durations, which results are plotted 

in Figure 9a. The voltage amplitude was fixed at +2.5 V. As can be observed, the longer the pulse duration, the higher the 

resistance value obtained at each nth pulse. The values included in Figure 9a are replotted in Figure 9b as the resistance as a 

function of the total applied pulse duration showing a continuous behavior. This result suggests the total change in resistance 

strongly depends on the total applied time of the pulses, and not on the total number of individual pulses. These results prove 

that, by combining different pulse amplitudes and pulse durations, the resistance of TiN/L2NO4/Pt memristive cells can be 

controlled and programmed flexibly. 

 

 
Figure 9: a) Depression measurements on TiN/L2NO4/Pt memristive devices using three different pulse durations: 50, 250 

and 1250 ms. b) Resistance of the depression measurements plotted as a function of the total applied pulse duration. The 

write voltage amplitude of Vmax = +2.5 V was applied in all cases. 
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3.4. L2NO4-based memristors in Spiking Neural Networks (SNNs) with on-line learning 

 

To verify and validate the behavior of the proposed L2NO4-based memristors in terms of system-level accuracy their 

behavior in a Spiking Neural Network (SNN) with on-line learning was evaluated. The purpose of this study is to demonstrate 

that the electrical characteristics of the device under study can be effectively used for training a neural network online, in an 

unsupervised fashion. For this study, we have used an in-house computation tool that emulates, at the functional level, the 

behavior of a fully connected SNN with leaky-integrate and fire neurons and spike-timing-dependent synaptic plasticity 

(STDP). The tool [56] is built for the MNIST database and allows for the customization of neuron and synapse models as well 

as the network size. The implemented algorithm is based on the work of Diehl and Cook [57], further optimized to allow for 

fast execution times and full flexibility regarding the synaptic trace during the training process. The functionality of the tool 

and its data structure are illustrated in Figure 10a and Figure 10b respectively. The in-house simulator allows simulation of the 

full behavior of an SNN with STDP while minimizing the execution time. Its operation can be briefly described as follows. 

The input data is converted in a spike pattern via spike coding (rate coding following Poisson distribution, in this particular 

case), each generated spike being defined by the time it occurs and the corresponding input position within the network. The 

spike is propagated through the corresponding synapses and the value of the weight is added to the related output neuron (𝑜𝑢𝑡 =
∑𝑑(𝑊)). When the accumulator of an output neuron crossed the threshold, it generates the output spike. In this instant (i) the 

lateral inhibition is activated and all other output neurons are inhibited (ii) the weights of all the synapses connected to the 

output neuron that spiked are updated. This update is executed according to Δ𝑊 = 𝑓(𝛿𝐶), 𝛿C as the memristive conductance 

increment or reduction defined for synaptic potentiation or depression, and f as the function that governs the memristive 

conductance variation, i.e., the synaptic plasticity function. In this study, the synaptic plasticity function is extracted from the 

memristor behavior illustrated in Figure 8b and Figure S5 by fitting the measured data to the asymmetric conductance model 

[58]. For this preliminary study, since no assumption can be yet made on the synaptic control hardware, we have chosen to use 

for the synaptic update during training the simplified STDP rule, which states that (i) if an output spike occurs immediately 

after an input spike (with a maximum delay 𝛿t between the two spikes), the synapse will be potentiated, i.e., its weight value 

will increase by a constant factor W+; (ii)  if the delay between the output spike and the input spike is larger than 𝛿t, the synapse 

will be depressed, i.e., its weight value will decrease by a constant factor W-. The W+ and W- are commonly known as LTP 

and LTD respectively. To avoid biasing the results due to fitting errors we modified our tool to extract the LTP and LTD values 

at each synaptic update from a lookup table which stores the conductance values extracted from the electrical measurements 

for both potentiation and depression. Therefore, synaptic weights are initialized to random values extracted from this lookup 

table and the synaptic values are updated during training according to the simplified STDP rule. The main data structures can 

be described as follows: inN: represents the set of inputs, for each input the time when the last spike occurred is stored 

(lastSpike); spike: it is an array that contains the list of input spikes to be processed; outN: represents the set of output neurons. 

For each neuron, we store: the accumulator (a variable storing the quantity of information arriving at the output neuron); the 

inhibition (a variable storing the information of the duration for which the neuron is inhibited); the lastSpike (the time when 

the last spike occurred to calculate the STDP function); S: this matrix contains the values of the weight of every single synapse.  

 

 
Figure 10. Simulator of an SNN with STDP a) Schematic representation of the operation principle. b) Data-structure. 

 

The in-house tool has been used to estimate the usability of the proposed L2NO4-based memristive devices as synapses for 

an SNN with STDP designed to solve the MNIST [59] database of handwritten digits. The MNIST datatabase has been chosen 

for simplicity, any other SNN-compatible dataset could be theoretically used in this study. This database has 6x104  examples 

for network training and 104 examples for testing the network. Each example is the image of a hand-written digit with 28x28 

pixels in greyscale (256 tones of grey from white to black). The information carried by each image is transmitted to the network 

in the form of spikes. The spike encoding is performed by frequency encoding of each pixel’s tone of grey. Each image is 

presented to the network for 10 time units. Therefore, the network has 784 inputs (one per image pixel), 300 output neurons 
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and 235200 synapses (as the network is fully connected, i.e., a synapse exists between any pair of input-output). The accuracy 

of the network is estimated for different configurations of the control signals (illustrated in Figure 10) and the results obtained 

for the three best combinations of pulses are summarised in Table 2. It should be noted that the network accuracy depends on 

the characteristics of the control signals, with maximum obtained accuracies between 73 and 78%. These results validate the 

compatibility of the proposed L2NO4-based memristive devices with the STDP training. It should be noted that the base 

accuracy for the SNN under study is 86% as reported by Diehl and Cook at the algorithmic level [57]. Therefore, by using a 

simplified learning rule and raw data extracted from electrical measurements, we observe an accuracy loss of 8% compared 

with the maximum accuracy allowed by algorithm. 

 

Table 2: Accuracy estimation of an L2NO4-based SNN trained using STDP for MNIST database (base accuracy of the 

tool under ideal conditions 86%) 

Signal amplitude during depression/potentiation Accuracy 

+Vmax = +2.0 V, -Vmax = -1.25 V (Figure 8b) 76.8% 

+Vmax = +1.5 V, -Vmax = -1.0 V (Figure S5) 78.0% 

+Vmax = +1.25 V, -Vmax = -0.75 V (Figure S5) 73.5% 

 

To compare our devices to the state-of-the-art memristors, we analysed the works that implement inorganic perovskite-based 

memristive devices as artificial synapses in different types of ANN. Amongst perovskite oxides, the most researched material 

for neuromorphic computing is Pr1-xCaxMnO3 (PCMO). In addition, there are several studies on the perovskite halide memory 

devices such as CsPbBr3 or CsSnCl3. We summarized the synaptic properties of inorganic perovskite memristors as well as 

their test with neural networks and the achieved accuracy (if applicable) in Table 3. 

 

Table 3. Comparison of the synaptic properties of the inorganic perovskite based memristive devices. 

 

Following the comparison in Table 3, we would like to acknowledge that a convolutional neural network (CNN), for 

example, manages to solve the MNIST dataset with much higher accuracies than the ones we achieved in our work. However, 

for the CNNs, the training of the network is done offline by using backpropagation, while for SNN, unsupervised online learning 

is implemented. Although SNNs generally achieve lower accuracy (for example, the baseline accuracy in this work is 86%), 

they typically require much fewer operations and are better candidates for processing spatiotemporal data [6]. We want to note 

that in this work, we are not trying to demonstrate an advantage of SNNs over CNNs (or other networks) in terms of accuracy. 

Our focus is demonstrating that the proposed TiN/L2NO4/Pt devices can be used for unsupervised online learning (even before 

device optimization for STDP). 

 

3. Conclusions 

TiN/L2NO4/Pt vertical memristive devices with a polycrystalline L2NO4 switching layer have been fabricated on Si-based 

substrates for the first time. These L2NO4-based memristors show bipolar resistive switching with a gradual change in 

resistance during SET and RESET processes. In pulse mode, the resistance values can be finely tuned by using different pulse 

amplitudes or pulse durations. The device shows stable retention and endurance of ~5x104 switching cycles. The resistance of 

the TiN/L2NO4/Pt memristive devices, which can be regarded as the synaptic strength, is gradually tunable by the application 

of successive pulses of the same sign. The linearity of the weight update can be tuned by the application of gradually increasing 

pulse train, however, for SNN application, the use of the identical spikes is prefered as the SNN has strong tolerance for non-

linearity. The resistance change with the application of the pulse train with the fixed pilse parameters strongly depends on the 

total applied pulse duration and on the voltage pulse amplitude, which can be finely tuned on desire. When tested in an SNN 

Material 
Number of DC 

analog states 

LTP and LTD 

voltage/pulse duration 

Network 

test 
Dataset Accuracy Ref. 

CsPbBr3 - 0.5 V – 2 V / 1 s CNN MNIST 96.7 % [60] 

CsSnCl3 7 1.3 V / 10 µs - - - [61] 

PCMO 12 2 V – 3 V / 10 ms ANN MNIST 97 % [62] 

PCMO 13 3 V / 1 ms SNN EEG/Cochlea 91.4 % [54] 

La2NiO4+δ 16 0.75 V – 2.5 V / 250 ms SNN MNIST 78 % 
This 

work 
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environment, the device demonstrates good potentiation/depression behavior, allowing the online training of an SNN for 

MNIST which leads to 78% inference accuracy. These results prove that the TiN/L2NO4/Pt memristive device is a potential 

candidate for long-term artificial synapse applications for SNN. 
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