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ABSTRACT
Deep learning source code models have been applied very suc-
cessfully to the problem of automated program repair. One of the
standing issues is the small input window of current models which
often cannot fully fit the context code required for a bug fix (e.g.,
method or class declarations of a project). Instead, input is often
restricted to the local context, that is, the lines below and above
the bug location. In this work we study the importance of this local
context on repair success: how much local context is needed?; is
context before or after the bug location more important? how is lo-
cal context tied to the bug type? To answer these questions we train
and evaluate Transformer models in many different local context
configurations on three datasets and two programming languages.
Our results indicate that overall repair success increases with the
size of the local context (albeit not for all bug types) and confirm
the common practice that roughly 50-60% of the input window
should be used for context leading the bug. Our results are not only
relevant for researchers working on Transformer-based APR tools
but also for benchmark and dataset creators who must decide what
and how much context to include in their datasets.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; • Computing methodologies → Machine learning.

KEYWORDS
automated program repair, data-driven software engineering

1 INTRODUCTION
Deep learning-based methods have shown promising performance
in Automated Program Repair (APR), leading to the subfield of
Neural Program Repair (NPR) [2, 16, 21, 36]. NPR models are trained
in such a way that, given a snippet of buggy code as input, the model
outputs fixed code. This input is usually comprised of two parts: (I)
the buggy code itself and (II) the surrounding local context code,
that is code that comes before the bug location (pre-context) and
after (post-context). The bug location, together with its pre-context
and post-context we refer to as the context window.

Importance of context. The significance of the local context is
twofold. First, it identifies the purpose of a given code snippet, giv-
ing the model implicit hints as to how the bug should be fixed. Sec-
ond, local context is an important source of repair ingredients, that
is, code elements relevant for a fix (e.g., variable, field or methods
names). Section 2 provides more background on context, context
variants, and its relation to datasets and NPR models.

Example. Figure 1 shows an example. To fix the bug in the
presented snippet, an APR model should replace the identifier
instructions_list with the identifier some_list. Luckily, this
identifier appears within the context (some_list) and the model
is able to pick it up and correctly fix the bug. However, it is easily
imaginable that there exist cases in which important identifiers (and
other important fix-related knowledge) fall outside the provided
context (out of context), especially if the window is small.

        if instruction[1] == 'dec':
            instruction[1] = '-='

        instruction = ' '.join(instruction)

        some_list[i] = instruction

    for register in registers:
        reg_values.update({register: 0})

def run_instructions(some_list):
    setup(some_list)

    max_value_ever = 0

    for inst in instructions_list some_list:
      if eval(inst[inst.index(' if') + 4:]) == True:
            exec(inst[0:inst.index(' if') + 1])

            if max(reg_values.values()) > max_value_ever:
                max_value_ever = max(reg_values.values())

    return max(reg_values.values()), max_value_ever
print run_instructions(instructions_list)
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Figure 1: A patch from the TSSB-3M [25] dataset. To fix
the bug, the buggy token instructions_list has to be re-
placed by the correct token some_list, found in the context
(some_list). The context window has a total size of 10 lines (5
lines of pre-context and 5 lines of post-context); it excludes
the first 4 lines and the last line in the figure, which are not
part of the model input. Note: we shortened the inst identi-
fier to improve readability.

This work. So far, little work has investigated the importance
of such local context in NPR and its effect on repair success. How
many lines of context code do we actually need? Should we prefer
context before, or after the bug location? Are there bug types that
require more or less context? To answer these and more questions
we train and evaluate multiple variants of a Transformer-based
NPR model that can leverage a large context. Section 3 details our
methodology to answer the following research questions:
RQ1. How important is local context for repair success? We study

multiple context sizes, ranging from a single line up to 28
lines on both sides (56 lines) on three datasets (MegaDiff [18],
TSSB [25], and ManySStuBs4J [9], see Table 1), totalling
several hundreds of thousands of bugs.
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RQ2. How do different bug types and complexity (number of changes)
respond to different context sizes and context window positions?
Both, MaySStuBs4J [9] and TSSM-3M [25] classify bugs into
several bug types or bug patterns. We use this bug type labels
to analyze how context size affects repair success for bugs
of different types. We perform a similar analysis also for the
number of changes of a bugfix.

RQ3. What is the optimal context window position? In other words,
given a fixed context budget, how should it be divided among
pre-context and post-context? We experiment with six dif-
ferent context window positions (for four different context
window sizes), from only pre-context over several combina-
tions to only post-context.

RQ4. Is there a connection between the model size (number of pa-
rameters), the number of sampled fix candidates and context?
With more context, the amount of fix ingredients increases.
We hypothesize that in order to fully exploit context, model
size should increase, as should the number of samples. We
investigate if this is indeed the case.

Findings. We find that the number of context lines strongly in-
fluences repair success, leading to relative improvements up to 29%.
We observe this for context sizes up to over 50 lines (significantly
larger than the current practice), however performance varies with
bug types and change sizes. As for the optimal context window
position, we observe allocating roughly 50-60% for pre-context and
the rest for post-context yields the best performance; in addition, en-
sembling multiple contexts improves performance. Finally, models
with more parameters or samples benefit similarly from increased
context. Section 4 details our findings.

Implications. We hope that our work will help NPR researchers
to make the most of their models by including a sufficient amount
of local context, and clearly document their context choices. More-
over, we call on dataset creators to include more local context in
their datasets. As part of this study, we re-mined the TSSM and
ManySStuBs4J datasets, as the the original datasets did not provide
enough context (we will release the subset of bugs used in this
work with a larger context size as part of our replication package.).
We discuss further challenges and opportunities with increased
context in Section 5, before discussing the limitations of our work
(Section 6) and concluding (Section 7).

2 BACKGROUND AND RELATED WORK
Context is an important factor for repair success in NPR [16]. For
one, context may act as an abstract “description” of the code. For
example, in Figure 1, identifiers such as instruction_list and
register indicate that this code may be related to a register-based
virtual machine implementation. This “description” may help the
model to find and apply the correct fix. Second, context is an impor-
tant source for ingredient code. Again referring to Figure 1, we see a
variable misuse bug. Instead of the correct identifier some_list, the
wrong identifier instructions_list is used. The correct variable
name some_list does appear in the pre-context while the “buggy”
identifier instructions_list appears neither in the pre-context
nor the post-context. It is easy to see that bugs where such ingre-
dients do not appear inside the local context, either because they

happen to be far away from the bug location or because the context
window is too small to include them, are very hard to fix.

2.1 Context in APR and NPR
Context as Source for Ingredients. In a previous study, Yang et al.

[39] have identified several levels of ingredient code origin, among
them most importantly: I) intrinsic ingredients, that is ingredients
implicitly coming from the specifications of the programming lan-
guage. In Figure 1 these would include Python keywords (e.g., def,
for or if) or builtin functions such as eval or max). II) method level
ingredients, which includes code elements from the method defi-
nition that contains the bug. In Figure 1, some_list is a method
level ingredient. III) ingredients on the file or class level, that is,
code located in the same file or class as the bug location (e.g., in
Figure 1 parts of the preceding function definition appear in the
pre-context) IV) donor code coming from the surrounding package
or module, and finally V) ingredients on the program/project level,
which includes a project’s or program’s entire codebase.

Use of local context. While ingredients on the class and project
level are often crucial for a successful repair [39], they might spread
over thousands of lines of code. Traditional generate-and-validate
methods have been able to exploit project level ingredients [5, 26,
43]. However, so far, NPR systems have been quite limited in the
amount of code they can consume. For instance, Chen et al. [2] use
the surrounding method code as model input, but only experiment
with short methods of 50 and 100 tokens of length. Using the method
as a context boundary was also done in CoCoNuT [16] and later
CURE [7] as well as in more recent work on large language models
in APR [6, 35]. In general, we find that previous work often lacks
detail about context handling. For instance, RewardRepair [41] is
said to use 10 lines of context, but not whether this means 10 lines
in total, or for each side. Similarly, since methods can substantially
vary in size, the amount of context will be highly variable.

Context enrichment. To give the model access to information
often not found in the local context, model input may be “enriched”
with further information, in particular with carefully selected file or
project level context. For instance, SequenceR [2] adds, in addition
to local context, class level information such as class field declara-
tions and method signature stubs. A similar approach was also used
for RewardRepair [42]. SelfAPR [40] adds diagnostic information
such as compiler or runtime errors from test executions to model
input. FitRepair [34] uses simple text similarity metrics to select
possibly relevant identifiers from out of context code and includes
them in the model input.

Code Search and Retrieval. A series of work investigates the use of
code search in APR (e.g., ssFix [37], sharpFix [38], or LSRepair [14]).
In a very broad sense, this extends the context to entire code cor-
pora and millions of lines of code. However, code from different
projects is unlikely to match the code under repair which neces-
sitates adaptation and translation steps [37, 38]. With Cedar [19]
there exists a APR system that combines code LMs with retrieval.

Architectural. CoCoNuT [16] and DLFix [12] use architectures
with special features to better exploit context information. Finally,
a number of works explores the idea of fine-tuning the model on
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the project under repair in order to encode relevant project level
context directly “into model weights” [34, 40].

This work. In this study, we focus on local context, that is 𝑛

lines of code surrounding the bug location, either before or after.
This includes intrinsic, as well as method level ingredients and
in some cases ingredients at the class level (if e.g., if neighboring
function definitions or field declarations fall within the context). A
systematic study of enrichment techniques is left as a future work.

2.2 Context and Transformers
Transformer window size. Many state of the art neural program

repair (NPR) models are based on the Transformer [30] architec-
ture [1, 3, 36, 40, 41]. One important limitation of this architecture
is its limited input window size, which is fixed at training time.
Although there have been successful efforts to expand the input
window of general Transformer models, recent NPR models use
input windows of only several hundreds of tokens. For instance,
VulRepair [3], FitRepair [34] and AlphaRepair [36], RewardRepair
are all limited to only 512, SelfAPR [40] to 768 model tokens. Often,
the amount of context is simply determined by the space left in the
input window after the buggy code was placed in it [36].

Position embeddings. By itself a Transformer has no notion of
sequences; it sees its input as a set of elements. The original Trans-
former architecture added position embeddings to give greater weight
to a token’s neighbour [30]. This bias allows it to model its input
as sequences. The original position embeddings are absolute and
tied to the model’s input window, causing very poor generalization
to longer sequences. Alternative ways to encode token position
have been proposed, including relative position embedding [27],
rotary position embeddings (RoPE [28]), and biases to the attention
[23]. These allow fine-tuning to longer sequences, and (to a limited
degree) extrapolation to longer sequences without fine-tuning [23].

The T5/CodeT5 model in NPR. T5 [24] and CodeT5 [31] a variant
specifically pre-trained for code-related tasks are popular Trans-
former models for sequence-to-sequence (seq2seq) tasks. Since
program repair can be naturally represented as a seq2seq task by
letting the input sequence be the buggy code and the output se-
quence the fixed code, this model has been used extensively in the
recent NPR literature. Berabi et al. [1] fine-tune T5 on coding errors
provided by ESLint. Ye et al. [40, 41] use CodeT5 as the basis for
both, RewardRepair [41] and SelfAPR [40]. Fu et al. [3] develop
VulRepair, a CodeT5-based Automated Vulnerability Repair system.
Kim et al. [11] study the effect of code abstraction techniques in
NPR and use T5/mT5 models in all of their experiments. Similarly,
Xia et al. [34] use CodeT5 in their analysis of the plastic surgery
hypothesis in NPR.

This work. In addition to its widespread use in NPR, we use
CodeT5 [31] for a very specific reason: its T5 architecture [24],
unlike most, uses relative position embeddings [27]. This allow us to
fine-tune a T5 model with an arbitrary input window size [23, 24].
To our knowledge, we are the first to fine-tune a model for a larger
context window in NPR. For all experiments in this work use an
input window size of 1024, that can fit twice as much context as
most of the models mentioned above.

2.3 Context and Datasets
Most existing datasets used in NPR are large collections of bug fixes
mined from code repository commits. In the following, we analyze
how context is handled on the “dataset level”.

BFP. BFP [29] is a collection of over 65,000 bug fixes mined from
GitHub. Each dataset sample includes the full method surrounding
the bug location, although the dataset focuses on short methods.

CoCoNuT. In the same fashion, the dataset used by CoCoNuT [16]
was mined from open-source project commits and includes con-
text only up to the method boundary. In particular, the CoCoNuT
dataset splits hunks of changes occurring in a single commit into
separate dataset instances. Further, whitespace, including newlines
is stripped from the dataset instances which makes estimating the
context size in terms of number of lines very difficult.

ManySStuBs4J. ManySStuBs4J [9] is a dataset of over 150,000
single statement Java bugs categorized into 16 bug patterns. We
find that the diffs in ManySStuBs4J have a total length of only 13
lines of code (including the bug itself). The dataset provides the
commit hashes and repository identifiers for all dataset instances.

TSSM-3M. TSSM-3M [25] is a dataset of over three million sin-
gle statement Python bugs classified into 20 bug patterns loosely
following the categorization of ManySStuBs4J. Our analysis shows
that the examples (diffs/patches) in TSSM-3M have a median length
of only 9 lines (mean 8.8), that is, less than 4 lines of pre- and
post-context. Here too, commit hashes and repository names are
provided for all instances.

MegaDiff. MegaDiff [18] contains over 660,000 Java diffs with
changes ranging from 1 to 40 lines. They come with full file-level
context, containing all files affected by changes in a single diff.

This work. We use the MegaDiff, ManySStuBs4J and TSSM-3M
datasets (Table 1). MegaDiff was chosen because it provides full file
level context, ManySStuBs4J and TSSM-3M because they contain all
the required information for re-mining. As neither ManySStuBs4J
nor TSSM-3M provide sufficient amount of context, we had to re-
mine selected subsets with full file-level context (see Section 3.1).
BFP and the CoCoNuT dataset were not considered in this work as
they do not provide full file level context (method level only) nor
were we able to find commit information necessary for re-mining .

3 METHODOLOGY

Table 1: Datasets used in this work, along with the number
of samples used (subset) for training and evaluation.

Dataset Train Test Lang. Labels

MegaDiff [18] 201,358 22,479 Java ✗
ManySStuBs4J [9] - 12,714 Java ✓

TSSM-3M [25] 424,873 46,791 Python ✓

To study the effect of local context on repair success, we (I) re-
mine with full context a subset of examples from existing datasets,
which we pre-process for different context size (Section 3.1) (II) fine-
tune various configurations of our model on the corresponding
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training sets (Section 3.2) and finally (III) generate and evaluate
bugfixes for all bugs in the test set to carry out our experiments
(Section 3.3).

3.1 Re-Mining and Pre-Processing
Datasets. We study three datasets that cover two programming

languages: MegaDiff [18], ManySStuBs4J [9], and TSSM-3B [25]. In
addition, ManySStuBs4J and TSSM-3B provide SStuB patterns, that
is, bug type labels; we use these to analyze the effect of context
size on different bug types in RQ2. For better comparability with
the other datasets, MegaDiffSB (simple bugs) denotes the subset of
MegaDiff bugs that require at most two changes to fix.

Filtering. Following previous work [2, 12, 16, 36, 41], our study
focuses on single-hunk bugs. This is all the more important as the
presence of multiple hunks would involve multiple contexts, which
would increase the complexity of our study. As such, multi-hunk
bugs in MegaDiff were filtered out. Note that we keep examples
with multiple changes in a single hunk. We observed that in Many-
SStuBs4J, some commits included multiple bug patterns and were
split in several dataset instances; such cases were also considered
multi-hunk edits and consequently filtered out. No filtering was
necessary for TSSB-3M which only contains single-statement and
thus single-hunk bugs; we focus on a subset of about 450,000 bugs
due to limited computational resources. Table 1 shows the size of the
datasets after filtering. Due to its final size, we use ManySStubs4J
as a test set (with MegaDiff as training set).

Re-mining commits. As mentioned previously, in our experi-
ments we require a large local context (up to 56 lines). Unfortu-
nately, this is neither provided by ManySStuBs4J nor by TSSM-3B.
As repository identifiers and commit hashes are provided in both
cases, we re-mine dataset instances with full file level context. This
was done using the GitHub API. On rare occasions, commits could
not be fetched, possibly because the corresponding repository has
been deleted or is no longer public. In contrast to the other two
datasets, MegaDiff [18] is released with full file-level context. Thus,
re-mining was not necessary.

def run_instructions(some_list ):

setup(some_list)

max_value_ever = 0

<CHANGES >

for inst in instructions_list:

<CHANGEE >

if eval(inst[inst.index('␣if') + 4:]) == True:

exec(inst [0: inst.index('␣if') + 1])

if max(reg_values.values ()) > max_value_ever:

<CHANGES >

for inst in some_list:

<CHANGEE >

Figure 2: Unified bug format. Model input above the zigzag
line (with three lines of pre and post context), output below.
<CHANGES> and <CHANGEE> indicate the buggy code section.

Pre-Processing. We strip all empty lines from the dataset exam-
ples. To unify the examples from the three datasets we parse the diffs
and select context code lines, buggy code lines and the ground-truth

Table 2: Context configurations in this study (pre-context
lines/post-context lines).

Datasets Configurations

MegaDiff [18]
ManySStuBs4J [9] 1/1-28/28

TSSM-3M [25] 1/1-16/16, 18/18, 20/20,
22/22, 24/24, 26/26, 28/28

All1

5/0, 4/1, 3/2, 2/3, 1/4, 0/5,
10/0, 8/2, 6/4, 4/6, 2/8, 0/10,

20/0, 16/4, 12/8, 8/12, 4/16, 0/20,
30/0, 24/6, 18/12, 12/18, 6/24, 0/30,
40/0, 32/8, 24/16, 16/24, 8/32, 0/40

1 configurations for different context window positions
(sizes 5, 10, 20, 30 and 40)

(i.e. fixed) code lines; we transform them into the format specified in
Figure 2. In line with previous work [16, 36, 40], we assume perfect
fault localization, that is, we assume the bug location is known. This
avoids confounding of localization and repair performances [13].
We indicate the start and end of the buggy code section with marker
tokens (<CHANGES> and <CHANGEE>), similar to SequenceR [2]. In
case of multiple changes, each change is marked with tokens and
surrounded by its corresponding 𝑛 context lines. Overlapping con-
text, that is, context lines shared by multiple changes, are fused
into single blocks. The target model output consists of the fixed
version of the buggy input lines (without context).

For each configuration in Table 2 we generate training test sets
where we select the corresponding number of pre/post-context
lines. Due to limited computational resources, we skip some TSSM
context sizes. In early experiments we noticed diminishing returns
above 50 lines of context, which is why we stop at 56 context lines.

3.2 Training and Evaluation
We implement all of our experiments on top of Huggingface’s
transformers library [33]. We fine-tune the 60M pre-trained CodeT5
model on the configurations, that is, different datasets and pre-
context and post-context sizes, as listed in Table 2. We then generate
five fix candidates for each bug in the corresponding test set. The
generated model output is evaluated using an exact-match metric.

Hyper-Parameters. To obtain a fair basis for comparison, we use
the same hyper-parameters for all context configurations (unless
explicitly specified). We train with FP16 precision, a learning rate
of 1 × 10−4 , and a batch size of 12, accumulated over two steps on
a consumer-grade NVIDIA RTX 3090 with 24GB of memory. For
generation we use beam search with five beams and a maximum
length of 1024 generated tokens.

Evaluation. We calculate repair success (accuracy) as fraction of
examples in the test set where at least one of the five generated
fix candidates (i.e. top-5) lexically matches the ground-truth fix,
ignoring any whitespace. Exact matching as a metric for repair
success was used in previous work [1, 3].

Tokenization. Since our model’s input window is limited to a
1024 tokens, there is a limit at which further increasing context has
no effect, as the exceeding input would be simply truncated away.
With a median token count of 592 and an upper quartile of 699 at 56
lines of context we are well within this limit. At 56 lines of context,
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truncation is only necessary for 2.2% of examples. Truncation is
done by dropping the last 𝑛 excessive tokens.

3.3 Experiments
To answer our research questions, we carry out four main experi-
ments: 1) we train and evaluate repair success for different context
sizes (using symmetric context windows), 2) we further analyze
the relationship between repair success, change type, and change
size, 3) we train and evaluate repair success for different context
window positions (i.e., asymmetric context window or different
amounts of per-context and post-context) and finally 4) we train
and evaluate repair success for a larger model (220M parameters)
and for a larger number of generated fix candidates (small model).

3.3.1 Context Size (RQ1). For each context size of 1 to 28 lines
of code (on both sides) and each of the three datasets (MegaDiff,
TSSM-3B and ManySStuBs4J; see Table 2 for a list of all context
configurations) we fine-tune and evaluate a CodeT5 Transformer
as described in 3.2.

3.3.2 Change Type and Change Size (RQ2). We analyze the perfor-
mance of the models from RQ1 to get finer-grained insights. We use
the labels of TSSM and ManySStuBs4J to compare the performance
of models trained on different context sizes for several types of
changes. In the same spirit, we compare how the performance of
these models varies with change size on MegaDiff.

        instruction = ' '.join(instruction)

        some_list[i] = instruction

    for register in registers:
        reg_values.update({register: 0})

def run_instructions(some_list):
    setup(some_list)

    max_value_ever = 0

    for inst in instructions_list some_list:
      if eval(inst[inst.index(' if') + 4:]) == True:
            exec(inst[0:inst.index(' if') + 1])

            if max(reg_values.values()) > max_value_ever:
                max_value_ever = max(reg_values.values())

    return max(reg_values.values()), max_value_ever
print run_instructions(instructions_list)

5/0
(0%)

0/5
 (100%)

Figure 3: The two most extreme window positions 5/0 (0% –
only pre-context ) and 0/5 (100% – only post-context ) for
a context size of 5.

3.3.3 Context Window Position (RQ3). We carry out a series of
experiments with asymmetric window sizes. Here, we keep the con-
text window at a constant size, however, by adjusting pre-context
and post-context, the window is slid over the bug location. For
example, for a context size of 5 we evaluate at 5/0, 4/1, 3/2, 2/3, 4/1
and 0/5, where 𝑥/𝑦 denotes 𝑥 lines of pre-context and 𝑦 lines of
post-context. Figure 3 illustrates this for the two extreme window
positions 5/0 and 0/5. All intermediate positions are obtained by
“sliding” the window from top to bottom. The window position can
also be described as the percentage of post-context: at position 𝑛%,
𝑛% of the window are filled with post-context and 100% − 𝑛% with
pre-context (e.g., 0% for position 5/0, and 100% for 5/0). We do this

for windows of 5, 10, 20, 30 and 40 lines and 7 sliding positions (0,
20, 40, 50, 60, 80, and 100%), adjusting the sliding step size accord-
ingly (see Table 2 for a list of context configurations). Training and
evaluation are performed as outlined above.

3.3.4 Model Size and Fix Candidate Count (RQ4). We hypothesize
that a larger model, or a larger number of generated fix candi-
dates, can make better use of larger contexts. We study whether the
margins between smaller and larger models (or between different
numbers of fix candidates) increase over-proportionally with larger
context sizes.

Larger model. For a selected number of context sizes (1, 7, 14, 21
and 28 lines on both sides) we re-run the context size experiment
on a larger version of the CodeT5 model (220M). This experiment
is also only carried out for MegaDiff (training and evaluation) and
ManySStuBs4J (evaluation only). We double the number of accu-
mulation steps in order to be able to train the larger model with
the same (accumulated) batch size of 12 on the same hardware.

More fix candidates. For all other experiments we use five fix
candidates per bug, sampled using beam search. Here, we try 10
and 15 fix candidates per bug (evaluating using top-10 and top-15).
To account for the increased memory requirements when using
more beams, we reduce the maximum length of generation from
1024 to 256 tokens. Note that the model only needs to generated
the buggy code section, which rarely exceeds 256 tokens. We also
enable early stopping to speedup the generation process. With early
stopping, the search is stopped as soon as 𝑛 complete solutions have
been generated (otherwise the search may continue to find better
solutions). For a fair comparison, we also regenerate the top-5 fix
candidates with early stopping and a 256 token limit.

4 RESULTS
At a glance, we find that: (I) overall, more context increases repair
success, but not always consistently (Section 4.1) (II) the impor-
tance of context size strongly depends on the specific bug type and
change size (Section 4.2) (III) context windows which are centered
around the bug location yield the best performance, but extreme
windows are useful in ensembles (Section 4.3) and (IV) we see no
convincing evidence that either larger models or a higher number
of fix candidates can better exploit larger context sizes (Section 4.4).

4.1 Context Size (RQ1)
We analyze the symmetric context configurations (i.e., 𝑛 lines of
context in the pre-context and the post-context) to estimate the
importance of local context on repair success. As shown by Figure 4,
repair success steadily increases as more local context is available.

MegaDiff. For MegaDiff, repair success increases from 20.4% with
a single line of context to 26.3% with 28 lines of context on both
sides. For simple bugs (MegaDiffSB) repair success is considerably
higher with numbers ranging from 26.8% (one line of context) to
35.3% (28 lines of context).

ManySStuBs4J. For the ManySStuBs4J dataset, repair success
ranges from 29.7% with single-line context, to 38.6% with 27 lines of
context. Here, repair success does not peak at the maximum context
size of 28/28, where performance is slightly lower (-0.008%).
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Figure 4: Repair success as a function of context size.

TSSB-3M. Overall performance was best for TSSB-3M, where
repair success is beyond 50% for all context sizes. Repair success
starts at 53% with a single-line context and reaches 62% with 28
lines of context on both sides.

4.1.1 Consistency of Results. Our results indicate that, in general,
growing context increases repair success. The ideal case is pictured
in Figure 5: as the correct ingredients enter the context, the model
succesfully use them. On the other hand, it was conjectured in
previous work that too much context may “drown” the actual bug
in noise, confuse the model and thus stymie repair success [16]. We
do observe this, as pictured in Figure 6. Moreover, upon inspecting
our results, we find that the model often “spontaneously” fails to
fix a bug at a certain context size 𝑐 , despite it correctly fixing the
bug at one or more lower context sizes. To get more insight on this,
we group bugs correctly fixed in at least some context size into four
categories:

(1) bugs that are fixed for all context sizes;
(2) bugs that improve with context (they are not correctly fixed

below a context size 𝑐 , but for all context sizes equal or larger
than 𝑐);

(3) bugs that degrade with context (they are only be fixed below
a context size 𝑐 and not for context sizes equal or larger than
𝑐);

(4) erratic bugs with more complex patterns (e.g., the model
might correctly fix a bug at context sizes 18, 21, or 24, without
clear reason of why it failed at, say, context size 20).

We find that 37% of bugs were fixed for all context sizes (case
1). Bugs with consistent repair success starting from some context
size 𝑐 (case 2, Figure 5) are surprisingly low with roughly 9%. On
the other hand, we find that the number of bugs that can only be
fixed at small context sizes (case 3, Figure 6) are rare (~1%). Finally,
the remaining 35% show some degree of erratic behavior (case 4),
which we found to be surprisingly high. In particular, roughly 5%
of the bugs show an “island pattern”, where a bug can be correctly
fixed for a contiguous range of context sizes that is surrounded on
both sides by context sizes for which models could not find a fix.
The inverse case, that is, a fix can be found except for a contiguous
block of context sizes in the middle appears with a frequency of

about 4.5%. These inconsistencies indicate that the models lacks
robustness; further implication of this are discussed in Section 5.

✓5 game.player.updateMotion(game.player.getPosition (), v, . . . );

✓4 //other Ben's doing ...

✓3 if(!v.equals(Vec3.zero))

✓2 {

✗1 game.transmitPlayerPosition ();

transmittedStop = false;

✗1 }

✓2 else if(! transmittedStop)

✓3 {

✓4 game.transmitPlayerPosition ();

✓5 transmittedStop = true;

Figure 5: Bug from MegaDiff, where an assignment to trans-
mittedStop needs to be added. To succeed, the model requires
at least two lines of context on both sides ( ✓2 ). This is likely
due to transmittedStop coming into context ( ).

✗5 public void resume () {

✗4 }

✗3 public void onDestroy () {

✗2 System.out.println("PApplet.onDestroy ()␣called");

✓1 super.onDestroy ();

finish ();

✓1 }

✗2 // ////////////////////////////////////////////////////////////

✗3 // ANDROID SURFACE VIEW

✗4 SurfaceView surfaceView;

✗5 SurfaceHolder surfaceHolder;

Figure 6: Bug from MegaDiff where a missing call to finish()
needs to be added. This bug is correctly fixed only with a
context of one line on both sides ( ✓1 ). The model is likely
led astray by code highlighted in blue ( ) 1.

Answer to RQ1
Overall, local context has a strong effect on repair success. For
MegaDiff symmetrically increasing total local context from
two lines to 56 lines increases repair success by almost 6%.
For simple bugs (ManySStuBs4J, TSSM-3M and MegaDiffSB)
performance increased by over 8%. Given this, we see that local
context is an important factor for repair success. However, a
large amount of bugs are inconsistently repaired across context
sizes.

4.2 Effect of Bug Type and Change Count (RQ2)
As mentioned previously, the labels (SStuB patterns) in Many-
SStuBs4J and TSSB-3M allow us to analyze the effect of context size
for different label types. Similarly, a number of bugs in MegaDiff
have multi-change fixes, making a similar analysis possible for a
1The likely culprit here is the string "PApplet.onDestroy() called": if it is in-
cluded in the context, the model predicts fixes that include PApplet, such as inserting
PApplet.onDestroy();, pApplet.onDestroy(); or PApplet.onResume();
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bug’s change count (i.e., the number of changed lines in the diff
fixing it).

2 10 20 32 40 56

SAME_FUNCTION_WRONG_CALLER
ADD_ATTRIBUTE_ACCESS

CHANGE_ATTRIBUTE_USED
CHANGE_IDENTIFIER_USED

SAME_FUNCTION_MORE_ARGS
SINGLE_TOKEN

WRONG_FUNCTION_NAME
LESS_SPECIFIC_IF

SINGLE_STMT
ADD_ELEMENTS_TO_ITERABLE
CHANGE_BINARY_OPERAND

ADD_FUNCTION_AROUND_EXPRESSION
ADD_METHOD_CALL

SAME_FUNCTION_SWAP_ARGS
CHANGE_CONSTANT_TYPE

MORE_SPECIFIC_IF
CHANGE_STRING_LITERAL

CHANGE_KEYWORD_ARGUMENT_USED
CHANGE_NUMERIC_LITERAL

SAME_FUNCTION_LESS_ARGS
CHANGE_UNARY_OPERATOR
CHANGE_BINARY_OPERATOR
CHANGE_BOOLEAN_LITERAL

57.6 72.2 78.4 81.0 82.2 83.0
46.0 53.0 57.3 59.5 58.7 60.3
55.4 64.3 67.3 69.3 70.8 70.7
63.6 74.8 78.9 80.1 80.9 81.3
47.6 54.7 57.0 57.4 58.7 59.7
58.0 63.6 66.2 68.7 69.7 70.4
58.4 62.4 65.7 67.5 69.1 69.9
36.7 42.0 43.6 41.3 43.0 43.0
50.5 54.6 56.4 57.2 57.5 58.8
35.1 38.0 40.3 40.8 40.3 40.7
49.5 53.9 55.2 55.8 57.3 56.7
55.7 59.9 61.0 62.7 63.0 63.7
52.2 56.0 57.6 57.1 56.5 59.3
64.5 68.6 68.6 70.2 72.7 71.9
58.5 59.8 64.6 57.3 63.4 62.2
48.1 52.4 52.8 52.7 53.9 54.1
51.2 54.7 55.9 56.4 56.8 57.3
48.5 48.8 51.9 52.9 51.2 51.9
62.5 61.3 63.1 62.5 63.0 64.8
79.3 78.0 80.3 79.6 79.7 82.2
71.6 73.1 74.0 71.6 72.1 75.5
71.9 73.8 71.4 73.3 73.5 72.6
96.2 96.6 96.8 96.2 96.6 97.3

2 10 20 32 40 56

MORE_SPECIFIC_IF
CHANGE_CALLER_IN_FUNCTION_CALL

CHANGE_IDENTIFIER
CHANGE_OPERAND

LESS_SPECIFIC_IF
DIFFERENT_METHOD_SAME_ARGS
OVERLOAD_METHOD_MORE_ARGS

SWAP_ARGUMENTS
ADD_THROWS_EXCEPTION

DELETE_THROWS_EXCEPTION
CHANGE_MODIFIER

OVERLOAD_METHOD_DELETED_ARGS
CHANGE_NUMERAL

SWAP_BOOLEAN_LITERAL
CHANGE_OPERATOR

CHANGE_UNARY_OPERATOR

0.8 2.2 1.9 2.2 2.0 2.4
21.6 40.6 45.4 49.9 49.5 51.5
24.2 34.4 38.4 40.9 41.5 42.7
26.5 39.8 40.9 43.9 42.4 41.7
10.0 14.6 15.2 14.8 15.7 15.6
22.6 27.4 31.0 33.0 33.8 35.7
13.6 17.6 18.5 19.6 19.9 20.4
18.2 22.4 22.4 21.2 24.2 24.2
57.1 57.1 61.9 61.9 52.4 57.1
68.2 59.1 63.6 68.2 59.1 63.6
52.9 54.1 56.7 55.3 57.2 56.7
31.7 29.9 30.5 31.7 32.0 30.8
41.0 40.4 41.3 40.3 42.3 41.0
92.7 91.4 90.9 90.3 90.0 89.4
50.8 50.4 49.1 49.8 49.6 49.4
50.7 50.2 49.8 50.7 49.3 50.0

Figure 7: Heatmaps vizualizing the effect of context (x-axis)
for bugs of different bug types (SStuB patterns). Top TSSM-3B,
bottom ManySStuBs4J. Bug types in red involve identifiers,
those in orange likely involve identifiers. Coloring expresses
the performance ratio relative to the context size with mini-
mum performance for the corresponding bug type; a ratio of
1.0 corresponds to white.

4.2.1 Bug Type. We visualize the effect of context on bug type as a
heatmap highlighting relative improvements (Figure 7). While some
bug types benefit from a larger context, for others, more context
hardly makes a change or even slightly lowers performance.

Responding patterns. For both datasets, we see a very strong
effect for the “change caller” bug types (> 25% absolute difference in
repair success between 2 and 58 lines of context). For ManySStuBs4J,
MORE_SPECIFIC_IF and LESS_SPECIFIC_IF are among the top-
5 most responsive bug patterns. For TSSM-3B these patterns do
see improvement, but to a much lesser degree and, interestingly,
in reverse order. A relatively strong response can also be seen
for the “more arguments” pattern, present in both datasets under
slightly different names. Notably, the “opposite” pattern, that is
the removal of arguments responds badly in both datasets. Bugs
that require the change of an identifier (CHANGE_IDENTIFIER and
CHANGE_IDENTIFIER_USED) also benefit from larger context sizes
in both datasets. In general we see that bug patterns that involve or
likely involve adding or changing identifiers (e.g., function names,
attributes names, operands, arguments) respond strongly to context
sizes. This corroborates the theory that context serves as a pool of
useful ingredients.

Non-responding patterns. Consistently for both datasets, operator
changes range among the weakest responders, be it binary or unary
operators. We also see no or only a very weak response for boolean
and numeric literal changes; in contrast to string literal changes,
where there is moderate response.

2 10 20 32 40 56

1
2

3
4

5
6

7
8

9
10

11
12

30.8 36.1 38.3 40.2 40.8 41.4
25.8 30.4 32.0 32.8 33.1 33.8
13.9 15.9 16.4 18.0 17.7 18.2
11.6 12.9 13.8 13.9 14.6 14.8
8.7 8.4 9.6 9.5 9.4 9.6
10.1 10.6 10.7 11.6 11.5 11.6
8.0 8.5 8.5 8.5 8.9 8.0
7.5 8.3 9.0 8.1 8.6 9.0
7.1 6.5 7.1 7.1 6.5 7.1
9.4 10.4 10.0 10.4 10.7 11.0
5.1 5.6 6.0 6.0 6.0 5.6
10.7 10.7 11.7 13.1 12.6 11.7

Figure 8: Heatmap visualizing the effect of context for bugs
that require multiple changes to fix. As change count in-
creases, the effect of more context diminishes.

4.2.2 Change Count. Results show that as the number of changes
increases, the effect of context steadily decreases. For six changes
we still see a very weak improvement of 1.5% from 2 to 56 lines of
context; this reduces further for larger context sizes (Figure 8). We
cannot conclusively answer why this is the case. We hypothesize
that these bugs are much more difficult to fix, irrespective of context.

Answer to RQ2
The effect on repair success strongly depends on the bug type
and the number of changes required for a fix. For high change
counts (> 6) and certain bug types (e.g., boolean literals) increas-
ing the context size does not substantially aid repair success.

4.3 Context Window Position (RQ3)
A natural choice for filling the context window is to use 50% pre-
context and 50% post-context. We confirm this choice, although in
some cases, a window slightly offset from the center might perform
a bit better. Figure 9 shows performance across all three datasets,
five context window sizes and all context window positions.

For MegaDiff, peak performance is reached at the 40% position
(i.e., 60% of post context) for window sizes 5, 10 and 30 and 50% for 20
and 40. For TSSB-3M, the 40% window was best for all context sizes,
except 20. For this size, the best position lies in the other direction,
at 20%. 40%-50% was the best performing position for the majority
of context sizes (three out of five) in the ManySStuBs4J dataset; the
other two where 20%. For all datasets and context sizes, we see that
the 0% position (i.e., only pre-context) consistently outperforms the
100% position (i.e., only post-context), which performs worst in all
configurations.

Complementarity. The question naturally arises, whether, at dif-
ferent window positions, the model is able to fix different bugs, that
is, whether different window positions are complementary to each
other. To answer this question, for four of the window sizes (5, 10,
20, 40) and three window positions, we analyze how many bugs are
unique (fixed only at specific window position) and how many of
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them are common to multiple positions. For each window size we
select the extreme window positions (0% and 100% position) and a
position close to the middle (upper median position). The results
of this analysis are visualized as Venn diagrams in Figure 10. Only
53%-57% of bugs are correctly fixed at all three window positions;
6%-7% of them are fixed by only one of the three positions.

Ensembling. Given different window positions are highly com-
plementary, the next question that poses itself is whether mod-
els trained on window positions can be, for better performance,
combined into an ensemble. When taking the five highest rank-
ing unique (that is filtering out duplicates) predictions from the
six models trained on different window positions (but the same
window size) we observe a significant boost in performance. We
indicate ensemble performance of the largest context window (40
lines of code) with a horizontal line in Figure 9. Overall, we see
absolute improvements between 2% and 3.8% across all context
sizes.
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Figure 9: Repair success for different datasets, context win-
dow positions and sizes. Position of peak performance anno-
tated. See Figure 3 for a visualization of window positions.
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3653
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3669
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24/16

Figure 10: Are fixed bugs unique to a specific pre and
post-context configuration? For four different context sizes
(5, 10, 20, 40) the Venn diagrams show how many fixed
bugs are unique to a specific positional configuration (non-
overlapping regions) and how many bugs could be fixed at
multiple positions (overlapping regions). At the center, the
number of bugs correctly fixed at all positions. Circles rep-
resent positions 100%/0% ( ), 0%/100% ( ) and 60%/40% ( );
bugs taken from MegaDiff.

Answer to RQ3
Our results suggest that peak repair success is reached at a
window position of 20%-50%. While the best value varies across
datasets and window sizes, using 60% for pre-context and 40%
for post-context seems to be a good middle-ground. Further,
different window positions allow the model to fix different bugs.
This complementarity can be exploited by combining models
trained on different window positions into an ensemble.

4.4 Sample and Model Size (RQ4)

2 14 28 42 56

OVERLOAD METHOD DELETED ARGS
CHANGE MODIFIER
CHANGE NUMERAL

CHANGE CALLER IN FUNCTION CALL
DIFFERENT METHOD SAME ARGS
OVERLOAD METHOD MORE ARGS

CHANGE IDENTIFIER
CHANGE UNARY OPERATOR

LESS SPECIFIC IF
CHANGE OPERAND

CHANGE OPERATOR
MORE SPECIFIC IF

SWAP BOOLEAN LITERAL

+6.2 +5.0 +6.5 +5.0 +10.9
+5.0 +6.7 +6.1 +8.3 +10.3
+8.4 +7.7 +9.6 +7.6 +6.7
+5.6 +8.2 +7.8 +5.8 +3.9
+8.1 +7.3 +6.8 +6.8 +6.6
+4.7 +5.6 +5.3 +7.8 +6.7
+7.1 +6.9 +5.7 +5.7 +6.0
+1.9 +4.2 +5.8 +2.1 +4.7
+3.7 +4.8 +4.8 +4.4 +5.6
+3.4 +1.9 +3.4 +4.5 +3.0
+2.3 +3.3 +3.3 +4.1 +3.3
+1.2 +1.5 +1.9 +1.3 +0.7
-2.0 -1.1 -0.7 -1.8 -2.5

Figure 11: Difference in repair success (absolute) between the
smaller 60M and the larger 220M parameter CodeT5 model
for different context sizes (x) and labels (y) in ManySStuBs4J.
The larger model fares better for all labels except SWAP_-
BOOLEAN_LITERAL.
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Figure 12: Repair success for different number of fix candi-
dates (with the number of beams equal to the number of fix
candidates) and the larger 220M parameter model (with 5
candidates).

With increasing context, the number of possible ingredients
grows (Figure 13). We theorize that a larger model may be able
to better exploit this wealth of ingredients. Similarly, raising the
number of candidate fixes may allow the model to use more of the
ingredients. If so, we would expect a disproportional increase in
performance (i.e., a widening gap) for larger context sizes. However,
our results do not support this hypothesis for the tested models.

Fix candidate count. When varying the number of candidates,
we see that the margin between the two models remains largely
constant (Figure 12, MegaDiff). The performance gap between 5
and 15 candidates has a mean of 5.97% and a standard deviation of
0.16%. Between 10 and 15 candidates, this difference decreases to
2% (SD 0.09%).

Model Size. Similarly, for model size we see a mostly constant
gap across varying context size. For MegaDiff this gap has a mean
and standard deviation of 4.7% and 0.26%, for ManySStuBs4J 5.5%
and 0.15%. Figure 11 shows a per-type comparison of performance
for different bug patterns in ManySStuBs4J. We cannot discern
a clear upwards trend for any pattern. Of note, for a single bug
pattern (SWAP_BOOLEAN_LITERAL) the smaller model fared better.

Answer to RQ4
As expected, both, a larger model as well as an increased num-
ber of fix candidates improves overall performance. However,
we do not find convincing evidence that the gap of improve-
ment widens at large context sizes, which would indicate a
better exploitation of larger contexts.

5 IMPLICATIONS
5.1 Opportunities of Context

Context has a clear impact on performance. Through systemati-
cally varying the context size fed to NPR models from 2 to 56 lines,
we observe relative improvements in repair success ranging from
16% (TSSB-3M) to 29% (MegaDiff, ManySStuBs4J). Extending the
context size from 10 to 56 lines of code still yields relative increases
between 7% and 11.7%. To put these changes in perspective, this
performance variation comes close to the improvements offered
by some components of APR approaches, as identified through

ablations. For instance, RewardRepair’s semantic training improves
performance by 7% Ye et al. [41], CoCoNuT’s context-awareness
feature by 16%, and the use of diagnostics in SelfAPR 37% (all rela-
tive). The improvement is also comparable to improvements one
can leverage by increasing the size of the model (~28%, relative),
or the number of generated samples (23%, relative), measured on
MegaDiff with the largest context size of 56 and when moving from
5 to 15 fix candidates. Importantly, the improvement obtained by
increasing context appears to be orthogonal to the improvements
obtained by increasing model size or number of samples.

Context as a source of ingredients. As mentioned in Section 2,
context is an important source for fix ingredients [39]. Furthermore,
in RQ2, we identified that the changes for which the model improves
most are the ones for which it needs to leverage identifiers in
its context. To estimate the extent to which context ingredients
could be responsible for the increased repair success we compute
the overlap of identifiers in the context and the ground-truth fix.
We define overlap as

(
𝐼𝐷𝑠 (𝑓 𝑖𝑥𝑒𝑑) ∩ 𝐼𝐷𝑠 (𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

)
/|𝐼𝐷𝑠 (𝑓 𝑖𝑥𝑒𝑑) |,

where 𝐼𝐷𝑠 (𝑐) denotes the set of all identifiers in 𝑐 . Figure 13 shows
identifier overlap as a function of context size for MegaDiff. This
supports the hypothesis observed from the change types in RQ2:
an increased pool of ingredients, particularly identifiers, is a major
factor for improved performance with larger context. Further, since
both pre and post context are sources of distinct ingredients, this
supports the observation in RQ3 that different context window
fix different bugs. Similarly, Xia et al. [35] find that feeding post-
context in addition to pre-context increases repair performance and
lowers syntactic and semantic errors in the generated code.
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Figure 13: Overlap between identifiers in the context and the
ground-truth fix for different context sizes (MegaDiff).

Context can scale further. Figure 13 indicates that context can
scale further: the proportion of ground-truth identifiers that enter
the context continues to grow well beyond the context sizes that we
studied (28 lines pre/post). At 28 lines of pre-post context, 67% of
ground truth identifiers are in context. While there are diminishing
returns, this grows to 74% if the context is extended to 200 lines
of context. Even simple approaches can show appreciable benefits
to leverage this additional context. By combining multiple 40-line
context windows in an ensemble of models, we were able to in-
crease repair success rate by 2 to 3.8% (~5-8% relative improvement)
compared to the best 40-line window (Figure 9). In essence, our
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ensemble leverages a context of up to 80 lines of context, and does
so in a very straightforward fashion; other ensembling or selection
strategies may further improve performance.

Local context can be combined. Finally, we note that even rela-
tively large context sizes may not fill up the entire context window
of even a modestly sized model. As mentioned in Section 3.2, 56
lines of context have a median token count of 592 and an upper
quartile of 699. A T5 model fine-tuned with a 1024 token window
comfortably fits this, leaving space for additional context enriching
techniques such as SequenceR [2], or other techniques described in
Section 2.1; this is even more the case for larger models.

5.2 Challenges with Context
Context is not a panacea. While context is helpful overall, it is not

always so. For every 10 bugs that can be reliably solved by increas-
ing context size, there is one bug for which more context causes a
regression (see Figure 6 for an example). Moreover, an even larger
proportion of bugs are sensitive to the context in ways that are hard
to predict: the model may succeed to solve them at some context
sizes, and not others. This is an example of the lack of robustness of
neural models of code. Other work has found comparable rates of
differences for both NPR [4], and code generation [17]. This clearly
calls for increased research on more robust NPR models.

We also note a silver lining: while the best performance we ob-
tain on MegaDiff was of 26.3% with a single model, up to 35.2% of
the bugs in MegaDiff can be fixed at one context size or another
(RQ3). Combined with our finding that a straightforward ensem-
bling technique for window sizes yielded benefits, one avenue for
future research is to investigate whether ensembling models of
different context sizes may help performance, and possibly alleviate
the robustness issues we observed.

The limits of local context. While we see further potential in
extending the window size as mentioned above, there are two im-
portant caveats. First, according to Figure 13, even when extending
the context to large sizes (200 lines or more), roughly one quarter
or identifiers in the ground-truth fix are not found in the context.
This finding echoes other studies that found that a large proportion
of method calls are non-local [10]. Approaches that leverage other
kinds of context (Section 2.1) can complement the local context.
Second, while there is room to improve with the local context,
whether the current crop of models can exploit it is another ques-
tion: as mentioned earlier, we observed diminishing returns with
more than 50 lines of context. One way forward might be models
that can better generalize to longer contexts, using e.g., RoPE [28]
or ALiBi [23]; we are unaware of such models being used in APR,
beyond CodeT5’s relative position embeddings.

Some changes are challenging, regardless of context. Finally, while
we observe some improvements when adding context, some cate-
gories of changes benefit far more than others (RQ2). In particular,
the models struggled with larger changes, regardless of context size.
Context size does offer some improvements for larger changes (e.g 5
or more lines), but they are slight. Similarly, while some categories
of changes benefit from an increased context, for other categories
context made little difference or was detrimental.

5.3 Implications on Research Practices
Context should be systematically documented. Given the impact

that context has on the performance of NPR models, clearly and
thoroughly documenting the context size that was used in any
experiment is crucial. However approaches from the literature are
not always clear. For instance, in RewardRepair, “the context code
is considered as 10 lines of code surrounding the buggy code” [41].
This is ambiguous: it can be interpreted either as 5 lines on each
side (totalling 10), or 10 lines on each side (totalling 20). Other
work simply adds context until the input window is filled up (e.g.,
AlphaRepair [36]), or uses the surrounding method as a context
boundary (e.g., CoCoNuT [16]). In both cases the context size is
highly variable as it depends on the size of the bug and the size of
the surrounding method. Finally, since the context window position
matters, clearly specifying how the context is distributed in pre and
post context is important as well. We thus call on the community
to document their choices in terms of context as clearly as possible.

Datasets should include enough context. Last but not least, it is
data that makes machine learning approaches possible. As men-
tioned in Section 2.3, several NPR datasets did not forecast the need
for a larger context. This includes method-level datasets such as
BFP [29] and CoCoNuT [16], and change-level datasets with a trun-
cated context such as ManySStuBs4J [9] and TSSM-3B[25]. Only
MegaDiff had enough information for our study [18]. We hypoth-
esize that the dearth of adequate datasets has limited studies of
models with larger contexts. Indeed, we consider that re-mining
the ManySStuBs4J and TSSM-3B datasets to include this additional
context is one of our most important contributions. We call on
the community to provide this information in future datasets, or,
at a minimum, to include the information necessary for such a
re-mining to take place (e.g., repository identifiers, commit hashes).

6 THREATS TO VALIDITY
Bugs. Despite due diligence we cannot fully preclude software

bugs in our training and evaluation scripts.

Single architecture. The scope of this work is limited to a sin-
gle Transformer model (CodeT5). We chose CodeT5 as its relative
position embeddings allow us to fine-tune to a larger input win-
dow size, which was a strict requirement for this study. While this
model has seen widespread use in NPR, other Transformer types
or neural architectures have been used (e.g., CURE [7] uses a GPT-
style Transformer, CoCoNuT [16] uses convolutional networks). To
which degree our results apply to them is subject to future work.
With over 100 different models trained in this work, adding other
architectures would have not only gone far beyond the scope of
this paper but also exceeded our hardware capabilities. Instead, we
focused on depth, by studying different aspects of context such as
window positions, bug types and change count as well as multiple
programming languages. The experiments in RQ4 show that the
effects described are likely not dependent on model size or the
number of candidates generated. This suggests (pending confirma-
tion by further work) that results might extrapolate well to other
Transformer types and possibly even other network types.

Evaluation metric and datasets. We use exact match as an evalua-
tion metric. Exact matching might underestimate the performance
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of a model, as a semantically correct fix can be expressed in mul-
tiple syntactic forms [22]. Benchmarks such as Defects4J [8] or
BugsInPy [32] come with test cases, which would alleviate this
issue. However these benchmarks range are much smaller (hun-
dreds of bugs). The large weight assigned to any single bug leads to
concerns about noise in measurements, and associated issues with
overfitting to smaller datasets, which is a concern in APR [15, 20].
We rely on two orders of magnitude more data to limit this.

7 CONCLUSION
In this work we studied the effect of local context in NPR from
multiple perspectives. On multiple datasets, we first find that vary-
ing context size yields sizeable improvements (a 16–29% relative
improvement), that continue well beyond typical context local con-
texts used in NPR (e.g., a relative 7–11% improvement going from
10 to 56 lines of context). Moreover, different context configurations
yield different results, with straightforward ensembling techniques
giving a further 5–8% relative improvement. Our analysis of bug
patterns shows that bug types involving identifiers particularly
benefit from increased context. Improvements from model size and
number of samples appear orthogonal to those gained from context.

Our results have multiple implications. First, there is further
room for improvement as local context can be leveraged further. On
the other hand, context come with challenges, particularly in terms
of robustness to sometimes small variations in context. Finally,
given that performance variations due to context are comparable
to some improvements in the literature, we call on the commu-
nity to clearly document the context they use, as well as ensuring
that datasets come with enough context. We provide training and
evaluation scripts as well as datasets allowing to expand this work
with larger models and other neural architectures. They can be
downloaded from https://github.com/giganticode/out_of_context_
paper_data.
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