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INSPECT: Intrinsic and Systematic Probing
Evaluation for Code Transformers

Anjan Karmakar and Romain Robbes

Abstract—Pre-trained models of source code have recently been successfully applied to a wide variety of Software Engineering tasks;
they have also seen some practical adoption in practice, e.g. for code completion. Yet, we still know very little about what these
pre-trained models learn about source code. In this article, we use probing—simple diagnostic tasks that do not further train the
models—to discover to what extent pre-trained models learn about specific aspects of source code. We use an extensible framework to
define 15 probing tasks that exercise surface, syntactic, structural and semantic characteristics of source code. We probe 8 pre-trained
source code models, as well as a natural language model (BERT) as our baseline. We find that models that incorporate some structural
information (such as GraphCodeBERT) have a better representation of source code characteristics. Surprisingly, we find that for some
probing tasks, BERT is competitive with the source code models, indicating that there are ample opportunities to improve source-code
specific pre-training on the respective code characteristics. We encourage other researchers to evaluate their models with our probing
task suite, so that they may peer into the hidden layers of the models and identify what intrinsic code characteristics are encoded.

Index Terms—Machine Learning for Source Code, Probing, Benchmarking, Transformers, Pre-trained models

✦

1 INTRODUCTION

THE outstanding success of transformer-based [2] pre-
trained models in NLP such as BERT [3], has inspired

the creation of a number of similar pre-trained models
for source code. These pre-trained models are first trained
on a large corpus of code in a self-supervised manner
and then fine-tuned on downstream tasks. These mod-
els include sequence-based models such as CodeBERT [4],
CuBERT [5], or PLBART [6], to name a few. Other models
include more structural information on source code, such
as GraphCodeBERT [7], or UniXCoder [8]. Finally, several
recent models leverage scaling laws [9] to improve per-
formance just by virtue of their size, such as Codex [10],
CodeGen [11], InCoder [12] and AlphaCode [13]. This
effort is ongoing, with novel pre-trained models of source
code being announced regularly.

These large-scale pre-trained transformer models for
code have been shown to perform spectacularly well on
a wide range of software engineering tasks, which led to
the release of a number of new tools. These include source
code completion tools, such as Tabnine, IntelliCode [14],
or GitHub CoPilot, that leverages OpenAI’s Codex [10] to
propose multi-line code completion from natural language
prompts. More generally, the increasing availability of these
AI-based development tools has triggered discussions of
their promises and concerns [15].

The progress made with pre-trained source code models
is genuinely encouraging. However, its remains unclear
what exactly do these models learn about source code. Do they
learn the tasks at hand, or, like the mathematic prodigy
Clever Hans (a horse1) [16], do they exploit superficial cues
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[17] in their input? Are source code models “stochastic
parrots” [18], that overly rely on memorization [19]? There
are many such questions about source code models that can
be asked, all of which impact our understanding of source
code models and their capabilities.

In this paper, we focus on a more specific question,
namely: to what extent do pre-trained source code mod-
els learn about the specific characteristics of source code?
This question is important since pre-trained models come
from the field of NLP. However, source code and natural
language are very different. For instance, source code is
highly structured, and can be unambiguously parsed. Func-
tions or methods form complex structures with an intricate
control flow over many statements. Source code identifiers
can be formed of multiple natural language words (e.g.,
ArrayIndexOutOfBoundsException). Source code uti-
lizes punctuation in a way that is vastly different than
natural language. Small changes to source code can lead to
widely different behaviour, crashes, or compilation errors.

In spite of this, several architectures have been applied
as-is to source code. For instance, Codex is a variant of the
GPT-3 natural language model, that is further fine-tuned on
source code; it inherits its tokenization, only adding a few
additional tokens to better handle source code indentation.
Whether the default NLP training objectives are as effective
for structured source code as it is for less structured NLP
applications is an open question. On the other hand, some
models, such as GraphCodeBERT [7], do adopt additional
pre-training objectives to better account for source code’s
characteristics. Whether the additional training objectives
are effective in learning more source code characteristics is
also an open question.

Before addressing these questions however, there is first
a methodological issue: how can we evaluate specific char-
acteristics of source code, of which there can be many?
An emerging field of research addresses these with probes.
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Probes are diagnostic tasks, which are designed to evaluate
a specific characteristic of the input data. To probe a pre-
trained model of interest, one trains a simple classifier to
predict specific properties of its input (as specified by the
diagnostic task), based on the frozen vector embeddings
of the pre-trained model. The degree of success in the
probing tasks indicates whether the information probed for
is present in the pre-trained embeddings, and to which
extent. Probing has been extensively used for natural lan-
guage models, and has already begun to pick up steam
with numerous probing tasks [20], [21], [22], [23], [24], [25],
[26], [27] investigating a diverse array of natural language
properties. We provide more background about probing in
the next section.

In this work, we adapt the probing paradigm to evaluate
the source code knowledge within pre-trained source code
models. In Section 3 we define a set of 15 probing tasks,
that cover a variety of source code characteristics. The
tasks cover multiple characteristics of the Java programming
language, such as reasoning on identifiers, source code
structure, and code correctness. We also present INSPECT,
the probing framework that we developed for this study, in
Section 4; INSPECT allows us to easily extend our probing
test suite by defining new tasks, as well as to very easily
probe models that are made available on the huggingface
model hub. The framework is freely accessible on github
at https://github.com/giganticode/inspect. We encourage
other researchers to use INSPECT as an intrinsic bench-
mark of their source code models.

We use our tasks to probe 8 pre-trained code models,
and also a natural-language model which serves as our
baseline. We provide a detailed methodology of our study,
and describe the models and the datasets that we use in
section 5. The models range from ones that should have
no knowledge of source code (the BERT model, trained on
a natural language corpus), to models that should have
moderate knowledge of source code (e.g., CodeBERT which
follows BERT’s training procedure, but on a source code
corpus), up to models that should have a more advanced
knowledge of source code (e.g., GraphCodeBERT, which
has a code-specific pre-training objective, along with data-
flow information).

We present the results of our study in section 6. We an-
swer research questions related to the general performance
of the models on the probing tasks, as well as comparing
the performance of different models, the performance on
different categories of tasks, as well as the performance
across layers. Overall, we find while the pre-trained mod-
els encode some source code characteristics well, there is
room for progress: for some tasks, even the most advanced
model fail to significantly outperform our baselineBERT,
that should have no explicit knowledge of code. We also
observe that models that introduce more structural source
code information in their training tend to perform better,
which provides a way forward.

Finally, we discuss the results 7 and the limitations 8 of
this work in section, and conclude in section 9. In particular,
we conclude that defining new pre-training procedure that
better emphasize source code characteristics should be de-
veloped and more systematically investigated, such as via
our probing framework, INSPECT.

This work is an extension of a short paper previously
published in ASE 2021 [1]. Compared to our previous work,
we perform a much more extensive study. During the course
of this work, we designed 19 new tasks, eventually keeping
13 in the final version, and replacing 2 of the original 4 tasks.
Overall, 85% of the tasks are new to this paper. The tasks
are divided in 5 different task categories. Having multiple
tasks for each category (rather than a single one) allows
us to find trends about which source code characteristics
tend to be better encoded in the models (e.g., semantic
characteristics tend to be better encoded than structural
characteristics). The original work evaluated 3 models and
a baseline, while this version evaluates 8 models (and the
baseline). Having a wider selection of models allow us
to find or dismiss certain factors that might impact the
quality of the encoding of the characteristics in the models
(e.g., models with code-specific training objectives appear
to better encode source code characteristics, whereas models
that use more generic training objectives are less successful).
To account for the growth in the amount of data to present
(close to 95% of the data is new to this paper), we conducted
an entirely new and much more extensive analysis of the
results. This analysis looks at additional research questions
and sub-questions in ways that are very different from the
original paper. Following the results, we added an extensive
discussion of the results, their implications, and a discussion
of their relationship to the emerging literature on probing
and analyzing source code models. We also expanded the
background and limitations section to make the paper much
more self-contained.

2 PROBING: BACKGROUND AND RELATED WORK

We provide an introduction to the notion of probing as
performed in this study. We invite readers wishing to further
explore the topic, to consult the recent survey on probing
[28], which also discusses some advanced approaches.

2.1 Probing Neural Networks

The goal of probing is to assess to what extent a Deep
Neural Network learns an implicit representation of specific
characteristics of its training data during training. Such
characteristics are varied and very domain-specific, such as:

• In Neural Machine Translation (NMT), whether a
model has some representation of the active/passive
voice or tense of the original input [21];

• In Natural Language Processing (NLP), whether a
natural language model encodes some information
about the word order of a sentence [22];

• Whether a neural chess engine encodes representa-
tions of chess concepts, such as the playing side being
in check, or the strength of chess pieces [29];

• Whether a source code model encodes representa-
tions of a code snippet’s inherent complexity [1]

Note that these characteristics are usually implicitly present
in the training data, rather than being explicitly fed to the
models while training. E.g., the training data for an NMT
model is simply the text to translate, and does not explicitly
indicates the tense or the active/passive voice of a sentence.

https://github.com/giganticode/inspect
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Representation learning. Deep Learning models learn
vector representations of their input during training. The
learned representations are based on multi-dimensional in-
ternal weights, which are optimized during the learning
process. Once a model is trained, the learned vector repre-
sentations can be obtained by processing any input through
the model and collecting the weights from the hidden state.

Probing. We use probes to ascertain if, and to what extent,
learned vector representations of pre-trained models encode
specific characteristics of interest; and whether they have
been implicitly learned by the models. A probe consists of
two components: 1) a probing task and 2) a probing classifier.

Probing Task. A probing task is an auxiliary diagnostic
task, generally designed to analyze implicit learning in mod-
els. A probing task may require models to predict certain
characteristics from the input features given that the model
is not directly trained to predict them in the pre-training
stage. Each probing task should be a convincing proxy for
a given characteristic of interest. For instance, to verify
whether a pre-trained code model has some implicit knowl-
edge of code size, a diagnostic task could be constructed to
probe on the model’s (frozen) pre-trained weights whether it
can classify code snippets by size. If the pre-trained vectors
of the model encode such information, the probe results will
reflect the same. Similarly, a diagnostic probing task could
be used to probe for the concept of word order, to randomly
alter half of a set of sentences by swapping two words, and
classify inputs as original or altered [26].

Probing Classifiers. One critical aspect regarding probes is
that the pre-trained models are not further trained on the probing
tasks. Rather, the model’s learned pre-trained weights are
first extracted and used to compute the vector represen-
tations of each input sample (i.e. the pre-trained model is
frozen), which are then passed on as input features to a simple
probing classifier, typically a simple linear classifier. Note
that the probe does not have access to the original input, just
the resulting vector representations. This makes probing for
even very simple concepts still informative, as they are not
directly accessible to the model.

Only the linear classifier is optimized when training on
the diagnostic task. During training, the probe should learn
which of its input features—if any—are relevant for the task
at hand. Thus, if one or more features encode the concept
of interest, the probe should be able to perform the task
successfully. On the other hand, if the original model has not
learnt the concept of interest during its training, the probe
should fail at the task, with a performance on a test set that
differs little from random chance accuracy.

Probe Complexity. One of the assumptions behind prob-
ing is that a representation of a source code characteristic
should be simple. Complex representations are more likely
to contain spurious relationships (e.g., a model might notice
a relationship between the length of a piece of code and
its complexity, rather than modelling complexity directly).
One way to enforce this is by using simple classifiers: if a
simple classifier can successfully solve the task, it means
that the representation of the concept is accessible and
easy to extract from the model. We use a linear layer as
the probing classifier. These are similar in complexity to

a standard classification head that might be attached to a
pre-trained model. Note that a linear layer can only learn
linear combinations of its input: this limitation imposes a
constraint on the simplicity (and thus, in terms of probing,
its quality) of the representation of the existing concept
in the pre-trained model. Other works use a Multi-Layer
Perceptron (MLP) with one hidden layer as a probe. These
can learn more complex non-linear combinations of features.
If only a complex probe can solve the diagnostic task, there
is a risk that the probe itself learns to solve the task as the
training progresses, rather than relying on the actual pre-
trained vectors of the pre-trained models [30].

Summary and Source Code Example. The goal of a probe
is to test whether, and to what extent, a specific character-
istic of the training data is encoded in a model’s internal
representation. For instance, we might want to test whether
a pre-trained source code model such as CodeBERT encodes
any notion of the complexity of source code. To do so:

1) We first collect a set of training/test inputs (e.g. Java
code snippets at the method-level) and labels (e.g.
each method’s Cyclomatic Complexity).

2) We then proceed to extract learned vector represen-
tations for each input sample in the task dataset by
processing them through a pre-trained model.

3) Finally, we train a linear classifier on the extracted
vector representations, and evaluate the probe on
the test set. This gives us the performance metrics
for each layer of the model—with predictions based
principally on the learned vector representations.

Fig. 1 illustrates the above steps where pre-trained vector
representations and corresponding property labels are used
to probe for certain intrinsic information which are expected
to be encoded in the model layers.

2.2 Related Work

Probing in NLP. An early study by Shi et al. found that
LSTM machine translation models capture several concepts
of syntax, such as voice, tense, or part of speech [21].
Belinkov et al. focused on finer-scale concepts, such as word
morphology, finding that character-based machine transla-
tion models better capture morphology [23]. Conneau et al.
defined 10 probing tasks, including sentence length, tense,
AST tree depth, and others, finding that the performance
on probing tasks outperform several simple baselines [26].
The study by Jawahar et al. [31] show that BERT encodes
phrase-level information in the lower layers, and a hierarchy
of linguistic information in the intermediate layers, with
surface features at the bottom, syntactic features in the
middle and semantic features at the top of a vector space.
Hewitt and Manning designed a structural probe [32] that
evaluates whether pre-trained models such as BERT [3] or
ELMo [33] have representations of a sentence’s entire syntax
tree embedded as implicit node distances in the vector rep-
resentations: they find that this is the case for medium to late
layers. Clark et al. probed BERT’s attention heads, finding
that some individual heads attended to specific linguistic
concepts [34]. The previous studies are but few examples:
studies of the BERT models alone have spawned a subfield
known as BERT-ology with over 150 studies surveyed [35].
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Fig. 1. Overview of the probing procedure

Probing in other fields. Probing has been applied beyond
textual models only. DeepMind’s AlphaZero game playing
models have been probed for the games of chess [29] and
Hex [36]. For chess, the model uses a Convolutional Neural
Network to encode the board; the CNN is probed for close
to 150 individual chess concepts (e.g., king safety, threats to
pieces). Cao et al. applied probing to Vision and Language
models, that reason on images and text at the same time
[37]. Recently, studies relate the hidden state of language
models with fMRI data obtained from humans reading the
same text the language models are processing [38], [39], [40],
finding correlations between some of the language model’s
activation weights, and brain activity.

Probing in Software Engineering. Our initial work [1]
was the first dedicated study of probing for source code
models. The only earlier example we are aware of uses a
single coarse task (programming language identification)—
and is not the focus of the paper [4]. Since our initial work,
several additional studies have emerged.

Wan et al. analyzed two pre-trained code transformers,
CodeBERT and GraphCodeBERT [41]. They first analyzed
the model’s attention heads, and whether the attention
aligns with the syntax structure of code, finding that it does.
They then probed the word embeddings to find out if they
embed values similar to inter-token AST distances, finding

that it does, but that it varies among layers. Finally they
checked whether they could reconstruct the AST from the
learned representations, finding that they can to an extent.

Other works focused on attention more specifically. Chen
et al. introduced CAT-probing [42]. They define a metric, the
CAT-Score, to relate the attention matrix (how the Trans-
former’s attention for a given token attends to other tokens)
for a given layer, with the distance matrix of the AST
nodes. They find that CAT-scores for source code models are
correlated with their performance on code summarization,
and that the CAT-scores vary per layer and per language,
with a tendency for higher scores in the earlier layers. Zhang
et al. [43] define a similar metric over the attention matrix,
an aggregated attention score, with which they can derive a
graph of relationships between tokens.

Hernández Lopez et al. use the structural probe of Hewitt
[32] to study various pre-trained models of source code
[44]. They find that CodeBERT and GraphCodeBERT better
capture the AST than other code models such as CodeT5
and CodeBERTa, and that the AST representation is more
encoded in the middle layers.

These works employ for the most part a holistic ap-
proach to probing source code models, primarily focusing
on the entire AST. In contrast, we define multiple probing
tasks to probe for the presence of more fine-grained concepts
than the entire AST. The closest work to ours is the work by
Troshin and Chirkova [45] which builds up on our initial
work by defining new probing tasks. They define 8 tasks
which do not overlap with our 15, as we have an increased
focus on metrics and incorrect code detection. In addition,
space allows us to conduct a significantly more in-depth
analysis of our results (which also span a broader selection
of models). Another important difference is the original data
used. For 6 tasks, Troshin and Chirkova use an existing
dataset of 10,000 java methods with which they derive
individual task datasets. The relatively small size of the
data prevents the selection of subsets of the data to calibrate
the difficulty of the task. For instance, the baseline for their
“is variable declared” task (a constant prediction that the
variable is declared) has a 90% accuracy. The initial datasets
for their two other tasks have 934 and 200 datapoints. In
contrast, we start with a much larger initial dataset (with 8
million methods), allowing us to select specific subsets of the
data (e.g., all our datasets are balanced). As a consequence
of our different task selection and dataset construction, we
tend to find lower performance for the source code models.
In section 7.6, we compare our results with this study.

Finally, Paltenghi and Pradel [46], and Paltenghi et al.
relate neural attention weights with human eye-tracking
data [47]. They find some correlation between the neural
attention weights of language models and eye-tracking data.

3 THE INSPECT TASK SUITE

In this section we introduce our suite of probing tasks. Our
probing tasks consider a variety of source code characteris-
tics, grouped in several categories. Selecting the tasks for the
probing suite among a pool of candidate tasks proved to be
challenging: there are many characteristics of source code
that we could select, ranging from the most basic to the
most intricate. We thus selected tasks to cover a broad set
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of source code characteristics, while minimizing (as much
as possible) the number of tasks in our suite. At the highest
level, we divide the tasks into 3 broad categories:

1) Token-based tasks, which include code token tag-
ging tasks and total token count task (Section 3.1).

2) Metrics-based tasks, which include tasks related to
identifying code structures, and unique occurrences
of operators and identifiers; as well as implicit un-
derstanding of code complexity (Section 3.2).

3) Incorrect-code tasks, which include switched code,
misspelled, and jumbled code tasks (Section 3.3).

The above tasks probe for one or more of the code char-
acteristics with regard to syntactic, semantic, structural, or
surface information. In addition to the above tasks, we
discuss some candidate tasks that were considered but have
not been selected for this study (Appendix B). Should the
need arise, our suite of probing tasks is extensible: we have
developed a framework (Section 4) to this effect, to help
users conduct extended probing studies on further models.

3.1 Token-based tasks

Tokens are the most basic code elements a pre-trained model
can reason on. For instance, in order for a pre-trained model
to be good at code completion, it must necessarily learn
and interpret the syntactic formation of a sequence of code
tokens, and predict a syntactically valid next token. Thus,
the capacity of source code models to infer the type of in-
dividual tokens is an elementary source code characteristic
that we want to specifically evaluate. We first define two
tasks that specifically target individual tokens: one for the
specific case of identifiers (IDN), and another for the other
types of tokens (KTX). Subsequently, we define a task to
probe for the size of the input, e.g. number of tokens (LEN).

Identifier Tagging (IDN) Source code identifiers make up
most of source code, up to 70% according to some estimates
[48]. Further, there are coding conventions that influence
the format of the identifiers according to its role (e.g. a
class name is different from a variable or method name).
IDN determines whether pre-trained models have sufficient
syntactic and semantic knowledge to distinguish among
the different types of user-defined identifiers. Pre-trained
models must classify input source code tokens as one of four
types of identifiers (package, class, method, and variable
names). Unlike most other tasks, we feed a single identifier
to the model, rather than a method; the probing classifier
uses the [CLS] token as usual. We do this because it is
uncommon to find package names in method source code;
instead, we collect package names from import declarations,
which are much more common.

Keyword Tagging (KTX) This task evaluates the capacity of
pre-trained models to discriminate between various types
of keywords, operators, and symbols. The goal of the task
is to learn the differences between types of keywords (e.g.,
float is in a different category than return). We define several
classes for keywords, operators, and symbols. We divide
keywords into 4 keyword classes, e.g. modifiers (private,
protected, public), flow control (e.g., for, if, return),

etc. We divide operators in 5 classes e.g. arithmetic, assign-
ment, relational, etc. We also add Java symbols, in a single
class (e.g., “{”, “;”, “]”).

We divide each of the classes in training, validation, and
test sets to specifically probe for the ability of the models
to generalize. For instance, for primitive types, we might
have: int, double, char, boolean in the training set; string, long
in the validation set, and float, short in the test set. Thus the
probe should look for features that describe the categories
of tokens in the learned representation, rather than specific
tokens. For this task we extract the representation of the
specific keyword, symbol, or operator token in question,
corresponding to the label, rather than the aggregated input
representation, i.e. the [CLS] token.

Code Length (LEN) Length is the most basic attribute we can
probe for which may be implicitly learned by the models
given any input. It is also the least dependent on source
code knowledge, relying on the number of tokens, and as
thus is useful to frame the performance of the other tasks.
We measure code length in tokens. Since method sizes vary
widely, we define 5 classes by binning the values into 5
different labels. Note that predicting the length of a code
snippet may appear trivial, but this is not the case: since we
probe the vector representation of a single summary token
from the models (see section 5), the amount of information
the models can use may be limited.

3.2 Metrics-based tasks

Since many models are trained and evaluated on tasks that
concern methods (e.g., method naming, method summariza-
tion), the method is the next most natural unit to examine.
This category of tasks is based on the ability of models to
detect quantifiable characteristics of source code.

Since metrics are numeric values, we could have formu-
lated theses tasks as regression tasks. We ultimately chose
to formulate them as classification tasks for two reasons: in
order to be more consistent with the other tasks of the suite–
comparing models across all tasks in terms of accuracy, and,
to reduce the impact of confounding factors. For example,
since some metrics can be correlated to code size, a model
that predicts, e.g, a high complexity for all larger methods,
could score deceptively well in a regression scenario. We ob-
served this during the design of this study when comparing
regression and classification variants of the same task. By
defining classes and requiring an exact prediction on those
classes, we reduce the incentive of models to rely on factors
that might be indirectly correlated.

We subdivide the metrics-based task into two sub-
categories: a) count-based metrics, which probe for surface-
level metrics of the method, that provide general indicators
on the code understanding of the model (OCU, VCU, CSC),
and b) complexity-based metrics, which measure various
aspects of a method’s complexity (MXN, CPX, NPT).

The count-based metric tasks describe basic character-
istics of source code. There could be several alternative
metrics that we could use in this category. We focused on
metrics describing the most general concepts, and ultimately
settled on operators (+, *, etc.) (OCU), and variables (VCU),
and code structures (if, for, switch etc.) (CSC).
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With the complexity-based metric tasks, we analyze
more advanced structure-based and control-flow based rea-
soning in pre-trained models. Source code complexity in-
volves having a detailed view of the entire method. Since
there are various measures of code complexity, we probe for
three different aspects of varying difficulty. From easiest to
hardest, our tasks are: MXN, CPX, and NPT.

Operator Count Unique (OCU) Operators are one of the
most elemental way to manipulate data in source code.
This task probes the models for their representations of the
concept of source code operators. We count the number
of unique operators present in the method (e.g., multiple
assignment operators will be counted only once). Thus,
the task emphasizes more operator diversity than simply
counting operators, and is less affected by code size. We
define 10 classes representing the exact count of unique
operators, without binning.

Variable Count Unique (VCU) Identifiers are omnipresent in
source code. VCU probes the models for their representations
of identifiers at the level of a method. Similarly to OCU,
we count the number of unique identifiers in the method,
rather than the total count, to emphasize diversity rather
than counting. Likewise, we define 10 classes that represent
the exact count of unique variables, without binning.

Code Structure Count (CSC) This task probes for a more
comprehensive view of control flow in the method. Here,
we count all the code structures present in the method (e.g.,
if, for, do-while, while, switch or try blocks). Thus this task
goes beyond NMS and NML as it probes for additional struc-
tures. For CSC we define 10 classes, representing the total
count of code structures in the method, without binning.

Maximum Indentation (MXN) We first test for a proxy
of source complexity, which is the depth of indentation.
Indentation often reflects complexity as code blocks inside
other code blocks are, by convention, further indented to
the right. Indeed, Hindle et al. found correlations between
indentation level and various complexity metrics [49]. We
define 5 classes, as deeper indentation levels are uncommon.

Cyclomatic Complexity (CPX) Cyclomatic complexity is an
established measure of complexity: it counts the number
of linearly independent paths in the control flow graph
[50]. This requires a more advanced level of reasoning as
it requires not only knowing about the existence of code
structures, but also how they relate to one another and
how they might affect control flow. We measure Cyclomatic
Complexity to define 10 classes corresponding to exact
complexity values ranging from 0 to 9, without binning .

Npath Complexity (NPT) Npath complexity measures the
number of possible execution paths in a method, excluding
cycles [51]. Compared to Cyclomatic complexity, this metric
has a much higher spread of values as the number of
possible paths grows faster than the number of linearly
independent paths. For a pre-trained model, we expect that
reasoning about Npath complexity is thus more complex
than Cyclomatic complexity. To accommodate for the larger
range of values and NPT’s exponential behavior, we use bin-
ning to manually define 10 classes. The bins progressively
widen: 1, 2, 3, 4–6, 7–8, 9–10, 11–15, 16–20, 21–30, 31–100.

3.3 Incorrect-code tasks
Models trained on existing source code should have some
notion of what correct code looks like. Indeed there is
evidence that buggy source code is less natural than fixed
source code for n-gram models [52] and for LSTMs [53]. For
the final category of tasks, we probe the ability of model
to differentiate between code that is correct and incorrect in
various ways. Most of the incorrect code samples in these
tasks would be easily caught at compile time. Thus, we
use these probes to determine whether pre-trained models
understand such inconsistencies in source code inputs.

We divide the incorrect-code tasks into two sub-
categories: a) mistyped code probes (TYP, REA, JBL), and
b) semantic replacement probes (SRI, SRK, SCK), which
provide general indicators on the degree of syntactic and
semantic understanding of the models.

Detect Invalid Types (TYP) For this task, negative samples
have a single primitive datatype that is intentionally mis-
spelled (e.g., float to flaot, or folat). This allows us to probe to
which extent models are sensitive to mistypes that would be
easily detected by a compiler. For each negative sample, we
misspell a single datatype, while there may be other correct
occurrences of the same datatype in the sample.

Relational operator to Assignment (REA) The Relational to
Assignment Operator mistyped task evaluates whether pre-
trained models can distinguish between the syntactic usages
of relational and assignment operators. Some code snippets
are mutated so that the relational operators are switched
with assignment operators (e.g. <= may be switched with
+=, or != with /=). The mutated code may look superficially
correct, therefore, such a change may be difficult to detect.

Jumbled Code Tokens (JBL) For this task, the invalid code
snippets are mutated by swapping two consecutive source
code tokens, chosen randomly (e.g., int foo = 4; to int
= foo 4;). This task probes the sensitivity of models to
the order of tokens: this is a small change at the level of
a method, but a model that has knowledge of source code
syntax should perform well in this task.

Switch Random Identifier (SRI) This is a semantic token
replacement task where one occurrence of a valid identifier
is replaced with another non-identical identifier from the
same sample chosen randomly. The mutated code looks
superficially correct: without additional information (e.g.,
which class, variables, and methods are in scope). Thus SRI
probes models for their ability to determine if an identifier
is out of context.

Switch Random Keyword (SRK) Invalid code snippets are
mutated by replacing a language keyword such as int, with
any random keyword such as for. Thus the probability that
the token is not compatible to the context is high. This
probes the models for their sensitivity to language rules—
syntax and semantics—in a specific context.

Switch Compatible Keyword (SCK) Invalid code snippets
are mutated by replacing a language keyword such as
double, with another compatible keyword from the same
keyword category such as int (primitive datatypes). Another
example is switching assert with throws, both of which
belong to the same keyword category (error handling).
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4 THE INSPECT PROBING FRAMEWORK

INSPECT is the framework that we make available for
researchers to perform probing studies. INSPECT is written
in Python but it is programming language agnostic—it can
work with datasets with samples in multiple programming
languages. In our case, we use the JEMMA Dataset [54] to
define probing tasks for the Java programming language.

Task definition. We use the JEMMA Dataset, derived from
50K-C Dataset [55], in conjunction with the JEMMA Work-
bench to gather data from a large corpus of Java source code.
Once a dataset is created, INSPECT automates the rest of
the work related to probing evaluation. We have a set of
15 probing tasks that can be readily used to probe further
models. However, since tasks can vary widely depending
on the code characteristic of interest and programming
language of interest, users may also define additional tasks.

Get frozen representations. The first step that INSPECT
automates is getting the learned representations from the
pre-trained models. INSPECT makes it easy to interface with
models that are on the HuggingFace model hub, the most
common way to share Transformer-based models2. Given a
pre-trained model url, INSPECT will download it, pass each
task sample (from training, validation, and test sets) through
the model, and collect the model’s activations at each layer.

Train Probes. INSPECT then uses the vector frozen repre-
sentations as input for each probe sample and collects the
corresponding labels from the original datasets. Following
which, INSPECT trains and evaluates the probing classifier
on the probing tasks. The original model is not fine-tuned
during this step

Compute results. INSPECT collects performance data of
the probe from each model layer. The framework generates
extensive data visualizations of the model’s performance,
including raw and derived performance metrics exported as
CSVs for further analysis, heatmaps of the model’s per-layer
performance, and confusion matrices of predictions.

Time and space constraints. Once a new probing task is
defined, the process is entirely automated. Depending on
the task, dataset size, and number the models to probe
on, the amount of space (to store the frozen representa-
tions), and time (to train the probe) needed may vary. In
our case, the amount of space needed to store the frozen
representations for each task is about 9-12 GB, considering
just the representations from the models that are included
in our evaluation. We estimate that running a single probe
(in our case, a probing task with a sample size of 10k) on
8 source code models requires roughly 6 hours, including
pre-trained feature extraction, hyperparameter tuning, and
probing classification, on a single NVIDIA 2080Ti GPU. The
time and space considerations multiply, when more probing
tasks (and/or models) are considered.

Availability INSPECT is open-source and is available on
GitHub at: https://github.com/giganticode/ inspect. All probing
task datasets used in this paper are also available in the
same repository. We encourage researchers to evaluate their
models with our probing suite, and to extend our suite with
new probing task datasets exploring further characteristics.

2. https://huggingface.co/models

5 METHODOLOGY

5.1 Datasets, metrics and preprocessing

Datasets. To build the datasets for our probing tasks,
we retrieved our code samples parsed at the method-level
from the JEMMA Dataset. For each task dataset we carefully
selected 10,000 suitable Java method samples, taking care
that all of the classes are balanced (1,000 samples per class
if the task has 10 classes; 2,000 if it has 5; 5,000 for binary
classification). We exclude basic Java getters and setters to
make the task less reliants on these easy methods. When
possible, we select methods that are shorter, to avoid trun-
cation; however some rare labels do not make this always
possible. For models that have a window of 512 tokens,
on average, 3% of methods are truncated. We also define
a smaller dataset for each task, with 1,000 samples only, to
study the impact of less data. For each probing task we split
the data into training, validation, and test datasets in the
following ratio: 60-20-20.

Performance metrics. Since all of our tasks are balanced,
we use classification accuracy as the standard metric in this
study. Due to the large number of tasks, accuracy also allows
us to simplify the presentation compared to using multiple
metrics such as recall, MSE, or other regression metrics.

We considered using regression for the metrics task but
after judicious assessment elected not to do so, both for
consistency and to reduce confounding factors, as explained
in Section 3.2. Another justification is that the raw metrics
are not as important in the case for probes, as much as the
pattern of learning evident in the model layers, and the
relative performance among models. In fact, the regression
scores for such tasks show identical learning patterns across
the layers for the evaluated list of models. When summariz-
ing the results at a higher level, we simply rank the models.

Preprocessing. We tokenize the method samples, which
removes the comments, tabs, and new line symbols, which
transforms the raw source code into suitable input code rep-
resentation for the pre-trained models. The method samples
are truncated if the maximum sequence length of the model
is exceeded, even though it is not a common phenonmenon
in the samples of our probing datasets.

Collecting feature data. We pass each sample through
the model(s), and collect the vector representation of the
sample at every layer. We do not collect the representation
of individual tokens, as the features would be too large. We
focus on the features of summary tokens, e.g., models that
follow the BERT architecture have a special [CLS] token at
the beginning of the sequence that is used as the overall
representation of the entire input [3]. We follow the docu-
mentation of the models on the HuggingFace model hub or
the respective papers in order to find the correct summary
token if they do not have a BERT-style architecture.

Training. For training the linear probing classifiers, we train
with a batch size of 1 for 20 epochs; we utilize early stopping
with a tenacity of 5; we use the Adam optimizer to adapt the
learning rate; and we use l2 regularization—optimizing the
value of the coefficient during hyper-parameter tuning. The
classifier itself is a single linear layer, with a classification

https://github.com/giganticode/inspect
https://huggingface.co/models
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layer on top, which takes as input the frozen representation;
the size of the layer matches the size of the input.

Training performance is evaluated on the validation
set. Note that the hyper-parameters are simpler and less
impactful since the only training that we do concerns linear
probing classifier. We repeat this process for each model and
each model layer. Finally, we gather evaluation data on the
test set, which we use to present the results of this paper.

5.2 Pre-trained Transformer models
We evaluate 8 pre-trained source code models (Table 1), and
compare their performance against a baseline model, BERT,
which is not specifically trained on source code.

BERT is primarily pre-trained on the English language
(BooksCorpus—800M words, Wikipedia—2.5B words), us-
ing the following objectives: Masked Language Modeling
(MLM, predicting masked tokens), Next Sentence Prediction
(NSP, classifying whether two sentences are related).

In contrast to the source code models evaluated in this
study, BERT is an interesting reference point as a baseline,
since we do not expect that it has knowledge of source code.
We briefly discuss the source code models in the following
paragraphs.

5.2.1 Encoders

CodeBERT [4] is trained unimodally and bimodally: on
just source code, and, on source code with comments. The
dataset used is CodeSearchNet [56], which has 2.1M bi-
modal and 6.4M unimodal data points, in six programming
languages: Java, Python, JavaScript, PHP, Ruby, Go.
Training objective. The MLM objective is used for the bimodal
data points, while a Replaced Token Detection (RTD) ob-
jective is used on all the data points. The RTD objective is
used to classify whether tokens are original or substituted.
CodeBERT uses n-gram models as generators, one for code,
one for natural language.

CodeBERTa [57] is pre-trained on data from the Code-
SearchNet dataset following the RoBERTa training objective
[58]. Note that this model is considerably smaller than the
other ones, with only 6 layers and 84 million parameters.
Training objective. RoBERTa keeps BERT’s MLM objective,
but makes it dynamic (each training epoch masks different
tokens); it also does not utilize BERT’s NSP objective.

GraphCodeBERT [7] is the model that uses the most
structural source code information. During pre-training,
GraphCodeBERT takes as input the nodes of the data-
flow graph (DFG), in addition to source code and natural
language comments. It is also trained on CodeSearchNet.
Training objective. It uses three pre-training objectives: MLM;
DFG edge prediction (attention edges are masked for 20% of
the nodes and should be predicted); and Node Alignment
(predicting edges between code tokens and DFG nodes, for
20% of DFG nodes).

JavaBERT [59] is transformer-based source code model
trained specifically on Java source code (∼3M Java source
code files). We use the javabert-base-cased checkpoint since
Java is case-sensitive, and it showed better performance
overall compared to the other checkpoint. With just 110M
parameters it is one of the smallest models that we probe.

Training objective. JavaBERT is based on the BERT model
with the same masked-language-modelling (MLM) training
objective. Note that unlike other models, the input is not
processed to be at the level of functions.

5.2.2 Encoder-Decoders

PLBART [60] is a bidirectional and auto-regressive trans-
former which is pre-trained on source code and natural
language. It is based on the BART model [61]. The authors
of the paper have made multiple models available: we use
a version of PLBART that is trained specifically on Java.
Training objective. It is based on the BART model and pre-
trained on a denoising objective: a corrupted data point
must be reconstructed. Three noise sources were used:
masked tokens, deleted tokens, and token infilling.

CodeT5 [62] uses the T5 architecture [63], which unifies
all tasks as text generation tasks. CodeT5 is trained on
CodeSearchNET, along with additional data for C and C#.
Training objective. CodeT5 inherits T5’s Masked Span Predic-
tion (MSP) objective, which is similar to MLM, but the mask
can hide a sequence of 1 to 5 tokens. CodeT5 is even pre-
trained on text-to-code and code-to-text generation. CodeT5
also uses identifier-specific pre-training tasks: Identifier Tag-
ging (classifying tokens as identifiers or not), and Masked
Identifier Prediction (predicting all the identifiers in a snip-
pet).

UniXCoder [8] is an unified encoder-decoder pre-trained
model, which is trained in a cross-modal manner leveraging
AST and code comments to enhance code representations.
We probe the unimodal checkpoint in encoder-only mode
since it showed better results for all the probing tasks.
Training objective. UniXCoder uses three NLP training ob-
jectives: MLM, classical left to right next-token language
modelling, and MSP. It also uses two code-specific objectives
at the level of the entire code fragment. The entire code
fragment is encoded and used for cross modal generation
(generating the text comment) and contrastive learning
(finding the right text comment among several random
comments from the same batch). UniXCoder is pre-trained
on flattened ASTs, but uses the leaves of the AST (i.e.,
raw source code) for fine-tuning and inference. In addi-
tion, the model utilizes mask attention matrices with prefix
adapters to control its behaviour (encoder-only, decoder-
only, encoder-decoder).

CodeReviewer [64] is a model designed to understanding
code to to assess logic, functionality, latency and other
factors as part of code reviewing activities. The model is
an encoder-decoder model based on the T5 architecture. It
is the largest model we probe with 223M parameters.
Training objective. Distinct from other models, this model is
pre-trained on code review diffs, rather than source code
only, with four pre-training objectives: Diff Tag Prediction
(DTP, was a line added, deleted, or kept), Denoising Code
Diff (DCD, generating a code line based on context and
diff tag), Denoising Review Comment (DRC, MSP for review
comments), and Review Comment Generation (RCG, gener-
ate review comment given code and other comments).
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Model Params. Layers Heads H. Dim. URL
CodeReviewer 223M 12 12 768 https://huggingface.co/microsoft/codereviewer
CodeT5 220M 12 12 768 https://huggingface.co/Salesforce/codet5-base
PLBART 140M 6 12 768 https://huggingface.co/uclanlp/plbart-multi task-java
GraphCodeBERT 125M 12 12 768 https://huggingface.co/microsoft/graphcodebert-base
CodeBERT 125M 12 12 768 https://huggingface.co/microsoft/codebert-base
UniXCoder 125M 12 12 768 https://huggingface.co/microsoft/unixcoder-base-unimodal
JavaBERT 110M 12 12 768 https://huggingface.co/CAUKiel/JavaBERT
CodeBERTa 84M 6 12 768 https://huggingface.co/huggingface/CodeBERTa-small-v1

TABLE 1
Probed models at a glance, ordered by size

KTX IDN LEN TYP REA JBL SRI SRK SCK OCU VCU CSC MXN CPX NPT

Random 10 25 20 50 50 50 50 50 50 10 10 10 20 10 10
BERT 54.0 67.8 81.3 89.9 65.3 51.4 54.6 62.4 61.5 20.4 22.5 31.8 59.5 34.6 29.0
CodeBERT 71.8 79.5 82.8 95.3 83.5 71.2 70.5 61.5 62.7 24.0 31.1 39.0 64.7 39.5 32.3
CodeBERTa 73.4 73.0 83.4 93.7 75.8 53.6 58.3 59.6 61.2 18.5 23.2 31.5 45.6 29.0 29.3
CReviewer 79.2 79.4 88.5 89.1 76.2 52.6 54.2 61.9 59.5 19.3 22.4 29.2 51.0 28.1 29.3
CodeT5 70.8 75.3 86.3 93.8 80.0 54.8 62.2 64.2 65.0 20.5 24.1 32.5 57.4 31.1 31.5
GCodeBERT 66.2 78.8 80.0 95.9 80.8 69.4 71.0 64.3 61.9 23.9 33.7 39.5 63.4 36.8 35.4
JavaBERT 60.8 76.8 75.2 88.8 65.7 52.9 58.8 58.5 59.0 19.6 20.5 28.9 44.3 28.1 25.0
PLBART 72.7 76.5 86.7 89.3 62.1 50.1 50.5 59.0 58.3 15.1 18.0 26.8 36.8 25.1 24.8
UniXCoder 73.5 75.6 81.8 90.8 65.0 52.9 66.1 52.9 56.9 20.9 27.8 30.6 51.4 28.1 29.3

Maximum (10k) 79.2 79.5 88.5 95.9 83.5 71.2 71.0 64.3 65.0 24.0 33.7 39.5 64.7 39.5 35.4
Rank 5◦ 4◦ 2◦ 1◦ 3◦ 6◦ 7◦ 10◦ 8◦ 15◦ 14◦ 11◦ 9◦ 11◦ 13◦

Std. dev. (exl. BERT) 5.1 2.1 4.0 2.7 7.7 7.7 6.9 3.4 2.5 2.7 5.0 4.4 9.0 4.6 3.3
Rank 11◦ 1◦ 7◦ 4◦ 13◦ 14◦ 12◦ 6◦ 2◦ 3◦ 10◦ 8◦ 15◦ 9◦ 5◦

∆ with BERT 25.2 11.7 7.2 6.0 18.2 19.8 16.4 1.9 3.5 3.6 11.2 7.7 5.2 4.9 6.4
Rank 1◦ 5◦ 8◦ 10◦ 3◦ 2◦ 4◦ 15◦ 14◦ 13◦ 6◦ 7◦ 11◦ 12◦ 9◦

TABLE 2
Top: Overall accuracy scores across all tasks. The closer the score is to 100 the more green, the closer it is to random accuracy the more red it is.

Bottom: Best performance per task (and rank); Standard deviation of code models (and rank); Delta between best model and BERT (and rank).

KTX IDN LEN TYP REA JBL SRI SRK SCK OCU VCU CSC MXN CPX NPT

BERT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CodeBERT 38.7 36.3 08.0 53.5 52.4 40.7 35.0 3.1 4.4 11.1 10.6 12.8 7.5 4.6
CodeBERTa 42.2 16.1 11.2 37.6 30.3 4.5 8.1 1.0 0.4
CReviewer 54.8 36.0 38.5 31.4 2.5 0.4
CodeT5 36.5 23.3 26.7 38.6 42.4 7.0 16.7 4.8 9.1 0.1 2.1 1.0 3.5
GCodeBERT 26.5 34.2 59.4 44.7 37.0 36.1 5.1 1.0 4.3 14.4 11.3 9.6 3.4 9.0
JavaBERT 14.8 28.0 1.2 3.1 9.3
PLBART 40.7 27.0 28.9
UniXCoder 42.4 24.2 2.7 8.9 3.1 25.3 0.5 6.8 0.4

TABLE 3
Comparison with the BERT baseline (normalized w.r.t the BERT accuracy as the lower limit and 100 as the upper limit for each task; cells are

marked grey where accuracy is below the BERT baseline accuracy).

6 RESULTS

In this section, we discuss the probing results, in 3 parts:
Task analysis, Model Analysis, and Layer Analysis.

Due to the large number of tasks, we often group them
into the categories that they were presented in, in Section 3.
The results in this section refer to Tables 2 and 3 below.

6.1 Task analysis

To determine how effective models are against the probes,
we first take a look at their collective performance, and pose
the following research questions below. This gives us an idea

as to which characteristics for which tasks, are well-encoded
in the hidden layers of the models.

• RQ1.1 To what extent can current source code mod-
els encode intrinsic code characteristics?

• RQ1.2 To what extent do source code models encode
code characteristics better than the baseline?

To answer RQ1.1, we look at the maximum model
performance for each task, as well as the standard deviation
of source code model accuracies for each task.

To answer RQ1.2, we compare the difference between
highest accuracy recorded for a task and the BERT baseline
accuracy, which is not trained on source code.

https://huggingface.co/microsoft/codereviewer
https://huggingface.co/Salesforce/codet5-base
https://huggingface.co/uclanlp/plbart-multi_task-java
https://huggingface.co/microsoft/graphcodebert-base
https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/unixcoder-base-unimodal
https://huggingface.co/CAUKiel/JavaBERT
https://huggingface.co/huggingface/CodeBERTa-small-v1
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6.1.1 Collective performance on tasks

Token-based tasks: For Token-based tasks such as KTX
(79.2%), IDN (79.5%), as well as LEN (88.5%), we observe
good overall performance. In terms of the standard devi-
ation among the source code models, IDN and LEN have
low variance (sigma ranks 4 and 2), with KTX exhibiting
somewhat higher variance (sigma rank 11).

Therefore, since the accuracies of the models are gener-
ally high, with a generally low variance in scores, this shows
that identifier-based syntactic information and token-level
surface information are well-encoded in all the models, al-
though information pertaining to keywords is more model-
dependent.

Mistyped tasks: For Mistyped tasks such TYP (95.9 %),
REA (83.5%), and JBL (71.2%), we see considerable varia-
tions in performance. For the TYP task, all models perform
considerably well, with a low variance across the model
scores (sigma rank 4). In fact, if we look at the layer-wise
performance of each model, almost all layers reflect high
scores, indicating this is an easy task; and intrinsic informa-
tion relevant to identifying unnatural misspelled types are
well-encoded in the model hidden layers.

For REA even though the best reported score is high
(83%) the variance among the model scores is the highest
(σ rank 13) For JBL, the variance is slightly higher (σ rank
14), while the performance is somewhat lower (71.2%). This
indicates that although some models may perform well or
moderately well in term of accuracy, other models may
struggle to make good predictions altogether. Indeed, the
lowest scores for this task range from 50-60%, which is
clearly not impressive considering that the random accuracy
for these tasks is 50% (binary classification). This shows us
that there is room for improvement for some models in
encoding comprehensive semantic information relevant to
these tasks.

Replacement tasks: Replacement semantic tasks such as
SRI (71 %), SRK (64.3%), and SCK (65%), report modest
prediction accuracies. Moreover, the variance for the best-
performing task, SRI, is high (σ rank 12). This indicates that
while some of the models may have significant awareness
of this type of semantic information, others struggle. In fact,
several models have performance below 60% (some close to
50%), which is very low for a binary classification task with
a random chance accuracy of 50%.

The more difficult tasks SRK and SCK start to show the
limits of current source code models, as it is more chal-
lenging for them to distinguish these more difficult cases.
While performance is relatively low, the variance is also low
(sigma ranks 6 and 2), indicating that the models have more
comparable performance. Overall, this indicates that there is
significant room for improvement for this task category.

Count-based tasks: For Count-based tasks such as OCU
(24.0%), VCU (33.7%), and CSC (39.5%), we see evidence
that source code models struggle with surface-level and
structural information. This is particularly for OCU, which
is the worst-performing task overall. While the models
score significantly better than the naive accuracy (10%),
the overall accuracies demonstrate that these are harder
tasks. For comparison, we see that KTX has a similar naive
accuracy, but the models perform much better. The variance

between models is intermediate (sigma ranks: 3, 10, and
8), indicating that some models tend to struggle less than
others.

Complexity-based tasks: Finally, the Complexity-based
tasks show further evidence that source code models strug-
gle with structural information. While MXN has relatively
good performance (64.7%), CPX and NPT are on par with the
Count-based tasks (respectively 39.5% and 35.4%). In terms
of variance, the models are very spread out for MXN (the
highest of all tasks), and moderate for CPX and NPT (sigma
ranks 9 and 5). This shows that some models struggle more
than others to encode structural information relating to the
control-flow in code (particularly regarding indentation).

6.1.2 Comparison with the baseline

Comparing the performance of the models with BERT ac-
centuates the emerging trend in RQ1.1. While for some
tasks, the performance increase over BERT is very high
(as high as 25%), for others, the source code models of-
fer very little improvements (as low as 2%). In terms of
task categories, Token-based and Replacement tasks are the
ones where the largest improvements are seen, although
there is variation accross tasks. Replacement and Count-based
tasks exhibit moderate improvements as a group (again
with some variation), with Complexity-based tasks having the
smallest improvements as a group.

Given the performance variation as a group, we briefly
discuss the tasks with the highest and lowest improvements.
The tasks with the largest improvement are KTX, JBL, and
REA (tasks related to the semantic of individual keywords
and of the method), followed by SRI, IDN, and VCU (all
tasks that have to do with identifiers). On the other hand,
the tasks with the smallest improvements are SRK, SCK,
OCU, CPX, and MXN. These include two of the Complexity-
based tasks, as well tasks relating to keywords in context,
and operators. These tasks are also tasks where the models
are struggling in the first place.

6.1.3 Summary

The overall picture that emerges is that source code models
can do very well on syntactic token tagging tasks, and tasks
that probe on the surface-level token-length, and on a subset
of our semantic tasks such as Mistyped tasks.

For harder semantic Replacement tasks, the models per-
form moderately when identifiers are involved (SRI), and
less well when keywords are involved. This shows that
there is room for improvement for comprehensive semantic
understanding in models. Furthermore, we observe that
there are clear issues with tasks that involve more structural
knowledge of source code, that is less easily extracted from
a sequence of tokens.

Finally, a further sign that models are struggling is that
for the more difficult tasks, the improvements over tend to
be small overall.

Source code models tend to perform well on tasks that probe
syntactic and some semantic characteristics, but they clearly
struggle with tasks that probe more structural characteristics.
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Model vs. BERT Layers Rank 1 Rank 2 Rank 3 < BERT

GraphCodeBERT 6 5 2 1

CodeBERT 6 6 — 1

CodeT5 1 1 6 2

CodeReviewer 2 1 — 9

UniXCoder — 1 3 6

BERT — — — 3 —

PLBART — 1 — 12

CodeBERTa — — 1 6

JavaBERT — — — 10

TABLE 4
Model Performance summary: task performance sparklines, layer

performance sparklines, and medal tally

6.2 Model analysis

In this section, we inspect the performance of the models
individually across tasks, and task categories. We pose the
following research questions as to ascertain which models
encode the most information across tasks:

• RQ2.1 Which models are the best in each category?
• RQ2.2 What are the best models overall?

6.2.1 Performance on task categories.

For RQ2.1, we focus on the performance of the models in
each task category, and the performance against the BERT
baseline. Table 3 shows the performance of the source code
models, normalized against the BERT baseline accuracy.

Token-based tasks: For token-based tasks such as KTX
and IDN, all source code models comfortably exceed the
BERT baseline accuracy. For KTX, CodeReviewer is the
best performing model, while, for IDN, CodeBERT and
CodeReviewer report the best probing accuracies.

The BERT accuracies for KTX and IDN are the lowest
among the other evaluated models, indicating that, as ex-
pected, source code models are as a whole much more pro-
ficient in learning such code-specific characteristics related
to keyword and identifier syntax than BERT. Almost all
models outperform BERT on KTX by more than 10%, and
all models exceed BERT’s performance on IDN by at least
5%, with several exceeding 10%.

Although BERT does quite well for the LEN task, most
code models outperform BERT significantly, suggesting that
they have a greater knowledge of surface-level information
that are encoded in their hidden layers. Six source code
models exceed the BERT baseline by as much as 7% for
the LEN task. CodeReviewer is the best performing model,
while PLBART and CodeT5 are competitive. Interestingly,
two BERT-based source code models are under-performing
on LEN (GraphCodeBERT and JavaBERT), while the top
three models all have an encoder-decoder architecture, sug-
gesting that the encoding of intrinsic information relevant
to LEN may be influenced by model architecture.

We note that for KTX, IDN, and LEN tasks, CodeReviewer
is consistently among the best performing models.

Mistyped tasks: For incorrect code tasks, almost all
source code models exceed the BERT baseline. In all cases,
CodeBERT and GraphCodeBERT vie for the top two po-
sitions. CodeT5 is consistently third, with CodeBERTa
and CodeReviewer being occasionally competitive. Impor-
tantly, while all but one models exceed BERT’s performance
for JBL, only CodeBERT and GraphCodeBERT do so with
a consequent margin (19.8% and 18%), outlining that this
is a more challenging task. On the other hand, five models
outperform BERT by margin that exceeds 10% on REA.

Replacement tasks: For the semantic-replacement task
SRI, two source code models outperform the BERT-baseline
by at least 15%: GraphCodeBERT, CodeBERT. They are
followed by UniXCoder and CodeT5, which have also
sizeable improvements over BERT. Other models are closer
to BERT, if not worse. For both SCK and SRK how-
ever, most models perform worse than BERT. Only CodeT5,
GraphCodeBERT, and CodeBERT can surpass BERT’s per-
formance, and do so by small margins even in the best of
cases (less than 2% for SRK, 3.5% for SCK). Most models
are close together (except UniXCoder on SRK). If there is a
silver lining, it is that the difference is larger on SCK. Since
SCK requires that models find replacements of compatible
rather than random keywords, it is a task that requires more
source code knowledge than SRK. Indeed, BERT does worse
on SCK than SRK, while some models such as CodeT5 or
CodeBERT do slightly better. BERT actually ranks third on
the SRK task (fourth on SCK).

GraphCodeBERT, CodeT5, and CodeBERT are consis-
tently among the best for Mistyped and Replacement tasks.

Count-based tasks: For OCU, VCU, and CSC, most source
code models perform worse than BERT. Only two models per-
form consistently well (GraphCodeBERT and CodeBERT),
with UniXCoder a distant third. A silver lining is that on
VCU and CSC, GraphCodeBERT and CodeBERT outperform
BERT by noticeable to consequent margins (7 to 11%). In
particular, GraphCodeBERT does comparatively well on
VCU (+11.7% over BERT). One reason for this might be
that reasoning about variables is very well aligned with
GraphCodeBERT’s original training objective. That said, in
absolute terms, GraphCodeBERT’s performance is limited
(barely a third of correct predictions).

Complexity-based tasks: For Complexity-based tasks, only
two models outperform BERT for CPX and MXN. In both cases,
CodeBERT is first, followed by GraphCodeBERT. Thus,
while at first glance the performance on MXN appears to
be relatively good at 64.7%, most source code models are
actually far below that level (ranging from 36 to 57%).
Surprisingly, the situation is somewhat better for the more
challenging NPT task: more source code models outper-
form BERT. The top three (GraphCodeBERT, CodeBERT,
and CodeT5) do so by a good margin (particularly for
GraphCodeBERT). Three more models barely exceeds the
baseline’s performance. We were surprised that BERT ranks
third in two of the three complexity tasks.

While CodeBERT and GraphCodeBERT perform best, no
model performs well for Count and Complexity tasks.
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6.2.2 Overall model performance

For RQ2.2, we focus on the ranking of models across all
tasks, as presented in Table 4. The table summarizes the
relative performance amongst the models by counting the
number of times the models rank first, second, or third on
any given task. We also provide summary of each model’s
performance via a sparkline inspired graph [65]: tasks are
ordered by categories (Token-based in blue, Mistyped in green,
Replacement in cyan, Count-based in orange, Complexity-based
in red). The layers are normalized with the baseline BERT
performance as the lower bound and the maximum perfor-
mance for the task as the upper bound.

We can see that two models clearly stand out: CodeBERT
and GraphCodeBERT. They are essentially tied. While
CodeBERT ranks second in more tasks (6 versus 5),
GraphCodeBERT arrives in the top 3 in 13 out of 15 tasks,
compared to 12 for CodeBERT. Both models perform below
BERT only once (on LEN for GraphCodeBERT, and on SRK
for CodeBERT).

CodeT5 is a clear, but distant third: it is placed in the
top 3 models in 8 tasks (SCK, SRK, REA, JBL, CSC, TYP, LEN,
and NPT), while performing worse than BERT on only MXN
and CPX. CodeReviewer is fourth, ranking in the top 3 on 3
tasks (twice first, on KTX and LEN, and second on IDN), but
performs worse than BERT on 9 tasks. UniXCoder follows,
placing second on KTX and third on SRI, OCU, and VCU,
while faring worse than BERT on 6 tasks.

The three remaining models (PLBART, JavaBERT, and
CodeBERTa) all perform worse overall than BERT. This leaves
BERT as sixth overall, in particular finishing third on four
tasks: SRK, and two of the three Complexity-based tasks (MXN
andCPX).

CodeBERT and GraphCodeBERT are by far the best per-
forming model, followed by CodeT5. Surprisingly, three
source code models perform worse than the BERT baseline.

6.3 Layer analysis

Studies in the field of NLP have shown for the case of
language, that pre-trained models such as BERT tend to
represent surface characteristics of language best in early
layers, syntactic characteristics in the middle layers, and
higher-level semantic characteristics in the later layers [31].
These studies contribute to our scientific understanding of
these models, which is why we perform a similar study in
the case of source code models. To understand if learning
patterns exist across tasks for a given model, or across
models for a given task, we analyze the layer-by-layer
performance of the models.We aggregate the model scores
into a single inline graph which provides a glimpse into
the overall task learning. Even though the learning patterns
may differ from model to model at an individual-level, the
collective performance indicators help us understand where
relevant characteristics may be encoded.

For the previous analyses, we always considered the
best performing layer for each model. In this section, we
inspect the performance of the models at the layer-level. We
divide our analysis into two parts, layer analysis by tasks
and by models. We pose the following research questions

to determine in which layers learning has taken place most
effectively for the probed characteristics.

• RQ3.1 For a given task, which layers show the most
effective learning of code characteristics?

• RQ3.2 Is the final layer universally suitable across
tasks?

For space and clarity reasons, we simplify the presenta-
tion by focusing on trends and patterns, instead of present-
ing a large amount of numbers corresponding to individual
layer-wise accuracies of each model, across fifteen tasks. We
present inline graphs inspired by sparklines [65] that show
the relative performance of each layer. Detailed layer-wise
heatmaps of model accuracies for all tasks are available in
Appendix A. For each task and each model, we first rank
the layers to homogenize the performance of models and
tasks (higher scores are better) and reduce the influence
of outliers. The ranks are then averaged over all 12-layer
models for a single task RQ3.1 (e.g., LEN: ),
or averaged over all tasks for a single model RQ3.2 (e.g.,
CodeBERT: ), before being depicted in sparklines.

6.3.1 Layer performance by task
Although the very last layer often performs well, and better
than its immediate predecessors—leading to a “last-layer
peak” as shown in e.g., CSC —, we note that the
performance is clearly not always best in the latest layers.
Overall, we can group tasks based on whether the best
performance arises in early, early-middle, middle, or late
layers.

Early layers. Three tasks show aggregate best performance
in the early layers, in two distinct fashions. First, KTX

clearly peaks at the first layer. Second, LEN
and TYP have a broad peak in the first half of
layers, with clear lower scores in the last layers.

Early-Middle layers. Nine tasks exhibit their highest per-
formance in the middle layers. Of these, four show a com-
paratively earlier peak, leading to this classification. These
are CSC , CPX , NPT and REA

.
Middle layers. Three tasks show best scores in the middle
layers, with the last layer usually also performing well.
These are VCU , SRK , and MXN .
Additionally, OCU and IDN show similar,
albeit less-pronounced patterns.

Later layers. Finally, three tasks show a trend of almost
continuous improvement from the early layers to the final
layers. These are JBL , SRI , and SCK

.
Relation to task categories. We note that two Token-based
tasks peak in early layers (KTX, LEN), while IDN, which
relies more on identifier semantics, peaks in the middle lay-
ers. For structural tasks (Count-based and Complexity-based),
three tasks peak in the early-middle layers (CSC, CPX, NPT),
and three others in the middle layers (VCU, OCU, and MXN).
Finally, the more semantic tasks (Mistyped and Replacement)
have one task peaking in early layers (TYP—the easiest),
one each in the early-middle (REA) and middle (SRK) layers,
and three tasks peaking in the late layers (JBL, SRI, and
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SCK). Thus, while we caution against over-interpreting these
results, we note a tendency for structural tasks to perform
better in the middle layers, and for more semantic tasks to
perform better in the later layers, with some tasks that do
not fulfill this model.

6.3.2 Layer performance by model

For the models, we also see several patterns of performance
across layers.

Middle layers. JavaBERT , GraphCodeBERT
, and to a lesser extent CodeBERT and

CodeT5 encode the probed task characteristics
in the middle layers. All models are BERT variants. Inter-
estingly, GraphCodeBERT has a very pronounced pattern,
with very strong middle layers, while layer 10 is almost
always one of the worst performing layers.

Late layers. CodeReviewer and CodeBERTa
show a progressive learning pattern with the best

performance generally originating in the last layer of the
model. Similarly, BERT show a progressive learning
pattern, but since the average performance drops in the last
layer, the penultimate layer encode the most information.
PLBART clearly performs best in the second half of the
layers, but the best performing one is closer to the middle.

In contrast, UniXCoder shows a learning
pattern which is unique, with several individual layers
much better than their neighbours (especially layers 2, 8,
and 12), with layer 8 performing best overall.

It is a common misnomer that the final layer of the model is
the best layer. However, in reality we observe a diversity
learning patterns for source code models. Indeed some
models progressively improve over the layers with the final
layer producing the best results, yet, we also notice some
models encoding significant information predominantly in
the middle layers, as well as in the first layers.

Source code models show a variety of learning patterns, and
do not always perform best in the last layer.

7 DISCUSSION

7.1 Model performance

Overall, both CodeBERT and GraphCodeBERT shows
promising results: they are the most consistent models,
improving upon the BERT baseline in almost all of the tasks.
In fact, they are the only two models to consistently improve
over BERT on the structural tasks, as well as being the only
ones to offer sizeable improvements over BERT in a chal-
lenging task such as JBL. GraphCodeBERT underperforms
the baseline only on LEN. We hypothesize that since the
LEN task does not depend on source code structure, or on
the data-flow, the modelling paradigm in GraphCodeBERT
extracts the surface-level information relevant to the number
of tokens less effectively compared to other models. A deep
dive into the task analysis promises to yield more concrete
evidence. CodeBERT underperforms on SRK; while we have
no clear hypothesis of why that is, we note that this is the
least source code specific of the three Replacement tasks.

7.2 The competitiveness of BERT

We chose to include BERT as a baseline specifically for its
lack of source code knowledge. LEN is only task not about
source code per se; thus LEN was the only task where we
expected BERT to be competitive. Also, our expectations
could have been that BERT might do well on tasks that rely
on identifiers. Identifiers are predominantly composed of
concatenated English words, so BERT might have been able
to use its English knowledge. We expected it to underper-
form on all code-specific tasks, particularly the structural
ones, for which source code differs most from English.

In fact, BERT ’s knowledge of English did not partic-
ularly help it for tasks relying on identifiers such as IDN
or SRI. However, it showed competitive performance for
structural tasks. But this surprising performance on struc-
tural tasks is not due to BERT performing well; rather, it
is more due to the source code models performing surpris-
ingly poorly.

Clearly, all source code models struggle on structural
tasks. One possible reason for this is that pre-trained source
code models using the Transformer architecture do not fully
exploit the structure of source code. Transformers inherit by
default positional embeddings, popular for NLP tasks, that
emphasize the sequential nature of tokens. While this can be
changed, few source code models do it, or adopt a training
objective that takes into account the specificities of source
code (a point discussed further in Section 7.3).

7.3 Factors influencing performance

We have included several models in this study, but each
model varies in several ways from the other models, which
prevents us from unambiguously identifying the factors
that could influence the results. We nevertheless outline our
hypotheses for several such factors.

Influence of the language. One hypothesis could be that
models trained on a single language (Java-specific) could
perform better, since they do not have to dedicate capacity
to other programming languages. We find no evidence of
this, so far. In fact, monolingual models are among the worse
performing models in this study (JavaBERT, PLBART3). But
a real test of this would be, for instance, to compare a
monolingual GraphCodeBERT with a multilingual one.

Influence of the training data. Unlike the other models,
CodeReviewer is trained on diff changes rather than func-
tions. It performs best on KTX, IDN, LEN, and, to a lesser
extent, on REA tasks. One could think that these identifier
level tasks are closer to its training data. On the other hand,
it struggles with tasks that require to reason on an entire
function (e.g., CPX, VCU), which are understandably farther
from its training data.

Performance of decoders. We initially also wanted to
include decoder-only models, such as CodeGPT or CodeGen.
This would have been especially valuable as the largest
models such as Codex or AlphaCode are decoder only
models (both are not available for this study: AlphaCode
is not accessible, and Codex does not allow us to access

3. The PLBART model checkpoint we have probed is trained specifically on
Java on top of the PLBART base model which is multilingual.
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model weights). However we found these models to be
under-performing. One possible reason could be that de-
coders function differently than encoders, and thus could
be harder to probe. The performance on LEN points (albeit
weakly) to encoder/decoders behaving differently already:
three encoder/decoder outperform the BERT baseline by a
sizeable margin, while all the encoders are close to BERT
or underperform it. Of note, UniXCoder, which has en-
coder/decoder capabilities, but that we use in encoder-only
mode, does not outperform BERT. A second reason could
be that these models are trained on a classical language
modelling objective as a continuous stream of files, rather
than encoding single functions. As such, they may have a
very distinct vision of their input, and not have such a
clear boundary of functions, which are purposed as probe
samples.

Influence of Model size. It is hard to extrapolate from
the limited data. The best performing models (CodeBERT,
GraphCodeBERT) are not particularly large. CodeT5 is
among the largest models, and performed relatively well.
CodeReviewer is also larger, but performed less well than
CodeT5, although the different training modality played a
role. Similarly, PLBART is somewhat larger than CodeBERT
or GraphCodeBERT, and yet is one of the worst performing
models. On the other hand, the two other under-performing
models, JavaBERT and CodeBERTa, are on the smaller end.
Another aspect is the number of layers: both CodeBERTa
and PLBART have only 6 layers, while the other models
have 12. Overall, there is insufficient evidence at this stage
to determine how model size would impact performance. A
stricter approach with probes that fixes all parameters but
varies model size would be necessary to study the influence
of model size on encoding of intrinsic code characteristics.

Influence of the training objective. We note that all the
models that under-perform on the BERT baseline have a
training objective that is derived from NLP, but is not
source code specific. On the other hand, GraphCodeBERT
’s training objective forces it to reason about the data flow;
CodeT5 has several identifier-specific pre-training tasks;
UniXCoder uses AST information while training; while
CodeReviewer has training objectives related to code
changes. The only exception is CodeBERT. CodeBERT uses
a pre-training objective (RTD—Replaced Token Detection)
that is not explicitly designed for source code. On the other
hand, RTD can implicitly provide a very source-code spe-
cific objective. With RTD, CodeBERT learns to discriminate
between real source code and fake, but plausible, source
code (source code where some tokens are replaced by the
output of a bidirectional n-gram model [4]). We also note
that GraphCodeBERT performs comparatively well on the
VCU task, which is close to its training objective (reasoning
on the data flow of variables). The fact that models that have
language-specific objectives (explicitly or implicitly) tend
to overperform, while more generic models underperform,
constitutes in our view evidence that the training objective
is a key factor in the model’s performance, although fur-
ther studies should confirm this. We note that Troshin and
Chirkova’s study (discussed in Section 7.6) points towards
similar conclusions.

7.4 Additional Observations

Performance on structural tasks. We also examine the
confusion matrices to better understand the performance
of models on the tasks. For the Count-based or Complexity-
based tasks, we note that the models perform much better
at finding the class “0” than any other classes. It appears
that models can differentiate well between the absence of a
phenomenon and its presence, but counting is farther out of
reach. The models also tend to over-represent one class with
a low count, and another one with a higher count, showing
some ability to differentiate between low and high counts.

From 1K to 10K. We also examined the change in per-
formance when training on only 1,000 samples, rather than
10,000. On average, the models improve their accuracy
by close to 5% when training on 10,000 samples. While
this is good, this also means that the models need a
significant number of samples (at least 10K) for effective
learning, which means that the representations are not that
easy to access. The best performing models improved the
most (GraphCodeBERT, followed by UniXCoder and by
CodeBERT). Another crucial aspect observed when train-
ing the probes with 1,000 and 10,000 samples is that the
irregularity (uneven trend) in accuracies across the model
layers is stabilized as more samples are provided. This gives
a more robust characterization of the model learning for
the different intrinsic code characteristics. We have observed
this for all tasks in our probing suite.

7.5 Implications

Using NLP-based models as baseline. We were surprised
by BERT ’s performance in some tasks, which provides very
valuable context for the performance of the source code
models. As such, comparing with a NLP-based baseline that
is not specifically trained on code, and that is not expected to
perform well on source code, may yield unexpected results,
and help researchers better frame their results.

INSPECT extension. We defined a suite of probing tasks,
but this is by no means final. Our framework allows for
addition of new tasks and new languages. Then they can
be used to run additional experiments. For instance, releas-
ing similar tasks in other programming languages would
allow to test whether multi-lingual model have similar
quality of representations in all the languages that they were
trained on. Extending inspect to another language would
not drastically change inspect, but significant data gathering
and pre-processing might need to take place before this.
Additional tasks would allow to probe for representations
of additional concepts that our initial suite could not cover,
and potentially shine a light on additional shortcomings of
source code models. We have in mind several possible tasks
that could be probed but did not include as of now (see
Appendix B), and we have no doubts the community would
have many more. Another way to extend our framework
is to support model architectures beyond Transformers.
This would allow us to probe for additional models that
represent more explicitly the structure of programs in their
architecture, such as GNNs [66], models that use path-
based representations such as Code2Seq [67], or models
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that augment path-based representations with precise flow
information such as Flow2Vec [68] and ContraFlow [69] .

Further research on training objectives. Our results pro-
vide evidence that the training objective influences the
model’s representation of source code concepts. Moreover,
our results show that if models perform well on semantic
tasks that can be solved by reasoning at the level of tokens or
sequence of tokens, the models struggle with probing tasks
that require them to reason about source code structure.
This holds even for the best performing models such as
GraphCodeBERT. Clearly, this calls for additional investiga-
tion into whether training objectives that take the structure
of code into account would impact performance, and in
which way. For instance, it is possible that such training
objective would come with tradeoffs: if GraphCodeBERT
is one of the best models in the structural tasks, it is one
of the worst models on KTX, for instance. Designing novel
training objectives, investigating if such tradeoffs occur, and
if they can be mitigated, are all ample avenues for future
work. Some particularly interesting training objectives to
investigate include ones that model program paths, such
as Flow2Vec [68], that leverage contrastive learning such
as ContraFlow [69], or approaches that combine multiple
models such as Fix-Filter-Fix [70]. However some of these
approaches would need INSPECT to be extended.

Transfer to downstream tasks. Finally, our probing task
suite investigates only the pre-training stages of source code
models. Whether better representations after pre-training
translate to increased performance on end tasks, or if fine-
tuning is enough should be systematically investigated.

In addition, our task suite could be used to investigate
to which extent fine-tuned models conserve their represen-
tations of the probed concepts, or if they are subject to
“catastrophic forgetting”. Troshin and Chirkova have some
initial results that point towards this in their study [45].
Finally, we note that the paradigm for the largest language
models such as Codex or AlphaCode is at the moment to
forego or de-emphasize fine-tuning and to rely on prompt
engineering instead. While we do not have access to the
inner weights of these models to probe them, such a use case
constitute an additional incentive to probe these models,
and to perform research in finding the right pre-training
objective for source code models.

Towards a better understanding of source code models.
Diagnostic tasks, taken in isolation or together as a whole,
can be used to further our scientific understanding of what
source models learn. In a context where these models are
both notoriously opaque, but, at the same time, taking an
increasingly larger place in the world, we think that this
is an important endeavor. A very interesting direction for
future work is to study the link between diagnostic tasks
and practical tasks. Practical tasks are more complex than
diagnostic tasks, which probe for very specific characteris-
tics. However, we hope that diagnostic tasks can be used
to form hypotheses on the performance of practical tasks
(e.g., that performance on a practical task might be subpar
on some parts of the data due to a model’s lack of structural
understanding). Needless to stay, extensive further work in
this direction would be needed to confirm that it is practical.

7.6 Relationship to other studies

As mentioned in Section 2, several studies have also ana-
lyzed source code models since our first study. We briefly
discuss their results in relation with ours.
Comparison with Troshin and Chirkova’s study. We find
both some similarities and some differences, which we
discuss here. At a high level, we find that the models per-
formed considerably worse on our tasks (e.g. in Algorithm
the “worse” task from Troshin and Chirkova, some source
code models exceed 75% accuracy). This could be due both
to the selection of tasks (we are testing for source code
characteristics that are less well represented), or the data
selection (starting with more data, we were able to select a
more challenging subset, e.g. enforcing that it is balanced).

Since our selection of tasks is different, we can not
do a detailed per-task comparison. However, we note that
there is a degree of similarity between their Variable
Misuse task, and our SRI task. In both tasks, there is
a considerable gap between BERT’s performance and the
best-performing models. In both tasks, GraphCodeBERT,
CodeBERT, and CodeT5 perform well (although CodeT5
performed less well on SRI task, and PLBART performed
considerably worse—it seems that our version of the task is
more discriminative).

Turning to the high-level conclusions, Troshin and
Chirkova observe that “[BERT] performs worse than the
models pretrained on code in all tasks except the semantic-
related Readability and Algorithm tasks, where all
pretrained models perform similarly” (one caveat is the size
of the datasets for Algorithm and Readability, 934 and
200 datapoints). We find that we have significantly more
tasks where BERT performs comparably or better than some
or most pre-trained models; in fact, BERT achieves third
place in 4 occasions out of 15 tasks, including all tasks
related to code complexity. In only 7 tasks out of 15, we find
that the majority of source code models do better than BERT.
If both studies point out strengths and weaknesses of source
code models, our study has more conservative conclusions.

Troshin and Chirkova also consider whether models
pretrained with code-specific objectives perform better.
For instance, they find that GraphCodeBERT performs
best in their DFG Edge Prediction task, which is sim-
ilar to its pretraining objective. Likewise, we find that
GraphCodeBERT performs best in our VCU task, which
bears some similarity to its pretraining objective. On dif-
ference is that we observe consistently worse performance
for models with basic NLP objectives (some of them not
in Troshin and Chirkova’s study), which provides us with
additional evidence supporting the conclusion, but from the
other side of the spectrum. Overall, the fact that both studies
find evidence that code-specific pre-training objectives have
a positive impact on probing performance increases our
confidence in this conclusion.

Troshin and Chirkova also investigate performance
across layers (discussed below). Finally, they also consider
model size: they were able to compare two variants of the
CodeT5 and PLBART models on their task suite. However,
they find mixed evidence of the benefit of model size (it
is positive in 6 of 8 tasks for CodeT5, and 4 of 8 tasks for
PLBART). This echoes our lack of conclusion on model size.
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Layer-wise performance . Several studies have found that
structural information was best represented in the middle
layers. This is the case of the AST-Probe of Lopez et al.,
which finds that the representation of the AST is better
defined in the middle layers [44]. This find is echoed by the
study of Wan et al. [41], who also measure the representation
of the AST by source code models. Our findings for the
structural tasks go in this overall direction, as we find that
models tend to perform best with the middle layers for
these tasks. However we also encountered several tasks
for which early or late layers where the ones where the
models were performing best, indicating that not all tasks
are behave similarly. Troshin and Chirkova also investigate
performance across layers; they find that for most tasks, the
middle layers (4 to 10) have the highest performance [45].
They also find that some tasks related to variable names
and misuse perform best on the last layer. We also find
that structural tasks perform best in middle layers, and
that semantic tasks tend to perform best in the last layers.
The work by Chen et al. [42] defines the CAT metric, which
performs best in the early layers; however, the CAT score is
based on the attention.
Model performance. Looking at the performance of specific
models, the study of Lopez [44] compares several models
in common with ours. We note that our results go in the
same direction: For both CodeBERT and GraphCodeBERT,
the AST-Probe metric peaks in earlier layers than CodeT5.
The shape of the AST-probe curve for CodeBERTa is also
similar to our results. We also note that CodeBERT and
GraphCodeBERT perform the best with respect to the AST-
Probe, which, again, echoes our results. In Wan’s study [41],
GraphCodeBERT outperforms CodeBERT. In terms of CAT-
Score [42], GraphCodeBERT is usually ahead, followed by
CodeBERT, while UniXCoder struggles to compete with
a RoBERTa baseline. In Troshin and Chirkova’s probing
tasks, GraphCodeBERT is often, but not always the best
performing; CodeT5 is often competitive and performs the
best in their “is variable declared” and “algorithm” task;
CodeBERT is often competitive as well. They also find that
BERT is competitive in the “readability” and “algorithm”
tasks. Finally, if somewhat less related, another work ob-
served surprisingly good performance for BERT on source
code tasks, when BERT is extended with source-code specific
adapters [71].

Overall, our findings contribute to a growing body
of evidence about the way source code models represent
various source code aspects, and in which layers they do
so. Our findings are in general in agreement with other
studies. However, our extensive selection of tasks and our
comparison with the BERT baseline allows us to highlight
the limitations of the current crop of source code language
models, as well as suggesting ways forward in terms of
new experiments, and potential solutions with new training
objectives.

8 LIMITATIONS

In this section, we discuss some of the limitations of our
study. These may be addressed in future works as we col-
lectively develop the probing paradigm further, ultimately,
to better understand the inner workings of large language

models (LLMs), particularly in our case, large-scale source
code language models.

Mono-lingual probes. The majority of the probed models
are pre-trained on multiple programming languages, and
probing them on a single language (e.g. Java) is just a first
step. Further probes in more languages should be designed
to understand the code aspects learned by the pre-trained
models. Our work presents the probing framework and
releases the relevant code with which different models can
be probed on other languages. The work to gather and pre-
process the necessary data in other languages should still be
done, however, and is likely to require some effort.

Possible confounding factors. While we did our best to
make sure our tasks are reliable, there can be an influence
from confounding factors. In particular, we can think of
method size as a possible confounding factors for some of
the structural tasks, as it is well known that there is often
a relationship between lines of code and source code com-
plexity in general [72]. This is why we chose to formulate the
task as a classification task, rather than a regression task. We
think that the impact of this compounding factor, if present,
is limited, since we observe very different performance for
LEN compared to the Complexity-based and Count-based tasks
(e.g., PLBART is one of the best performing models for LEN,
but one of the weakest on the Complexity-based and Count-
based tasks). Moreover, should this confounding factor be
more significant, this would only further highlight that the
source code models, by overly relying on length, have even
weaker abilities to model source code structure than we
previously thought.

Unknown characteristics. We limited this study to fifteen
tasks, in an attempt to balance the broadness of character-
istics necessary to study source models, and the need to
reduce the complexity of the presentation. Nevertheless,
code understanding may depend on several source code
characteristics not covered in this study; further exploration
beyond probing for our current task suite is needed to
explore additional characteristics. We present a few possi-
bilities for further probing tasks in Appendix B, as well as
some tasks that we excluded to streamline the presentation.

Method-level code. Our tasks all focus on the method
as a unit (save for IDN which focuses on single identifier
tokens). We note that broader contexts beyond methods are
still challenging for all but the largest source code models
[73] [54], due to the limited input size of the transformer.
This is why we restrict ourselves to methods only. Tasks that
encompass a larger context should, in time, be developed.

Focus on source code. Our tasks primarily focus on source
code, while many models can handle both source code and
natural language. We chose to focus primarily on source
code, since probing natural language itself has been exten-
sively investigated [28], [35]. However, additional probing
tasks that investigate both source code and natural language
would be a worthwhile addition.
Focus on encoders rather than decoders. We probed two
decoder-only models, CodeGPT [74] and CodeGen [11].
However, our initial results found that these models were
severely under-performing, so we preferred to exclude them
from the study as we suspected more factors could be at
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play (see Section 7). While the current study is specifically
probing for encoded code characteristics in the model, prob-
ing on vector representations from decoders in the future
may yield interesting results. Even though early evidence
indicates that vectors from the encoders extract more infor-
mation than the decoders [45], yet, probes on decoders may
be useful, and perhaps more fair for certain types of models.

Model availability. Our study is subject to the availability
of suitable models to probe. We can not control which mod-
els are trained, nor how they were trained. This necessarily
limits our conclusions, as the models that are available may
not have all the characteristics that we would like to probe
for. For instance, we would have liked to probe more mono-
lingual models, but the research community has principally
focused on multi-lingual language models. We would have
also liked to perform more systematic study of model sizes,
but this is also limited by model availability. The fact that
each model varies in multiple factors prevents us, at this
time, to emit strong conclusions as to which factors influ-
ence performance. Likewise, the largest and most successful
source code language models (e.g., Codex, AlphaCode) are
not available with the necessary degree of access to include
them in our study.

9 CONCLUSION

Large-scale pre-trained models for code have been shown
to perform spectacularly well on a range of Softwae En-
gineering (SE) tasks leading to the release of a number of
popular new tools e.g. Tabnine, IntelliCode [14], or Github
Copilot [10], among many others. As more of such pre-
trained models and derivative tools are introduced to the
SE community, it becomes imperative to improve our un-
derstanding of their capabilities and weaknesses.

In this paper, we have used the probing paradigm to gain
insight into the capabilities of eight state-of-the-art publicly-
available pre-trained source code models. We gauged their
capabilities on a set of fifteen tasks specifically designed
for this study to evaluate a broad set of source code char-
acteristics, including identifiers, structural, and semantic
characteristics. We show how probes can help us uncover
the strengths and weaknesses of a model, to understand
the role played by the individual hidden layers in model
performance, to verify the linear extractability of properties,
and overall to peek into the “black boxes” that are large-
scale pre-trained models.

In summary, we observe that GraphCodeBERT is best
performing model across most tasks, encoding more of the
syntactic, semantic, and structural information than any
other model. While it is hard to isolate all factors unam-
biguously, we think that the training objective is one of the
most important factors that impact performance.

More importantly, we notice that models struggle with
structural tasks. Even GraphCodeBERT’s improvement
over BERT—a model that should not have much source
code knowledge—is slim. This suggests that there is room
for further research in architecting more advanced source
code models that can more effectively leverage source code
knowledge. Additionally, we observed a diversity of learn-
ing patterns in the model layers, indicating that care must

be taken as to determine which layers encode the most
knowledge for specific tasks.

We introduced a probing framework, INSPECT, for the
intrinsic evaluation of large-scale pre-trained models of
source code. Our probing framework automates the entire
probing process and can be used with any model available
on the Huggingface model hub. Furthermore, it is also
extensible with additional tasks. As future work, we plan to
construct probing datasets in multiple languages since the
majority of the pre-trained code models are multi-lingual.
We also plan to define additional tasks to cover more source
code characteristics.

In the long run, such an extensive suite of probing tasks
could be used to thoroughly evaluate novel pre-trained
source code models, thereby forming a pseudo-benchmark
during the development phase, making sure that these
models do encode important source code characteristics.
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APPENDIX A

Fig. 2. Heatmaps illustrating layer-wise model performance across tasks
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APPENDIX B
CANDIDATE TASKS

We briefly describe tasks that we considered for inclusion,
but finally did not include, as well as tasks that we could
consider including in the future.

Discarded tasks
During the course of this work, we developed and exper-
imented with several tasks, but the following are some of
which did not make the final crop of probes.

AST and TAN. Our previous work [1] included a single
token-level AST Node Tagging task. It mixed identifiers
with keywords, and did not test for keyword generalization.
We replaced it with the current token-level tasks: IDN and
KTX. This allows to separately probe keyword and identifier
tagging, which are more nuanced than AST node tagging.
As for TAN, it was a binary classification task where models
were made to predict the most common AST node type
(between identifiers and keywords) in a method. However
we found that all models performed well on the task, which
led us to de-prioritize it in order to simplify the presentation.

JMB and JFT. We experimented with two variants of JBL.
While JBL swaps a single token pair, the variants swapped
50% (JMB) and 100% (JFT) of the tokens. Both variants were
too easily solved by the models, indicating that the models
are able to detect such drastic code changes.

OCT and VCT. They were variants of OCU and VCU that
focused on the total count of operators and variables, rather
than the unique count. We chose the unique variant of each
as we thought it was less sensitive to the confounding factor
of code size, and to reduce the number of tasks; .

NML and NMS They are descendent tasks of CSC where the
number of loops (NML) and the number of if structures (NMS)
are probed separately in each task. The predictions from the
NML and NMS tasks were altogether aligned with the results
from the CSC task, therefore, we decided to only include
CSC to minimize the number of similar tasks.

Possible Future tasks
We also discussed additional tasks, that we have not in-
cluded at this time to limit the amount of tasks.
AST level tasks. We thought that characteristics based on
the source code’s AST, such as AST depth, could be a valu-
able addition. For the moment, the code complexity tasks
cover the most similar concepts. Similarly, we considered
classifying methods according to some patterns in the AST
structure (e.g., “has nested loops”, “has an if in a loop”,
etc.). However, we thought the diversity of possible patterns
might be too high, so we used complexity metrics instead.

Variant incorrect-code tasks. We considered a variant of
SRI were all the occurrences of an identifier would be
swapped with a random identifier, further emphasizing
sensitivity to context. However we thought such a task
might be better suited as a future work. We also considered
higher level variants of the “code jumbling” tasks, such as
jumbling statements or entire code blocks. These would be
extremely interesting, but we thought that they might be too
complex for the current breed of models.
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