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Decision Making for Autonomous Vehicles based on Risk Assessment in
a Dynamic Environment

Dany Ghraizi1, Reine Talj1 and Clovis Francis2

Abstract— Recent advancements in autonomous driving tech-
nologies have significantly enhanced road safety and collision
avoidance. However, ensuring this in dynamic driving environ-
ments remains a challenging endeavor. This paper addresses
this challenge by proposing a high-level risk-aware decision-
making module integrated into the trajectory planner of
autonomous vehicles. The module establishes a function for
dynamic risk assessment, considering both longitudinal and
lateral aspects of the environment. By incorporating various
factors such as velocity and relative position, the proposed func-
tion enables the vehicle to anticipate and respond to potential
hazards proactively. Additionally, the paper incorporates and
builds upon previous work of a modular and distinctive AI-
based Adaptive Cruise Control (ACC) system with robust gen-
eralization capabilities. Results demonstrate the effectiveness of
the proposed approach in improving safety, collision avoidance,
and adaptability in highly interactive driving environments
allowing the vehicle to dynamically re-plan trajectories and
speed profiles during lane change maneuvers.

I. INTRODUCTION
In the last decade, autonomous driving has witnessed

tremendous advancements, marking significant strides to-
wards a future of safer transportation systems. However,
amid this progress, the assurance of safety in highly in-
teractive driving environments stands out as a formidable
challenge [1]. As autonomous vehicles increasingly navigate
complex road scenarios alongside human-driven counter-
parts, the need for robust decision-making frameworks ca-
pable of assessing and mitigating risks in real-time becomes
paramount [2].

Many vehicles now integrate driver assistance technolo-
gies, which are crucial for adapting to traffic changes and
providing extensive control over both the vehicle’s forward
and sideways movement. This significantly improves passen-
ger comfort and safety. Some of these systems give warnings
if a crash seems likely, while others actively work to avoid
accidents. Together, these advancements will help protect
everyone on the road [3].

Lane changes are intricate driving maneuvers influenced
by various factors like traffic flow, lane configurations, and
driver intentions [4], [5]. They can lead to conflicts with
nearby vehicles and prompt drivers to take evasive actions
[6]. Additionally, lane changes themselves can sometimes
be evasive maneuvers taken to avoid potential risks [7].
Understanding these evasive behaviors during lane changes
is crucial due to their complexity and significant impact on
safety.

This demand has motivated intensive research into the
integration of risk-awareness mechanisms within decision
making and trajectory planning algorithms, aiming to em-
power autonomous systems with the foresight to anticipate
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Université libanaise (UL).
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and respond to potential hazards proactively. Safety Sur-
rogate Measures (SSM) represent a proactive strategy at
capturing near-crash instances. Among the various SSMs,
Time Headway (TH) and Time to Collision (TTC) stand
out as one of the most commonly employed methods [8].
For instance, TTC is defined as the time needed for two
vehicles to collide if they maintain their current speeds
along the same path. If the TTC falls below a certain
threshold, it indicates an unsafe car-following scenario. Due
to its simplicity and practicality, TTC has found widespread
use as a safety indicator in numerous studies [9], [10].
However, there are two primary limitations associated with
conventional TTC: firstly, it deems a scenario safe even
when the following vehicle’s speed matches or is slower
than the leading vehicle’s, despite a potentially very close
relative distance; secondly, it assumes that the vehicle pair
is traveling in the same lane and only considers longitudinal
movements. Therefore, other research efforts have focused
on extending the Time to Collision (TTC) concept to the
two-dimensional road plane [11], and introducing trajectory-
based SSMs. For instance, Anticipated Collision Time (ACT)
was introduced as a proactive safety assessment method
based on two-dimensional trajectories [12]. However, the
process of reconstructing complete vehicle trajectories for
all vehicles involved can be complex and costly.

There is also the inclusion of learning-based decision-
making which comes with its own set of questions regarding
complexity, interpretability, and explainability [13], [14]. For
instance in [15], they combine a learning based lateral deci-
sion making module with a trajectory planner to safely adjust
lane change decisions and dynamically re-plan the trajectory
followed. Other methods define functions for measuring risk
probabilisitcally. For example, one approach uses a risk
distance coefficient model which is a model that considers
the distance and speed of other vehicles to understand
how they interact with each other. This model, based on a
Dynamic Bayesian Network, helps the autonomous vehicle
adjust its speed and direction cautiously and comfortably
[16]. Another method employs a ”loss factor” to show how
severe the impact would be if the autonomous vehicle and
another vehicle are in the same or different lanes. When
they are in different lanes, the loss factor decreases as the
distance between lanes increases. Then, the risk of collision
is evaluated by looking at the predicted paths of nearby
vehicles and the current state of the autonomous vehicle
[12]. These methods have proven to be effective at mitigating
risks. Therefore, this paper introduces a high-level risk-
aware decision-making module to address the safety gap in
the trajectory planner [17]. It establishes a function based
on various factors to dynamically re-plan the ego vehicle’s
trajectory through anticipating risks. The contributions of this
paper include:

• Establishment of a formula for dynamic risk-assessment
that takes into consideration the longitudinal and lateral
aspects of the environment.

• Proposing a high-level decision-making module that



seeks to encompass both lateral decisions, namely ”lane
keeping” or ”lane changing,” based on the introduced
risk assessment function utilizing both instantaneous
risk and predicted risk with a time horizon of 2 seconds.

• Enabling the flexibility to dynamically re-plan both tra-
jectories and speed profiles during lane changes, offer-
ing enhanced motion adaptability, and robust collision
avoidance compared to the vanilla trajectory planner.

• Building upon previous work of a modular and distinc-
tive AI-based ACC system with robust generalization
capabilities that adapts to dynamically changing traffic
scenarios for longitudinal decision making.

The rest of the paper is organized as follows: Section
II describes the perception, vehicle dynamics, and control
systems used. Section III defines the proposed risk assess-
ment function. Section IV presents the risk-aware decision-
making and trajectory planning modules, including the lateral
risk-aware and longitudinal Deep Reinforcement Learning
Adaptive Cruise Control (DRL-ACC) decision frameworks.
Section V presents the simulation results, demonstrating the
effectiveness of the proposed system in optimizing collision
avoidance, dynamic re-planning of trajectories among other
behaviors, and speed modulation. Finally, Section VI pro-
vides the paper’s conclusion and explores potential avenues
for future research endeavors.

II. PERCEPTION, VEHICLE DYNAMICS, AND CONTROL

A. Perception
The discussion of the perception block is beyond the scope

of this paper. Here, we consider the output produced by
the perception module as an occupancy grid representation,
as outlined in the referenced work [17]. To summarize, an
initial global occupancy grid is created from a global map.
Subsequently, the local occupancy grid is derived from this
global representation based on the vehicle’s position and
orientation. The local grid consists of cells sized at 400 *
400, each representing an area of 25 * 25 cm, in accordance
with the perception system’s horizon. To improve precision,
efficiency, and time optimization in collision checking, the
local occupancy grid is converted into a clearance map [18].

B. Vehicle Dynamics Model and Control
Our algorithm integrates a detailed longitudinal and lateral

vehicle model developed using the multi-body formalism
outlined in [19]. This model takes wheel driving/braking
torque (τw) and steering angle (δ) as inputs. By employing
the Dugoff model to estimate tire forces and conducting
model matrix computations, it yields the following outputs:
longitudinal (ẍ) and lateral (ÿ) vehicle accelerations, yaw
rate (ψ̇), and wheel angular velocities (wij).

For control purposes, we have selected a second-order
sliding mode based on the super-twisting algorithm. This
selection ensures robust stability while minimizing chat-
tering, which is a common issue in sliding mode control.
The complete model has been validated using the SCANeR
studio simulator across various driving conditions. In sum-
mary, our algorithm incorporates a comprehensive vehicle
model and employs advanced control techniques to enhance
performance. Through rigorous validation, we have ensured
that the model behaves accurately and reliably across diverse
scenarios.

III. PROPOSED RISK ASSESSMENT FUNCTION

Speeding increases the likelihood of losing control of a
vehicle due to several factors. Higher speeds make it harder
to navigate curves, turns, or obstacles on the road, leading to
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Fig. 1: Overview of the Architecture.

skidding, sliding, or loss of traction. Additionally, excessive
speeds reduce the time available for drivers to react and
execute evasive maneuvers, increasing the risk of accidents.
It also extends braking distances, making it harder to stop
in time to avoid collisions. Overall, high speeds jeopardize
safety, increase the risk of accidents, and endangers both the
driver and other road users [20]. Therefore the risk increases
as the ego vehicle speed Vego increases.

The relative speed between the ego and other vehicle
plays a crucial role in road safety. Significant differences
in speed can lead to dangerous situations where conflicts
and collisions may arise when interacting on the road. For
instance, if two vehicles are traveling at different speeds
while attempting to navigate the same road space, or if
a faster vehicle attempts to overtake a slower vehicle but
misjudges the available space or closing speed, it can result
in a collision or loss of control [21]. Therefore, maintaining
a safe and reasonable relative speed between vehicles is
essential to prevent accidents and promote safe driving
practices. In summary, the risk is affected by relative speed
Vrel based on the situation encountered, so it increases when
the ego vehicle is faster than a leading vehicle, or when it
is slower than a following vehicle and vice-versa.

The proposed risk function (eq. 3) consists of 2 parts,
velocity Rv and 2D-position Rd. The first component, Rv
(eq. 1), takes into consideration both the velocity of the
ego vehicle and the relative velocity of the ego vehicle with
respect to the other vehicles. The second component, Rd (eq.
2), takes into consideration both the longitudinal dlong-rel and
lateral dlat-rel relative distances to the ego vehicle. The global
risk domain with respect to these variables are depicted in
Fig. 3.

During each planning iteration, the local occupancy grid
updates to accommodate moving obstacles within its percep-
tion zone. However, to take their velocity into consideration
and to to ensure a more responsive assessment compared to
instantaneous measurements in the rapidly changing dynam-
ics of the environment on the road, a longitudinal widening of
their occupancy is carried out relative to the grid. It’s equal to
the predicted traveled distance during one iteration. The new
relative position is then extracted to be used in Rd. A safety
zone, presented in Fig.4, with maximum risk is also defined
to guarantee that the ego vehicle does not execute extremely
dangerous maneuvers within this zone. This is inspired by
[22] who proposed the existence of a dynamic space that the
driver perceives as an area in which they can navigate safely.



Fig. 2: Global Risk as a function of relative speed as w1, w2, and w3 vary.

Fig. 3: Domain of Global Risk (z-axis) with respect to relative longitudinal distance |dlong−rel| (x-axis), relative lateral
distance dlat−rel (y-axis), relative velocity, and ego vehicle velocity.

Termed by the authors, the ”field of safe travel” denotes the
acceptable trajectories for a vehicle within a defined zone. It
depends on the driver’s experience, the safety distances they
wish to respect and their perception of the size of the car,
among other factors. In this case, a time-headway of 0.5s,
based on reaction times [23], is used allowing the safety zone
to be adjusted dynamically with respect to the environment.

Rv =



1

1+ew1·(1+Vego)·Vrel
if dlong-rel > 0 and Vrel < 0

1

1+ew1·(2−Vego)·Vrel
if dlong-rel > 0 and Vrel > 0

1

1+e−w1·(1+Vego)·Vrel
if dlong-rel < 0 and Vrel > 0

1

1+e−w1·(2−Vego)·Vrel
if dlong-rel < 0 and Vrel < 0

(1)

Rd =
1

2

(
e−w2·|dlong-rel| + e−w3·dlat-rel

)
(2)

Risk =
1

2
(Rv +Rd) (3)

where w1, w2, and w3 are set to 5, 1, and 1 respectively.
In cases where the ego vehicle surpasses others in speed, Vrel
takes a negative value, and conversely. Likewise, if another
vehicle trails the ego vehicle, dlong-rel is negative, while it’s
positive if it leads.

Figure 2 illustrates the variation of global risk concerning
relative speed Vrel, with fixed values of |dlong−rel| = 0.25m,
dlat−rel = 0.25m, and Vego = 20m/s. We explore weights
ranging from 1 to 10, demonstrating the tuning flexibility by
revealing that higher w1 values result in a more conservative
risk function, while lower w2 and w3 tend to a more aggres-
sive driver behavior. Additionally, Figure 3 depicts the do-
main of the global risk function across all possible scenarios
outlined in equation 1. Here, the inter-dependencies among
variables are evident, as the risk function is a 3D surface
that adjusts in response to variations in ego vehicle velocity
and relative velocity across different longitudinal and lateral

distances. The differentiation between risk scenarios, such as
leading, following, side-swipe, rear-end collision, and front-
end collision, enables the risk function to accurately assess
each situation. The first two plots (left) depict scenarios
where the ego vehicle trails another vehicle, showcasing
lower risk domains when car-following at lower relative
speeds, and vice versa for the latter two plots (right), which
represent scenarios where the ego vehicle leads another
vehicle.

IV. RISK-AWARE DECISION-MAKING AND TRAJECTORY
PLANNING

The ego vehicle makes high-level decisions regarding
both lateral and longitudinal actions. Lateral decisions in-
volve maintaining or changing lanes, while longitudinal
decisions involve accelerating, decelerating, or maintaining
speed. These actions are determined based on risk assessment
and passed to the trajectory planner for vehicle guidance
alongside the controller.

A. Observation Space
The configuration of the Markov Decision Process (MDP)

[24] is defined by a tuple ⟨Sego, Si⟩ within the Frenet Frame
[25]. The initial vector Sego encompasses the attributes
of the ego vehicle, while Si comprises the state vector
of the surrounding vehicles, denoted as the ith vehicle.
Sego = (vego, theadway, ψego, dcenterlane, laneego, riskmax)
includes parameters such as the ego vehicle’s speed vego,
the time headway to the leading vehicle theadway , the
orientation of the ego vehicle ψego, the distance to the
lane center dcenterlane, the lane occupancy laneego, and the
maximum measured risk riskmax. Conversely, Sothers =
(vi, longi, lati, ψi, lanei, riski) comprises parameters about
other vehicles, including their relative speed to the ego
vehicle vi, relative longitudinal distance longi, relative lateral
distance lati, relative orientation ψi, lane occupancy lanei,
and relative risk riski. In cases where the ego vehicle
surpasses others in speed, vi takes a negative value, and



conversely. Likewise, if another vehicle trails the ego vehicle,
longi is negative, while it’s positive if it leads. All nor-
malizable states undergo normalization using the following
equation:

XNormalized =
X −Xmin

Xmax −Xmin
(4)

Speed limits in urban areas are established according to
traffic regulations in France. A selection of observation states
is depicted in Fig. 4.

relative 
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Fig. 4: Some observation states of the system and the safety
zone occupancy of the ego vehicle.

B. Lateral Motion
The risk is measured on each vehicle within the perception

range of the ego vehicle, then the maximum risk of each
lane is assigned based on the maximum risk of the vehicle
occupying it. Because of the nature of the proposed risk
function, measuring the indirect alongside direct risk, the
maximum risk imposed on the ego vehicle could be any
of the other vehicles including the ones with no direct
trajectory of collision at the time being. This is done through
projecting the trajectory of the ego vehicle on the best path
chosen, as shown in Fig. 1, and the trajectories of the other
vehicles for a time horizon of 2 seconds then calculating the
associated predicted risk. Therefore, as outlined in Fig. 5,
the ego vehicle hierarchically makes the decision to either
change lane or to keep its current lane where it prioritizes
the initial risk measured before checking the projected risk
in order to finalize its decision to change lanes. Moreover,
this process is done every timestep which is equal to 0.125s
which minimizes the direct impact (on the trajectory of the
ego vehicle) of sporadic or irregular decisions during the
transition phase towards a steady state when there are sudden
changes in the environment prompting the risk to shift
relatively quickly, this includes cases with sudden braking,
accelerating, or a new obstacle entering the perception zone.

C. Deep Reinforcement Learning Adaptive Cruise Control
The DRL-ACC, extending our prior research [26], utilizes

a risk-aware observation space and is coupled with the lateral
risk aware decision module. Curriculum learning is adopted
for the training methodology consisting of 3 increasingly
difficult scenarios lasting betwen 30s and 60s on a straight
2-lane road that extends up to 1000m. The initial conditions
for the position and speed are randomly generated within
the intervals [1, 100]m, and [36, 54]km/h respectively and
the starting distance headway between the vehicles varies
between 15 and 40 meters. It is done on 5 seeds where
the seed is randomly chosen. The first scenario contains no
vehicles, the second and third scenarios contain low and high
density traffic respectively. The behavior of other vehicles
adheres to the Intelligent Driver Model (IDM) [27], governed
by specific parameters described in Fig. I: a maximum
acceleration of 2m/s2, a maximum comfort deceleration
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Fig. 5: Overview of the Risk-Aware Lateral Decision-
Making.

of −3m/s2, a desired velocity randomly selected from the
range [36, 54]km/h, an acceleration exponent of 4, and
desired distance and time headways of 3 meters and 1.8
seconds respectively. The progression of the ego vehicle
can be noticed at the beginning of each scenario where
the collision rate spikes. The model discounted long-term
reward and the moving average reward (windowsize = 50)
converge after around 530 episodes, shown in Fig. 6, with
a 96% success rate with no collisions and showcasing the
maximization of speed towards convergence.

TABLE I: IDM Parameters [27]

Parameter Range Normal Aggressive
(δ) acceleration exponent {2, 4} 4 4
(smin) min. desired distance gap 4.0-1.0 m 2.0 1.0
(v∗) desired velocity 54-140 km/h 57.6 64.8
(tgap) desired time gap 1.8-1.0 s 1.5 1.0
(amax) max. acceleration 1.0-2.0 m/s2 1.4 2.0
(bcomf ) comfort deceleration 1.0-3.0 m/s2 2.0 3.0

1) Action Space
The action space, denoted as aspeed, comprises three

actions: acceleration (aacc), braking (adec), and maintaining
the current speed (ahold). The vehicle follows a predefined
velocity profile derived from the desired velocity profile of
the base frame, as described in [17]. This profile is computed
for each point along the candidate path, taking into account
factors like the speed limit (Vxlimit) [28], velocity limits
of the base frame, road curvature, and lateral acceleration.
To ensure vehicle stability and passenger comfort, lateral
acceleration is restricted to be below a maximum threshold
of |aymax| = 4m/s2, as specified in [29].

2) Reward Function
A comprehensive multi-objective reward function is de-

veloped to guide the behavior, emphasizing safety, collision
avoidance, and car-following. This function utilizes reward
shaping principles and includes safety (Rsafety) and speed
(Rspeed) rewards, each incorporating weighted sub-rewards
to balance agent bias. The reward function is formulated as
follows:{

Rsafety = w1 ·Rfront + w2 ·Rback + w3 ·Rcollision

R = Rsafety + w4 ·Rspeed

(5)
where wi = [1, 0.5, 1, 0.35].

Safety Rsafety: The safety reward is divided into three
components: collision avoidance (Rcollision), maintaining
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Fig. 6: Training Results for the DRL-ACC.

safe distances in front (Rfront), and behind (Rback) of the
ego vehicle in relation to other vehicles. The vehicle’s state is
categorized into three zones: risk, car-following, and catch-
up. In risk and catch-up zones, rewards or penalties are
determined based on the time headway and distance error.
Calculations are based on the following equations:TH = D

Vego
, DTH = 2

DE = D −Ds0 +
V 2
ego

2adec−max

(6)

Where adec−max is the maximum deceleration, Ds0 is a
minimum safety gap and D is the distance between the two
vehicles, Vego is the ego vehicle velocity. Together, DE is
the error with the safe-stop-distance.

In the risk zone, we apply the penalty P1, and in the catch-
up zone we apply the penalty P2. The equations are shown
below:

P1 = −(k1 · (TH −DTH)2 + k2 ·DE2) (7)
P2 = RB − (|Dfront| × k) (8)

where k1 = 0.5 and k2 = 0.5 are weighting factors, k = 1
is the rate of the negative reward, RB = −0.5 is the Reward
Baseline, Dfront is the relative distance to the front vehicle.

Based on the relative speed of the ego vehicle, in the car-
following zone we apply the reward-penalty SR1, in the risk
zone we apply the reward-penalty SR2, and in the catch-up
zone we apply the reward-penalty SR3.

SR1 =

{
Vi−(−0.05)
0.05−(−0.05) if − 0.05 ≤ Vi ≤ 0.05

−abs(Vi) · k otherwise
(9)

SR2 =

{
Vi

0.05 if Vi ≥ 0.05
−abs(Vi) · k otherwise

(10)

SR3 =

{
Vi−(−0.1)

−0.05−(−0.1) if − 0.1 ≤ Vi ≤ −0.05

−abs(Vi) · k otherwise
(11)

where Vi is the normalized relative speed, and k = 2 is the
rate of the negative reward.

For α = DTH +0.5, and the above equations motivating
the vehicle to either speed up, slow down, or hold its speed,
the front gap reward would be:

Rfront =


SR1 + 1 if ahold ∧ ((DTH < TH ≤ α)

∨(0 ≤ DE ≤ 3))
SR2 + P1 if TH ≤ DTH ∨DE < 0
SR3 + P2 otherwise

(12)

For the vehicles behind the ego vehicle, there is only a
penalty for when they are in the risk zone:

Rback =

{
SR3 + P1 if (TH ≤ DTH) ∨ (DE < 0)
0 otherwise

(13)
If there are collisions, the vehicle receives penalties:

Rcollision =

{
Pcollision if collision
0 otherwise

(14)

Speed Rspeed: The speed reward is based on the speed limits
of 67 km/h and 36 km/h since we consider a common range
in an urban environment [28]. This however does not limit
the agent’s decision to go beyond these limits.

Rspeed =

{
SP−0.5
0.8−0.5 if SP ≤ 0.8

−abs(SP ) · k otherwise
(15)

where SP is the normalized speed of the ego vehicle.

D. Network Architecture
In our methodology, we utilize a Proximal Policy Opti-

mization (PPO) agent instead of a Double Deep Q-Network
(DDQN) as previously employed [26]. This decision stems
from several factors. PPO exhibits adeptness in managing
environments with high-dimensional state spaces, effectively
processing and learning from intricate inputs, and providing
inherent generalization capabilities. Additionally, the stabil-
ity and data efficiency offered by PPO played a significant
role in our decision-making process.

The agent’s architecture encompasses a 2D convolutional
layer configured with a 3x3 kernel and 128 filters, with
a stride of 1 and padding set to ’same’. Following the
convolution operation, a Rectified Linear Unit (ReLU) ac-
tivation function is employed to introduce non-linearity,
facilitating the extraction of complex features from the
provided inputs. Subsequent operations entail a sequence of
three fully connected layers. The first layer comprises 128
neurons, followed by a second layer with 64 neurons, and
a third layer with 32 neurons, all supplemented by a ReLU
activation function. The final layer accommodates a number
of neurons equivalent to the size of the action space. The
input to the architecture is the tuple ⟨Sego, Si⟩, while the
output represents one of the actions defined previously. The
hyperparameters specific to the PPO model are outlined in
Table II.

E. Trajectory Planner
In this section, the development of the local trajectory

planning algorithm is described. Our trajectory planner,



Hyperparameter Value
Experience Horizon 512
Mini-Batch Size 128
Clip Factor 0.2
Advantage Estimate Method GAE
GAE Factor 0.95
Optimizer ADAM
Learning Rate 0.0005
Discount Factor 0.99

TABLE II: Hyperparameters of the PPO Agent

extending our prior research [17], is designed with a multi-
step process to ensure comprehensive path generation and
evaluation, guiding the vehicle to follow a reference trajec-
tory while avoiding obstacles and prioritizing the safety and
comfort of passengers. The navigation strategy encompasses
multiple stages, including the generation of a set of candidate
paths based on the risk aware decision input, determining
the velocity profile, obstacle detection, classification of paths
based on navigability, cost calculation, and the selection
of the optimal path from this candidate set. The chosen
trajectory is then designated as the desired path for execution
by the vehicle in each planning iteration and is passed on
to the risk aware decision making module to calculate the
risk for the next time-step. The entire sequence of the path
planning procedure is depicted in Fig. 7.
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Initially, paths are created with a lateral offset, including
transient and permanent phases. Candidate paths are deter-
mined by a fourth-order polynomial lateral shift, considering
curvature limitations. Paths exceeding maximum curvature
are discarded, selecting the longest viable alternative. Ve-
locity profiles are derived from predefined patterns, consid-
ering speed limits, road curvature, and lateral acceleration.
Executable candidate paths undergo obstacle detection us-
ing large and small circles, determining collision distance
(dobs) and obstacle type. Trajectories are classified based on
collision distance into no-navigable, partially navigable, and
navigable. A low-level decision algorithm selects the opti-
mal trajectory based on the following criteria: smoothness,
reference tracking, safety, and consistency. These criteria are
combined into a total cost function, minimized to identify
the best trajectory which is represented by points facilitating
control/model block integration.

V. SIMULATION RESULTS

This section presents the testing outcomes of the risk-
aware system, demonstrating that the designed risk function
effectively guided the vehicle toward desired behaviors,
particularly in scenarios where it previously lacked consider-
ation or encountered difficulties. It also showcases the ability

of the DRL-ACC to maintain an acceptable velocity profile
throughout the different situations encountered including
car-following, overtaking, lane-changing, and dynamic re-
planning of the trajectory. The testing scenarios include:
1.1) Dynamic Environment Lane Change, 2.1) Dynamic
Trajectory Re-planning in Anticipated Risk Situations, and
1.2) and 2.2) which introduce curved sections to the road,
simulating realistic situations obtained from the SCANeR
studio simulator (Global Map in Fig. 8) for which the agent
was not trained on.

Scenarios (1.1) and (1.2) involve randomly generated
environments with 12 to 24 vehicles controlled by the IDM,
allowing for acceleration, deceleration, and car-following
behaviors. The ego vehicle is expected to adapt to this
dynamic environment by executing various maneuvers such
as car following, lane changing, and overtaking multiple
vehicles while maintaining relatively high speeds safely and
adhering to the speed limits. In contrast, scenarios (2.1) and
(2.2) examine the agent’s performance when the ego vehicle
attempts to overtake a slow-moving vehicle while a speeding
vehicle is approaching in the opposite lane either starting
to accelerate within or outside the perception zone of the
ego vehicle. In other words, the ego vehicle is either aware
of the intention of the other vehicle because it can see it
before it starts to accelerate, or the ego vehicle is not aware
of the other vehicle beforehand as it enters the perception
range already accelerating. This situation challenges the
agent to assess environmental dynamics and risks from a
high-level perspective, such as anticipating the danger posed
by the speeding vehicle. The agent demonstrates its ability
to make informed decisions, such as choosing not to execute
a lane change despite having sufficient time and distance
headway. Additionally, it showcases the agent’s capability to
dynamically adjust its trajectory by aborting a lane change
decision if necessary.

These scenarios were tested on 10 different seeds than the
ones trained on by the DRL-ACC. The testing conditions
mentioned enable us to test several performance indicators
considered recalled in Table III. Efficiency: the average
velocity of the ego vehicle, and obstacles passed. Safety:
the average time headway and distance error (TH and DE)
and number of collisions. Comfort: the maximum lateral
acceleration, maximum longitudinal deceleration, and lane-
change frequency.

In scenario (1.1), both the risk-aware models (TP+RA
and TP+RA+DRL-ACC) exhibit comparable efficiency and
comfort levels to the model lacking risk-awareness (TP).
However, they demonstrate superior safety by navigating
the environment without collisions, contrasting with the four
collisions experienced by the other model. This is further
emphasized by their more conservative behavior, reflected in
a lower average velocity and a tendency to follow slower
vehicles rather than attempting aggressive lane changes.
It’s noteworthy that TP+RA+DRL-ACC shows particularly
conservative behavior with a significantly low average ve-
locity of 14.3183m/s and a high time headway of 3.1983s,
alongside fewer lane changes. Conversely, TP+RA displays
higher lane change frequency and lateral acceleration, albeit
at the cost of comfort compared to TP+RA+DRL-ACC.

In scenario (1.2), the scenario is more challenging with
a non-linear road layout. Here, TP+RA+DRL-ACC exhibits
even greater conservatism, manifesting in lower speeds,
fewer obstacles passed, reduced lane change frequency, and
longitudinal deceleration, along with a higher time headway.
While TP+RA and TP perform similarly overall, TP+RA
again proves safer, avoiding collisions and overtaking more
obstacles compared to the other model.



Fig. 8: Simulation Results: Trajectories and Vehicle Dynamics of Risk-Aware Lateral Decision-Making and DRL-ACC
System.

TABLE III: Simulation Results.

Efficiency Safety Comfort

Vavg Obspassed THfront DEfront THback DEback Collisions acclat−max decmax−longi LCavg

Model Scenario (km/h) (s) (s) (m) (s) (m) (m/s2) (m/s2)

TP+RA (1.1) 16.5957 13 2.1539 0.6435 1.7195 -0.6112 0 0.9501 -2.5347 4

TP (1.1) 17.9183 11 2.1584 0.7173 1.8890 -0.7024 4 1.0070 -0.7568 2.7

TP+RA+DRL-ACC (1.1) 14.3183 13 3.1982 0.7735 2.6138 -0.7339 0 0.0396 -1.0118 1.2

TP+RA (2.1) 17.0939 10 1.9320 0.5540 2.2079 -0.6999 0 0.4426 -0.0008 1.9

TP (2.1) 16.0949 9 1.8432 0.5176 1.7824 -0.6109 9 0.4328 -0.0522 0.9

TP+RA+DRL-ACC (2.1) 15.2471 12 2.4056 0.6070 2.2773 -0.6644 0 0.0114 -1.2192 2

TP+RA (1.2) 15.1265 14 2.2715 0.6603 2.2781 -0.6586 0 3.8998 -2.8706 2.3

TP (1.2) 15.3550 10 1.9854 0.6325 2.3223 -0.6836 6 3.8650 -2.9601 1.3

TP+RA+DRL-ACC (1.2) 13.8327 7 2.9487 0.7766 2.1820 -0.5928 0 4.1585 -2.0551 1

TP+RA (2.2) 14.2937 10 2.1977 0.5812 2.6154 -0.7027 0 2.1752 -2.4086 2.2

TP (2.2) 14.5980 8 1.9021 0.5356 2.6189 -0.7380 6 3.9503 -0.1952 0.9

TP+RA+DRL-ACC (2.2) 14.8645 9 2.7622 0.8048 3.0694 -0.8711 0 4.8745 -0.3863 1.1

Moving to scenario (2.1), the TP model’s lack of dy-
namic re-planning leads to a notably high failure rate due
to limited environmental awareness. Introducing risk-aware
decision making in TP+RA (and TP+RA+DRL-ACC) ad-
dresses this deficiency, excelling in all metrics and avoiding
collisions altogether, rendering the TP model obsolete. Al-
though TP+RA+DRL-ACC maintains a conservative stance
with lower speeds and higher time headway, it surpasses
TP+RA in the number of obstacles passed.

Similarly, in scenario (2.2), both TP+RA and
TP+RA+DRL-ACC navigate without collisions, contrasting
with the non-risk aware model. While their performances
are comparable across most metrics, TP+RA+DRL-
ACC exhibits superior comfort in terms of longitudinal
deceleration and lane change frequency, whereas TP+RA
exhibits in lateral acceleration.

For a detailed analysis, let’s examine the behavior of the
vehicle in the dynamic re-planning scenario depicted in Fig-
ures 8 and 9. Initially, the ego vehicle trails another vehicle
(Obs 3) while leading another (Obs 2) behind it. Meanwhile,

a vehicle outside its perception zone (Obs 1) approaches in
the adjacent lane. At t = 4s, the ego vehicle is in the process
of overtaking Obs 3, but suddenly, Obs 1 enters its perception
zone at high speed, still accelerating. Recognizing the risk
(above the threshold), the ego vehicle promptly aborts the
maneuver, dynamically re-planning its trajectory to return to
the safe lane by adjusting speed and following distance. By
t = 10s, the ego vehicle adopts a car-following behavior,
waiting to resume the overtaking maneuver while Obs 1
passes in the safety zone. Finally, at t = 17s, the ego
vehicle successfully executes the lane change, accelerating
afterward with Obs 1 positioned further ahead. Additionally,
the agent maintains acceptable longitudinal speed and lateral
acceleration. A video illustrating this scenario is available
here.

These findings highlight the efficacy of the proposed
risk assessment function and its seamless integration into
the decision-making module across various velocity profile
methods. Furthermore, they underscore the adaptability of
the DRL-ACC system in responding to dynamic environ-

https://youtu.be/W8iqtT1veaA


mental changes.

Fig. 9: Simulation Results: Risk and Vehicle Dynamics of
Risk-Aware Lateral Decision-Making and DRL-ACC Sys-
tem.

VI. CONCLUSION

In conclusion, the integration of risk assessment into
decision-making frameworks for autonomous vehicles rep-
resents a significant advancement in enhancing safety and
adaptability in dynamic driving environments. By system-
atically evaluating risks, autonomous vehicles can make
informed decisions to mitigate potential hazards and nav-
igate complex scenarios more effectively. The formulation
presented in this paper provides a transparent and systematic
approach to risk-aware decision making, offering greater
confidence in the behavior of autonomous systems. The
function was able to properly assess the risk across 2
different speed profiles generated by the DRL-ACC [26]
and the traditional trajectory planner [17]. Moving forward,
continued research and development in this area will be
crucial for realizing the full potential of risk assessment
through extending the proposed function either by reshaping
it to include other parameters within the environment, devel-
oping a more complex decision-making module, or deriving
a probabilistic assessment.
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