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To produce sounds, we adjust the tension of our vocal folds to shape their properties and control
the pitch. This efficient mechanism offers inspiration for designing reconfigurable materials and
adaptable soft robots. However, understanding how flexible structures respond to a significant
static strain is not straightforward. This complexity also limits the precision of medical imaging
when applied to tensioned organs like muscles, tendons, ligaments and blood vessels among others.
In this article, we experimentally and theoretically explore the dynamics of a soft strip subject to a
substantial static extension, up to 180%. Our observations reveal a few intriguing effects, such as
the resilience of certain vibrational modes to a static deformation. These observations are supported
by a model based on the incremental displacement theory. This has promising practical implications
for characterizing soft materials but also for scenarios where external actions can be used to tune
properties.

INTRODUCTION

Soft solids exhibit the remarkable ability to undergo
substantial deformations. This unique property is har-
nessed by living organisms, notably allowing them to
achieve locomotion [1–3] but also enabling the whole mor-
phogenetic chain to happen, through the ability of shap-
ing tissues, and leading to the development of organs and
physiological functionalities [4–6]. Similarly, plants lever-
age this trait to adapt to varying environmental condi-
tions [6–8]. With recent scientific advances in the fields of
gels and polymers [9–11], engineers have achieved signif-
icant progress in the manufacturing of versatile, biocom-
patible and durable soft structures. This has led to the
development of soft robots [12–15], medical devices [16–
18], and inflatable structures [19–21], among others.

The unique mechanical behavior of soft solids arises
from their microstructure. Biological tissues consist of
large biomolecules, primarily proteins but also nucleic
acids, linked together by covalent bonds (such as pep-
tide and phosphodiester bonds) and non-covalent inter-
actions (including hydrogen bonds, van der Waals forces,
and ionic interactions). These networks possess a ran-
dom nature and offer residual configurational freedom
at multiple scales. As a result, the elasticity is gov-
erned by entropy [22–24], which usually results in a non-
Hookean response. This effect can be rendered by con-
sidering a Young’s modulus E, which becomes dependent
on the deformation; a feature of hyperelastic materials.
Furthermore, spatial rearrangements induce dissipation
through viscous effects, leading to relaxation phenom-
ena. This suggests that the Young’s modulus is both
complex-valued and frequency-dependent.

∗ Corresponding author: alexandre.delory@espci.psl.eu

These characteristics can be illustrated using a model
system. Here, we consider a simple strip. It is made of
a commercially available silicone rubber, the Smooth On
Ecoflex 00-30. Such elastomers consist of an entangle-
ment of macromolecules connected together through the
action of a cross-linking agent. Therefore, it is relevant
to draw an analogy between their phenomenology and
that of biological tissues.
Just like biological tissues, silicone elastomers are ex-

pected to exhibit a hyperelastic behavior [25, 26]. To
verify it, we conducted a tensile test on an Ecoflex strip.
Results, gathered in Figure 1A, indicate that for a stretch
ratio λ (ratio of deformed to original length) larger than
1.5, the material response deviates from Hooke’s law.
This deviation can be captured using the 2-parameter
incompressible Mooney-Rivlin model [27–30] which links
the Cauchy stress σ to the stretch ratio λ as:

σ =
E0

3

(
1− α+

α

λ

)(
λ2 − 1

λ

)
. (1)

with the Mooney-Rivlin parameters E0 and α. This
equation recovers Hooke’s law σ = E0 (λ− 1) in the limit
of small elongations.
This formula effectively depicts the elastic response of

an Ecoflex strip within the investigated elongation range
for E0 = 67 kPa and α = 0.15. By assuming Hooke’s law
and measuring the slope of the curve at small elongations
λ ≤ 1.3, the value of E0 = 67 kPa is again recovered.
From the Mooney-Rivlin model, one can derive an effec-
tive Young’s modulus (see details in Appendix A), which
amounts to considering the material as Hookean with the
following elongation-dependent Young’s modulus:

E(λ, ω = 0) =
E0

3

[
(1− α)

(
1 +

2

λ3

)
+

3α

λ4

]
. (2)
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Figure 1. Mechanical characterization of Ecoflex 00-30
— (A) Experimental tensile test (symbols) and predictions
(solid lines) using a linear (Hooke law, in black) and a non-
linear model (Mooney-Rivlin, in magenta). The elongation
ratio λ is measured as the ratio of the deformed total length
with respect to the initial total length. (B) Experimental
characterization (symbols) of the complex Young’s modulus
together with its fit (solid lines) based on a fractional Kelvin-
Voigt model.

Nevertheless, this expression is only valid in the static
regime at a zero angular frequency (ω = 0).
Another consequence of the polymer chains’ ability to

conform freely is that they rearrange with a characteris-
tic relaxation time. As a result, the Young’s modulus is
expected to be frequency-dependent and complex-valued
(E = E′ + iE′′). By performing oscillatory rheologi-
cal measurements using a plate-plate geometry [31], we
also investigated the frequency dependence of our silicone
rubber. As shown in Figure 1B, the material response ap-
pears to be essentially elastic in the range of frequencies
tested with our apparatus (E′ ≫ E′′). The loss modulus
E′′ grows as a power law of frequency ω, which is a signa-
ture of a visco-elastic material. These trends can be mod-
eled using a fractional derivative Kelvin-Voigt law [32–37]
(solid lines) which writes:

E(λ = 1, ω) = E0 [1 + (iωτ)n] . (3)

This model convincingly fits our data (see Figure 1B)
with the following parameters: E0 = 69 kPa, τ = 330 µs,
and n = 0.32. Note that the value of E0 obtained here
matches that of the tensile test (Figure 1A); slight dif-
ference comes from the utilization of distinct samples for
the two measurements. We emphasize that the above ex-
pression is valid in the absence of external deformation
(λ = 1).

In summary, the dynamic response of our soft poly-
mer depends on both frequency and strain, which are
usually examined separately. However, drawing conclu-
sions about E for any couple of parameters (λ, ω) is not
straightforward due to their interdependence. Until re-
cently [38], there has been no unified framework to ac-

count for both simultaneously. As a consequence, cap-
turing the dynamics of soft structures under significant
stress, a common occurrence in our daily environment
(vocal folds, tendons, ligaments, muscles and blood ves-
sels are a few examples of organs operating dynamically
under stress), remains a challenge.
In this article, we propose a model system to explore

the interplay between static prestress and dynamic re-
sponse of a soft structure. Specifically, we investigate
the behavior of a rubber strip under significant static de-
formation. Using image correlation techniques, we track
the propagation of a small perturbation and make sev-
eral intriguing discoveries. For instance, we find that
compressional waves exhibit remarkable resilience to ex-
ternal stretching, while flexural modes display height-
ened sensitivity. To support our findings, we derive
a comprehensive model adapted from the principles of
acousto-elasticity [39–47]. Finally, we examine the effect
of stretching on Dirac cones, drawing an analogy with
condensed matter physics [48]. Here, we find that the
cone is relatively immune to longitudinal stretching, but
breaks appart upon transversal stretching. Overall, our
work illustrates how external stress can be harnessed to
tune the dynamics of soft materials, offering applications
for the design of adaptive structures [49] or tunable meta-
materials [46, 50, 51].

LOW-FREQUENCY DYNAMICS

Experimental set-up

To monitor the motion in a strip, we designed the ex-
perimental set-up sketched on Figure 2A. A strip of ini-
tial length L0 = 56 cm, width b0 = 39 mm and thick-
ness h0 = 3 mm, made of a soft elastomer (Ecoflex
00-30) is hang up and then stretched by a factor λ in
the longitudinal direction e1. Wave generation is per-
formed by a shaker (TIRAVib 51120) driven in the har-
monic regime. The source is set so that the motion re-
mains in the (x1, x3) plane. In this configuration, the
displacement field is tracked by a standard video cam-
era facing the strip. For a given angular frequency
ω, a Digital Image Correlation (DIC) algorithm and a
time-Fourier coefficient derivation are implemented to
extract the complex-valued in-plane components of the
field u1(ω, x1, x3) and u3(ω, x1, x3). Details and typical
movies can be found in Ref. [52, 53]. A singular value de-
composition is then employed to separate contributions
from the fundamental vibrational eigenmodes. Assum-
ing that the motion is purely polarized in the (x1, x3)
plane, only two modes contribute at low frequency: a
compressional mode mostly polarized in the e1 direction
and a flexural mode mostly polarized in the e3 direction.
Displacement profiles obtained at 50 Hz are displayed in
Figure 2B and C. They show that the wavelength (see
dashed lines) increases as the stretch ratio λ increases
from 1 (blue frame) to 1.8 (yellow frame). This effect is
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8 m/s
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Figure 2. Tracking in-plane waves in a stretched strip — (A) Experimental set-up: a strip of dimensions L0 × b0 × h0

made of a soft elastomer (Ecoflex 00-30) is stretched by a factor λ in the e1 direction. Elastic waves are generated by a
shaker and the strip motion is tracked by a remote camera. By adequate post-processing, the motion is decomposed into the
two vibrational eigenmodes, i.e. compression and flexion. (B) Top: profiles of the displacement at 50 Hz corresponding to a
compressional mode for λ = 1 (blue frame) and λ = 1.8 (yellow frame). The dashed lines indicate the wavelength. Bottom:
Phase velocity of the compressional wave for static elongations varying from λ = 1 (blue) to λ = 1.8 (yellow). Experimental
measures (points) are compared with theoretical predictions (lines) using our three-dimensional model. (C) Same as B but for
the flexural mode.

more pronounced in the case of the flexural mode.
From these measurements, one can estimate the re-

spective phase velocities, i.e. the product of wavelength
and frequency. Experimental results are reported as sym-
bols in Figure 2B and C. Here, the applied stretch varied
from 1 to 1.8 and the driving frequency from 0 to 100 Hz.
The experimental data in Figure 2 are compared with
numerical ones, based on a procedure that is described
along with our three-dimensional model. These measure-
ments indicate that the flexural mode is highly affected
by the application of a static longitudinal tension, while
the compressional mode appears nearly immune to it. As
a matter of fact, the latter travels at roughly 10 m/s, re-
gardless of both λ and ω. To clarify these observations,
let us examine analytical expressions for these two veloc-
ities.

Compression

In the fields of structural mechanics and biomedical
imaging, it is common to employ the static Young’s mod-
ulus E0, to make inferences about the dynamic behavior
of a given structure. For soft materials, this approach
leads to substantial errors. To illustrate this point, one
can go back to the equation governing compressional dy-
namics (see for instance equation (25.1) in reference [54]):

E
∂2u1

∂x1
2
− ρ

∂2u1

∂t2
= 0, (4)

with ρ standing for the material mass density. Estimat-
ing the phase velocity from the static Young’s modulus
E0 and a mass density ρ = 1000 kg/m3 leads to a value

of V 0
c =

√
E0/ρ = 8 m/s (indicated by a red dashed line

in Figure 2B) which significantly underestimates obser-
vations. In addition, this approach assumes a constant
velocity, i.e. non-dispersive propagation, which is not
entirely accurate in this case.
A better estimation can be obtained by considering the

material’s rheology and replacing the Young’s modulus
with that of equation (3). In the frequency range inves-
tigated here, since one always has ωτ ≪ 1, the phase
velocity writes:

Vc(λ = 1, ω) = V 0
c [1 + (ωτ)n cos (nπ/2) /2] . (5)

Because we take into account the rheology, this
amounts to a frequency dependent phase velocity as ex-
perimentally observed. At 50 Hz, this expression yields
a velocity of roughly 10 m/s, in much better agreement
with our measurements. Also, this velocity slowly grows
in power law with frequency.
Our experiments also indicate that Vc is almost inde-

pendent of the applied stretch λ. To capture this effect
accurately, it is necessary to incorporate the hyperelastic
prediction for the Young’s modulus from equation (2).
However, this alone is not enough. In fact, wave equa-
tion (4) is written with undeformed coordinates and a
push-forward operation is required to obtain the correct
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Young’s modulus. This operation amounts to transition-
ing from a Lagrangian (material coordinates) to an Eule-
rian (laboratory coordinates) description. In the present
simple uniaxial configuration, it corresponds [55] to re-
placing the Young’s modulus by λ2E. Overall, the com-
pressional velocity can be found by replacing the expres-
sion of V 0

c in equation (5) by:

V 0
c (λ) =

√
λ2E(λ, ω = 0)

ρ
. (6)

For values of λ ranging from 1 to 1.8 and for the
Mooney-Rivlin model from equation (2), this predicts
that V 0

c undergoes variations of -2% to +7% maximum.
Hence, this expression effectively captures the small vari-
ations observed in the experimental points of Figure 2B,
using simple physical arguments.

Lastly, at λ = 1 the velocity starts decreasing for
frequencies higher than 50 Hz, which is not supported
by this approach. At this frequency, the wavelength
becomes comparable to the strip’s width, and the one-
dimensional model inevitably fails.

Flexion

Unlike compression, the flexural dynamics displays a
remarkable sensitivity to the application of a static stress.
At 10 Hz, our measurements indicate that the velocity
goes from 2 m/s at λ = 1 up to 7 m/s at λ = 1.8. Interest-
ingly, the static stress triggers a bifurcation in the disper-
sion behavior. For instance, as illustrated in Figure 2C,
when λ ≈ 1 (dark blue symbols), the flexural wave is
highly dispersive. Its velocity grows from 0 m/s in the
quasi-static limit to around 5 m/s at 100 Hz. In contrast,
for λ = 1.8, the velocity becomes nearly independent of
frequency, i.e. the propagation is non-dispersive. This
is characteristic of the transition from a flexural beam
regime to a string-like regime, governed by the tension in
the material.

This effect can be captured by getting back to the sim-
ple Euler-Bernoulli model [56]:

EI

A

∂4u3

∂x1
4
− σ

∂2u3

∂x1
2
+ ρ

∂2u3

∂t2
= 0, (7)

with A = bh the strip cross-sectional area, I = hb3/12
the second moment of area [57] and σ the uniaxial stress
due to the applied tension force. Assuming a propagative
solution with wavenumber k, one obtains the following
dispersion relation:

2EI

A
k2 = −σ ±

√
σ2 +

4EI

A
ρω2. (8)

From this expression, it is possible to identify a non-
dimensional parameter γ = Aσ2/4ρEIω2 which renders

the competition between tension and bending, and evi-
dences the existence of the two aforementioned regimes.
When the strip is not stretched, σ = 0 and γ vanishes.
The phase velocity of flexural waves writes:

Vf (λ = 1, ω) =
√
ω

[
EI

ρA

] 1
4

. (9)

The
√
ω dependence is the signature of a strongly dis-

persive regime (depicted by the dark blue line in Fig-
ure 2C). Interestingly, in this configuration, the group ve-
locity is exactly twice the phase velocity; enabling possi-
ble analogies with non-relativistic free particle [58]. Obvi-
ously, this velocity should saturate at some point; other-
wise these waves would become infinitely fast. This high-
lights a limitation of the Euler-Bernoulli model, which
becomes invalid at higher frequencies because it assumes
that the displacement should remain purely transverse.
Besides, just like in the previous section, the question
arises of which expression one should consider regarding
the Young’s modulus E. Very similarly, including rheol-
ogy in equation (3) yields a more accurate prediction for
velocity.

As the stress σ increases with λ varying from 1.1 to
1.8, the non-dimensional parameter γ grows from 0.1 to
8, and a change in the strip behavior is reached. Now,
flexion is completely governed by the tension, and the
velocity simply writes:

Vf (λ, ω) =
√
σ/ρ. (10)

This expression captures the almost non-dispersive dy-
namics observed in the low-frequency regime, but espe-
cially the increase in velocity with λ in the limit ω → 0.
String instruments, like guitars or violins, precisely op-
erate in this regime: the pitch produced by the musi-
cian is completely governed by the fine adjustment of the
stress σ in the strings. Some other instruments, like the
xylophone or the glockenspiel, are designed for the first
regime, where the pitch is typically controlled by the strip
lengths rather than tension.

This uni-dimensional model provides an efficient pic-
ture of the strip behavior in the two asymptotic regimes.
But for intermediate values of λ the estimation of Vf be-
comes more challenging. Besides, the models of flexion
and compression do not take into account the finite size
of the strip leading to inconsistencies when frequency in-
creases, or more precisely, when the wavelength becomes
comparable to the strip width. Finally, they do not of-
fer the possibility to clearly evidence the respective roles
of rheology and stretching, which happens to be crucial
here. All these considerations substantiate the need for
constructing a comprehensive three-dimensional model.
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Three-dimensional model

To build such a model, one has to come back to the
constitutive equations of continuum mechanics [59–62].
Assuming a compressible and homogeneous material, the
displacement field is solution of the equation of motion:

Cjikl
∂2uk

∂xj∂xl
= ρ

∂2ui

∂t2
, (11)

where the Einstein notation is used (sum over repeated
indices j, k, l), u (x, t) is the local displacement vector
with its 3 components ui, and Cjikl are the fourth-order
elasticity tensor components [63, 64].

The effect of prestress is implemented thanks to the
acoustoelastic theory [41, 44]. It applies in the context of
incremental displacements, i.e. small dynamic perturba-
tions on top of a large static deformation. As explained
in a recent contribution [38], this consists in replacing
the stiffness tensor of the undeformed isotropic elastic
material assuming the applied prestress is homogeneous
and in the time-harmonic case, by a frequency and strain
dependent elasticity tensor Cω whose components write:

Cω
jikl(λ, ω)=C0

jikl(λ)+
E0

3
Ijikl

[
1+β′ λ

2
i +λ2

j−2

2

]
(iωτ)

n
,

(12)
with Ijikl = (δjkδil + δjlδik), and λi, λj the stretch ra-
tios in directions ei and ej. Two distinct contributions
show up here. The first one, C0

jikl(λ), are the compo-
nents of a static tensor modified in order to take into
account the effect of the static stretch according to the
hyperelastic Mooney-Rivlin formalism (see Appendix B
for details). The second term incorporates the effects of
viscoelasticity [65, 66], thus integrating the impact of fre-
quency. It features a dependence on both the stretches λ
and the frequency ω, and underlines the interdependence
between these two variables. In fact, only if the second
coefficient β′ vanishes, the elasticity tensor Cω given by
equation (12) is the sum of a function of λ and of a func-
tion of ω. Instead, for our elastomer, a value of β′ = 0.29
was determined in a previous work [38].

In this study, we are interested in displacements in a
strip, meaning that boundary conditions need to be in-
corporated. Here, strip edges are free to move, thus the
shear stress must vanish. After integrating these bound-
ary conditions together with injecting a propagating so-
lution for the displacement, non-zero solutions are find
as zeros of a determinant. This yields to a dispersion
relation that takes the form of a transcendental equation
which can only be solved numerically. Instead, here we
employ a semi-analytical algorithm based on the Spec-
tral Collocation Method [67–72] (SCM). The implemen-
tation of Ref. [73] dedicated to plates is adapted in or-
der to consider the strip two-dimensional cross-section
and is available in Ref. [74]. Assuming a periodic solu-
tion propagating along x1 with wavenumber k, that is

u(k, x2, x3, ω) e
i(kx1−ωt), yields the following dispersion

relation (see details in Appendix C):

[
(ik)2L2 + ikL1 + L0 + ω2M

]
u = 0 . (13)

Therein, Li and M are matrices of the discrete prob-
lem. The above represents an algebraic eigenvalue prob-
lem for the eigenpair (ω2, u) parameterized by k, as is
common in commercial software. Alternatively, it can be
solved for the eigenpair (k, u) that is parameterized in
ω, which is particularly useful for frequency-dependent
material parameters. Choosing different values for ω and
solving the quadratic eigenvalue problem with conven-
tional methods yields the sought dispersion curves k(ω).
Note that due to viscoelasticity, wavenumbers k are com-
plex valued, while ω remains a real quantity. This is han-
dled naturally by the eigenvalue solver and represents no
difficulty.
The first two eigenvalues provide theoretical phase ve-

locities ω/k depicted as lines in Figure 2B and C. The
theoretical trends effectively coincide with all our mea-
surements, without any fitting procedure (all the param-
eters correspond to Ref. [38] devoted to an Ecoflex plate),
within the investigated extension and frequency ranges.
For frequencies below 40 Hz, the wavelength of the com-
pression mode approaches the dimensions of the plate.
Consequently, the systematic extraction of the phase ve-
locity becomes more sensitive to noise, leading to observ-
able deviations of certain experimental points from the
theoretical predictions. The decomposition of incremen-
tal displacements, together with three-dimensional equa-
tions turn out to be the key to a proper description of
strip dynamics. Note that our approach can be read-
ily extended to a wide range of structures with different
material rheology or elasticity laws.

CUT-OFF MODES

Free strip

In the previous section, we observed that the strip op-
erates as a finite waveguide. As a consequence, it has the
capacity to host an infinite amount of eigenmodes. Up
to this point, we have essentially discussed the behav-
ior of two fundamental in-plane modes: compression and
flexion. These two adequately account for the physics
within the low-frequency range. However, above cer-
tain cut-off frequencies, other contributions are likely
to emerge. In other words, the displacement response
must be projected onto a basis with additional eigen-
modes. For instance, at 200 Hz, the field consists in the
superposition of five eigenmodes (Figure 3), which we
separated thanks to a singular value decomposition [53].
Here, modes are labelled according to a convention in-
spired by Lamb waves [53, 75]. Specifically, the label S′

n

(resp. A′
n) indicates a displacement field that is symmet-

ric (resp. antisymmetric) along strip width (i.e. across
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total 
displacement (flexion) (compression)

Figure 3. Field Decomposition at f = 200 Hz — Experimental in-plane total displacement field and eigenmode decomposition
performed with a singular value decomposition algorithm. We display the fields with arrows, and the indicated displacement
component with a colormap. Note that modes A′

0 and S′
0 correspond, respectively, to flexion and compression at lower

frequencies, but both seem as transversely polarized waves at this frequency.

the dotted line in Figure 3). The index n refers to the
mode order, which is equivalent to the number of nodes
in the transverse direction e3. These modes have been
documented in prior studies [52, 53], but their response
to an external static stress remains unexplored. Note
that the two fundamental modes (n = 0) correspond at
low frequencies to the compression (S′

0) and flexion (A′
0)

described previously.
Thanks to our setup, which provides reliable data up

to 250 Hz, and empowered by our semi-analytical model,
we can now comprehensively investigate the influence of
an external stretch on the behavior of all modes, rather
than restricting our analysis to just the two low-frequency
modes. All experimental and numerical results are com-
piled in the dispersion diagram in Figure 4, which show-
cases the experimental points (top row) and the cor-
responding numerical outcomes (bottom row). These
were acquired from the same soft strip subjected to vary-
ing amounts of longitudinal static stretch, ranging from
λ = 1 (depicted in blue) to λ = 1.8 (depicted in yel-
low), and encompassing frequencies up to 250 Hz. For
enhanced clarity, symmetric and anti-symmetric modes
are presented in separate diagrams.

As one can notice, the theory effectively captures our
experimental observations. As anticipated, only two
modes exist at low frequencies (A′

0 being the flexural
wave, and S′

0 the compressional wave). A third one (A′
1)

emerges above 75 Hz, followed by two additional modes
(S′

1 and S′
2) appearing roughly at 150 Hz. Of particular

interest is the uneven impact of longitudinal stretching
on these branches. As emphasized in an earlier section,
S′
0 (compression) seems nearly immune to it at low fre-

quencies, a characteristic shared by A′
1. Conversely, the

other modes exhibit greater sensitivity to stretching, no-

tably in their slopes (i.e. group velocity) but also, in the
case of S′

1 and S′
2, in their cut-off frequencies.

A striking result is the change in the behavior of S′
0

with stretching when increasing frequency. Note how the
branches spread out above 100 Hz. This feature pro-
vides a valuable hint towards understanding the govern-
ing mechanism. Indeed, at low frequencies S′

0 is essen-
tially polarized in the longitudinal direction, as depicted
in Figure 2B, which is why it is commonly called the
compressional mode. However, its dominant polarization
switches as the frequency increases. On the displacement
map acquired at 200 Hz (see Figure 3), S′

0 indeed appears
essentially polarized in the transverse direction.
This strongly suggests that polarization is a determin-

ing criterion. This conclusion is further supported by the
fact that, on one hand, both A′

0 and S′
2 are essentially

polarized in the transverse direction (as depicted in Fig-
ure 3) and turn out to be significantly influenced by the
degree of stretching. On the other hand, A′

1 is character-
ized by a longitudinal polarization (as seen in Figure 3)
and proves resilient to stretching. See more details in
Appendix D, where the dispersion curves in Figure4 are
displayed with a colormap rendering their polarization.
Finally, let us take a closer look at the S′

1 and S′
2

branches. See how their two cut-off frequencies coin-
cide, resulting in the emergence of a crossing at k = 0.
This degeneracy goes together with a linear dispersion
for both the S′

1 and S′
2 branches. These features are sig-

natures of a so-called Dirac cone. This kind of cross-
ing, first evidenced in the context of electrons travel-
ing in graphene [76] holds significant implications in di-
verse fields like semiconductor physics [48], wave propa-
gation control [77], and communication systems [78]. In
the context of soft matter, this singularity was recently



7

E
xp

e
ri
m
e
n
ts

T
h
e
o
ry

Figure 4. Dispersion in a soft strip subjected to a uniaxial elongation — The deformation gradient F and the geometry
are recalled for a free strip subjected to a uniaxial tension. Experimental dispersion curves of antisymmetric and symmetric
modes in the elongated strip for several values of the stretch ratio 1 ≤ λ ≤ 1.8 are shown in the top line. The theoretical
predictions (bottom line) are obtained using SCM (see text).

evidenced [52] and pertains to incompressible materials
(ν = 1/2) for the strip geometry [75]. Here, we show that
the Dirac cone is relatively robust to extensional stress.
Our measurements also demonstrate that the frequency
of occurrence can be controlled by adjusting the amount
of static stretch, which can be relevant when considering
technological developments.

To understand these two effects, it is essential to go
back to the expressions of the cut-off frequencies. As
shown in a recent contribution building a plate-strip
equivalence [75], one can demonstrate that the cut-off is
governed by a coupling between the two following modes:
a shear wave propagating at VT =

√
E/3ρ and a plate

wave propagating at Vp = 2VT . Their cut-off frequen-
cies are multiples of VT /2b and Vp/2b [79]. Of course,
the directions associated with theses velocities should be
specified since the material becomes anisotropic upon
stretching [38]. Here, the relevant transverse wave re-
sponsible for the cut-off frequency propagates in the e3
direction and is polarized in e1 direction. Its phase ve-
locity writes [38, 40] VT31 = ω/Re [kT31] with kT31/ω =

[Cω
3113/ρ]

−1/2
. Conversely, the plate wave involved for

the cut-off frequency propagates again in e3 direction
but is also polarized in e3 direction. Since it has also
a displacement in e2 direction, its velocity is actually
completely governed by moduli implying these two di-

rections. It can be expressed [38, 40] with kp32/ω =

[Cω
3223 + 3Cω

2332)/ρ]
−1/2

. For the Dirac cone to exist, the
first (Vp32/2b) and second (VT31/b) non-zero cut-off fre-
quencies should coincide. Figure 5 reports the evolution
of the ratio between these two quantities as a function of
the stretch ratio λ (solid line). For this kind of deforma-
tion, it appears that the ratio remains relatively close to
1 (starting from exactly 1 at λ = 1 and plateauing at 1.08
for λ = 1.8), which explains why the cone seems present
regardless of the applied tension. This relative robustness
can also be harnessed when looking at the polarization of
the field near the Dirac cone (Figure 8 in Appendix D):
as a consequence of the degeneracy between two modes
with orthogonal polarizations the dispersion curve near
this point exhibits the presence of the two polarizations.
Nevertheless, one has to keep in mind that in solid state
physics a Dirac cone is a true degeneracy [48, 76], unlike
here the two branches do not really cross in the complex
wavenumber domain since they are associated to different
imaginary parts [80].

Clamped strip

We now consider an alternative configuration which
also supports the existence of a Dirac cone [52], wherein
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V
V

Figure 5. Cut-off frequencies — Evolution of the ratio of
phase velocities Vp32/2VT31 with the applied deformation
in the case of an elongational stretch (solid line) and of a
transversal stretch (dashed line).

a soft strip is clamped at its lateral edges. By adjusting
the distance between the clamps, we are able to induce
a transverse stretch (as illustrated in the inset of Fig-
ure 5 and in Figure 6). This new deformation prompts
alterations in both the elasticity tensor and the govern-
ing velocities, such as VT31 and VP32. In this configura-
tion, which corresponds to a planar elongation, we obtain
that the first and second non-zero cut-off frequencies are
gradually moving away as the stretching increases (as
pictured by the dashed line in Figure 5). As a result, we
anticipate a clear disruption of the Dirac cone. This can
be verified thanks to the dispersion curves presented in
Figure 6. Once again, theory effectively matches experi-
mental data.

It is worth pointing out that, in this case, the cone
pertains to anti-symmetric modes. The linear crossing,
which is its signature, occurs in the initial state (blue
symbols), but splits in two separate branches as λ is in-
creased (yellow symbols). This time, cut-off frequencies
no longer coincide, and instead we see two branches that
plunge completely into the complex plane. This trend is
apparent in the experimental curve and becomes more
evident in theoretical plots. This is particularly visible
in Figure 8 in Appendix D where the mixed polarization
(orange) for the unstretched case gives rise to two differ-
ent branches with clear orthogonal polarizations (yellow
and red) for stretched cases. In addition, one might no-
tice the absence of the two fundamental modes in this
configuration. This is directly linked to the clamping
process, which suppresses rigid body motions.

This configuration provides a demonstration that the
three-dimensional model can readily be extended to var-
ious sets of boundary conditions and to different kinds of

static deformations. Also, this illustrates how applying
an external static stretch serves as a mean to tailor dis-
persion, and consequently, tune the overall strip dynam-
ics. It provides a compelling illustration of the possibility
to control the structure response with an adequate static
deformation. This paves the way towards the design of
soft tunable structures.

CONCLUSION

This article investigates in-plane dynamics of a soft
strip experiencing a significant static deformation in the
longitudinal or transverse directions. To that end, our
approach consists in monitoring the propagation of elas-
tic waves within the strip. Our experiments, supported
by a semi-analytical model, reveal that static stretching
strongly impacts the dynamics of the strip. Interestingly,
we observe that certain vibration modes seem nearly im-
mune to the external stretching, while others display a
high sensitivity. We find that this sensitivity is essentially
governed by the displacement’s polarization.

These findings are well explained by incorporating
both the rheology and hyperelastic constitutive law of the
material, giving a total of 5 parameters. We first exempli-
fied this by modelling the effect of stretching on the com-
pression and flexion of the strips with simple one dimen-
sional models. Then, to render the whole waveguiding
phenomenon occurring at higher frequencies, we called
on a generalized three-dimensional formalism. Within
the framework of incremental displacement theory, which
involves a small dynamic perturbation superimposed on
a significant static deformation, we managed to derive
the full dynamic response.

In biological tissues and organic matter, flexible struc-
tures under tension play a pivotal role in various physio-
logical processes. Our research represents a step towards
a better understanding of the mechanics of vocal folds,
tendons and muscles among others. Furthermore, we
demonstrate that observing wave propagation through
a simple strip provides concrete insights into rheological
properties and stress state of the material. These find-
ings set the stage for refining ultrasound elastography
techniques [81, 82], which currently lack quantitative ca-
pabilities for imaging stretched organs.

Conversely, because we can make trustworthy predic-
tions, the external deformation is no longer an obstacle.
Instead, it becomes a valuable tool for shaping the re-
sponse and fine-tuning overall structure dynamics. These
results unlock interesting perspectives in terms of design
of adaptive soft structures, with potential applications in
the fields of vibration mitigation, energy harvesting and
soft robotics.
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Figure 6. Dispersion in a soft strip, clamped at the edges, subjected to a planar elongation — (left) The deformation
gradient F and the geometry are recalled. Experimental dispersion curves of antisymmetric and symmetric modes for several
values of the stretch ratio 1 ≤ λ ≤ 1.8 (top line). The theoretical predictions (bottom line) are obtained using SCM (see text).
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APPENDICES

Appendix A: Derivation of the Mooney-Rivlin
equivalent Young’s modulus

In the realm of continuum mechanics, the
Mooney–Rivlin constitutive law [27–30, 83] serves
as a hyperelastic model to account for the deviation
from Hooke’s law for large deformations. It is defined by
its strain energy density function W . This function is
constructed as a linear combination of the first two in-
variants I1 and I2 of the left Cauchy–Green deformation
tensor (B), defined in Appendix B. For an incompress-
ible Mooney–Rivlin material, the strain energy density
function takes on the following expression:

W = C1(I1 − 3) + C2(I2 − 3). (14)

This model requires 2 constants to describe the mechan-
ical properties. As Hooke’s law already provides a scalar
quantity, namely the Young’s modulus E0, we prefer to
rewrite this energy function as:

W =
E0

6
[(1− α)(I1 − 3) + α(I2 − 3)] . (15)

Note that α = 0 (or equivalently C2 = 0) corresponds to
a Neo-Hookean solid [30, 41, 83] which only accounts for
geometrical non-linearities.

In the specific scenario of a uniaxial elongation along
direction e1, we can define a stretch ratio λ1 = λ. For an
incompressible material, stretch ratios in other directions
e2 and e3 simply write λ2 = λ3 = 1/

√
λ since volume

has to be conserved. Then, it becomes possible to calcu-
late the true stress (Cauchy stress) as equation (1) in the
main text. This is done by evaluating the following equa-
tion which arises from the condition of vanishing lateral
tractions:

σ = λ1
∂W

∂λ1
− λ3

∂W

∂λ3
.

This expression clearly evidences that the true stress
does not linearly grow with elongation. Another way to
interpret this formula would be to keep using Hooke’s
law, but considering a Young’s modulus that depends on
the elongation. By doing so, we implicitly consider the
undeformed configuration as a reference. Then, we need
to evaluate the engineering (or nominal) stress which re-
lates internal forces in the deformed configuration with
areas from the reference. For the incompressible material
it simply gives:

σeng = σλ2λ3 =
σ

λ
. (16)

Finally, one easily extracts the desired elongation-
dependent Young’s modulus [55] of equation (2) as:

E(λ) =
d

dλ

(σ
λ

)
=

E0

3

[
(1− α)

(
1 +

2

λ3

)
+

3α

λ4

]
. (17)

Appendix B: Coefficients of the elasticity tensor
C0 (λ) for incremental waves in a hyperelastic solid

A compressible version of the Mooney-Rivlin model
was actually used in this work, with a bulk modulus of
1 GPa, as an input for the Spectral Collocation Method
(SCM), described in Appendix C. Thus, we switch to
compressible formulations for the quantities of interest.
Note that this does not change any of the above con-
clusions since the effect of compressibility for this set of
parameters is negligible during a tensile test.

The hyperelastic constitutive law relies on the use of
a strain energy density function W which contains all
mechanical properties. The associated stress σ is given
by:

σ =
1

J
F · ∂W

∂E
· FT with E=

FT ·F−1

2
and J=det (F) ,

(18)

where F = 1 + ∇u is the deformation gradient, u =
x−X is the displacement, 1 is the second-order identity
tensor, and E is the Green Lagrangian strain tensor, as
introduced in Refs. [41, 44]. For an isotropic solid, W is
a function of principal invariants of the left (B = F ·FT)
Cauchy–Green tensor:

I1 = Tr (B) = λ2
1 + λ2

2 + λ2
3

I2 =
1

2

(
Tr (B)

2 − Tr
(
B2

))
= λ2

2λ
2
3 + λ2

1λ
2
3 + λ2

1λ
2
2

I3 = det (B) = λ2
1λ

2
2λ

2
3 = J2

This ensures invariance of W under a permutation of
(λ1, λ2, λ3). The strain energy density function W for a
Mooney-Rivlin hyperelastic model writes:

W =
E0

3

[
(1− α)

(
I1

J2/3
− 3

)
+ α

(
I2

J4/3
− 3

)]
+
κ

2
(J − 1)

2

(19)
with the bulk modulus κ ≫ E0. From this, an incremen-
tal approach is built to describe waves in a prestressed
body, and equation (12) is obtained but with replacing
the elasticity tensor by C0, with its coefficients expressed



13

as:

C0
iijj =

λiλj

J
Wij ,

C0
ijij =

λiλj

J

λjWi − λiWj

λ2
i − λ2

j

if (i ̸= j, λi ̸= λj),

C0
ijij =

λ2
iWii − λiλjWij − λiWi

2J
if (i ̸= j, λi = λj),

(20)

C0
ijji =

λ2
i

J

λiWi − λjWj

λ2
i − λ2

j

if (i ̸= j, λi ̸= λj),

C0
ijji =

λ2
iWii − λiλjWij + λiWi

2J
if (i ̸= j, λi = λj),

where Wi =
∂W

∂λi
and Wij =

∂2W

∂λi∂λj
.

Here, expressions are slightly different from the ones com-
monly found in the literature [41, 44] because dot and
double-dot product conventions are different. The elas-
ticity tensors of these two formulations are related by a
simple permutation of the last two indices.

Appendix C: Computing guided waves in the strip
with SCM

The computational method [74] consists of three fun-
damental steps: (i) derive the boundary-value problem
that describes plane guided waves, (ii) replace the dif-
ferential operators by spectral differentiation matrices to
obtain a discrete approximation of the guided wave prob-
lem, and (iii) use standard numerical methods to solve
the resulting algebraic eigenvalue problem.

Step (i) consists of inserting the plane wave ansatz for
the displacements into the equation of motion given in
(11). After re-arranging the terms this yields (in sym-
bolic tensor notation):

[
(ik)2c11 + ik(c21 + c12)∂2 + ik(c31 + c13)∂3 + c22∂

2
2

+(c32 + c23)∂3∂2 + c33∂
2
3 + ω2ρ1

]
· u = 0 on Ω ,

(21)

where we have defined the second order tensors cij :=
ei ·C · ej with i, j ∈ {1, 2, 3}. A more detailed derivation
for a plate can be found in Ref. [72].

Boundary conditions are needed in addition to (21).
The boundary ∂Ω splits into one region ∂ΩN where the
strip is free (homogeneous Neumann boundary condition)
and one region ∂ΩD where it is clamped (homogeneous
Dirichlet boundary condition). Writing en for the unit
normal to the strip cross-section, i.e. either e2 or e3, the
homogeneous Neumann boundary condition reads:

en ·C : ∇u = [ikcn1 + cn2∂2 + cn3∂3] ·u = 0 on ∂ΩN .
(22)

The clamped boundary condition, on the other hand,
simply reads:

u = 0 on ∂ΩD . (23)

The equation of motion (21) together with the bound-
ary conditions (22) and (23) constitute the boundary-
value problem that describes guided waves in the strip.
Note that for a given value of ω, it constitutes a quadratic
differential eigenvalue problem with eigenvalue k and
eigenfunction u(x2, x3). Prestress and viscoelasticity are
considered using the appropriate elasticity tensor given
by Cω in equation (12). Hence, the stretched strip is
processed in the same way as without prestress, except
that the dimensions of the cross-section (width b and
thickness h) are iteratively adapted to the static pre-
deformation currently being considered.
The discretization is performed in step (ii). To this

end, the domain Ω = [0, h] × [0, b] is discretized as sug-
gested by Weideman and Reddy [68] using Chebyshev
spectral collocation. The first and second order differ-
entiation matrices D(10) and D(20) of size N × N along
the x2-coordinate are computed using DMSUITE [68].
We proceed similarly for differentiation along the x3-
coordinate, yielding matrices D(01) and D(02) of size
P ×P . Next, the differentiation matrices in the (x2, x3)-
plane are obtained as Kronecker products, denoted by
“⊗”, between the former one-dimensional differentiation
matrices. Concretely, this yields the matrices:

D23 = D(01) ⊗D(10) , D2 = IP ⊗D(10) , D22 = IP ⊗D(20) ,

D3 = D(01) ⊗ IN , D33 = D(02) ⊗ IN , Id = IP ⊗ IN ,
(24)

where IQ denotes the identity matrix of size Q×Q.
Next, the partial derivatives in (21) as well as (22)

are replaced by the differentiation matrices given in (24).
When doing so, the multiplication of the differentiation
matrices with the second order constitutive tensors cij
needs to be interpreted again as Kronecker products.
This finally yields:

[
(ik)2c11 ⊗ Id + ik(c21 + c12)⊗D2 + ik(c31 + c13)⊗D3

+c22 ⊗D22 + (c32 + c23)⊗D23 (25)

+c33 ⊗D33 + ω2ρ1⊗ Id
]
u = 0 ,

where u denotes the 3NP × 1 vector of u1, u2, u3 dis-
placements at the NP collocation points. Hence, equa-
tion (25) represents a linear system of size 3NP × 3NP .
The discrete boundary conditions are obtained simi-

larly. The Neumann boundary condition from (22) be-
comes:

[ikcn1 ⊗ Id + cn2 ⊗D2 + cn3 ⊗D3]u = 0 , (26)

while the fixed condition from (23) is:
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Figure 7. Comparison of the SCM with solutions
obtained with COMSOL Multiphysics — Numerically
computed dispersion curves for in-plane guided waves in an
undeformed soft elastic strip of size h = 3mm × b = 40mm.
Solutions coincide both for a free strip in (A) and for the par-
tially clamped strip in (B).

1⊗ Id u = 0 . (27)

Lastly, the boundary conditions need to be incorpo-
rated into (25). This is done by replacing the corre-
sponding rows of (25) with the ones from (26) or (27), as
appropriate. Denoting the final matrices with the men-
tioned replacements as L2, L1, L0 and M , this finally
leads to the equation (13) in the main text.

In order to test the implementation, we have consid-
ered a purely elastic material without prestress by setting
Cω = C, and we present the results for in-plane guided
waves in Figure 7 for the two types of boundary condi-
tions. For the sake of completeness, results are compared
to the ones obtained by finite element method, with the
commercial software COMSOL, showing a perfect agree-
ment.

While the free strip computes seamlessly, the partially
fixed strip leads to numerical difficulties due to the sin-
gularities present at the corners of the rectangular cross-
section. Choosing different boundary conditions at the
corners leads to somewhat different behaviors of the so-
lutions. In any case, the singularities become less im-
portant when increasing N , P and all solutions converge
slowly towards the COMSOL Multiphysics reference. We
notice, however, that choosing N even (odd) leads to a
good representation of the mostly in-plane (out-of-plane)
polarized waves. As we are only interested in the in-plane
guided waves, we can choose N and P as before and ob-
tain converged results for these waves. The described
problem could be overcome by utilizing a finite element
discretization instead. As we are able to obtain accurate
solutions for the waves of interest, we have stuck to the
very fast Spectral Collocation Method to perform para-
metric studies of prestressed viscoelastic strips in this
work.

Appendix D: Mode polarization and dependence on
the deformation

Dispersion curves of in-plane eigenmodes in stretched
strips are redisplayed in Figure 8, for various stretch ra-
tios and configurations. In the top part, a free strip is
subjected to a uniaxial stress, while in the bottom part,
a strip with fixed edges is subjected to a planar stress.
This time, color encodes for the mode polarization.
In practice, the spectral collocation method is used to

solve equation (13) at a fixed frequency ω to obtain the
eigenpair (k,u). By studying u, one can discriminate in-
plane eigenmodes (from their out-of-plane counterparts)
and their corresponding symmetry. One can also study
their main polarization by evaluating mean values of |u1|2
and |u3|2 over the cross-section and compute the inverse
tangent of the ratio

∫
|u1|2/

∫
|u3|2. Then, it is possi-

ble to see whether the mode is mostly polarized in the
e1 direction (longitudinal in red) or in the e3 direction
(transverse in yellow).
The first and most obvious observation is the S′

0 mode
polarization in a free strip. At low frequency, it appears
red and all curves are superimposed. This is the so-
called compressional mode discussed earlier and depends
very little on the applied prestress, consistent with an
almost unchanged Young’s modulus. Nevertheless, when
increasing the frequency, the branch gradually becomes
orange, then yellow. This transition demonstrates the ef-
fect of the strip’s lateral dimension on wave propagation
and justifies solving the full 3D problem. It indicates the
gradual change from a pure longitudinal polarization to a
more mixed polarization. Interestingly, stretching affects
the dispersion diagram when the polarization becomes
predominantly transverse to the stretching direction. In
contrast, the A′

0 mode in a free strip is highly dependent
on the applied stress, especially at low frequency where
curves are purely yellow (flexion). Similar observations
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Figure 8. Role of the polarization — Theoretical dispersion curves for the free strip under elongational stretch (top row)
and the clamped strip under lateral stretch (bottom row). The color indicates the dominant polarization (yellow = transverse,
red = longitudinal).

can be made for other modes, in both configurations. The
redder the curves, the closer together they are, so the less
effect the prestress has. Conversely, the more yellow they
are, the more different they are and the greater the im-
pact of prestress.

Finally, the Dirac cone in a free strip (with symmetric
modes S′

1 and S′
2) or in a fixed strip (with antisymmetric

modes A′
1 and A′

2) appears orange in both configura-
tions when the strip is undeformed. This is indeed the
only case where both polarization are involved close to
the k = 0 axis. In a free strip, this Dirac cone remains
orange and present. Actually, our method allows to ob-
tain complex valued wavenumbers, and by also plotting

their imaginary parts, one can notice this linear cross-
ing is rather two straight lines avoiding each other by
passing through the complex plane. By increasing the
stretch ratio, cut-off frequencies almost coincide and the
branches just avoid each other more (meaning that their
imaginary part is slightly larger), but the Dirac cone still
looks present. In a strip with fixed edges, cut-off frequen-
cies become sufficiently different so that the cone splits
into two parts, one red which barely changes with the
prestress and another one yellow which is significantly
changed. In between, wavenumbers are predominantly
imaginary.
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