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ABSTRACT:
Background: obstructive sleep apnea (OSA) is frequent and responsible for cardiovascular 
complications and excessive daytime sleepiness. It is underdiagnosed due to the difficulty to 
access the gold standard for diagnosis, polysomnography (PSG). Alternative methods using 
smartphone sensors could be useful to increase diagnosis.

Objective: assess the performances of Apneal®, an application that records the sound 
using a smartphone’s microphone and movements thanks to a smartphone’s accelerometer 
and gyroscope, to estimate patients’ AHI. 

Methods: monocentric proof-of-concept study with a first manual scoring step, and then 
automatic detection of respiratory events from the recorded signals using a sequential 
deep-learning model which was released internally at Apneal® at the end of 2022 (version 
0.1 of Apneal® automatic scoring of respiratory events), in adult patients during in-hospital 
polysomnography.

Results: 46 patients (women 34%, mean BMI 28.7 kg/m2) were included.
For AHI>15, sensitivity of manual scoring was 0.91 (95% CI [0.8, 1]), and positive predictive 
value (PPV) 0.89 (CI 95% [0.76, 0.97]). For AHI > 30, sensitivity was 0.85 (95% CI [0.67, 1]), 
PPV 0.94 (CI 95% [0.8, 1]). We obtained an AUC-ROC of 0.85 (95% CI [0.69, 0.96]) and an 
AUC-PR of 0.94 (95% CI [0.84, 0.99]) for the identification of AHI > 15, and AUC-ROC of 
0.95 (95% CI [0.86, 0.99]) and AUC-PR of 0.93 (95% CI [0.81, 0.99]) for AHI > 30. The ICC 
between the AHI estimated manually, and from the PSG is 0.89 (p-value = 6.7 x 10-17), 
Pearson correlation 0.90 (p-value=1.25 x 10-17).
For AHI>15, the automatic Apneal® scorings compared to the PSG scorings led to a 
sensitivity of 1 (95% CI [0.95, 1]), and a PPV of 0.9 (95% CI [0.8, 0.9]) for the AHI threshold 
of 15. For the AHI threshold of 30, we obtained a sensitivity of 0.95 (95% CI [0.84, 1]), and a 
positive predictive value of 0.69 (CI 95% [0.52, 0.85]). Using the smallest threshold to obtain 
a PPV> 0.9 for AHI > 15, we find a sensitivity of 0.97 (95% CI [0.91, 1]) and PPV of 0.9 (95% 
CI [0.79, 0.98]); for AHI > 30 sensitivity of 0.57 (95% CI [0.35, 0.78]) and PPV of 0.93 (95% 
CI [0.75, 1]). The ICC between the AHI estimated, and from the PSG scorings is 0.84 
(p-value = 5.4 x 10-11) and the Pearson correlation found is 0.87 (p-value = 1.7 x 10-12). 
Conclusion: manual scoring of smartphone-based signals is possible and accurate 
compared to PSG-based scorings. Automatic scoring method based on a deep learning 
model provides promising results. A larger multicentric validation study, involving subjects 
with different SAHS severity is required to confirm these results. 

Trial registration : NCT03803098
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INTRODUCTION
Sleep apnea-hypopnea syndrome (SAHS) affects 15-25% of the population in developed 
countries[1][2]. It is characterized by repeated interruptions of ventilation during sleep, 
resulting in sleep disturbance, chronic intermittent hypoxia, and hypercapnia. SAHS triggers 
cardiovascular diseases and excessive daytime sleepiness, which can result in occupational 
and road traffic accidents. Proper treatment of SAHS, mostly by continuous positive airway 
pressure (CPAP), reduces the risk of accidents and injuries[3].

Diagnosis of SAHS is based on a polysomnographic recording (PSG) of respiratory- (chest 
belt, abdominal belt, nasal flow, nasal pressure, snoring, oxygen saturation), cardiac activity 
(heart rate, photoplethysmogram, electrocardiogram), brain- (EEG), and motor activities 
(EMG, actimeter, position sensor). While PSG is considered as the reference to precisely 
evaluate the SAHS severity of a patient, in clinical practice in adults, a simplified ambulatory 
polygraph recording (PG) is generally sufficient for the diagnosis of SAHS and records at 
least the following sensors: abdominal and thoracic belts, nasal scope, microphone, pulse 
oximeter, position, and oxygen saturation [4]. The metric used to evaluate the severity of 
SAHS is the Apnea Hypopnea Index (AHI), which is the number of apneas and hypopneas 
per hour (of sleep). Patients will be considered normal (without SAHS) if their AHI is under 5, 
as having mild SAHS if their AHI is above 5 and below 15, as having moderate SAHS if their 
AHI is between 15 and 30, and severe SAHS if their AHI is above 30 [5]. 

However, SAHS screening and diagnosis are too infrequent, and a large number of apneic 
patients are unaware of their condition. For example, 80% of apnea sufferers in the USA 
remain undiagnosed[6]. The main obstacles to diagnosis are patients' awareness, general 
practitioners' lack of training in this pathology, the cost of diagnosis and treatment, and 
access to diagnostic tests [7].

For screening purposes in the general population, some questionnaires can be used like the 
STOP-BANG [8] or the Berlin questionnaire [9]. While these questionnaires are easy to use, 
their screening results are either too sensitive or do not show enough sensitivity[8,9]. 

Recently, to obtain more accurate results than questionnaires, alternative signals have been 
proposed, with devices that offer a simpler installation than a PSG, and are used at patients’ 
homes. For example, some devices use tracheal sounds [10],  mandibular movement[11], or 
movement detected through sleep mattresses[12]. Some of these are validated of OSA 
diagnosis or screening, and offer multinight-testing, limiting the risk of misdiagnosis [13]. 
However, all these devices require dedicated hardware.

To overcome this need of a specific device, inducing economic and environmental  
questions, and to take advantage of the powerful sensors that exist in smartphones, 
researchers have considered methods to screen SAHS either using smartphones’ 
accelerometers[14] or the sound recorded by a smartphone’s microphone[15], and obtained 
promising but insufficient results. The use of smartphone sensors seems also interesting in 
reconstructing other vital signs that can be useful to doctors when screening for SAHS, like 
heart rate[16].

In this paper, we propose a new method that uses no hardware but smartphone’s available 
sensors to estimate patients’ AHI, called Apneal®. This application records the sound using 
a smartphone’s microphone and movements thanks to a smartphone’s accelerometer and 
gyroscope. This proof-of-concept study was conducted with a first manual scoring step, and 



then automatic detection of respiratory events from the recorded signals using a sequential 
deep-learning model which was released internally at Apneal® at the end of 2022 (version 
0.1 of Apneal® automatic scoring of respiratory events).



METHODS

Study design

We conducted a transversal study at a university hospital sleep center (Centre du sommeil, 
hôpital Bichat Claude Bernard, Paris, France). Consecutive adult patients referred for 
videopolysomnography (VPSG) as part of routine care were offered to participate. Other 
inclusion criteria were ability to understand French, health insurance coverage. Exclusion 
criteria were known cardiac rhythm disorder, pacemaker, diabetes mellitus, CPAP treatment 
during the night of the study, or refusal to participate. In this proof-of-concept study, no power 
calculation was made.

Data acquisition
After obtaining informed consent, patients were equipped with both devices: the 
polysomnography (PSG) sensors were installed and a smartphone in airplane mode (iPhone 
12 mini) was attached to their chest thanks to an adhesive band. The Apneal® application 
was then switched on. The smartphone was placed with a microphone directed towards the 
mouth of the patient, and the screen facing up (see Figure 1). 

Full VPSG (Alice 6, Philips Respironics) was performed and scored following American 
Association of Sleep Medicine (AASM) 2012 guidelines by trained technologists and 
doctors[17]. We named this first scoring of the PSG PSG-first. After this first scoring, the 
scoring of the respiratory events was verified and modified if needed by other trained 
technologists. We called this second version of the scoring of the PSG PSG-second. Both 
scoring versions can be considered as a reference.

The installation of both device on the patients are visible on Figure 1.

Figure 1: full installation of a smartphone and the PSG on a patient



The Apneal® application recorded the sound (8000 Hz) produced by the patients during the 
night, along with the 3D acceleration (100 Hz) and the 3D angular velocity (100 Hz) of the 
smartphone.

Proprietary APNEAL algorithm

Variable Sample rate Resolution

3D acceleration, filtered 
using a bandpass filter 
between 0.1Hz and 1Hz

100 Hz 4.10-5g

Position (left, right, supine, 
prone or upright)

0.033 Hz -

Probability of breathing 3.2 Hz 3.10-5

Snoring probability 3.2 Hz 3.10-5

Audio 8000 Hz 16-bit

Audio power 40 Hz 4.10-3dB

Activity 1Hz 2.10-3

ECG Heart rate 1Hz 2.10-3bpm

Table 1: Signals used by scorers

Proprietary AI algorithms were applied to the raw signals recorded by the smartphones, to 
extract the position of the patients during the night, the probability of breathing, and the 
probability of the presence of snores. The sound (hearable by the scorers), the sound 
volume, the filtered acceleration on the three axes, and the activity were also extracted from 
the signals recorded by the smartphone. 

The activity was extracted with the following method:
- Take the accelerometer L2-norm of the x and y axes
- Take the first derivate
- Take the absolute values of the first derivate
- Multiply by 10
- Clip to [0, 10] g/s



Manual scoring of Apneal® recordings

Figure 2: Illustration of various respiratory events: central apnea, obstructive hypopnea, and 
obstructive apnea (from left to right), with, in parallel, some of the Apneal® signals used 
during manual scoring (top) and signals extracted from the PSG (bottom).

The signals in Table 1 (all extracted from Apneal® recording apart from the ECG heart rate) 
were used by seven non-expert scorers to blindly score sleep stages (wake and sleep 
periods only) and respiratory events (central or obstructive apneas and hypopneas, and 
RERAs), following common guidelines. An illustration of the kind of signals they used can be 
seen during various respiratory events in Figure 2 (top) along with some of the signals 
recorded by the PSG during the same events (bottom). All scorers went through the 
following steps for each patient:

- Look for when the patient falls asleep for the first time and wakes up for the last time 
to set up the limits of the studied period

- Identify intra-sleep awakening periods (labeled as wake epochs if they are longer 
than 30 seconds)

- Identify arousals (less than 30 seconds long, and at least 3 seconds long)
- Once this is done for the whole studied period, go back to the beginning and look for 

respiratory events (wake epochs could also be added during this step)
- Score all the epochs not scored as wake periods as sleep periods.

Scorers were encouraged to listen to the audio when in doubt.

Before scoring, scorers received a one-hour training and scored one hour of recording to get 
feedback and correct their scoring process. Once trained, they all scored the same recording 
to study the consistency of scorings from one scorer to the other. After that, all the patients 
were scored by at least one scorer. The scorings produced by this process are considered 
as Apneal® manual scorings.

Automatic scoring of respiratory events
In parallel, a sequential deep learning model was also used to automatically detect 
respiratory events during sleep periods, using input features extracted from Apneal® 
recordings. The sequential model was trained using cross-validation, with four folds of 
training, validation, and test sets, containing different patients’ recordings. The scorings 
produced by this process are considered as Apneal® automatic scorings.



Data processing

Figure 3: Explanation of our data processing pipeline.

After manual scoring, raw VPSG data on Alice 6 were extracted. After manual and automatic 
scorings of Apneal® recordings, the scorings of sleep stages and respiratory events of the 
different sources were extracted. See Figure 3 for a summary of our data processing 
pipeline.

For each patient and each setting, we extracted the Apnea and Hypopnea Index (AHI) 
found, which is the number of hypopneas and apneas during sleep periods divided by the 
number of hours of sleep. We compared the PSG-first AHI with the AHI obtained using the 
Apneal® manual, as they were done in a similar setting (one scorer per recording, one 
reading of the signal). We then compared PSG-second with Apneal® automatic scorings.

We also compared the respiratory events segmentation produced by these different 
methods.

Statistics

Patient characteristics were described as a median and interquartile range for quantitative 
variables and percentages for categorical variables. 

We studied the ability of the Apneal® device to detect moderate-to-severe OSAS, i.e. 
classify patients under and above the AHI threshold of 15/h, the current threshold for SAS 
treatment (SPLF RPC 2009). For that, we computed positive predictive value and sensitivity. 
These values were obtained using the raw values of the predicted AHI and the threshold of 
value 15/h. To obtain 95% confidence intervals for these values, we used bootstrapping over 
patients, with N=10000.

We also computed the Area Under the ROC Curve (AUC-ROC) and the Area Under the 
Precision-Recall Curve (AUC-PR) for the identification of patients with an AHI above 15/h, 
and above 30/h. For the automatic scoring, we estimated the minimal threshold to set to 



obtain a precision of at least 0.9 and of at least 0.95 for the identification of patients above 
15/h and above 30/h of AHI.

We computed the intraclass correlation coefficient (ICC) and Pearson correlation between 
PSG-scored AHI values and those obtained by the manual (with PSG-first) and automatic 
(with PSG-second) Apneal® scorings and provided the p-value for these values to assess 
the performances of the App.

We also compared the segmentation of respiratory events obtained from the PSG and the 
one obtained by the manual (with PSG-first) and automatic (with PSG-second) Apneal® 
scorings. We did that using positive predictive value and sensitivity metrics, considering a 
predicted event as a true positive when it overlaps with a PSG-based respiratory event for at 
least three seconds, with a margin for PSG-based respiratory events of 20 seconds. To 
obtain 95% confidence intervals for these values, we used bootstrapping over patients, with 
N=10000.

Ethical aspects

This study is part of the Evaluation of the Metrological Reliability of Connected Objects in the 
Measurement of Medical Physiological Parameters (EvalExplo) study [NCT03803098]. 
Ethics approval was obtained from Comité de Protection des Personnes Sud Est VI 
(approval number AU 1443), and written non-opposition was obtained according to the Jardé 
decree in France.



RESULTS

Patient characteristics

A total of 46 patients were included. One patient was excluded because of a recording issue. 
Another patient was excluded because the phone placed on his chest was removed during 
the night, and put back in the wrong direction. The final sample included 44 patients with 
available PSG and Apneal® recordings. Patients’ characteristics are described in Table 2.

Age Sex BMI N3 (min) REM% Sleep time 
(min)

AHI 
(PSG-fir
st)

AHI 
(PSG-s
econd)

med : 
57.5 , 
IQR: 
18

F 
34% 
M 
66%

med: 
28.7, 
IQR: 7

med: 
78.8, 
IQR: 
48.6

med: 
18.5%
IQR: 
8.7%

med: 371
IQR:82

med 
26.0 
IQR: 
31.1

med 
27.6 
IQR: 
32.1

Table 2: Patients’ characteristics

Manual scoring

For classifying patients below and above AHI 15, the manual Apneal® scorings compared to 
the PSG scorings (PSG-first) lead to a sensitivity of 0.91 (95% CI [0.8, 1]), and a positive 
predictive value of 0.89 (CI 95% [0.76, 0.97]). For the AHI threshold of 30, we obtained a 
sensitivity of 0.85 (95% CI [0.67, 1]), and a positive predictive value of 0.94 (CI 95% [0.8, 1]).

Using varying thresholds on the predicted AHI we obtained an AUC-ROC of 0.85 (95% CI 
[0.69, 0.96]) and an AUC-PR of 0.94 (95% CI [0.84, 0.99]) for the identification of patients 
with an AHI above 15, and AUC-ROC of 0.95 (95% CI [0.86, 0.99]) and AUC-PR of 0.93 
(95% CI [0.81, 0.99]) for the identification of patient with an AHI above 30. 

The ICC between the AHI estimated manually, and the one obtained from the PSG scorings 
is 0.89 (p-value = 6.7 x 10-17), Pearson correlation is 0.90 (p-value=1.25 x 10-17). Confusion 
matrix, regression plot, and Bland Altman plot can be seen in Figure 4. Results obtained at 
the event segmentation level are visible in Table 3.



Figure 4: Results of the manual scoring. A) Confusion matrix between the OSA severities 
obtained from the PSG AHI and the Manual Apneal® AHI. B) Regression plot between the 
PSG AHI and the automatic Apneal® AHI. C) Bland Altman plot between the PSG AHI and 
the Manual Apneal® AHI.

Manual scoring by selected scorers

Using the recordings scored by all scorers, we were able to select the 4 best scorers on an 
independent test, who had the scorings that were the most consistent from one to the other 
and who were the closest to the PSG scoring for this recording.

We studied the results of Apneal® manual scorings for the subset of recordings that were 
scored by these selected scorers and we observed a sensitivity of 0.96 (95% CI [0.88, 1]) 
and a positive predictive value of 0.93 (95% CI [0.81, 1]) for the AHI threshold of 15. For the 
AHI threshold of 30, we obtained a sensitivity of 0.87 (95% CI [0.64, 1]), and a positive 
predictive value of 0.99 (CI 95% [0.95, 1]).

Using varying thresholds on the predicted AHI we obtained an AUC-ROC of 0.95  (95% CI 
[0.84, 1]) and an AUC-PR of 0.99 (95% CI [0.95, 1]) for the identification of patients with an 
AHI above 15, and AUC-ROC of  0.96 (95% CI [0.87, 1]) and AUC-PR of 0.96 (95% CI [0.86, 
1]) for the identification of patients with an AHI above 30.



The ICC between the AHI estimated manually by selected scorers and the one obtained 
from the PSG (PSG-first) is 0.93 (p-value=2.6 x 10-16), and the Pearson correlation is 0.95 
(p-value = 1.8 x 10-17). 

Confusion matrix, regression plot, and Bland Altman plot can be seen in Figure 5. Results 
obtained at the event segmentation level are visible in Table 3.

Figure 5: Results of the manual scoring from selected scorers. A) Confusion matrix between 
the OSA severities obtained from the PSG AHI and the Manual selected Apneal® AHI. B) 
Regression plot between the PSG AHI and the Manual selected Apneal® AHI. C) Bland 
Altman plot between the PSG AHI and the Manual selected Apneal® AHI.

Automatic scoring

For classifying patients below and above AHI 15, the automatic Apneal® scorings compared 
to the PSG scorings (PSG-second) lead to a sensitivity of 1 (95% CI [0.95, 1]), and a 
positive predictive value of 0.9 (95% CI [0.8, 0.9]) for the AHI threshold of 15. For the AHI 
threshold of 30, we obtained a sensitivity of 0.95 (95% CI [0.84, 1]), and a positive predictive 
value of 0.69 (CI 95% [0.52, 0.85]). The confusion matrix, regression plot, and Bland Altman 
plot can be seen in Figure 6.

Using varying thresholds on the predicted AHI we obtained an AUC-ROC of 0.85 (95% CI 
[0.64, 0.99]) and an AUC-PR of 0.97 (95% CI [0.9, 1]) for the identification of patients with an 
AHI above 15, and AUC-ROC of 0.87 (95% CI [0.74, 0.96]) and AUC-PR of 0.88 (95% CI 
[0.74, 0.96]) for the identification of patients with an AHI above 30. 



We modified the thresholds used on the predicted AHI to identify patients’ severity in order to 
obtain optimal predictive positive values. We obtained the updated following metrics. Using 
the smallest threshold to obtain a positive predictive value above 0.9: for 15 sensitivity of 
0.97 (95% CI [0.91, 1]) and positive predictive value of 0.9 (95% CI [0.79, 0.98]); for 30 
sensitivity of 0.57 (95% CI [0.35, 0.78]) and positive predictive value of 0.93 (95% CI [0.75, 
1]). 

The ICC between the AHI estimated, and the one obtained from the PSG scorings is 0.84 
(p-value = 5.4 x 10-11) and the Pearson correlation found is 0.87 (p-value = 1.7 x 10-12). 

Results obtained at the event segmentation level are visible in Table 3.

Figure 6: Results of the automatic scoring. A) Confusion matrix between the OSA severities 
obtained from the PSG-second AHI and the automatic Apneal® AHI, using the severity 
threshold of IAH (< 5, 5-15 and > 15/h). B) Regression plot between the PSG-second AHI 
and the automatic Apneal® AHI. C) Bland Altman plot between the PSG-second AHI and 
the automatic Apneal® AHI.

Scoring type PPV for segmentation Sensitivity for segmentation

Manual 0.68 [0.6, 0.74] 0.7 [0.61, 0.77]



Manual Expert 0.7 [0.62, 0.76] 0.74 [0.66, 0.8]

Automatic 0.69 [0.6, 0.76] 0.77 [0.71, 0.82]

Table 3: Event-per-event segmentation of respiratory events results for all scoring types 
produced from Apneal® recordings compared to PSG-based scorings (PSG-first for manual 
and PSG-second for automatic). The values here represent the ability of Apneal® to identify 
each individual respiratory event during a patient’s night. The values displayed are median 
and 95% CI.



DISCUSSION
This study presents the first steps for the validation of a new, minimally invasive tool to 
diagnose sleep apnea. Using only the smartphone’s sensors (microphone, accelerometer, 
and gyroscope), respiratory events were detected properly. The signal recorded by 
smartphone sensors is enough for non-expert scorers to score respiratory events, and to 
detect apneic patients, with a sensitivity of 0.91, and a positive predictive value of 0.89 for 
the AHI threshold of 15. Moreover, this scoring could be automatized, using Apneal® version 
0.1 automatic scoring of respiratory events obtaining a sensitivity of 1 and a PPV of 0.9. The 
predicted AHI values seem to be relevant to identifying the SAHS severity of patients (AHI 
threshold of 15 and 30, the only ones that can be tested considering the AHI distribution of 
patients that were included in this study), as we obtained an AUC-ROC of 0.95 (threshold 
15) and 0.96 (threshold 30) for the manual scoring (selected scorers) and an AUC-ROC of 
0.85 (threshold 15) and 0.87 (threshold 30) for the automatic scoring. These results are 
encouraging and provide us with a proof of concept of this method.

Furthermore, interestingly, this method does not just provide with a global AHI but enables 
us to segment individual respiratory events accurately (see Table 3), as we show that 
manual scoring can reach up to 0.7 of PPV and 0.74 of sensitivity for individual respiratory 
events segmentation, and the automatic scoring 0.69 of PPV and 0.77 of sensitivity. Further 
work on the algorithm is necessary to increase the global performance of the solution.

Compared to existing solutions, our AI-driven solution shows good performance in screening 
and diagnosis. Indeed, screening relies on questionnaires such as the STOP-BANG, Berlin 
Questionnaire. Their sensitivity and specificity are lower than 80% in the general population 
(Abrishami et al., 2010; Chung & Vairavanathan, 2008), and they are not adapted to specific 
populations (e.g pregnant women, children, psychiatry…). Epworth Sleepiness Scale (ESS) 
is intended to detect excessive daytime sleepiness and is often used although not 
recommended as a screening tool. Our device, although it would need specific validation in 
children and pregnant women, represents an easily accessible tool for SAHS objective 
detection. Other currently available AI-driven solutions include pulse tonometry and 
mandibular movements. Their diagnostic performances are equivalent to the ones we find in 
this preliminary study[11,18].

As far as the cost of diagnosis is concerned, this has been considerably reduced by the 
systematic introduction of home ventilatory polygraphy, which can be performed in private 
practice by doctors of various specialties (pulmonologist, ENT specialist, cardiologist, 
psychiatrist) or by the general practitioner specializing in sleep[19]. Polygraphy involves a 
limited number of sensors, enabling patients to equip themselves independently and carry 
out the recording at home. Although one night's hospitalization is avoided and the cost is, 
therefore, lower [20], the investment in equipment and the logistics of the examination (loan 
of equipment, recovery, disinfection, reading of tracings) remain a barrier to scaling up 
healthcare systems diagnostics capacity. New devices using derivative signals and AI, such 
as jaw movements (Sunrise®), ballistocardiography embedded in a device placed under the 
mattress (Withings®) or arterial pulse tonometry (Watchpat®) have shown good 
performance for sleep apnea detection. In addition, it has been demonstrated with such 
devices that AHI may vary considerably from one night to another, leading to consider the 
need to record for several nights to set a proper diagnosis[13]. Such a consideration further 

https://www.zotero.org/google-docs/?BPMTzA


pinpoints the need for simplified devices for SAHS diagnosis. However, the later methods 
still require a dedicated device, inducing the need for an in-person visit (at least to a 
pharmacy or a healthcare professional) to set up the exam and/or retrieve results, but also 
addresses the question of device recycling or elimination. Our device, using only the 
patient's smartphone, ensures access to sleep apnea diagnosis in remote areas and has a 
lower carbon footprint.

Strengths and limits of the study

Strengths of our study include the blinded manual scoring to assess the quality of the 
recorded signals, the use of polysomnography and not polygraphy as a gold standard, and 
the high number of respiratory events to be detected, thanks to the inclusion of patients with 
a high probability of sleep apnea.

One of the limitations of our work is the use of the heart rate provided by the ECG of the 
PSG during manual scorings. The algorithm to extract the heart rate from the accelerometer 
and the gyroscope was developed subsequently, and thus could not be used for this first 
step. However, articles on the extraction of heart rate from the seismocardiogram show that 
an equivalent heart rate can be measured using that type of signal [21]. This would be 
enough to reproduce these results using only signals extracted from the smartphone. This 
error reduces to 3.8 bpm during movement-free and artifact-free periods.

Outliers in the results figures for the automatic scoring (Figure 6) are visible: the automatic 
scoring tends to overestimate the number of respiratory events for some patients. These 
outliers may be due to multiple factors, including the confusion of periodic leg movements 
with movements due to respiratory recovery, and thus respiratory events like apneas or 
hypopneas. The distinction between these two types of events will be taken care of by future 
versions of Apneal® automatic scoring to solve this overestimation issue.

Another limitation is that we are not using the same gold standard scoring to evaluate our 
manual and automatic scorings. To evaluate Apneal® manual scoring, we use PSG-first, a 
scoring that was made (manually) based on the PSG by a first specialized doctor or 
technologist. To evaluate Apneal® automatic scoring, we use PSG-second, a scoring that is 
the clean and verified version of PSG-first, which was checked by another sleep 
technologist. We want to underline that these two scorings could be used as a reference. 
However, we chose this evaluation setting to have a fairer comparison. Indeed, the manual 
scoring was made in the same settings as PSG-first, with the same risk of missing 
respiratory events during the scoring. As the application of a model does not lead to 
attention issues (a model misses an event only if it makes a mistake, not because its 
attention span), we wanted to compare the automatic scoring to a more “perfect” reference 
scoring.

Last, our sample is relatively small. The monocentric set-up in a reference sleep center 
allows for a proper gold standard with highly trained technicians and sleep doctors for 
scoring but induces a selection bias by including patients with severe sleep complaints. 
Including subjects with a low pretest probability is mandatory in the next steps to ensure 
proper device validation in a less specific population.  As this paper showed the feasibility of 



using only smartphone sensors to help diagnose sleep apnea, the next steps are to improve 
the automatic scoring of respiratory events using these signals and to generalize this method 
on more and diverse patients. We plan to achieve a multicentric clinical study of 500 patients 
to validate the method.

CONCLUSION

This work introduces a proof of concept demonstrating the potential of smartphone-based 
recordings of various signals for detecting respiratory events associated with SAHS 
diagnosis. Our findings indicate that manual scoring of these signals is possible and 
accurate compared to PSG-based scorings, demonstrating the interpretability of the 
recorded signals. Additionally, we also present the first version of an automatic scoring 
method based on a deep learning model, which provides promising results. A larger 
multicentric validation study, involving subjects with different SAHS severity is required to 
confirm these results. Further work will also be done to improve the performances of SAHS 
severity identification in future versions of the automatic scoring algorithm.
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