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Abstract14

In the last decade, several observations of peculiar seismic and geodetic phases15

preceding large earthquakes have been documented. Despite being a-posteriori,16

these observations provide a better understanding of the processes involved in17

the nucleation of earthquakes. In this study, we investigate the foreshocks and18

pre-seismic phase of the large Mw7.9 25 April 2015, Gorkha-Nepal earthquake19

by applying a matched-filter technique on the nucleation zone of the mainshock.20

We use the seismic signals of 1800 local earthquakes and the continuous signal21

recorded at the nearest station for the 6 years preceding the mainshock. The pre-22

seismic phase depicts a long-term increase of seismicity rate and several bursts23

of micro-earthquakes. The longest swarm occurs one month before the Gorkha24

earthquake, lasts one week and consists of 38 repetitive earthquakes located at25

the north western edge of the rupture zone. It is followed by another increase26

in seismicity rate which starts six days before the mainshock and includes small27

foreshocks that develop at less than 10 kilometers from the future earthquake28

hypocenter. These observations suggest that the Gorkha earthquake was preceded29

by a pre-seismic phase related to a potential initiation of a slow slip with fluids30

implicated at the northwestern boundary of the rupture zone.31
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1 Introduction33

Nepal is located on one of the largest and fastest-slipping continental megathrusts34

on Earth, the Main Himalayan Thrust (MHT) activated by the continental subduc-35

tion of the India plate beneath the Tibetan plateau. This tectonic setting results36

in large devastating earthquakes [3? ], the largest of these earthquakes rupture the37

surface, generating plurimetric seismic scarps. Paleoseismological excavations have38

gradually revealed what happened at the surface termination of these largest earth-39

quakes (e.g.[4]) but the mechanisms at work at depth, and in particular along the deep40

extension of the fault ruptured, suspected locus of the earthquakes nucleation, remain41

unknown. The Mw7.9 Gorkha earthquake, on 25 April 2015, is the first Himalayan42

major event recorded by a permanent and modern network localized above the rupture43

zone.44

This earthquake nucleated near the village of Barpak, in the Gorkha district. Its45

rupture propagated eastward for about 60 seconds over a 50-km-wide by 140-km-46

long stretch and the maximum coseismic slip has been estimated to be around 7m,47

located north of Kathmandu [5–9]. The post-seismic slip dominated by afterslip has48

been located in the downdip part of the mainshock rupture [10, 11]. The analysis49

of the numerous aftershocks have shedded lights on the structural complexities of50

this area [11–20]. The correspondence between the 2015 and the 1833 earthquakes51

(historical magnitude estimated 7.7) in areas, intensity and magnitude indicate that52

the same section of the MHT was active at that time. Unlike, the 1833 earthquake53

that was preceded by two foreshocks felt in Kathmandu 5h and 15 minutes before54

the mainshock [21], no large foreshocks have been felt by the population before the55

Gorkha earthquake [22].56
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There has been several, made a-posteriori, observations of a pre-seismic phase57

before large earthquakes using seismicity, either on subduction zones [23–28], or in58

crustal environment [29, 30], although this pre-seismic phase is not always observed59

and is highly debated [31]. In this study, we address the question of the existence of a60

pre-seismic phase to the Gorkha earthquake. We use the nearest station of the National61

Earthquake Monitoring and Research Center (NEMRC) from the Department of Mines62

and Geology (DMG) network and apply on its records a matched-filter technique on63

the nucleation zone of the mainshock. We use about 1800 templates, i.e. signals of64

local earthquakes that happened within 100 kms from the epicenter (Fig. 1). Using65

this new catalogue, we describe the pre-seismic phase of the continental subduction66

Gorkha earthquake and propose different models to explain our observations.67

2 Main68

The NEMRC network is composed of short period and broadband stations sampling69

at 50Hz, distributed throughout Nepal. The GKN station lies 25 km south of the70

epicentre of the Gorkha Earthquake, above the MHT. This station is the closest to71

the mainshock (red triangle in Fig. 1). We use the records from this short period -72

vertical component- station to search for micro-earthquakes that remained undetected73

by analysts, in order to complement the time structure of the seismicity (colored circles74

in Fig. 1b). By first looking at the continuous recording of the GKN station at the time75

of the mainshock, we find an earthquake of magnitude estimated at 1.3 (see below)76

that occurred only 28s before the mainshock (Fig. 2).This event has a S-minus-P travel77

times of 2.86s suggesting that it happened at 23 km from GKN, assuming a Vp/Vs78

of 1.75 and a Vp around 6 km/s, consistent with the local velocity models. Note that79

the station signal saturated during the earthquake and an S-time arrival cannot be80

determined with accuracy. An event preceding the mainshock is also visible on the81

seismic signal at KKN, further east, with a P-wave arrival time difference between82

3



≤

27
.5
°N

28
°N

28
.5
°N

0

Mw7.8 Gorkha epicenter
M3+Gorkha Aftershocks-Adhikari et al.2022
GKN station(NEMRC-DASE)
NEMRC-DASE station

84.6°E 84.8°E 85°E

27
.8
°N

28
°N

0 1 0

0 5 10 15 20 25 30

2m
2m

6m

4m

6m

4m

Barpak

KKN

GKN

MCT

km

km

6m

6m

4m

4m

50

100

150

200

Co-seismic displacement(m)-
Grandinetal.,2015

Post-seismic deformation(mm)
-Zhao etal.,2017

84.5°E 85°E 85.5°E 86°E 86.5°E

50

Katmandu

All templates used in this study
Templates with pre-Gorkha detections

Number of detections/template

A

A B

B

M<2 4<M2≤ M<3 3 M < 4
Magnitudes

28
.2
°N

28
.4
°N

Fig. 1 A: Location of earthquakes and network stations. Red dots show the M≥3 aftershocks earth-
quakes [19]. The red contours show the seismic slip with 2m intervals starting at 2m [7]. Contours of
afterslip are shown in blue [32]. The black star indicates the Gorkha earthquake epicenter. Black tri-
angles indicate the NSC stations and the red triangle indicates the GKN station used in this study.
B: In this study, we focus on the initiation part of the rupture zone taking earthquakes that occur
both before and after the Gorkha earthquake as templates (grey dots) at the western edge of the
rupture. The colored circles shows the templates that detected during this study, colored with their
number of detections.

KKN and GKN of 6.8s, identically to the Gorkha earthquake, suggesting that this83

foreshock happened at close distance from the epicentre (Fig. S1).84

We search more systematically for micro-seismic events near the hypocen-85

ter of the Gorkha earthquake using the template matching code Obspy86

(obspy.signal.cross correlation). We use about 1800 templates, occurring between87

December 2013 and May 2016 (grey circles in Fig. 1B). We use the continuous signal88

from 2009 to the Gorkha earthquake to compute the correlation between templates89

and continuous signals in a frequency band of 2-15Hz, taking an 8-second window90

starting 1 second before the P-wave arrival time. We choose a correlation coefficient91

threshold of 0.7 and check each detection by eye to avoid false detections. Note that92

the signals of station GKN were unusable from December 2010 to November 2013.93
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Fig. 2 Record from the GKN station at the time of the Gorkha earthquake. There was an event
occurring 28s before the mainshock that has the same difference of P-wave arrival times between
GKN and KKN stations than the Gorkha earthquake (see Fig. S1).

The magnitude of template events are local and provided by the NSC. The magni-94

tudes of the newly detected events are calculated during the correlation computation95

based on the maximum amplitude ratio between the detected and template events by96

computing a magnitude difference = 4 / 3 * np.log10(amplitude ratio) and adding it97

to the template magnitude.98

Fig. S2a shows an example of detected earthquakes and their stack. Of the 180099

templates used, only 92 are linked with detection of new earthquakes. In this 92, 52100

occurred before the mainshock and 40 after it. We obtain a total of 279 detected101

earthquakes (including the 52 templates that occurred between November 2013 and102

the Gorkha earthquake).103

The distance between a given template and its detections is necessarily very small104

given the waveforms similarity (we chose a coherency thresholds of 0.7). We therefore105

consider that the hypocentre of the detections are the same as their corresponding106

template. The precise hypocentral location of the template could be enhanced through107

the implementation of event specific relocation technique. We use hypo71 (stars on108
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Fig.1) using the Nepalese velocity model [33] and putting a weight of 0.5 on S phases, a109

weight of 1 below 100 km and a linearly decreasing weight down to 0 at 200 km. While110

we covered the entire western area of the Gorkha earthquake, these newly detected111

events are mainly located at the western tip of the rupture zone (Fig. 1).112

The time series of the cumulative number of earthquakes detected shows different113

intervals of increased activity (Fig. 3a). Overall, there is an acceleration of the seis-114

micity with time, especially from September 2014 until the mainshock. We compute115

the cross-correlation between the detected events (Fig. 3b) and show that there are116

groups occuring in a short time interval that have higher correlation values than the117

rest (orange and red colors in Fig. 3b).118

Period 1 occurs from 02/01/2009 to 19/03/2009, 20 events are detected including119

a multiplets of seven earthquakes located south to the Gorkha epicenter (light blue120

dot in Fig. 4a). They are active during a month and also activates later in the analysis121

(Supplementary Fig.4c and g).122

Period 2 gathers 21 earthquakes starting at 23:00 on February 21, 2010 and lasting123

48 hours (yellow dot in Fig. 4b). This period contains a group of 16 earthquakes, that124

are all detected by the same template in 3.5 hours, 14 of them in only an hour (Fig.125

S3). The cross-correlation values are particularly high and the relative time delays low126

for the last ten events in the group. Note that the relative magnitudes are small and127

similar, suggesting that this group may be a seismic swarm. This group is also active128

during periods 1 and 3 (Fig. 4a and c, yellow dots).129

Period 3, from February 23, 2010 to December 12, 2010, contains events with130

a relatively low inter-correlation, around 0.8-0.85 and a rather stable period with a131

seismic rate of 0.18 earthquakes per day. The detected earthquakes are clustered south132

of the Gorkha epicenter, at the western tip of the rupture zone.133

Period 4 corresponds to a large swarm of 30 earthquakes occurring in just one134

hour on the 19/03/2014 between 00h35 and 01h39, mainly detected by three templates135
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Fig. 3 a) Cumulative number of detected earthquakes with time (gray line) up to the Gorkha
earthquake (dashed red line). Note that there was a gap in the seismic data (dashed gray line). Grey
periods show significant increases in the seismicity rate. They are numbered at the top and in the
correlation matrix (bottom). b) Correlation matrix between all the newly detected earthquakes.
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(Fig. 4d). The inter-correlation values of this group range from 0.8 to 1 with a mean136

of 0.91 (Fig. S4). Some events in the groups have very large cross-correlation values,137

with a mean of 0.95, possibly indicating that they are repeating earthquakes. Again,138

there is no dominant magnitude in this very short sequence. One of the templates is139

also active in period 5 with an additional detection.140

During period 5 from 05/04/2014 to 26/08/2014, two particular sequences occur141

with two larger earthquakes at the beginning of each sequence (Fig. S5). The first142

mainshock has a magnitude of 3.7 and occurs on April 13, 2014, triggering 12 earth-143

quakes. The second has a magnitude of 3.4 and occurs on May 17, 2014, triggering144

a sequence of 20 aftershocks. Both mainshocks were already in the catalogue but not145

their aftershocks.146

During period 6 there is no clustering in time and the inter-correlation values are147

low. However, there is a clear increase in the seismic rate of 0.26 earthquakes per148

day and the seismicity is particularly concentrated at the western tip of the Gorkha149

earthquake.150

The last period presents a large swarm with the highest inter-correlation values of151

the analysis (Fig. 3). This swarm corresponds to 38 earthquakes occurring from the152

20/03/2015 to the 02/04/2015, detected by two, very close by, templates (red, magni-153

tude 2.7 and blue, magnitude 3, dots in Fig. 4g) that occur during this sequence. Their154

magnitudes indicate that their ruptures could have a patch size of about 200-300m.155

Furthermore, the records of the two templates are very similar when superimposed,156

and their spectra show the same complexity, suggesting that they are very likely co-157

located (Fig. 5).The cross-correlation values between the earthquakes of this swarm (ie158

the two templates and their detections) are high (Fig. S6a). The S-minus-P traveltime159

is 2.18s (i.e., a distance of 17.5km from GKN) and is very similar for the earthquakes160

in this swarm. The delay values range from -0.02 to 0.02s (Fig. S6b and c). This swarm161

9
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7g) that were already in the NSC catalog, from which 36 new earthquakes were detected. The second
waveform has been shifted in time by the time increment that maximizes the cross-correlation of the
two signals. Bottom: Comparison of the normalized spectra of the records filtered with a band-pass
between 2-20Hz.

of earthquakes is located at the western tip of the coseismic slip inversion, where the162

rupture initiated [7] (Fig. 4g).163

There is a final acceleration during period 7 from the April 19, 2015 to the main-164

shock with a total of 6 detections, including the small foreshock that occurred only165

28s before the mainshock close to the rupture initiation location (Fig. 2).166

3 Discussion167

Although they can only be defined after the mainshock has occurred, seismic fore-168

shocks are the most relevant observations for understanding the preparation of large169

earthquakes. We find several swarms of earthquakes that occurred before the Gorkha170

earthquake and that highlight the perimeter of its western coseismic slip, where the171

rupture initiated.172
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Depending on the tectonic setting and structural complexity, three main conceptual173

models have been developed to explain the pre-seismic phase of large earthquakes:174

progressive localization of the seismicity, cascade-up, and pre-slip [29, 31, 34–36].175

Interestingly, for many large earthquakes that are preceded by a pre-seismic phase,176

the strain release is progressive, stepwise [23, 24, 37–39]. This is also noteworthy in177

this study, where we detect several seismic bursts that can be sudden and last only178

a few hours (periods 2 and 4). During these periods, the seismic events have similar179

magnitudes, suggesting a swarm-like behavior. Because of their short duration, fluids180

may be a good candidate for triggering such events [40]. Intermittent fluid release181

increases the stress on the fault zones and produces local modification of the frictional182

behavior as seen in rock experiments.183

There are multiple indications of fluid presence in the area along the Main184

Himalayan Thrust (MHT): (a) a seismic low velocity zone (LVZ) coincides with the185

decollement on that particular section [41], (b) this LVZ is interpreted as a shear zone186

possibly injected with fluids coming from metamorphic dehydration reactions of sed-187

iments thrust over by the hot Himalayan hangingwall, (c) analysis of fluid inclusions188

from quartz exudates taken within the MCT shear zone, which is a former MHT,189

demonstrate that both aqueous fluids -mainly brines-, and CO2-bearing inclusions,190

originating from metamorphic and meteoric origins, were introduced from mid-crustal191

to shallower levels [42], (d) the downdip end of the segment of MHT considered corre-192

sponds with the position of a low-resistivity anomaly [43], possibly attributed to the193

presence of saline fluids within fractured rocks.194

This body of evidence suggests that aqueous fluids -or supercritical CO2 -are195

present at midcrustal depths in the vicinity of the decollement, with the potential196

to migrate within the fractured rocks of the shear zone as well as along subsidiary197

faults in its immediate hangingwall [44]. These fluids migrations could be related with198

11



hydrofracturation mechanisms and/or decrease of the friction on the basal decollement,199

possibly associated to transient decoupling.200

We also see a long-term increase of seismic rate between 2010 and 2015 (periods201

3 and 6, although the gap in the data makes it difficult to conclude to a long term202

acceleration). From March 2015, the seismicity increases even more dramatically with203

the occurrence of 38 repeating earthquakes from 20 March 2015 to 27 March 2015,204

probably triggered by a slow slip event that lasts a week [23, 24, 29, 37, 45, 46]. After205

this slow slip event, there is a last acceleration leading up to the mainshock that206

includes a smaller event close to the hypocenter, in good agreement with the cascade-207

up model framework [34, 47]. The strain release with a step-like evolution points to208

a combination of slow slip and fast failure mode foreshocks that locally increase the209

loading rate of the MHT as seen in rock experiments [48–50] and numerical modeling210

[51].211

The repetitive earthquake activity that preceded the Gorkha mainshock, and the212

possible transient slow slip associated, could involve various structures at depth. The213

repeating earthquakes, associated to earthquake templates that happened at mid-214

crustal depths, occurred necessarily at close distances from the Main Himalayan215

Thrust, the flat-ramp-flat thrust system which partially ruptured during the main-216

shock (Fig. 6a-b). In this part of the Himalayas, the geometry of these structures at217

depth have been inferred from surface exposure of the rocks, [19, 52] and balanced218

cross section hypothesis, complementing a few geophysical constrains. The position219

of the upper decollement of the thrust system is associated to the low velocity zone220

imaged by receiver function analysis [41, 53].221

A first plausible scenario involves a transient slow slip and repeating earthquakes222

on the upper decollement, followed by its partial rupture, from the downdip end of the223

upper decollement, at the upper edge of the ramp (Fig. 6a-b). The average position224

of the ramp, at geological timescales, is suspected to develop beneath the front of225

12
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the high Himalayas. This is consistent with the thermokinematic evolution recorded226

by the low temperature thermochronometers (e.g. [52]). However, the present day227

position of the peak of uplift measured by InSAR and the peak of incision estimated228

along the rivers since the beginning of the Holocene, suggest that the midcrustal ramp229

recently migrated southward [54] see Fig. 6c. An alternative to the first scenario,230

could therefore involve the rupture of this active midcrustal ramp, after a focused231

repetitive activity at the updip end of the ramp, eventually associated with a slow slip232

event at the edge of the ramp. A third scenario, involves a seismic activivity in the233

midcrustal lesser Himalaya duplex. This scenario may involve a focused precursory234

activity associated with an eventual slow slip at the updip edge of the active ramp,235

followed by the rupture of the passive roof thrust of the lesser Himalayan duplex (Fig.236

6d). These models are difficult to differentiate with the sole seismicity available due237

to the large uncertainties associated with the earthquake locations. Indeed, the events238

happen North of Gorkha station and no seismic stations to the North contribute to239

their location that remain associated to large azimuthal gaps. The seismicity location240

is therefore associated with significant trade-off between the latitude of the epicenter241

and the depth of the hypocenter.242

4 Conclusion243

The application of template matching techniques to the waveforms of the GKN station,244

the closest station to the epicenter of the Gorkha earthquake, reveals an acceleration245

of the seismicity rate preceding the earthquake at short distances, within 20 km from246

its hypocenter. The pre-seismic phase is characterized by the presence of a swarm of247

earthquakes detected between the 20 March and 27 March 2015, with 38 repeated248

earthquakes detected by using two very similar templates. This period is followed by249

the realisation of at least one foreshock that happened 28s before the mainshock.250

14



These observations may be associated with the development of a transient event,251

mostly aseismic, occurring near the brittle-ductile transition zone, with a few repeating252

microearthquakes happening at the north western edge of the rupture zone. The event253

was finally followed by the rupture of the mainshock. Our results show that the Gorkha254

earthquake belongs to the list of large earthquakes with a pre-seismic phase detected255

a-posteriori using data mining techniques.256

Supplementary information. Figures S1 to S6257
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