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Abstract
The random population control decision problem asks for the existence of a controller capable of
gathering almost-surely a whole population of identical finite-state agents simultaneously in a final
state. The controller must be able to satisfy this requirement however large the population, provided
that it is finite. The problem was previously known to be decidable and EXPTIME-hard. This
paper tackles the exact complexity: the problem is EXPTIME-complete.
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Introduction

The population control problem was introduced in [1] in its non-deterministic version, and
furthermore studied in [2] in its stochastic version, the Random population control
problem. The latter is a control problem for a finite population of agents, every agent is a
copy of the same finite-state Markov decision process. This finite population is controlled by
a central decision-maker, who can select one central action at every discrete time step, and
this action applies simultaneously to every member of the population: every MDP is updated
to a new state, according to the global action, the local state of the MPD, and the transition
probabilities. The goal of the decision maker is to put all the MDPs simultaneously in a final
state.

Some intuition can be conveyed by using a shepherd-like metaphor. One can depict the
finite population as a herd of sheep, and the central decision maker is the shepherd. The
shepherd can send his dog to bark here or there, and all the sheeps will perceive this noise,
and react accordingly, in the typical randomized way the sheep react to this kind of stimulus.
Part of the shepherd job consists in gathering the stray sheep back in the herd, which is
doable in finite time as long as the population is finite, but would become too challenging if
the herd was infinite, a case we do not consider in the current paper.

The Random population control problem was shown to be decidable [2], and
EXPTIME-hard [5]. The former paper provides a decision procedure whose termination
relies on well-quasi-order arguments, and lead to non-elementary complexity upper-bounds.
The latter paper shows that the problem is at least as hard to solve in its randomized version
that it is in its deterministic version. The current paper shows that this lower-complexity
bound is optimal: the problem is EXPTIME-complete (Theorem 39).

Organisation of the paper.

Section 1 introduces the model and the key ingredients for the decision procedure of [2].
Section 2 shows that the shepherd can win by counting up to |S|, the number of states in
the MDP, independently of the size of the population. This relies on two playing modes:
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XX:2 Optimally Controlling a Random Population

funnelling obedient sheeps (Section 2.3) and gathering stray sheeps (Section 2.4), between
which the shepherd can alternate thanks to a key conceptual ingredient: the Isolation Lemma
(Section 2.2). This leads to an EXPSPACE algorithm (Theorem 20). Finally, in Section 3,
we improve the complexity down to EXPTIME, using data structures introduced in [1].

1 The Random population control problem

A controller tries to control a large, yet finite, set of tokens TN = 1 . . . N . Each token is
a copy of the same Markov Decision Process (MDP) M = (S,A, δ : S × A → ∆(S)). One
initial state i ∈ S. Final states F ⊆ S.

The N -population MDP is the synchronized product of N copies of the game. The initial
state is (i, i, ..., i) ∈ SN and the set of final states is FN . Each copy represent a token.

Random population control problem: does it hold that for every
integer N , there is a strategy in the N -population MDP to enforce the population
to almost-surely reach FN when starting in the initial configuration iN ?

For a fixed N the Random population control problem is clearly decidable, since it
boils won to a question about a single MDP. The parametrized version where N is arbitrarily
large is co-recursively enumerable: it suffices to find one value of N where the answer is
negative. Decidability was established in [2], in the rest of the section we provide the essential
ingredients of the decidability proof.

1.1 Commits, arenas and strategies
Fix an automaton with a set of states S and a set of final states F .

▶ Definition 1 (Configurations, commits and pathes). Fix a set of tokens T . A configuration
is a vector

w ∈ ST

which describes the position of every token. A commit is a pair

(v, a) ∈ ST ×A .

If from a commit v there is positive probability to reach some position w ∈ ST when playing
a then we say w is a successor of (v, a) and denote it

(v, a) → w .

We extend the successor relation between commits: (v, a) → (w, b) iff (v, a) → w. This
naturally defines a notion of path between two commits, denoted (v, a) →∗ (w, b).

Sometimes, we do not care of the exact state of every token, we only need to pay attention
to the number of tokens on every state.

▶ Definition 2 (Anonymous configurations and commits). An anonymous configuration is a
vector in NS. An anonymous commit is a pair (w, a) ∈ NS ×A. The anonymous configuration
associated with a configuration w ∈ ST is the vector:

(|{t ∈ T | w[t] = s}|)s∈S ∈ NS .
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When clear from the context, we skip the "anonymous" qualificative and simply say a
commit and a configuration.

▶ Definition 3 (Arena). An arena is a set W of anonymous configurations and commits such
that W is downward-closed and it satisfies two properties:

No dead-end: every anonymous configuration of W has at least one successor commit in
W .

Stability under chance moves: every anonymous commit of W has all its successors
configurations in W .

We say that a (non-anonymous) configuration or commit w ∈ ST ∪ ST ×A belongs to W
if the corresponding anonymous configuration or commit does.

Sometimes, an arena W is equipped with a target set WF ⊆ W . In that case we relax the
definition and we allow configurations in WF to be dead-ends.

▶ Definition 4. A strategy in W is a mapping which associates with every configuration
v ∈ W a probability distribution on the set of actions a such that (v, a) ∈ W .

All strategies we consider are positional, which is enough for reachability games.

▶ Definition 5. A strategy is state-based if the action chosen only depends on the number of
tokens in every state, not the identity of those tokens.

▶ Definition 6 (Safe random walk). The strategy which consists in selecting randomly any
action which guarantees for sure to stay in the set of winning configuration is called the "safe
random walk".

▶ Lemma 7. The safe random walk is an almost-surely winning strategy. It is state-based.

The goal is to almost-surely put all tokens in F .

▶ Definition 8 (Almost-sure winning configurations and commits). A configuration is final
if all tokens are in F . A configuration w0 is almost-surely winning if there is a strategy in
W which guarantees almost-surely that any play strating in w0 eventually reaches a final
configuration. A commit is almost-surely winning if all its successors are.

1.2 A fix-point algorithm

The following characterisation is classical.

▶ Lemma 9. The set of almost-surely winning configurations and commits is the largest arena
W such that from every configuration in W there is a path within W to a final configuration.

The upper closure of an (anonymous) commit (v, a) is the set of commits (w, a) such that
w ≥ v, pointwise on all coordinates.
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Fix-point algorithm computing the set of almost-surely winning com-
mits

Start with W equal to the whole set of commits.
Repeat

Look for a commit (v, a) in W such that either of the following conditions
holds:
∗ there is a chance to escape W from (v, a), i.e. a successor w such that

there is no commit (w, b) in W ; or
∗ there is no path in W from (v, a) to a final configuration.
If there is such a commit (v, a), then remove from W the upper-closure of
(v, a) and proceed to the next iteration. Otherwise terminate the computa-
tion.

The fix-point algorithm manipulates infinite sets of commits, and may, at first sight, not
terminate. However, it can be implemented in finite space and time. We make use of the
ordered monoid

N = {0 < 1 < 2 < 3 < . . . < ω} .

▶ Definition 10 (Symbolic configurations and commits). A symbolic configuration is an element
of NS. Given N ∈ N and a symbolic configuration w ∈ NS, denote w[N ] the configuration
were all ω’s are replaced by N . A symbolic commit is an element of NS ×A.

The ideal generated by a symbolic configuration w is denoted w↓, it it the set of anonymous
configurations whose coordinates are below those of w:

w↓ = {w ∈ NS | ∀s ∈ S,w(s) ≤ w(s)} .

The notation is extended to set of commits, by taking the union of the ideals.

{(wi, ai), i ∈ I}↓ =
⋃
i∈I

w↓ .

When W ⊆ NS is a set of anonymous configurations and w ∈ NS a symbolic configuration,
we say that w belongs to W , denoted w ∈ W , whenever

w↓ ⊆ W .

It is well-known [reference].

▶ Lemma 11 (Folklore, see [6]). Any downward closed set of commits W is equal to a finite
union of ideals, i.e. there exists a finite collection {(wi, ai), i ∈ 0 . . . n} of symbolic commits
such that

W = {(wi, ai), i ∈ 0 . . . n}↓ .

The symbolic initial state is the symbolic configuration

i ∈ NS

where all components are 0 except for i. The symbolic final state is the symbolic configuration

F ∈ NS
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where all components are 0 except for those in F . The Random population control
problem can be rephrased as follows

Random population control problem: does there exists a strategy
which almost-surely guarantees reaching F when starting the play in i ?

As a consequence

▶ Lemma 12. The fix-point algorithm maintains as an invariant that W is downward-closed
and can be effectively represented as the downward-closure of a finite set of symbolic commits.
The algorithm terminates.

The algorithm makes use of two tests in the loop. The first one is quite easy to check.

▶ Lemma 13. Let W be an arena finitely presented as W = {(wi, ai), i ∈ 0 . . . n}↓. Whether
there exists a commit (v, a) ∈ W from which there is a chance to escape W is decidable.

Proof. We enumerate all commits (wi, ai), one by one. Say a flow graph from w to w′ is
maximally spreading if for every state s with w(s) = ω, all edges from s are labelled by
ω . We generate all possible maximally spreading flow graphs from wi to some symbolic
configuration w′

i . There are finitely many. We check that for every such w′
i, there exists an

action b such that (w′
i, b) ∈ W . The answer is positive iff all checks are successful. ◀

1.3 The path problem
The second test can be expressed as the following decision problem.

▶ Definition 14 (The path problem). Let W be an arena finitely presented as W =
{(wi, ai), i ∈ 0 . . . n}↓. Let w an symbolic configuration. The path decision problem asks
whether, from every configuration in w↓, there is a path in the arena W to reach F .

Colcombet et al. could prove that the path problem is decidable.

▶ Lemma 15. [2] There is an algorithmic reduction from the path problem to the emptiness
problem for distance automata. In case the answer is negative, the decision procedure outputs
an integer N such that there is no path from w[N ] to a final configuration in W .

This leads to a procedure with non elementary complexity, since the best upper-bound to
our knowledge on the number of calls to the path problem is non-elementary.

2 Counting up to |S| sheep is enough for the shepherd

The non-elementary complexity in the algorithm of [2] arises from the fact that their algorithm
requires to describe a set of configurations defined by potentially very large integers. It was
conjectured [4] that computing an almost-surely winning strategy does not require such fine
description of the winning zone, and that tracking a small number of tokens, plus a set of
unbounded states, is enough to solve population MDPs.

▶ Definition 16 ({0, . . . ,m, ω}-configurations). A {0, . . . ,m, ω}-configuration is a symbolic
configuration whose finite coordinates are ≤ m.

Sometimes we will illustrate concepts by associating a symbolic configuration into a
shepherd-style metaphor: the tokens are sheep which splits between the herd, which occupies
the ω-coordinates and the stray sheep, which occupies the finite coordinates, as illustrated
on Figure 1.
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Figure 1 The herd and the stray sheep.

Till the end of the section, denote W the arena of almost-surely winning configuration and
commits, and for every k ∈ N, denote

W0...k,ω

the set of {0 . . . , k, ω}-configurations which belong to W , i.e. those symbolic configurations
whose finite coordinates are ≤ k and which generate an ideal fully contained in W .

The configurations in W0,ω are called purely symbolic winning configurations, which
always contains F . Moreover W0,ω contains i iff the answer to the Random population
control problem is positive.

Denote

m = |S| .

The following theorem shows that Corto’s conjecture holds.

▶ Theorem 17 (Almost-surely winning with a few stray sheep). Let W be the arena of
almost-surely winning configurations and commits. There exists a subarena Y of W such
that:

Y contains W0,ω↓; and
Y is contained in W0,...,m,ω↓; and
the safe random walk in Y is almost-surely winning.

To show this theorem, we make use of almost-surely winning strategies which alternate
between two playing modes.
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2.1 A controller with two modes
The first mode is called “Funneling obedient sheep”. In this mode the tokens follow a
predetermined path, called a funnel path, which leads to a final set. On the funnel path, only
a few sheep at a time are allowed to leave the herd, and none of them ever meet: they are
expected to stay in different states, and thus there ate most |S| of them at any moment.
The controller selects actions to stay on the funnel path, and expect the sheep to follow the
predetermined path, which might occur with positive probability, but in general this is not
for sure. In case the sheep leave the funnel path, the controller enters the second playing
mode. This is illustrated on Figure 2a.

(a) Funneling obedient sheep (b) Gathering the herd

Figure 2 The two modes of the controller

The second mode is called “Gathering the herd”, it is entered when some non-obedient
sheep have left the funnel path. At this moment the sheep that do not belong to the herd
are considered as stray sheep. The controller objective is to gather all sheep back together
into a herd, including the stray sheep. There is an extra constraint: at every moment, the
controller is expected to control the stray sheep so that there at most m of them (at most
|S| in one state, at most |S| − 1 in another state, and so on).

▶ Lemma 18 (Funneling obedient sheep). From every configuration in W0,ω there exists a
path which stays within W0,1,ω and ends up in F . Such a play is called a funnel path.

The proof of lemma 18 is given in section 2.3, where a more general statement is proved
(Lemma 28).

A funnel path might be very long, thus very unlucky to occur on first try. It might be
that, by chance, this play occurs as planned, in which case the game is over and controller
wins. Whenever the chance exits the funnel path, then the new configuration belongs to
W0,...,|S| the strategy switches to a recovery strategy in order to reach back W0,ω.

▶ Lemma 19 (Gathering stray sheep back in the herd). There exists a subarena Z of W such
that:

Z contains W0,ω↓; and
Z is contained in W0,...,m,ω↓; and



XX:8 Optimally Controlling a Random Population

the safe random walk in Z almost-surely guarantees reaching W0,ω↓. Such a strategy is
called a gathering strategy.

The proof of lemma 19 is given in section ??.
Combining funnel pathes and gathering strategies is the key to keep a low profile.

Proof of Theorem 17. Let Y be the set of all configurations visited by all possible funnel
paths, plus Z. From any W0,ω configuration, when playing the safe random walk in W ′,
there is a non-zero chance to follow a funnel path and finitely reach F . In case the lucky
path is exited, there is probability 1 to reach W0,ω again. Since there are finitely many
possible configurations reachable from a given initial configuration, the non-zero chances are
uniformly bounded from below. Thus almost-surelyF is eventually reached. ◀

▶ Theorem 20. The random population control problem can be decided in EXPSPACE.

Proof. According to Theorem 17, the answer to the Random population control
problem is positive iff there exists a downward-closed set Y of configurations and commits
generated by a finite family (wi, ai)i∈I such that,

every configuration wi, i ∈ I has finite coordinates ≤ m; and
Y is an arena: it is closed by chance moves and allows at least one action from any
configuration; and
Y contains both i and F ; and
from any {0, ω}-configuration in Y there is a funnel path.

There are at most (m + 2)|S|(1 + |A|) different possible configurations and commits thus
we can assume |I| ≤ (m + 2)|S|(1 + |A|). The second condition is easy to check in time
polynomial in |I| and m, as proved in Lemma 13.

The existence of a winning path in Y from any {0, ω}-configuration in Y , can be performed
using a distance automaton of size polynomial in |I|, which can be performed in space
polynomial in |I| (see [2, Theorem 5.1] and [3, Theorem 2.2] for details). ◀

2.2 The isolation lemma
The isolation lemma is one of the pillars of the proof of Theorem 17, informally it says that
when a group of stray sheep leaves the herd, the stray sheep can be brought back in the herd
without ever meeting any other stray sheep outside their group.

Assume that we play in some arena W , from some initial position w0. On some states we
have a large number of tokens, that altogether form the herd, and on top of that there are
also have a few other tokens called the stray sheep. In formal statement, the set of tokens Tω

typically denotes the herd while T1 typically denotes the stray sheep.
In a configuration, we say that a set of states is an ω-base if an arbitrary amount of extra

tokens could be placed on these states without exiting the arena W . This is formally defined
as follows.

▶ Definition 21 (Duplicating tokens). Let W an arena, T a set of tokens and w a configuration
in W . Let Tω ⊆ T be a subset of tokens. We denote

w[Tω ∗N ]

the configuration obtained from w by replacing every token t ∈ Tω with N copies t1, t2, . . . , tN .
By extension, if Sω is a set of states, and Tω is exactly the set of tokens occupying those
states in w, the configuration w[Tω ∗N ] is also denoted w[Sω ∗N ].



Hugo Gimbert et al. XX:9

Of course, we want to duplicate tokens without exiting our arena, which is captured by
the notion of ω-base.

▶ Definition 22 (ω-base and finite base). Fix an arena W and a configuration w ∈ W . A set
of tokens Tω is an ω-base of w in W if

∀N ∈ N, w[Tω ∗N ] ∈ W .

By extension, a set of states Tω is an ω-base of w in W if the set of tokens occupying those
states in w is. Dually, a set of tokens T1 is a finite base of w in W iff its complement is an
ω-base of w in W .

Initially the set of states occupied by the herd is unbounded, but later on there might a
few sheep escaping the herd and occupying states that are bounded.

In a configuration, we say that a group of stray sheep is brought back in the herd whenever
the the set of states occupied by the herd and those sheep is unbounded. It might be the
case that some states are simultaneously occupied by sheep from the herd and some of the
stray sheep, but this is not required in the definition.

▶ Definition 23 (Bringing back stray sheep in the herd). Fix T1 a set of tokens. In a
configuration w, we say that some stray sheep of T1 are brought back in the herd if there
exists a strict subset of T1 which is a finite base of w.

As already noticed, this definition does not require that stray sheep actually meet some
sheep of the herd, i.e. the previous definition does not impose ∃t ∈ T1, t

′ ∈ Tω, w[t] = w[t′].
The main result of this section is the isolation lemma. Assume that from a configuration

where the herd is unbounded, there exists a strategy which almost-surely guarantees to
eventually bring back some stray sheep in the herd. Then the same holds with the extra
requirement that until some stray sheep are brought back in the herd, all stray sheep stay
isolated from the herd, in the sense where they never share a common state.

▶ Definition 24 (Meetings and isolations). We say that two tokens t1, t2 ∈ T meet in a
configuration w ∈ ST if they are placed on the same state i.e. if w[t1] = w[t2]. A set of
tokens T1 is isolated in a configuration w if it does not meet any token outside T1.

▶ Lemma 25 (Isolation Lemma). Fix an arena W , a configuration w0 of W and a finite
base T1 of w0 in W . Denote F the set of configurations in which some stray sheep of T1 are
brought back in the herd. Assume F is almost-surely reachable from everywhere in W . Then
there is a strategy σ in W which, when starting from w0:

guarantees almost-surely to reach F ; and
guarantees for sure that the stray sheep from T1 stay isolated until F is reached.

Proof. It is enough to show that from every configuration w0 ∈ W , there is a path to F on
which the stray sheep stay isolated until reaching F , and in every successor configuration of
every commit of the path, the stray sheep are isolated as well. The strategy consists in trying
following this path and in case of exit, try again a new path. That occurs in a finite set of
reachable configurations, hence the strategy will eventually succeeds in following the path.

Denote C the set of tokens in w0 which are not in T1, and Sω the states occupied in w0
by tokens in C. By hypothesis, Sω is an ω-base of w0 in W . Let M be a large constant, and
zM = w0[Sω ∗ (M + 1)] the configuration obtained from w0 by duplicating every token of Sω

into M + 1 copies, so that we get a larger set of tokens on Sω, denoted CM , called the herd
tokens of zM .
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We say a token t is blowable in a configuration if {t} is an ω-base of this configuration.
Denote F ′ the set of configurations where one of the stray sheep in T1 is blowable. Then
F ⊆ F ′.

Let σ be the random walk in W , which guarantees to reach F from everywhere in W , a
fortiori to reach F ′.

Let t be one of the stray sheep of T1. When t meets one or more herd tokens of zM , we
call this event a meeting. Denote V the random variable counting the number of different
herd tokens met by t before reaching F ′.

We show that the expected value of V is finite and upper-bounded independently of M .
Let B be the largest constant used to define W as a finite union of ideals. We argue that the
probability that V is above B · |S| · ℓ decreases exponentially with ℓ. First, we show that,
every time t meets some herd tokens of zM , there is probability at most 1 − 1/B that one of
the tokens met by t becomes blowable before t does. Until F ′ is reached, no more than B− 1
other tokens can share the same state than t. The random walk σ is defined with respect to
anonymous configurations, like W is. Thus σ does not make a difference between t and the
herd tokens meeting t, thus after a meeting, all of them have the same probability measure
on their possible future trajectories. Since σ guarantees to almost-surely reach F someday,
all of the herd tokens met by t will almost-surely become blowable someday, thus t as well.
By symmetry, all of them have the same probability to be the first to become blowable, thus
the probability that none of the ≤ B − 1 herd tokens becomes blowable until t does is at
least 1/B. Look at those finite pathes where t meets at least B|S| different herd tokens,
and still t is not blowable. By definition of B, among those B|S| herd tokens, at least 1 has
became blowable. Thus, at every moment the probability that t meets B|S| different herd
tokens in the future is at most 1 − 1/B, hence

Pσ,zM
(V ≥ B · |S| · ℓ) ≤ (1 − 1/B)ℓ . (1)

So finally

Eσ,zM
[V ] ≤

∑
ℓ

B · |S| · (ℓ+ 1) · (1 − 1/B)ℓ = K(B, |S|) . (2)

Remark that the right handside of (2) is an upper-bound independent of M .
We deduce that for every herd token in ZM , the probability that this herd token in

particular meets t before t becomes blowable converges to 0 when M grows. Let s be one of
the states on which the herd tokens are placed in w0. There are at least M herd tokens of
CM on s. Since σM is state based, all of them have the same probability pt,s,M to meet t
before reaching F ′. According to (2),

pt,s,M ≤ K(B, |S|)/M →M 0 , (3)

which converges to 0 when M grows.
Recall that C denotes the set of tokens in w0 which are not in T1 and CM their M copies

in zM . The strategy σM from zM can be projected onto a strategy from w0 by simulating the
M copies of every herd token in CM \ C. The resulting strategy is randomized. According
to (3), the probability that a token in C meets a token in T1 before F ′ occurs can be made
arbitrarily small, by augmenting the number M of tokens being simulated, while guaranteeing
at the same that F ′ occurs almost-surely. Since the set of configurations reachable from w0
is finite, and the corresponding condition is a reachability condition under safety constraint,
the probability can be turned to 0, i.e. F ′ can be reached almost-surely, while keeping the
tokens in T1 isolated.
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We have not quite proved yet our goal: when starting the play in w0 we can keep the
tokens in T1 isolated and reach almost-surely F ′, but what about reaching F? The inclusion
F ⊆ F ′ might be strict because when one of the stray sheep t in T1 become blowable, it
might be that other sheep from the herd prevent a strict subset of T1 \ {t} to be a finite
base. However by definition of B, by deleting at most B|S| sheep from the herd, we can
allow T1 \ {t} to be a finite base. Call those sheep to be deleted the blockers. Then the
expected number of blockers is ≤ B|S|. This is true not only when the play starts from
w0 but also when it starts from zM , because T1 is also a finite base of zM . But then the
probability that a given sheep from the herd becomes a blocker is less than B|S|/M . Using
the same argument than in the previous paragraph, it prove that from w0 we can make the
probability that a token in C is a blocker as close to 0 as we want, while ensuring reaching
F ′ and keeping the tokens in T1 isolated. Since the set of configurations reachable from w0
in W is a finite MDP, we can make this probability 0, in which case reaching F ′ is equivalent
to reaching F . ◀

2.3 Funelling obedient sheep
This is the first part of the proof of Theorem 17. Informally, in this section is exposed the
way to guide a herd of obedient sheep to the objective.

▶ Context. In the whole subsection 2.3:
we fix an arena W and a set of final configurations F such that the safe random walk in
W almost-surely reaches F ; and
we fix a set T1 of tokens, called stray sheep; and
we assume that tokens in T1 are isolated in every configuration of W , except maybe in F ;
and
we assume that F contains all configurations in which some stray sheep of T1 are brought
back to the herd.

In order to keep track of the position of stray sheep, we extend abstract configurations
with some mapping ST1 .

▶ Definition 26 (Extended abstract configurations). The set of extended abstract configurations
is

NS × ST1 .

The ideal generated by an extended abstract configuration (w,w1) is denoted

(w,w1)↓ ,

this is the set of (non-anonymous) configurations w ∈ ST for some set of tokens T satisfying
two constraints1. First, T1 ⊆ T and the tokens of T1 occupy the positions specified by w1, i.e.

∀t ∈ T1, w(t) = w1(t) .

Second, the capacity constraint w is satisfied:

∀s ∈ S, |w−1(s)| ≤ w(s) ,

1 Technically, in order to avoid annoying set-theory related subtlties, in the background we fix an infinite
countable set of tokens T∞ from which T is necessarilly a subset.
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We extend the notation W0...1,ω used in the funneling Lemma 18 in order to cope with
the set T1 of stray sheep.

▶ Definition 27. For every k ∈ N, denote

W0...k,ω,T1

the set of extended abstract configurations (w,w1) such that:
the whole ideal (w,w1)↓ is included in W ; and
the finite coordinates of w are at most k .

We prove a slightly more general version of Lemma 18.

▶ Lemma 28 (Funelling the herd, except for a few loners). From every configuration in W0,ω,T1

there exists a path which stays within W0,1,ω,T1 and ends up in F .

Proof. This is a direct corollary of:

▶ Lemma 29 (Reducing capacities constraints down to 1). Let G be a directed acyclic graph
with d sources. Assume there are capacity constraints on vertices with values in 0 . . . ,K, ω,
where ω means no bound. Assume that we can transmit through G a discrete flow of d ·N
tokens, with N tokens initially placed on each source. Consider the flow graph G′ obtained
from G by reducing all finite capacity constraints down to 1 (and vertices with unbounded
capacities in ω stay unbounded). Then we can transmit through G′ a discrete flow with
N/(Kd) tokens on every source.

Proof. This is a direct corollary of the caracterisation of optimal solutions of the Maximum
Concurrent Flow Problem [7, Lemma 2.2]. ◀

◀

2.4 Gathering stray sheep back in the herd
In this section we combine the isolation lemma (Lemma 25) and the funelling lemma
(Lemma 28) in order to almost-surely gather the stray sheep back in the herd, while keeping
the total number of stray sheep below a certain level.

▶ Definition 30 (tracking of a strategy). A tracking ϕ of a strategy σ is a mapping

ϕ : [σ] → 2T

which associates with every play π a set of tokens Tπ ⊆ T of the last configuration of π,
called the trackers, with the following properties. Let π′ a one-move extension of π consistent
with the strategy. Then either of the following three cases holds:

no change: Tπ = Tπ′ ; or
tracker creation: Tπ ⊊ Tπ′ ; or
tracker deletion: Tπ′ ⊊ Tπ .

▶ Definition 31 (properties of trackings). A tracking is state-based if for every play π ending
in a configuration w, in a given state s, either all tokens or none of the tokens placed on the
state s in w are trackers.

A tracking is a correct ω-abstraction in a play π if the set of trackers Tπ is a finite base
of the last configuration of π in W .
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With a tracking which is both state-based and a correct ω-abstraction is naturally associated
a mapping

ϕ : [σ] → NS
,

which associates with every finite play the symbolic configuration where trackers are counted
and other tokens are abstracted away by ω. The correct ω-abstraction hypothesis ensures that
the whole ideal of the symbolic configuration is contained in W .

The following lemma provides the induction step for proving the existence of recovery
strategies.

▶ Lemma 32 (Induction step). Let W be an arena and an initial configuration w0. Let T1 be
a finite base of w0, called the stray sheep, and denote Sω the corresponding ω-base (i.e. the
states occupied in w0 by the other tokens). Let I be the set of configurations obtained from
w0 by adding arbitrarily many tokens on Sω. Let F be the set of configurations where some
stray sheep from T1 are brought back to the herd (i.e. a strict subset of T1 is a finite base).
Assume:

in every configuration of W \ F , the stray sheep are isolated; and
in every configuration of W \ F , the stray sheep occupy at least d different states; and
F is almost-surely reachable from everywhere in W .

Then there exists a strategy from w0 with a tracking ϕ such that F is almost-surely reached
when playing the strategy σ from w0, and in every finite play occuring on the way to the first
visit to F :

ϕ is a state-based correct ω-abstraction; and
ϕ tracks at most |T1| + (1 + 2 + . . .+ (|S| − d)) tokens; and
unless F is reached, ϕ tracks at least all tokens of T1, possibly more.

Proof of Lemma 32. Without loss of generality, we assume that F is almost-surely reachable
from any configuration or commit in W , if this is not the case, we restrict W to configuration
and commits in W having this property.

Set k = |S| − d . The proof is done by induction on (k, ℓ) where ℓ = |T1|.
Assume k = 0. Then all tokens of w0 are stray sheep and the tracking ϕ which constantly

tracks T1, i.e. all tokens, satisfies the condition.
Let ℓ ∈ N. Assume the property is proved for all pairs of indices (k′, ℓ′) when k′ ≤ k or

k′ = k + 1 ∧ ℓ′ < ℓ. We prove the inductive step: the property holds for (k + 1, ℓ).
In case ℓ = 0 then T1 is empty hence F is empty, and we get a contradiction with the

hypothesis F is almost-surely reachable from I.
Assume ℓ > 0.
We build σ and ϕ as follows. We apply Lemma 28 to obtain a funnel path π from w0 to

F stays within W0,1,ω,T1 , i.e. apart from stray sheep of T1 there is at most one fresh stray
sheep by state not occupied by T1. Since at least d states are occupied by the stray sheep,
which are isolated from other tokens, then the funnel path uses at most |S| − d fresh stray
sheep.

This funnel path π is the spine of the strategy, on which ϕ is tracking T1 plus the at most
≤ |S| − d tokens used for pathfinding. It remains to define the rest of the strategy and the
corresponding tracking: what does happen when sheep are no more obedient and exit the
funnel path?

Consider a configuration w1 immediately reachable when exiting the funnel path π.
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In case w1 ∈ F the strategy is over on this branch, and for the sake of completeness of
the definition of ϕ, ϕ(w1) tracks the corresponding strict subset of T1: the stray sheep of T1
which have not joined the herd yet, if any, and the empty set, if none.

Otherwise, in case w1 ̸∈ F , there exists an ω-base S′
ω of w1 such that the tokens outside

S′
ω are the union of T1 plus at most |S| − d tokens T ′′

1 , that were fresh stray sheep of the
funnel path before the exit to w1.

The set of trackers on the path π,w1 is T1 ∪ T ′′
1 . To define σ we rely on an induction on

T ′′
1 .

The base case is when T ′′
1 = ∅. In other words, apart from T1, all other tokens belong

to the ω-base Sω. We are somehow back to the initial situation with w0 and T1 except
this time it is from w1 not w0. In that case we start a new funnel path and start again
following it.
If T ′′

1 ̸= ∅ then let T ′
1 = T1 ∪ T ′′

1 .
All hypotheses of the Isolation Lemma (Lemma 25) are satisfied for the initial configuration
w1 and the finite base T ′

1. Let F ′ be the set of configurations where there exists a strict
subset of T ′

1 which forms a finite base. In particular, since any set of tokens containing a
finite base is itself a finite base,

F ⊆ F ′ .

Let I ′ be the set of configurations obtained from w1 by duplicating tokens outside of
T1. Then F ′ is almost-surely reachable from I ′, because I ′ ⊆ W and F ⊆ F ′. So all
conditions are met to apply Lemma 25.
We get a strategy that isolates T ′′

1 ∪ T1 from the rest of the tokens, until reaching F ′.
Until F ′ is reached, neither if F reached, thus by hypothesis the tokens in T1 stay isolated.
Hence the tokens in T ′

1 = T ′′
1 ∪ T1 do occupy at least d+ 1 states until F ′ is reached. We

can apply the induction hypothesis and obtain a strategy σ′′ and a state-based tracking ϕ′′

which correctly ω-abstract the plays. The strategy σ simply follows σ′′ until reaching F ′.
Once in F ′, we use the inductive definition for a smaller T ′′

1 . In the meantime, the tracking
ϕ′′ tracks at most |T ′

1|+(1+2+ . . . (|S|−d−1)) ≤ |T1|+(|S|−d)+(1+2+ . . . (|S|−d−1))
tokens.

◀

The existence of recovery strategies follows.

Proof of existence of recovery strategies (Lemma 19). Fix w0 an initial configuration in
W0,...,|S|,ω↓. Denote F ′ = W0,ω↓. From w0 we can almost-surely reach F ′, because

F ⊆ F ′ .

Since w0 ∈ W0,...,|S|,ω↓ there exists some symbolic configuration w0 such that

w0 ≤ w0 ⊆ W .

Hence, we can isolate in any configuration of w0↓ at most |S| stray sheep T1 and apply the
isolation lemma to w0 and T1 in W . We obtain a strategy σ′ to gather the stray sheep back
in the herd, and restrict the arena to the set of configurations and commits reachable with σ′

from w0↓, denoted W ′. To that arena W ′ we apply the induction step (Lemma 32) with d = 1
and Sω. We get a strategy to reach F , while tracking at most 1 + 2 + . . .+ (|S| − 1) tokens on
top of T1 with a state-based, correct ω-abstraction. The existence of such a tracking implies
that the play stays in W0,...,m,ω↓. ◀
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3 An EXPTIME algorithm

According to [5], we cannot hope better than EXPTIME.

▶ Definition 33 (The Symbolic population reachability problem). The input of the
problem is a tuple (M, w0,W , F ) where:

M is an MDP with state space S; and
W is a finite set of symbolic configurations and commits in M i.e. a finite subset of
NS ×A,
w0 ∈ W and F ⊆ W .

The Symbolic population reachability problem asks whether from every configuration
in w0↓ there exists a path to F↓ under the constraint that all commits belong to W↓.

▶ Definition 34. The largest constant of an instance of the problem is the largest finite
coordinate which appears in one of the finite sets (w0,W , F ) (by convention 0 in the rare
cases where there is no such finite coordinate).

▶ Lemma 35. Assume that there exists an algorithm which solves the Symbolic population
reachability problem in time ≤ 2O(|S|) whenever the largest constant is ≤ 1. Then the
Random population control problem is solvable in EXPTIME.

Proof. We first prove that there exists an algorithm which solves the Symbolic population
reachability problem in time ≤ 2O(|S|) whenever the largest constant is ≤ |S|2. Let
(M, I,W, F ) an instance. We create a new instance (M′, w′

0,W
′
, F

′) whose finte constants
are at most 1, whose size is polynomail in the size of (M, w0,W , F ) , and for which the answer
to the Symbolic population reachability problem is the same than for (M, w0,W , F ).

The definition of (M′, w′
0,W

′
, F

′) is as follows. Let K be the sum of the finite coordinates
in w0 (at most |S|). Let T0 be a set of K tokens. The MDP M′ consists in K + 1 disjoint
copies of M. The initial configuration w′

0 is obtained as follows. On the K first copies of M,
we place exactly 1 token of T0 on one of the state, so that the projection matches the finite
coordinates of w0. On the K + 1 copy, we place the ω like in w0. The final configurations F ′

are those whose sum over the different copies is in F . From every anonymous configuration
w′ of M′ one can obtain a configuration w = ϕ(w′) in M by suming up the coordinates in
the different copies. Fix an abstract configuration w in M we denote ψ(w) all the abstract
configurations w′ of M′ such that:

the coordinates of w′ on the K first copies are either 0 or 1; and
the coordinates of w′ on the K + 1-copy are in {0, 1, ω}; and
ϕ(w′↓) ⊆ w↓ .

Remark that there are at most 6|S| such configurations. We define W ′ = ψ(W ) and F ′ = ψ(F ).
Accodring to Lemma 28, the answer to the Symbolic population reachability problem
is the same for (M′, {w′

0},W ′, F ′) and (M, {w0},W, F ).
Now we provide the algorithm to solve the Random population control problem

in EXPTIME. Set W 0 to be the set of all configurations and commits with coordinates in
{0, 1, . . . , |S|2, ω}.

Repeat until no configuration can be removed. Remove from W i:
any abstract configuration which is a dead-end; and
any abstract commit with a successor which is not abstracted by W i; and
any abstract configuration w such that the answer to the Symbolic population
reachability problem (M, w,W i, F ) is negative.
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That finally converges to some W∞. A symbolic configuration survives the elimination iff it
is winning. Finally check that i belongs to W∞.

In case i belongs to W∞ then clearly from i there is a winning strategy: try again and
again to follow an obedient path to F in W∞, until it works.

In case i does not belongs to W∞ then we conclude with the same arguments than in the
proof of 20.

◀

So finally the EXPTIME upper bound reduces to the proof of decidability of the Symbolic
population reachability problem with largest constant 1, which is dne in the next
section.

4 Solving the Symbolic population reachability problem with largest
constant 1 in EXPTIME

In this section we prove:

▶ Lemma 36. The Symbolic population reachability problem with largest constant
1 is solvable in EXPTIME.

Fix an instance (M, w0,W , F ) of the Symbolic population reachability problem
with largest constant 1. We define an ω-regular parity game that Eve wins iff the answer to
the Symbolic population reachability problem is positive for this instance. The game
has exponentially many states and the winning condition is recognizable by a deterministic
parity automaton with exponentially many states and polynomially many priorities.

Vertices of Eve VE : symbolic {0, 1, ω}-configurations in W

Vertices of Adam FE : symbolic {0, 1, ω}-flow induced by a commit in W .
Initial vertex ω on i. Legal moves:

from v Eve can select any flow f such that dom(f) = v; and
from f Adam can select any symbolic {0, 1, ω}-configuration v′ suct hat v′ ≤ im(f) .

Eve wins a play of the game in two cases:
when the play reaches a configuration in F ; or
when the finite capacity condition is violated: there exists a subset of vertices with no
incoming edge and infinitely many outgoing edges.

An extended discussion and definition of the finite capacity condition is given in [1,
Section 3], see in particular [1, Lemma 3.5].

4.1 Equivalence of the game and the problem
This section is dedicated to the proof of the following lemma.

▶ Lemma 37. Eve wins the game iff the answer to the Symbolic population reachability
problem is positive.

Proof. One direction is easy: if Eve wins the abstract game then for every N she uses her
strategy in the N -game to generate an over-approximation of the N -play, and uses Adam
moves to adjust the over-approximation such that it is tight, i.e. at every moment the
play is over-approximated by a minimal abstract configuration. That guarantees the finite
capacity constraint is satisfied, because a violation of the finite capacity constraint in the
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tight over-approximation would imply a violation in the actual N -play, which is impossible,
cf [1, Lemma 3.5].

For the converse implication, use the fact that if the answer to the Symbolic population
reachability problem is positive then the corresponding distance automata build in [2]
on the alphabet of symbolic {0, 1, ω}-flow is unbounded. According to [8, Theorem 12], there
exists a ♯-expression e which witness unboundedness: the cost of the sequence of words
(e[n])n is unbounded, where e[n] denotes the expression obtained by replacing ♯ with n.

Such ♯-expression e is called a ♯-path from w0 to W , where w0 is an {0, 1, ω}-configuration
generating the initial configurations ideal, and W is the set of final configurations. Using the
dictionary provided by [2], it means the maximal number kN of tokens that can be moved
from w0[N ] to W↓ through the capacity graph formed by the sequence of symbolic matrices
e[N ] is unbounded when N grows large.

The proof is by induction on the structure of the ♯-expression, with induction hypothesis:

(H) if there is a ♯-path e from w0 to W , then Eve wins the game starting in w0 and with the
corresponding winning condition W .

There are four cases, corresponding to the two operators (concatenation and iteration), plus
the base case. If e is a sharp expression,

If the ♯-path from w0 to W is a single letter a, then a winning strategy for Eve consists
in playing a.
If the ♯-path from w0 to W is a product e · f , for every integer N denote kN the maximal
number of tokens that can be moved along the capacity graph e[N ]f [N ] and πN the
corresponding trajectory of the kN tokens, and w′

N the configuration on πN reached at
the end of e[N ] (hence at the beginning of f [N ]). Denote w a limit in the topological
closure of {w′

N | N} and set W ′ = {w}. Then e is a witness of w0 → {w} and f is a
witness of w → W . Apply the induction hypotheses to e and f to get two strategies for
Eve, σe and σf , which win in the corresponding games. Then a winning strategy for Eve
consists in playing σe and then as soon a configuration ≤ w is reached, switch to σf , until
W is reached.
If the ♯-path from w0 to W is an iteration e♯, then the corresponding capacity graph
e is idempotent, thus its image w is contained in its domain w0. If e = e♯ (i.e. e is
stable), then also e is a sharp path from w0 to W , and we conclude by indction hypothesis.
If e ̸= e♯ (i.e. e is unstable) Eve can play again and again the strategy σe associated
with e, to go from w0 to w ≤ w0. Each time w is reached, Eve reboots the strategy σe

from scratch w0. We need to add a special dummy letter which is used to force a move
from Adam to handle the possible strict inequality w ≤ w0. Since the idempotent is
unstable, Adam must either violate the finite capacity constraint, or eventually empty
any connected component which is not minimam in the topological order (i.e. a BSCC).
In both cases, Eve eventually wins.

◀

4.2 Solving the game in EXPTIME
▶ Lemma 38. The game can be solved in EXPTIME.

Proof. The winning condition can be recognised by a parity automaton of exponential size
and bounded number of colors [1, Section 4.3] ◀
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By combining Lemma 35 and Lemma 36 we obtain our main result.

▶ Theorem 39. The Random population control problem is EXPTIME-complete.

Conclusion

Next step is solving population parity games, which we conjecture are also in EXPTIME.
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