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Abstract 

As a unicellular eukaryote, the budding yeast Saccharomyces cerevisiae strikes a unique balance between biological complexity and experimen- 
t al tract abilit y, serving as a long-st anding classic model f or both basic and applied studies. R ecently, S. cere visiae further emerged as a leading 
sy stem f or st udying nat ural div ersity of genome e v olution and its associated functional implication at population scales. Having high-quality com- 
parative and functional genomics data are critical for such efforts. Here, we exhaustively expanded the telomere-to-telomere (T2T) S. cerevisiae 
reference assembly panel (ScRAP) that we previously constructed for 142 strains to cover high-quality genome assemblies and annotations of 
264 S. cerevisiae strains from diverse geographical and ecological niches and also 33 outgroup strains from all the other Saccharom y ces species 
complex. We created a dedicated online database, ScRAPdb ( https://www.e v omicslab.org/db/ScRAPdb/), to host this expanded pangenome 
collection. Furthermore, ScRAPdb also integrates an array of population-scale pan-omics atlases (pantranscriptome, panproteome and panphe- 
nome) and e xtensiv e data e xploration toolkits f or intuitiv e genomics analy ses. All curated data and downstream analysis results can be easily 
downloaded from ScRAPdb. We expect ScRAPdb to become a highly v aluable platf orm f or the y east community and be y ond, leading to a 
pan-omics understanding of the global genetic and phenotypic diversity. 
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Introduction 

Model organisms are invaluable for understanding life on
earth, shedding lights on almost all aspects of modern biology.
The budding yeast Saccharomyces cerevisiae has long been
considered as a classic and powerful eukaryotic model organ-
ism for addressing a wide range of biological questions across
diverse research fields, leading to many landmark discover-
ies with profound impacts. Moreover, S. cerevisiae has also
been widely used as a proof-of-concept system for developing
new experimental and computational methodologies, thanks
to its unicellular nature, compact genome and relatively well-
characterized regulatory machinery . Finally , S. cerevisiae is
also an important workhorse in industrial settings like brew-
ing, bakery, biofuel and pharmaceutics, highlighting its eco-
nomic values for the human society. It is therefore of no coin-
cidence that S. cerevisiae become the first eukaryotic organism
to have its genome fully sequenced ( 1 ). Since then, the develop-
ment of large-scale functional genomics panels such as yeast
gene deletion ( 2 ), overexpression ( 3 ), tagging ( 4 ) and gene–
gene interaction ( 5 ) further cast a comprehensive functional
understanding of its genome biology. To accommodate and
curate these reference-orientated resource, the Saccharomyces
Genome Database (SGD, https://www.yeastgenome.org ) ( 6 )
was developed > 25 years ago and continued serving the yeast
community ( 7 ), providing encyclopedic information regard-
ing the genome, genes, proteins and other encoded features of
S. cerevisiae . 

While these landmark efforts were mostly achieved based
on the reference strain S288C or closely related laboratory
strains, large-scale population genomic and comparative stud-
ies were subsequently deployed for S. cerevisiae and its close
relatives (e.g. Saccharomyces paradoxus ) ( 8–16 ). For exam-
ple, along with the advancing of sequencing technologies,
three phases of the Saccharomyces Genome Resequencing
Project (SGRP) were conducted with Sanger ( 8 ), short-read
( 9 ) and long-read sequencing ( 12 ), respectively, to obtain a
more complete view of the genomic and phenotypic diversity
of the Saccharomyces natural populations. In addition, the
1002 S. cerevisiae genome project (1002ScGP) represents an-
other pivotal landmark by providing a massive panel of short-
read-based genome assemblies for 1011 strains sampled glob-
ally together with a comprehensive pangenome open reading
frames (ORFs) portrait for S. cerevisiae regarding its genome
content evolution ( 13 ). Comparatively, long-read sequencing
technologies such as PacBio and Oxford Nanopore substan-
tially improves the quality and continuity of genome assembly,
whose application on yeast genomes can often reach telomere-
to-telomere (T2T) completeness for multiple chromosomes,
without incorporating additional auxiliary technologies (e.g.
Hi-C) ( 17 ). Recently, a long-read-sequenced panel of 142 geo-
graphically and ecologically representative strains was further
assembled to delineate a high-resolution view on the structural
genome evolution of S. cerevisiae ( 18 ). Long-read-based high-
quality yeast genome assemblies for S. cerevisiae and its close
relatives from the Saccharomyces species complex are still re-
leased on a regular basis ( 19–31 ). Given the strength of long-
read sequencing in characterizing complex structural variants
(SVs) and highly repetitive regions, it is expected that a curated
compendium of these high-quality assemblies will provide a
new foundation for unbiased population and comparative ge-
nomics studies toward a pangenome view of a species’ global
diversity. 
Understanding how genomic variation translates into trait 
differences in the phenotypic space is a central aim in genet- 
ics. As a classic model organism with population-level scala- 
bility for multi-omics assays, S. cerevisiae is well suited for this 
undertake. The genome characterization of 1011 S. cerevisiae 
strains and their associated phenotyping data across multi- 
ple environments set the stage for an in-depth examination on 

how genetic diversity, population structure, domestication his- 
tory, collectively shaped the phenotypic diversity at the species 
level ( 13 ,32 ). Recently, their associated high-throughput tran- 
scriptome ( 33 ) and proteome ( 34 ,35 ) data further rolled out,
which bridges the gap between the genotypic and phenotypic 
space and opens up the opportunity for looking into how such 

genotype-to-phenotype translation is fulfilled at the mechanis- 
tic level. 

Therefore, it is important to construct a centralized 

data hub enabling seamless cross-dataset exploration and 

knowledge integration. Toward this goal, here we introduce 
ScRAPdb, an integrated pan-omics database for S. cerevisiae ,
offering a multi-layered view on its pan-omics diversity at 
population scales. At the genomic level, we conducted an 

exhaustive search, curation, and annotation on all currently 
available long-read-based genome assemblies from the Sac- 
charomyces species complex to form an expanded S. cere- 
visiae reference assembly panel (ScRAP) and performed com- 
prehensive comparative genomics analyses. On top of this,
we also gathered the S. cerevisiae pantranscriptome, panpro- 
teome and panphenome datasets and matched with our ex- 
panded ScRAP collection for multi-omics integration. Finally,
rich visualization and analysis tools were developed and in- 
corporated into ScRAPdb to facilitate interactive data explo- 
ration in real time. Taken together, we anticipate ScRAPdb 

to facilitate both basic and applied research on yeast and 

beyond, in terms of both biological discovery and technol- 
ogy development. The ScRAPdb is publicly available at https: 
// www.evomicslab.org/ db/ ScRAPdb/ . 

Materials and methods 

Exhaustive collection for long-read-based yeast 
genome assemblies 

We collected all currently available (until 10 June 2024) long- 
read-based genome assemblies (for both nuclear and mito- 
chondrial genomes if available) and their associated metadata 
for S. cerevisiae and its close relatives from the Saccharomyces 
species complex. These outgroup species include S. para- 
doxus , Saccharomyces mikatae , Saccharomyces kudriavzevii ,
Sacc haromyces arboricola , Sacc haromyces eubayanus , Sac- 
charomyces uvarum , as well as the newly described Saccha- 
romyces jurei ( 36 ) and Sacc haromyces c hiloensis ( 26 ). For 
each included Saccharomyces species, a combination of man- 
ual literature curation, GenBank query and automatic web 

crawling was used. For GenBank query, all chromosome- 
level Saccharomyces genome assemblies uploaded to Gen- 
Bank ( 37 ) since 2015 were retrieved and those sequenced 

by long-read sequencing technologies were kept for down- 
stream quality control. For automatic web crawling, we de- 
veloped a python script that utilize the Biopython’s En- 
trez module ( https:// biopython.org/ docs/ 1.83/ api/ Bio.Entrez. 
html ) ( 38 ) for information query and parsing. This in-house 
script allows to perform an extensive and in-depth search 

in literature for S. cerevisiae genome assemblies generated 

https://www.yeastgenome.org
https://www.evomicslab.org/db/ScRAPdb/
https://biopython.org/docs/1.83/api/Bio.Entrez.html
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y long-reads ( 39 ,40 ). Long-read-based yeast genome as-
emblies of meiotic spores from hybrid crosses were not
onsidered ( 41 ). 

uration and annotation for the expanded ScRAP 

ollection 

ll collected genome assemblies were processed with our pre-
iously developed LRSDAY pipeline ( 42 ) (v1.7.2) for assembly
uration, chromosome-level scaffolding and genomic feature
nnotation (centromere, gene, transferRNA [tRNA], Ty trans-
osable element, X element and Y’ element). For nuclear as-
emblies from the outgroup species, two consecutive rounds
f nuclear gene annotation were performed (the first round
ith default setting and the second round using the outputs

rom the first-round annotation as hints for potential cod-
ng regions). Assemblies that are too fragmented, noticeably
ncomplete, or carrying too many base-level errors (as sug-
ested by excessive in-frame stop codons detected during our
ene annotation) were eliminated after quality check. Manual
ssembly correction was occasionally applied for very clear
is-joining errors based on the dotplot generated by LRS-
AY. For strains having multiple assemblies derived from the

ame read set (e.g. those from the original ScRAP project), the
est assembly is kept based on the assembly quality. For as-
emblies derived from the same strain but independent reads
ets (e.g. when two labs sequenced the same strain), we kept
hem altogether while using different assembly identifiers (e.g.
sm01, asm02, etc.) to distinguish. The nuclear and mitochon-
rial reference assemblies of S. cerevisiae (denoted as ‘SG-
ref’) and S. arboricola (for which no long-read-assembly is

urrently available) were further added into our collection.
he sequence start of all enrolled mitochondrial genome as-
emblies were uniformly reset to the start codon of the ATP6 

ene. 
For each assembly hosted in ScRAPdb, its identifier consists

f three parts: strain identifier (e.g. S288C), assembly identi-
er (e.g. asm01) and phasing status tag (e.g. HP0). The assem-
ly identifiers are numbered sequentially as asm01, asm02,
tc., which are used to differentiate genome assemblies gen-
rated from different reads sets (e.g. independently sequenced
y different groups) for the same strain. The phasing sta-
us tag is defined in the same way as in the original ScRAP
aper ( 18 ). For haploid and homozygous diploid / polyploid
trains, a single haplotype can be recovered with no phas-
ng process needed. We used ‘HP0’ as their phasing status
ag, where ‘HP’ stands for haplotype. For strains that are het-
rozygous diploids, polyploids or with unknown zygosity and
loidy status, a single genome assembly is usually generated
ith different haplotypes being collapsed together. We used

he ‘collapsed’ tag to denote their phasing status. For het-
rozygous diploid strains that were assembled in a haplotype-
hased and separated manner, we used ‘HP1’ and ‘HP2’ to
enote the two assemblies that correspond to the two sepa-
ated haplotypes. For polyploid strains that were assembled
n a haplotype-phased but unseparated manner, we used the
HP’ tag to denote the corresponding assemblies. All enrolled
uclear genome assemblies were evaluated by BUSCO ( 43 )
v5.3.2) with BUSCO-associated lineage-specific database ‘as-
omycota_odb10’ (creation date: 8 August 2024, number of
enomes: 365, number of BUSCOs: 1706). BlobToolKit ( 44 )
v4.3.11) was used for calculating assembly statistics such as
50, N90, GC%, etc. 
Pairwise genome comparison, ANI calculation and 

full-spectral variant calling 

For nuclear and mitochondrial genomes, pairwise genome
comparison and average nucleotide identity (ANI) calcula-
tion were conducted by OrthoANI ( 45 ) (v0.50). Full-spectral
genomic variants such as single-nucleotide variants (SNVs),
insertions / deletions (INDEL) and SVs were detected using
PAV ( 46 ) (v2.3.4) based on the S. cerevisiae reference genome
(SGDref). The called variants were further processed with VEP
( 47 ) (v109.3) for variant effect prediction. The called SNVs,
INDELs and SVs were further visualized via a built-in genome
browser. 

Phylogenetic reconstruction 

For the 364 nuclear genome assemblies (after excluding the
13 phased but unseparated polyploidy assemblies from the
original ScRAP) and 237 mitochondrial genome assemblies,
we used Proteinortho ( 48 ) (v6.0.25; options: –check -selfblast
-singles) to define 1-to-1 ortholog groups for four input
subsets: (i) all 328 S. cerevisiae nuclear assemblies, (ii) all 36
outgroup nuclear assemblies + 11 representative S. cerevisiae
nuclear assemblies, (iii) all 220 S. cerevisiae mitochondrial
assemblies and (iv) all 17 outgroup mitochondrial assemblies
together with 11 representative S. cerevisiae mitochon-
drial assemblies. For each 1-to-1 ortholog groups identified
based on these subsets, the corresponding protein and CDS
alignment were generated by MACSE ( 49 ) (v2.04; options:
-prog alignSequences -gc_def 1 [for nuclear genomes] or 3
[for mitochondrial genomes] -seq $i.species_relabeled.fa -
out_NT $i.macse_NT.aln.fa -out_AA $i.macse_AA.aln.fa
and -prog exportAlignment -align $i.macse_NT.aln.fa
-codonForFinalStop - - - -codonForInternalStop NNN
-codonForInternalFS NNN -codonForExternalFS - - - -
charForRemainingFS - -out_NT $i.macse_NT.aln.tidy.fa
-out_AA $i.macse_AA.aln.tidy.fa). Afterwards, the con-
catenated supermatrix of the 1-to-1-ortholog-based CDS
alignment was further generated. For mitochondrial as-
semblies, there are two identical copies of the COX3
gene in strain UCD_61–190-6A (aka, CDN), for which
only one copy was used for orthology identification. For
each input subset, the CDS supermatrix and its associ-
ated partition definition (by first, second and third codon
positions) were used for maximal likelihood tree build-
ing by IQ-TREE ( 50 ) (version: 2.3.4; options: -p $pre-
fix.concatenated.cds.by_codon_position.partition.txt -s
$prefix.concatenated.cds.tidy.fa -m MFP -bb 1000 -alrt
1000 –bnni -T $threads -pre $prefix.iqtree -safe). In total,
1000 rounds of ultrafast bootstrap (UB) and approximate
likelihood-ratio test (aLRT) were used to assess the branch
supports. 

Pan-omics data curation and visualization 

The previously collected pangenome ORF set ( 13 ) (1011
strains), pantranscriptome ( 33 ) (969 strains × 1 environment),
panproteome ( 34 ,35 ) (942 strains × 1 environment and 796
strains × 1 environment, respectively) and panphenome data
( 13 ,32 ) (971 strain × 35 traits and 1011 strains × 99 traits,
respectively) of the S. cerevisiae global populations were man-
ually curated and matched with each other as well as our
expanded ScRAPdb genome collection. For each of our pre-
viously characterized S. cerevisiae pangenome ORF set, its
presence / absence status in the ScRAPdb genome collection as
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well as in the 1002ScGP genome collection was evaluated by
minimap2 ( 51 ) (v2.24). The pangenome ORFs with > 80%
alignment coverages and > 80% sequence identities are con-
sidered as presence in the evaluated genome. For the pantran-
scriptome data, both the read count values calculated by fea-
tureCounts ( 52 ) and their corresponding transcript per mil-
lion (TPM) values were retrieved from the original study, the
latter of which can be used for direct comparison of gene ex-
pression levels across different strains and environments. For
the panproteome data, the DIA-NN-inferred protein abun-
dance values ( 53 ) obtained from SWATH mass spectrometry
( 54 ) were retrieved from the original studies. For the panphe-
nome data, four classes of phenotypic traits data (i.e. gen-
eration time, yield, sporulation and chronological life span)
were retrieved from the original studies. For each dataset,
interactive plots such as heatmaps, violin plots and princi-
pal component analysis (PCA) plots were employed for data
visualization. 

Database implementation 

The backend of ScRAPdb is written using the Django frame-
work ( https:// www.djangoproject.com/ ; v3.2.4). On the fron-
tend, Echarts ( 55 ) (v5.3.3), D3.js ( https:// d3js.org/ ; v6.7.0)
and Plotly ( https:// plotly.com/ ; v2.33.0) were employed to for
interactive graph plotting. Phylotree.js ( 56 ) (v1.0.16) was used
for phylogenetic tree visualization. JBrowse ( 57 ) (v2.13.1)
was used to power the genome browser. Bootstrap ( https:
// getbootstrap.com/ ; v4.3.1) and jQuery ( https://jquery.com/
; v3.2.1 ) were further used for interactive query and render-
ing. The website was host via an Alibaba Simple Application
Server equipped with 2 CPU, 4 Gb RAM and 280 Gb ESSD
data storage, running with CentOS Linux (v8.2) as the oper-
ating system. 

Results 

Data collection and organization 

Starting from the original ScRAP dataset ( 18 ), we performed
an exhaustive search and curation on all currently available
long-read-based genome assemblies for both S. cerevisiae and
its eight outgroup species from the Saccharomyces species
complex to form a significantly expanded ScRAP collection.
This updated ScRAP collection consists of 341 S. cerevisiae
and 36 outgroup nuclear assemblies as well as 220 S. cere-
visiae and 17 outgroup mitochondrial assemblies. These as-
semblies are further derived from 264 S. cerevisiae strains and
33 outgroup strains (12 S. paradoxus , 2 S. mikatae , 2 S. ju-
rei , 3 S. kudriavzevii , 1 S. arboricola , 2 S. chiloensis sp. nov.
AUS , 4 S. chiloensis sp. nov. SA-C , 5 S. euba y anus and 2 S.
uvarum ) (Figure 1 A). Following the same protocols ( 42 ), we
performed systematic assembly curation, statistics evaluation
and genomic feature annotation for all these genome assem-
blies, so that they can be directly compared with each other
at both genome and gene levels. Detailed metadata for these
strains and assemblies was also curated and compiled, such
as their geographical origin, ecological niches, ploidy, zygos-
ity , aneuploidy , mating type, marker gene genotypes and used
sequencing technologies (Figure 1 B). Comprehensive compar-
ative genomics analyses such as gene orthology identifica-
tion, genomic variant discovery, phylogeny reconstruction and
synteny comparison were conducted accordingly, with their
results rendered to the web-based front-end for interactive 
and intuitive exploration (Figure 1 C). Finally, given the re- 
cent availability of pangenome ORF set ( 13 ), pantranscrip- 
tome ( 33 ), panproteome ( 34 ,35 ) and panphenome ( 13 ,32 ) 
data based on the 1002ScGP strain collection ( 13 ), we gath- 
ered and curated such multi-omics atlases and matched it 
to our expanded ScRAPdb genome collection, which enables 
multi-omics-based data exploration and comparison (Fig- 
ure 1 D–F). An overview of 1-to-1-orthologous-gene-based 

phylogeny of all ScRAPdb-enclosed strains together with 

their matched multi-omics atlases is further presented in 

Figure 2 . 

Web interface and usages 

ScRAPdb comes with an intuitive web interface, which helps 
to navigate users to access different functional modules. A 

central horizontal navigation menu is provided in the front 
page with ten clickable tabs: ‘Home’, ‘Strains’, ‘Phylogeny’,
‘Pangenome’, ‘Pantranscriptome’, ‘Panproteome’, ‘Panphe- 
nome’, ‘Tools’, ‘Download’ and ‘Help’, each leading to ei- 
ther a dedicated page or a secondary-level menu (Figure 3 ).
The ‘Home’ page gives a brief introduction to the ScRAPdb 

database with various summary plots for the strains and as- 
semblies enrolled regarding their geographical distribution,
ploidy and haplotype phasing, sequencing technologies, etc.
The ‘Strains’ page provides a metadata table for all the strains 
enrolled, with clickable links leading to more strain-specific 
information. The ‘Phylogeny’ tab leads to phylogenetic trees 
based on the nuclear and mitochondrial genomes respectively.
Users can easily interact with these trees with mouse clicks and 

drags. The ‘Pangenome’, ‘Pantranscriptome’, ‘Panproteome’ 
and ‘Panphenome’ pages present the pan-omics datasets cor- 
responding to our ScRAPdb strains, with each dataset sum- 
marized in both graphical plots and informative tables. Gene- 
based query function (in both single-gene and batch-gene 
modes) is further built-in for fast search and analysis. The 
‘Tools’ page leads to web-based tools for genome browsing,
synteny comparison and homology search. The ‘Download’ 
page offers both batch and individual downloading links for 
all genome sequences and annotations as well as other pre- 
calculated results curated in ScRAPdb, including a compila- 
tion of full-spectral genomic variant call sets for SNVs, IN- 
DELs and SVs. Finally, the ‘Help’ page provides useful help- 
ing information regarding the data source, naming conven- 
tion, contact information, etc. 

Application demonstration 1: high-resolution 

discovery and characterization of structural variants 

Long-read-based genome assemblies shine in their value to 

detect large and complex SVs, which can significantly im- 
pact functions and traits. The ScRAPdb compendium of such 

population-scale long-read-based S. cerevisiae genome assem- 
blies offers a powerful platform to discover and characterize 
SVs accumulated in diverse evolutionary lineages of S. cere- 
visiae . With ScRAPdb, the existence of SVs can be captured 

and analyzed from three sources: (i) the primary-reference- 
based SV call set between each enrolled assembly and the SGD 

reference genome ( S. cerevisiae strain: S288C); (ii) the inter- 
active genome synteny comparison plots in multiple flavors 
(e.g. circular synteny plot, linear synteny plot and genome dot- 
plot); (iii) the systematic characterization for the presence and 

https://www.djangoproject.com/;
https://d3js.org/;
https://plotly.com/;
https://getbootstrap.com/;
https://jquery.com/;v3.2.1
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bsence variation (PAV) of the previously portraited S. cere-
isiae pangenome ORF set across 1011 strains ( 13 ). Here,
e used these three methods to highlight the polymorphic
istribution of the killer toxin gene KHR1 (SGD systematic
ame: YSC0002) among different S. cerevisiae strains (Figure
 ). KHR1 is absent from the SGD reference genome but exists
n strains such as YJM789 ( 58 ). By searching KHR1 on the
enome content variation page under the ‘Pangenome’ menu
f ScRAPdb, we can obtain a detailed description regarding its
unction and PAV status across different S. cerevisiae genome
ssemblies curated in ScRAPdb, which suggests the presence
f KHR1 in the strain SK1 (Figure 4 A–C). By running BLAST
earch (natively supported by ScRAPdb) with the KHR1 cod-
ng sequence (CDS; size = 891 bp) retrieved from SGD, we can
asily identify the corresponding genomic location of KHR1
n the SK1 genome assembly (chrIX:285388–286278) (Fig-
re 4 D). By zooming into this region in the interactive pair-
ise genome dotplot powered by ScRAPdb, we can not only

erify this SV but also obtain its insertion location relative
o the SGDref (chrIX:300544–300545) (Figure 4 E and F).
y examining this location along SGDref with ScRAPdb’s
uilt-in genome browser, we can further confirm a 1622-
p structural insertion containing the KHR1 gene in SK1
s reflected by the pre-loaded SK1 genomic variant track
Figure 4 G). 
Application demonstration 2: understanding trait 
evolution across different omics layers 

The domestication history of S. cerevisiae in food and bever-
age production dates back to thousands of years ago. Such
long-term adaptation in specific anthropic environments has
shaped their genome and trait evolution substantially. For ex-
ample, sulfites are widely used in wine production as preser-
vatives to maintain the flavor and freshness of wine. Ac-
cordingly, many S. cerevisiae strains from the Wine / European
clade showed higher tolerance to SO 2 , as a result from the use
of sulfites during winemaking. The SSU1 ( YPL092W ) gene
encodes the sulfite efflux pump on the plasma membrane and
is largely responsible for SO 2 tolerance in S. cerevisiae ( 59 ).
With ScRAPdb, by comparing the gene expression level of
SSU1 across strains from different phylogenetic clades, we
found four Wine / European strains with exceptionally high
levels of SSU1 expression, namely YJM981 (ADI), YJM978,
C-6 (CRL) and CBS2807 (AIC) (Figure 5 A and B). In paral-
lel, the ScRAPdb genome synteny comparison between these
strains and SGDref revealed clear chrVIII-chrXVI transloca-
tions in YJM981 (ADI), YJM978 and C-6 (CRL), which are
also the top three strains with the highest levels of SSU1 ex-
pression (Figure 5 C). Previous studies have demonstrated that
such chrVIII-chrXVI translocation can substantially elevate
SSU 1 expression via a promoter hijack ( 60 ,61 ). Interestingly,
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BS2807 (AIC) is free from both this characteristic chrVIII-
hrXVI translocation and two other known SVs related to
SU1 ( 62 ,63 ), suggesting an alternative evolutionary strat-
gy that is yet to be elucidated for SSU1 up-regulation. In
ddition to winemaking, dairy fermentation is another typi-
al domestication niche for S. cerevisiae . GAL1 ( YBR020W )
nd GAL3 ( YDR009W ) are a pair of paralog genes in the S.
erevisiae genome that mediate galactose metabolic process.
ith ScRAPdb, we found these two genes show much higher

xpression levels in strains from the French dairy clade rel-
tive to all the other strains, which further agrees with the
igh growing yields of these strains in the galactose environ-
ent (Figure 5 E). Therefore, higher expression levels, coupled
ith previously reported alternative GAL alleles ( 64 ,65 ), may

ynergistically contribute to enhanced galactose utilization.
aken together, these two examples showcased how ScRAPdb
ith its multi-omics integration can help researchers to better

tudy trait evolution across different genomic and functional
ayers. 

iscussion 

hile the budding yeast S. cerevisiae has been serving as an
ll-time classic model organisms in modern biology, the past
5 years truly witnessed its emergence as a leading system to
tudy genomics and evolution at population scales. Till today,
 3000 of strains that are geographically and ecologically dis-

inct have been fully sequenced ( 66 ), exhibiting a surprisingly
igh level of genome diversity and plasticity. Considering their
ver 9000 years of association with the human society ( 67 ),
t is expected that human domestication on S. cerevisiae in di-
erse industrial settings has played an important role along
he way. Moreover, the recent release of large-scale transcrip-
omics, proteomics and phenomics data across hundreds of
enetic backgrounds and environmental conditions further of-
ered us invaluable resources and power to dissect complex
enotype-to-phenotype interactions and to obtain a multi-
layered view on how genomic variation translates into phe-
notypic differences. Therefore, it is critical to develop a cen-
tralized data hub to enable seamless integration, exploration
and sharing of these multi-omics treasures. Such a unified plat-
form is highly useful for not only the yeast enthusiasts but also
a much broader research community for formulating and test-
ing new hypotheses, models and tools in addressing general
biological questions related to genotype-phenotype mapping.

In this study, we present ScRAPdb, an integrated pan-
omics database for the ScRAP. Compared with the classic
yeast genomics databases such as SGD ( 6 ) and YGOB ( 11 ),
ScRAPdb shines with its unique emphasis on population-
scaled pangenome characterization and multi-omics integra-
tion. In this sense, ScRAPdb filled the gap between the
single-reference-centered SGD database and the inter-specific-
comparison-motivated YGOB database by offering a novel
platform for exploring intra-specific diversity of S. cerevisiae
across multiple omics layers spanning between the genotype
and phenotype space. 

In the future, ScRAPdb will be updated on a regular ba-
sis to keep incorporating reference-quality genomes as well as
large-scale functional assays for S. cerevisiae and its close rel-
atives. Furthermore, towards the ultimate goal of elucidating
the genetic basis of complex traits, we plan to add supports
for user-uploaded phenotype data as well as built-in genome-
wide association mapping tools to enable direct association
tests across multi-omics layers. In addition, S. cerevisiae is well
ahead of the time in genome editing, thanks to its highly ef-
fective homologous recombination system. As newer genome
editing tools such as the clustered regularly interspaced short
palindromic repeats (CRISPR) / CRISPR-associated (Cas) sys-
tems become increasingly accessible and effective, genome-
wide editing and perturbation experiments are now possible
for being applied to diverse natural strains of S. cerevisiae in
parallel. ScRAPdb is expected to further incorporate such data
when it becomes available, which will add another dimen-
sion for deciphering genotype-phenotype interaction and their
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egulatory machineries. In addition to actively seeking the op-
ortunities to incorporate newly available population-level
mics data on S. cerevisiae , we also welcome colleagues in the
east community and beyond to contact us when such data
re generated in their labs, and we are committed to host the
ata for public sharing. 

ata availability 

ll data covered by ScRAPdb can be freely accessed and
ownloaded at https:// www.evomicslab.org/ db/ ScRAPdb/ .
he genome sequences and annotation data for batch
ownloading are available in the Zenodo repository at
ttps:// doi.org/ 10.5281/ zenodo.12580380 . 
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