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Abstract

Free surface flows down a slope occur in various real-life scenarios, such as civil engineer-

ing, industry, and natural hazards. Unstable waves can develop at the free surface when

inertia is sufficiently strong, indicated by the Reynolds number exceeding a critical value.

Although this instability has been investigated for specific fluids with different rheologies, a

common framework is still lacking to facilitate comparison among the various models. In this

study, we investigate the linear stability of a generalized Newtonian fluid, where the viscosity

Zð _gÞ remains unspecified. We meticulously construct new dimensionless quantities to mini-

mize dependence on the rheology, and subsequently derive the Orr-Sommerfeld equation

of stability for any generalized Newtonian fluid, which has never been done before. We con-

duct a long-wave expansion and generate a novel analytical expression for the wave celer-

ity, along with the critical Reynolds number. The originality in this study is that the analytical

expressions obtained are valid for any rheology, and are easy to compute from a rheological

measurement or from a base flow profile measurement. These results are subsequently

scrutinized using various shear-thinning, shear-thickening, and viscoplastic rheology mod-

els. They exhibit excellent agreement with experimental or numerical data as well as theo-

retical findings from existing literature. Furthermore, the novel analytical expressions enable

a much more comprehensive investigation into the impact of rheology on stability. While our

approach does not encompass singular or non-monotonous rheology, the analytical expres-

sions derived from the long-wave expansion exhibit remarkable resilience and they continue

to accurately predict both the wave speed and the instability threshold in such cases.

Introduction

Free surface flows driven by gravity down a slope manifest in various contexts, including civil

engineering (such as spillways and aqueducts), industrial processes (like film coating, heat and

mass transfer), and notably in geophysical phenomena (such as avalanches, landslides, lava

flows, debris or mud flows). In these scenarios, the free surface may destabilize when the flow

becomes sufficiently strong (see Fig 1), causing small perturbations to amplify into large roll

waves. These waves may prove beneficial in certain processes like mass transfer [1, 2] but

undesirable in others like surface coating [3] or natural hazards [4]. The destructive potential
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Fig 1. Examples of unstable surface flows down an inclined plane. a) Roll waves of a debris flow event in the Jang Jia

Gully in China. (Photo: M. Arai, cropped) b) Giant mud flow in Colorado, 2014. (Photo: J. Coe, cropped) c)

Solifluction terrace pattern near Eagle Summit, Alaska. (Photo D. Sikes, cropped) d) Roll waves in Llyn Brianne

spillway, Wales. (Photo: J. Gibson, cropped) e) Roll waves in a vertical tube to augment mass transfer. (Photo: C.D.

Park, cropped) f) Lava flow (2018) at Kilauea volcano, Hawai. (Photo: A. Glover, cropped). All the pictures above may

have been modified for illustrative purposes.

https://doi.org/10.1371/journal.pone.0310805.g001
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of large-scale roll waves underscores the importance of studying them, particularly in the con-

text of risk assessment and structural integrity evaluation.

The evolution of these roll waves typically follows a well-established scenario: initial expo-

nential growth during the linear regime, followed by amplitude saturation and stiffening of the

wave front [5], and ultimately, secondary destabilization that may result in turbulence [6, 7].

Inertia is the main driving force behind this instability, with waves emerging only when the

Reynolds number Re surpasses a critical threshold Rec [8]. This critical value, which can be

predicted through linear stability analysis, has been of particular interest in the literature.

At first, authors studied the stability of Newtonian fluids down a slope since the pioneering

experiments of Kapitsa [9]; for that reason, roll waves are sometimes called Kapitsa waves. The

critical Reynolds number, as well as the wave celerity, were established theoretically by study-

ing the stability of a set of linear equations governing the perturbation fields [10, 11]. In the

case where the perturbation fields are expressed as a stream function, the set of equations

reduces to a single Orr-Sommerfeld equation [12], with free surface and no-slip boundary con-

ditions. These predictions were verified experimentally using water-glycerin mixtures with

Newtonian properties in a controlled experiment [13]. In parallel, other models considering

flow quantities integrated over the layer thickness were developed, providing an evolution

equation for the local flow height, but overestimating the critical Reynolds number when

higher order terms were neglected [14–17].

In many real-life situations, the fluids involved deviate substantially from Newtonian rheol-

ogy. Particularly in many geophysical flows, the fluids can exhibit shear-thinning behavior,

with viscosity decreasing as the shear rate increases, or viscoplastic behavior, meaning they

cannot flow when the stress is below an intrinsic material parameter, the yield stress [18]. This

has prompted many authors to investigate the influence of rheology on roll waves, aiming to

apply similar methods as those used in the Newtonian case.

The first non-Newtonian fluids considered were shear-thinning, with a power-law model

describing their rheology [19, 20]. However, the analysis framework developed in the Newto-

nian case proved to be more challenging to apply than expected, primarily due to the diverging

viscosity at zero shear rate. Various methods have been employed to address this issue, such as

utilizing integrated quantities [21–25], introducing a small Newtonian layer near the free sur-

face [26, 27], or employing a regularized rheology model, such as the Carreau law [28]. In the

latter case, the critical Reynolds number and wave celerity were determined numerically and

successfully compared to the results of other methods as well as experimental data [29].

The same modeling problems arose in the case of viscoplastic fluids, for which the viscosity

divergence is aggravated by a stress discontinuity in the rheological model. The first successful

modeling attempt was obtained by leaving out the part of the flow supposed to be undeformed,

called pseudo-plug, considering it to be slowly sheared [30]. This model was later compared

with experiments, and predicted successfully the critical Reynolds numbers and wave celeri-

ties, but failed at predicting the dispersion relations [31]. Other modeling methods were since

attempted, such as using integrated quantities [32, 33], or regularized rheologies in a numerical

model [34, 35], but so far only on Bingham fluids, a limiting subset of viscoplastic fluids. Inte-

grated models were also notably used to analyze roll waves in the different but related context

of granular chute flows [36].

Finally, in light of the recent interest in shear-thickening fluids, roll waves in these fluids

have been investigated. Experimental and theoretical works have shown the coexistence of

Kapitsa roll waves and a new type of instability, called Oobleck waves, due to the discontinuity

in the rheology [37, 38]. These findings offer a promising new field of investigation, particu-

larly in geophysics, where they could help understand unexplained features such as solifluction

[39].
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Roll waves in non-Newtonian fluids have also received recent attention in studies consider-

ing their interaction with complex geometries and physical effects, such as porous substrate,

wavy bottom, thermal gradients or also surfactants [40–44]. These complex flows provide

richer wave behaviors, and are a necessary step to describe real-life situations.

In this non-exhaustive, but representative state of the art, all the studies have in common

that they present a linear stability analysis of long-wave unstable modes. This leads to a stability

threshold, often a critical Reynolds number, driving the instability apparition. However, the

change in rheology usually requires starting the analysis all over again, leading to results that

are not easy to compare with each other, and with non-dimensional numbers that can differ

dramatically from one study to another, even for the same rheology. A common mathematical

framework is missing to unify these studies into a single formalism, which would make them

easier to compare.

In fact, most of the fluids considered in these studies fall into the definition of generalized

Newtonian fluids, that are fluids following a constitutive equation of the form:

t ¼ Zð _gÞ _g; ð1Þ

where τ is the shear stress, _g is the shear rate and η is the apparent viscosity.

In this paper, we propose a linear stability analysis of roll waves in a generalized Newtonian

fluid, consistent with all the studies made before, and predicting the wave apparition threshold

and celerity for any fluid of this category, including the ones that have never been studied yet.

The next section will present the main steps of the approach: after non-dimensional groups

are defined, a perturbation equation is derived, leading to the full Orr-Sommerfeld equation

with free-surface and no-slip boundaries. A long-wave expansion is performed, and analytical

expressions for the wave celerity and the critical Reynolds number, valid for any generalized

Newtonian fluid, are derived. Finally, these analytical expressions will be examined in the con-

text of three families of non-Newtonian fluids: shear-thinning, shear-thickening, and visco-

plastic. For each family, the predictions of this new model will be discussed and compared

with the literature when possible.

Stability analysis for a generalized newtonian fluid

In this section, we will present the main steps taken to study the linear stability of a generalized

Newtonian fluid over an inclined plane. This section will focus on the main features of the

model and leave some of the calculation details to the supporting information (S1 File).

Rheological model

A generalized Newtonian fluid has its shear stress τ that depends only on its shear rate _g,

according to the constitutive relationship as

t ¼ Fð _gÞ ¼ Zð _gÞ _g; ð2Þ

where η is the viscosity function of the fluid. Similarly one can express _g as a function of τ as

_g ¼ GðtÞ ¼ FðtÞt; ð3Þ

where F is the fluidity function of the fluid [45]. Function G is the reciprocal function of F,

and it only exists when F is strictly monotonous. By definition, viscosity and fluidity are

inverse of each other, so that

Z
�
FðtÞt

�
FðtÞ ¼ 1 and F

�
Zð _gÞ _g

�
Zð _gÞ ¼ 1: ð4Þ
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For example, the power-law fluid [19, 20] verifies the following relationships:

t _gð Þ ¼ k _gn and _g tð Þ ¼
t

k

� �1
n
; ð5Þ

where κ is called the consistency and n the power-law index. The fluid is shear-thinning if

n< 1, Newtonian if n = 1 and shear-thickening if n> 1. Its viscosity and fluidity are then

Z _gð Þ ¼ k _gn� 1 and F tð Þ ¼
t

1
n� 1

k
1
n
: ð6Þ

Finally, it should be highlighted that in the context of non-trivial flows, stress and strain rates

are described by tensors of second order. The quantities _g and τ introduced so far should be

seen as the second invariants of these tensors.

Governing equations

We consider the two-dimensional isothermal flow of an incompressible fluid driven by gravity

down an infinite inclined plane of inclination θ with the horizon, as shown in Fig 2.

Let the origin of the Cartesian coordinate system (x, y) be placed at the bottom, with the x-

axis oriented down the slope and the y-axis oriented normal to the wall toward the liquid side.

Fig 2. Scheme of the flow down an inclined plane, with base velocity and shear stress fields.

https://doi.org/10.1371/journal.pone.0310805.g002
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The flow is governed by mass conservation and force balance:

r � v ¼ 0; ð7Þ

r
Dv
Dt
¼ r � σ þ rg; ð8Þ

where v is the velocity field, having components (u, v) in the (x, y) system, ρ is the density, D/

Dt is the material derivative and g is the acceleration due to gravity. For a generalized Newto-

nian fluid, the total stress tensor σ is given by:

σ ¼ � pI þ τ; ð9Þ

where

τ ¼ Z _gð Þ _γ ; ð10Þ

and p is the pressure, τ is the deviatoric stress tensor, Z _gð Þ is the viscosity, _γ is the shear rate

tensor and _g is its second invariant, called the shear rate, with

_γ ¼ ∇vþ∇vTð Þ and _g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
_γ : _γ

r

: ð11Þ

As seen before, the rheology can be expressed in a reciprocal way as:

_γ ¼ FðtÞτ; ð12Þ

with t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
xx þ t

2
xy

q
the second invariant of the deviatoric stress tensor, called the shear stress.

To close this system of equations, conditions at the boundary are needed. We first suppose

that there is no slip at the bottom so that v = 0 at y = 0, i.e.

u ¼ 0 and v ¼ 0 at y ¼ 0: ð13Þ

At the free surface y = h(x, t), the stress component tangent to the interface must vanish, and

the normal stress has to balance surface tension effects, following Laplace’s law. These require-

ments are summarized by:

σ � n ¼ ð� p0 þ 2HSÞn at y ¼ hðx; tÞ; ð14Þ

where n is the outward unit normal, H is the mean curvature of the surface, S is the surface ten-

sion, and p0 is the atmospheric pressure.

There is one more boundary condition, called kinematic condition, relating the velocity

field at the surface to the free surface position h(x, t):

v ¼
@h
@t
þ u

@h
@x

at y ¼ hðx; tÞ: ð15Þ

Base flow

We now solve Eqs 7–15 for the unperturbed flow, which is assumed steady and parallel to the

wall. This will allow us to highlight some characteristic values that will later be useful for writ-

ing dimensionless equations. We use bars to denote the various quantities for the unperturbed

flow. Assuming the layer thickness �hðx; tÞ ¼ h0 to be constant, the mass conservation and

kinematic condition impose that the only non-zero velocity component �u depends only on y.
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It follows from Eq 10 that only the off-diagonal components of the stress tensor are non-zero.

Eq 8 simplifies greatly, and after considering the boundary conditions, we find the following

affine relationships for pressure and stress:

�txy ¼ rgðh0 � yÞ sin ðyÞ; �p ¼ p0 þ rgðh0 � yÞ cos ðyÞ: ð16Þ

Finally, to determine the velocity profile �uðyÞ, we have to resolve the equation given by the rhe-

ology:

d�u
dy
¼ F �txy

� �
�txy: ð17Þ

To explicitly solve the base flow, one would need to specify the rheology of the fluid; however,

the solution can be formally written in the general case as an integral over the thickness:

�u yð Þ ¼
Z y

0

1 �
y1

h0

� �

tb F 1 �
y1

h0

� �

tb

� �

dy1; ð18Þ

where τb = ρgh0 sin (θ) is the shear stress at the bottom.

Dimensionless equations

We now transform the equations by introducing dimensionless variables as well as dimension-

less numbers that reflect the relative importance of the different terms. These dimensionless

variables are built from the typical scales of the problem. At this stage, different choices can be

made for the same variables, depending on which phenomenon one wants to emphasize. In

this article, we want to compare the stability of fluids with different rheologies, so we choose

typical scales related to their rheologies. The natural length scale is the height of the unper-

turbed flow h0, on which we build the dimensionless space variables. The unperturbed shear

stress is maximum at the bottom, where it reaches the value τb = ρgh0 sin (θ), which we choose

as the typical stress scale. The corresponding unperturbed shear rate at the bottom is given by

the fluid rheology:

_gb ¼ GðtbÞ ¼ FðtbÞtb: ð19Þ

We build a velocity scale by combining this shear rate with the unperturbed flow thickness

as u0 ¼ _gbh0. Note that this original velocity scale corresponds neither to the surface nor to the

average fluid velocity, which are two other possible choices for the velocity scale found in the

literature. Finally, we choose ru2
0

to be the typical pressure scale, as it is usual in flows where

inertia plays a role. To summarize, we introduce the following dimensionless variables:

ŷ ¼
y
h0

; x̂ ¼
x
h0

; t̂xx ¼
txx
tb
; t̂xy ¼

txy

tb
; ĥ ¼

h
h0

;

û ¼
u

_gbh0

; v̂ ¼
v

_gbh0

; t̂ ¼ t _gb; p̂ ¼
p

r _g2
bh2

0

:

ð20Þ

It is then natural to define dimensionless shear stress and shear rate as

_̂g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð@ x̂ ûÞ
2

q

þ ð@ ŷ û þ @ x̂ v̂Þ
2
; t̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t̂2
xx þ t̂

2
xy

q
; ð21Þ

as well as dimensionless rheological relations, involving dimensionless viscosity and fluidity:

t̂ ¼ F̂ð _̂g Þ ¼ Ẑð _̂gÞ _̂g and _̂g ¼ Ĝðt̂Þ ¼ F̂ðt̂Þt̂; ð22Þ
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with

Ẑ _̂g
� �
¼
Zð _gb _̂gÞ

Zð _gbÞ
and F̂ t̂ð Þ ¼

Fðtbt̂Þ

FðtbÞ
: ð23Þ

With this choice of non-dimensional variables, the base state calculated before takes a

much simpler form:

�̂txy ¼ 1 � ŷ; �̂p ¼ p̂0 þ
cotðyÞ
Re

1 � ŷð Þ; �̂h ¼ 1; ð24Þ

where the Reynolds number is

Re ¼
rh0u0

Zð _gbÞ
¼
ru2

0

tb
: ð25Þ

The base velocity field is simply expressed as

�̂u ¼
Z ŷ

0

Ĝð1 � ŷ1Þdŷ1 ¼

Z ŷ

0

ð1 � ŷ1ÞF̂ð1 � ŷ1Þdŷ1: ð26Þ

Finally, the mass conservation and force balance equations write:

@ x̂ û þ @ ŷ v̂ ¼ 0; ð27Þ

and

Reð@ t̂ û þ û@ x̂ û þ v̂@ ŷ ûÞ ¼ � Re @ x̂ p̂ þ @ x̂ t̂xx þ @ ŷ t̂xy þ 1; ð28Þ

Reð@ t̂ v̂ þ û@ x̂ v̂ þ v̂@ ŷ v̂Þ ¼ � Re @ ŷ p̂ þ @ x̂ t̂xy þ @ ŷ t̂yy � cot ðyÞ: ð29Þ

Perturbed flow

After obtaining the governing equations for dimensionless quantities, the goal is now to study

the evolution of small perturbations around the base state. To do so, we will decompose the

fields into a superposition of a base field and a small oscillating component, written as:

û ¼ �̂u þ ~u; v̂ ¼ 0þ ~v; p̂ ¼ �̂p þ ~p; t̂ ¼ �̂t þ ~t; ĥ ¼ 1þ ~h; ð30Þ

where a tilde denotes a dimensionless perturbed quantity. We then insert this decomposition

into the governing equations and develop all the terms, neglecting quadratic terms in per-

turbed quantities. This linearization procedure is fairly standard in hydrodynamic stability

problems and will not be detailed here. The originality lies in the perturbation of the rheologi-

cal constitutive equation, which we write in reciprocal form to allow simpler expressions. In

the end, the rheology of the fluid imposes the following relations between the perturbed fields:

~txx ¼ 2d@ x̂~u and ~txy ¼ ð@ ŷ ~u þ @ x̂~vÞg; ð31Þ

with

d ŷð Þ ¼
1 � ŷ
�̂u 0ðŷÞ

and g ŷð Þ ¼
� 1

�̂u 00ðŷÞ
: ð32Þ

Here, the prime symbol denotes the derivative with respect to the vertical coordinate ŷ. To
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reduce the number of variables and equations, we introduce the stream function C, which sat-

isfies:

~u ¼ @ ŷC; ~v ¼ � @ x̂C: ð33Þ

We decompose the solution into normal modes of the form:

C ¼ cðŷÞ exp ðiaðx̂ � ĉt̂ÞÞ and ~h ¼ x exp ðiaðx̂ � ĉt̂ÞÞ; ð34Þ

where i is the imaginary unit and α, ĉ, ψ and ξ are the dimensionless wave number, wave veloc-

ity, stream function amplitude and thickness amplitude of the perturbation. We study tempo-

ral stability, meaning α is assumed to be real and ĉ is supposed to be complex. If its imaginary

part is positive, the wave is amplified exponentially in time, i.e., unstable.

Substituting Eqs 33 and 34 into the set of equations, and eliminating the pressure p̂, one

obtains the following generalized Orr-Sommerfeld equation:

iaReðð�̂u � ĉÞðc00 � a2cÞ � �̂u 00cÞ

¼ ðgc
00
Þ
00
þ a2

�
ðgcÞ

00
� 4ðdc

0
Þ
0
þ gc

00
�
þ a4gc:

ð35Þ

This equation governs the stability of the parallel flow of any fluid with a rheology given by a

viscosity function Ẑ
�

_̂g
�

. It is determined by its parameters δ and γ defined in Eq 32, which

depend only on the base flow, itself only dependent on the rheology (Eq 26). This is a new

result and was never published before.

It reduces to the classical Orr-Sommerfeld equation for a Newtonian fluid, which can be

obtained from Eq 35 by taking Ẑ ¼ 1 and F̂ ¼ 1 in the expressions. The boundary conditions

associated with the free-surface problem under study are:

c ¼ 0

c
0
¼ 0

at ŷ ¼ 0;

(

ð36Þ

and

gðc
00
þ a2cÞ ¼ x

iða2gcþ gc
00
Þ
0
þ ax cot ðyÞ þ a3xT Re

þ aðReð�̂u � ĉÞ � 4iadÞc0 ¼ 0

xðĉ � �̂uÞ ¼ c

at ŷ ¼ 1;

8
>>>>>>><

>>>>>>>:

ð37Þ

with

T ¼
S

r _g2
bh3

0

: ð38Þ

Several approaches could be taken to study this set of equations. In what follows, we will focus

on the long-wave expansion, i.e., the limit when the wavelength is large compared to the

thickness.
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Long-wave expansion

For the final step of this development, we will consider the long-wave limit α! 0. The stream

function and the wave celerity can be expanded in power series of the small parameter α as:

c ¼ c0 þ ac1 þ a
2c2 þ � � � ; ĉ ¼ ĉ0 þ aĉ1 þ a

2ĉ2 þ � � � ; ð39Þ

and the perturbation amplitude is normalised at ĥ ¼ 1. We focus here on the wave celerity,

and after calculation (detailed in Supporting information), we find for the zeroth order in α:

ĉ0 ¼ 1; ð40Þ

and for the first order:

ĉ1 ¼ iAðRe � RecÞ; ð41Þ

where A is a positive pre-factor and Rec is the critical Reynolds number. The latter reads:

Rec ¼ cot yð Þ
1 � 2q̂

1 � 4q̂ þ 2Mþ 2K
; ð42Þ

with q̂ the dimensionless flow rate, M the average value of the square of the velocity (also

referred to as form factor in certain contexts), and K the average value of the double integral of

the squared shear rate:

q̂ ¼
Z 1

0

�̂u ðyÞdy; M ¼

Z 1

0

�̂u2ðyÞdy; ð43Þ

K ¼
Z 1

0

Z y

0

Z y1

0

ð�̂u 0ðy2ÞÞ
2 dy2 dy1 dy: ð44Þ

We emphasize that these expressions are new and have never been obtained before with this

level of generality.

To conclude this section, we will briefly discuss these results and their implications. First,

the expression found for the leading order of the wave celerity ĉ0 is surprisingly simple with

this choice of non-dimensional parameters. The velocity scale u0 chosen previously is, in fact,

also the wave celerity at small wavenumber. If we revert to dimensional quantities, this means

that the long-wave celerity corresponds to the kinematic wave celerity (see Supporting infor-

mation):

c0 ¼ u0 ¼ h0
_gb: ð45Þ

As far as we know, no one has ever noticed that this result allows a new way to use the inclined

plane setup as a rheometer. Indeed, the viscosity at the bottom can be calculated from the mea-

sured value of the wave celerity through

Z _gbð Þ ¼
tb
_gb
¼
rgh2

0
sin ðyÞ
c0

: ð46Þ

If h0 or θ varies, one could, in principle, explore the full stress-strain curve describing the rhe-

ology of the fluid, based on an independent measurement of the wave celerity. We want to

emphasize that since measuring the wave celerity is generally non-invasive and reliable, this

result could prove particularly useful in the context of in-situ observations, when the fluid is

not directly accessible (industrial processes), or when a small sample may not be representative

of the fluid rheology (debris or lava flows).
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Secondly, the imaginary part of the wave celerity is found to be proportional to Re − Rec,

and the flow is stable, neutrally stable, or unstable when the Reynolds number is respectively

less, equal to, or greater than Rec. We note that Rec is always proportional to cot(θ), and to free

our discussion from this systematic θ dependency, we will use in the following sections the

reduced Reynolds numbers defined as:

Rey ¼ Re tan ðyÞ and Reyc ¼ Rec tan ðyÞ: ð47Þ

The expressions of q̂, M, and K involved in Reyc can be expressed either with the base velocity

field �uðyÞ or with the rheological functions F̂ or Ĝ, using Eq 26. As a consequence, one could

establish Rec with a measurement of the base flow velocity profile, without knowing the fluid

rheology. Independently, one could also calculate Rec for any flow of given slope angle θ and

height h0, with a single rheology measurement.

As mentioned previously, in the literature of falling films, other definitions of the Reynolds

number, based on different velocity scales, can be found. To compare the result of Eq 42 to

previous results, a conversion needs to be done. In the majority of the cases, the Reynolds

number is based on the mean velocity or the surface velocity, and the conversion is straightfor-

ward: Rey;mean
c ¼ q̂ Reyc or Rey;surfc ¼ �uð1ÞReyc .

Finally, we stress that the new expression found for Rec is an analytical expression, and even

though it is not always possible to derive an explicit mathematical expression for �̂u, F̂ or Ĝ,

the integrals can be evaluated numerically.

Application to specific rheologies

We will now test our model, particularly the critical Reynolds number expression and the

long-wave velocity, with shear-thinning, shear-thickening, and viscoplastic rheologies. We will

compare our results with previous models and experiments when possible, but for some of the

fluids we will examine, the roll wave instability has never been studied before, and the predic-

tions are new.

For each fluid, the method will be the same:

1. Write dimensional and non-dimensional rheology laws.

2. Calculate the base flow.

3. Calculate the critical Reynolds number, explicitly or numerically.

To ease the reading, these three steps will not be detailed for every fluid in the main text,

but can all be found in the Supporting information.

Shear-thinning fluids

Shear-thinning or pseudoplastic fluids exhibit viscosity that decreases when the shear rate

increases. They find applications across various industries such as food, cosmetics, and phar-

maceuticals, where this property is often achieved through the addition of polymers like xan-

than gum and carboxymethyl cellulose (CMC). Additionally, they play a role in natural

phenomena such as mud flows, lava flows, and debris flows. Shear-thinning behavior often

emerges as the first non-Newtonian property when gradually altering the chemical composi-

tion from that of a pure Newtonian fluid. This is evident in kaolin suspensions, where at inter-

mediate concentrations, the fluid demonstrates shear-thinning characteristics [21].
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Numerous rheological models have been proposed in the literature to describe the behavior

of shear-thinning fluids [46–49]. In this discussion, we will focus on four models that are rep-

resentative and offer insights applicable to other similar models.

Power-law model. The simplest and perhaps the most common rheological model used

to describe shear-thinning fluids is the power-law, also known as the Ostwald model [20], with

n< 1 in Eq 6. This model is highly popular in engineering applications because it allows for

the analytical solution of a wide range of flow problems [47].

1. In this model, the viscosity given by Eq 6 is directly proportional to the shear rate raised to

an exponent n − 1. The non-dimensional version of this equation is simply Ẑð _̂gÞ ¼ _̂gn� 1 and

the fluidity is given by F̂ðt̂Þ ¼ t̂ � 1þ1=n:

2. Eq 26 provides the base velocity field as

�̂u ¼
n

nþ 1
1 � ð1 � ŷÞ

1
nþ1

� �
: ð48Þ

The surface velocity is �̂uð1Þ ¼ n=ðnþ 1Þ, indicating that the long-wave celerity is

ĉ0 ¼ ð1þ 1=nÞ�̂uð1Þ, in agreement with [50].

3. Finally, Eq 42 gives:

Reyc ¼ 1þ
3n
2
: ð49Þ

This latter expression is consistent with the findings of [21, 30]. The two limits n! 1 and

n! 0 correspond respectively to the Newtonian and the plastic behaviors (see Fig 3a). For the

Newtonian fluid, we obtain Reyc ¼ 5=2, which aligns with the results of [8]. This corresponds

Fig 3. Stability results for shear-thinning fluids. a) Non-dimensional flow curves for various power-law fluids, with 0< n< 1. b) Variation of the critical

Reynolds number with n (black), and variation of the flow Reynolds number Reθ with n when either h0 (red) or Q (blue) is kept constant. In both cases,

when n decreases, Reθ becomes greater than Reyc and the flow is destabilized. c) Carreau fluid: Reyc as a function of n for different regularization parameters

_̂g0. d) Ellis fluid: Reyc as a function of n for different regularization parameters t̂1=2. e) Carreau fluid: Reyc as a function of n for _̂g0 ¼ 45 (black) and _̂g0 ¼ 1:6

(violet). Points are experimental thresholds from [29], obtained for CMC and xanthan gum mixtures. f) Carreau fluid: wave celerity rescaled by h0
_gb, as a

function of Reθ. Experimental data from [29].

https://doi.org/10.1371/journal.pone.0310805.g003
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to Rey;mean
c ¼ 5=6, a well-established result in the literature [10, 11]. The surface velocity is

�̂uð1Þ ¼ 1=2, indicating ĉ0 ¼ 2 �̂uð1Þ, another commonly encountered result in the literature on

roll waves in Newtonian fluids. The plastic limit Reyc ¼ 1 is less straightforward to interpret. It

corresponds to the limit of the base flow �̂uðŷÞ ! 0, which is attained for a pure plastic, where

the thickness is too small for gravity to overcome the plastic limit. In this scenario, while the

expression for Reyc simplifies to Reyc ¼ 1, as long as the plastic does not yield, the actual Rey-

nolds number of the flow remains 0, rendering the flow stable.

Fig 3b illustrates the decrease of Reyc as n decreases. This has been previously interpreted as

a destabilizing effect of the shear-thinning property [29, 30]. It’s worth noting that this reason-

ing holds when Reθ is held constant, which may not be the most realistic condition. For com-

parison, Fig 3b also shows a typical variation of the Reynolds number as n varies, while

keeping h0 or Q, the dimensional flow rate, constant. In both scenarios, the Reynolds number

increases as n decreases, and the shear-thinning property has indeed a destabilizing effect. A

more realistic model might need to account for how rheology changes, such as with a concen-

tration parameter, and compare the trajectories obtained for Reθ and Reyc , but this is beyond

the scope of this paper.

In conclusion regarding this model, it’s worth noting that despite having a viscosity that

diverges to infinity as _g ! 0, we still obtain the well-established expression for the critical Rey-

nolds number. However, while this is not problematic at orders 0 and 1 in α, the generalized

Orr-Sommerfeld equation (Eq 35) for power-law fluids becomes inconsistent when consider-

ing terms of higher order in α. This is a known limitation of the power-law model, which can

be unrealistic at low shear rates, particularly relevant for free surface flows. Various approaches

exist to address this singularity, such as considering a regularized rheological model that

approximates the power-law at high shear rates while maintaining a finite viscosity at zero

shear rate.

Regularized power-law models. In the literature, various rheological models propose a

regularized version of the power-law model. In this section, we will concentrate on two promi-

nent ones: the Ellis model and the Carreau model.

1. For the Ellis model [51, 52], there is no direct expression of Zð _gÞ, as the dimensional viscos-

ity is expressed as a function of the (dimensional) shear stress:

Z0

Z
¼ 1þ

t

t1=2

 !1
n� 1

; ð50Þ

where η0 is the zero-shear-rate viscosity, n is a ‘power-law index’ and τ1/2 is the value of τ at

which η = η0/2. The fluidity for such a fluid writes in a non-dimensional form:

F̂ t̂ð Þ ¼ 1þ
t̂

t̂1=2

 !1
n� 1

0

@

1

A= 1þ
1

t̂1=2

 !1
n� 1

0

@

1

A; ð51Þ

with t̂1=2 ¼ t1=2=tb. For the Carreau fluid, the dimensional viscosity is given by the expres-

sion:

Z � Z1
Z0 � Z1

¼ 1þ
_g

_g0

� �2
 !n� 1

2

; ð52Þ

with η0 the viscosity at zero shear rate, η1 the viscosity at very high shear rate, n the rheo-

logical index and _g0 the shear rate over which the shear-thinning properties appear. To
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simplify, we will neglect the high shear rate viscosity (i.e., η1 = 0). The non-dimensional

expression of the viscosity becomes:

Ẑ ¼
1þ ð _̂g= _̂g 0Þ

2

1þ ð1= _̂g0Þ
2

 !n� 1
2

; ð53Þ

with _̂g0 ¼ _g0= _gb. In both models, a parameter describes the transition from Newtonian to

shear-thinning behavior: t̂1=2 for the Ellis fluid, and _̂g0 for the Carreau fluid. These parame-

ters depend on the fluid characteristics ( _g0 and τ1/2), as well as on flow parameters ( _gb or

τb).

2. For the Ellis fluid, it is possible to provide an explicit expression for the base flow �u (see

Supporting information), but for the Carreau fluid, it needs to be evaluated numerically.

3. Similarly, for the Ellis fluid, an explicit expression for Reyc can be obtained (see Supporting

information), but for the Carreau fluid, everything must be done numerically.

Fig 3c illustrates the variation of Reyc with n for Carreau fluids at different _̂g0. These results

are obtained for the first time from the analytical general expression of Eq 42. When _̂g0 is

large, Reyc is close to 5/2, which is the value for a Newtonian fluid. However, when _̂g0 is small,

Reyc tends to 1 + 3n/2, representing the value for a power-law fluid. Despite the singularity aris-

ing at zero shear rate, the limit behavior of the rheological law at small _̂g0 is reflected in the

limit value of the critical Reynolds number. Our interpretation is that at small _̂g0, there still

exists a thin fluid layer at the surface where the rheology is close to Newtonian, thereby avoid-

ing the singularity. However, this layer is too thin to significantly influence the stability

threshold.

Similarly, Fig 3d illustrates the variation of Reyc with n for Ellis fluids at different t̂1=2. Once

again, the limit behaviors of the Newtonian and power-law fluids are observed at large and

small values of t̂1=2, respectively, with the same interpretation as for the Carreau fluid. How-

ever, the main difference lies in the rate of convergence towards these limits: for the Carreau

fluid, the convergence appears to be independent of n (uniform), whereas for the Ellis fluid,

the convergence rate strongly depends on n. Other regularized models (such as Sisko, Cross,

etc.) generally exhibit behavior similar to the Ellis model and present a non-uniform conver-

gence rate towards the power-law or Newtonian limits. This convergence behavior can be uti-

lized to distinguish between different regularized models, particularly in the context of

extensive numerical simulations. In the absence of any other considerations, a model with uni-

form convergence should be preferred, such as the Carreau model in this case.

Finally, we compared our predictions for Reyc and ĉ0 with experimental data from [29] for

different Carreau fluids, and we found a good agreement between them, as shown in Fig 3e

and 3f.

To conclude this part, we should note that regularized models also enable the exploration of

moderate waves. As we mentioned earlier, in the power-law model, the viscosity diverges, lead-

ing to inconsistencies in the generalized Orr-Sommerfeld equation when terms of order 2 or

higher in α are considered. This limitation is not present in regularized models, allowing for

the full resolution of Eqs 35–37 at any α. However, this aspect is not the focus of this article

and will be explored in future work.

Eyring-Powell model. To conclude this section on shear-thinning fluids, we will now

examine the Eyring-Powell fluid. This rheology was initially derived from a molecular theory
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[53, 54] and finds applications in modeling fluids confined at very small scales. While this rhe-

ological model may be less applicable to free surface flows, it remains noteworthy as one of the

few models for shear-thinning fluids that does not stem from a regularization of the power-

law. The viscosity expression for the Eyring-Powell fluid is as follows:

Z _gð Þ ¼ Z0

arcsinhðd _gÞ

d _g
; ð54Þ

where η0 represents the zero-shear-rate viscosity and δ denotes a characteristic time of the

material. The model predicts shear-thinning behavior for δ> 0, while both the Newtonian

and plastic cases are retrieved as δ approaches 0 and +1, respectively (see Fig 4a).

In this context, it becomes feasible to provide an explicit expression for the non-dimen-

sional fluidity F̂ðt̂Þ, alongside the base flow field �̂u and the critical Reynolds number Reyc , as

functions of a dimensionless time constant d _gb (see Supporting information).

Fig 4b illustrates the variation of Reyc with d _gb obtained from the general analytical expres-

sions of Eqs 42 and 47. It is the first time that Reyc is calculated with this specific rheology.

Once more, we observe that a more shear-thinning fluid exhibits greater instability to gravity-

driven flows, regardless of whether the Reynolds number Reθ, the flow height h0, or the flow

rate Q are held constant. We observe the limiting cases of a Newtonian fluid and pure plastic

behavior as δ tends towards 0 and +1, respectively, yielding Reyc ! 5=2 and Reyc ! 1, consis-

tent with the viscosity law behavior in these limits. However, it is noteworthy that the conver-

gence towards plastic behavior is logarithmic in d _gb for the viscosity law, whereas it is faster for

Reyc , occurring in 1=d _gb. In other words, the plastic limit for free surface flows is reached more

rapidly than in other configurations.

Shear-thickening fluids

Shear thickening fluids exhibit an increase in viscosity with the imposed shear rate (or stress).

This behavior is predominantly observed in heterogeneous mixtures such as colloidal or non-

colloidal suspensions, examples of which include cornstarch in water or silica in polyethylene-

Fig 4. Stability results for Eyring-Powell fluids. a) Flow curves for Eyring-Powell fluids. At very high time scale δ, the fluid behaves like a pure plastic. b)

Critical Reynolds number as function of the dimensionless time scale of the material (black). Dashed lines show the evolution of the Reynolds number with

d _gb when h0 = cst (red) and Q = cst (blue).

https://doi.org/10.1371/journal.pone.0310805.g004
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glycol solutions. Specifically, shear thickening occurs in dense particle suspensions where the

particles interact via short-range repulsive forces of various origins (e.g., Brownian motion,

electric repulsion, etc.). The contact between particles transitions from frictionless under low

shear stress to frictional under high stress [55]. This transition induces a change in the jam-

ming volume fraction, leading to sudden variations in viscosity. This behavior has been mod-

eled for dense non-Brownian suspensions by Wyart and Cates [56] through a simple

constitutive law:

Z ¼
Zs

ð�JðtÞ � �Þ
2
; ð55Þ

where ηs is proportional to the solvent viscosity, ϕ is the particle volume fraction and ϕJ(τ) is

the jamming volume fraction at which the viscosity diverges:

�JðtÞ ¼ �0ð1 � e� t∗=tÞ þ �1 e� t
∗=t; ð56Þ

where τ*, ϕ0 and ϕ1 are material constants (see Fig 5a). This constitutive law is known to suc-

cessfully reproduce the different regimes observed for various ϕ [56], including continuous

shear-thickening (CST), discontinuous shear-thickening (DST), and shear-jamming (SJ). In

particular the the transition between CST and DST occurs at ϕ = ϕDST. The investigation of

roll waves in shear-thickening suspensions has been conducted in prior studies [37, 38], where

an experimentally measured linear stability threshold has been identified. In the CST regime,

roll waves may emerge when Reθ> Rec
θ. However, in the DST regime, surface waves arise

from a distinct inertialess mechanism known as Oobleck waves. This mechanism is believed to

be responsible for some solifluction patterns, which are anomalous wavy patterns observed in

cold arctic soils [39].

In our model framework, the non-dimensional fluidity is expressed as:

F̂ t̂ð Þ ¼
�Jðt̂Þ � �

�Jð1Þ � �

� �2

; ð57Þ

with

�Jðt̂Þ ¼ �0ð1 � et̂∗=t̂Þ þ �1 et̂
∗=t̂ and t̂∗ ¼ t∗=tb: ð58Þ

The critical Reynolds number cannot be explicitly calculated with this rheology; however, it is

Fig 5. Stability results for shear-thickening fluids. a) Wyart-Cates rheology. b) Reyc as a function of ϕ for shear-thickening suspensions. Black line: present

model, green line and points: model and experiments from [38] for the Kapitsa mode only. Experimental data was measured at various slope angles,

whereas both models were calculated at θ = 10˚. c) Points: measured surface wave velocity from [38], normalised by u0 ¼ _gbh0, dashed line: our model

prediction.

https://doi.org/10.1371/journal.pone.0310805.g005
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possible to evaluate it numerically from Eq 42. In experiments, the flow thickness h0 of a sus-

pension at constant ϕ is gradually decreased until the flow becomes stable [38]. This process

defines a critical Reynolds number Reexpc ð�Þ, which we can predict through our approach by

comparing Re and Rec obtained at a given flow height h. The approach is similar to [38], but it

is the first time it is done with the long-wave resolution of the full Orr-Sommerfeld equation.

Fig 5b compares this prediction with measurements from [38]. Despite potential experi-

mental artifacts that could affect the comparison (such as finite channel thickness, finite fre-

quency forcing, different angles, etc.), the prediction remains accurate for ϕ< ϕDST. However,

it overestimates Reyc as ϕ approaches ϕDST. Surprisingly, our prediction holds very well above

ϕDST, even though the instability is no longer driven by inertia. The reason lies in the appear-

ance, when ϕ> ϕDST, of a range of t̂∗ for which Reyc < 0. This implies that the growth rate

Iðaĉ1Þ ¼ aAðRe � RecÞ is always positive, even at Re = 0, indicating an inertialess instability.

This instability arises when the basal shear stress exceeds a certain threshold depending on ϕ.

It’s noteworthy that in the long wave regime, the inertialess growth rate is given by

� aARec ¼ a cot ðyÞð2q̂ � 1Þ, where q̂ represents the dimensionless flow rate. The appearance

of these Oobleck waves is contingent upon the condition q̂ > 1=2, which requires a point of

inflection in the base flow profile due to the S-shape of the rheology curve. However, the con-

verse is not true, and hence we find that the volume fraction ϕ for which inertialess waves

appear is slightly above ϕDST by a few tenths of a percent, a deviation likely beyond experimen-

tal accessibility. Furthermore, Fig 5c compares the measured wave speed to _gbh0, and once

again, our predicted scaling appears relevant for both inertial and Oobleck waves, particularly

for volume fractions not too distant from ϕDST. In conclusion, our results exhibit qualitative

similarity to the model developed in [38], albeit with quantitative proximity to the experiments

in the ϕ< ϕDST region, as expected from a rigorous resolution of the Orr-Sommerfeld equa-

tions compared to the Saint-Venant approximation. However, in the ϕ> ϕDST region, both

models yield the same condition. Remarkably, in this region, our model adeptly captures the

onset of instability, even though the flow curves are non-monotonous, which theoretically falls

outside the scope of assumptions for a generalized Newtonian fluid.

Viscoplastic fluids

In the last category under study, the fluids possess a yield stress τy at zero shear rate, and they

resist flow when subjected to stresses below τy. Strictly speaking, these fluids do not fall within

the generalized Newtonian category, as the shear stress is not determined by the rheological

law below the yield stress. However, we anticipate a different outcome compared to the previ-

ous section, as the relationship between strain rate and stress remains well-defined at all times.

Herschel-Bulkley models. The most common rheology used to describe the behavior of a

viscoplastic fluid is the Herschel-Bulkley law, which defines the shear stress and viscosity as fol-

lows:

_g ¼ 0 if t < ty;

t ¼ ty þ k _gn if t ⩾ ty;

8
<

:
ð59Þ

so that

Z ¼ ty _g þ k _gn� 1 if t ⩾ ty: ð60Þ
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The bottom shear rate is then:

_gb ¼
tb � ty

k

� �1
n

¼
tbð1 � BÞ

k

� �1
n

; ð61Þ

with B = τy/τb the Bingham number, which compares the yield stress to the bottom shear

stress. In non-dimensional terms, the rheology can be expressed as follows:

t̂ ¼ Bþ ð1 � BÞ _̂g n if t̂ ⩾ B;

_̂g ¼ 0 if t̂ < B;

8
<

:
ð62Þ

as plotted in Fig 6a. When B = 1, the dimensional shear stress remains below τy everywhere,

preventing any flow, akin to the plastic limit. When B = 0, we revert to the power-law constitu-

tive relation. For n = 1, the fluid exhibits Bingham behavior, and B = 0, n = 1 corresponds to a

Newtonian fluid. It is feasible to derive an explicit expression for the base flow and the critical

Reynolds number, as detailed in the SI. The expression aligns with literature [30], albeit with-

out the diverging factor present in (1 − B)−2/n, given the utilization of a distinct set of non-

dimensional quantities.

Fig 6c depicts Reyc as a function of B obtained from Eq 42 for various values of n. As B! 1

or n! 0, Reyc ! 1 for all n or all B, respectively, consistent with the expected plastic limit

behavior. When B = 0, one has Reyc ¼ 1þ 3n=2 for the power-law fluid, with the special New-

tonian case yielding Reyc ¼ 5=2 for n = 1. Furthermore, Fig 6c also displays stability thresholds

measured in experiments [31], with Reynolds numbers recalculated to match the definition

used in this article. We observe good agreement between Eq 42 and experimental data for two

Fig 6. Stability results for viscoplastic fluids. a) Black line: non-dimensionalized flow curve for a Herschel-Bulkley fluid with n = 0.54 and B = 0.3.

Colored dashed lines: flow curves for a regularized model (Papanastasiou), with the regularization parameter ε̂ indicated in the color bar. b) Black line: Reyc
as a function of B for a Herschel-Bulkley fluid (n = 0.54). Dashed lines show the evolution of Reθ with B when h0 = cst (red) and Q = cst (blue). In the

former case, the yield stress has a stabilizing effect, but not in the latter. c) Reyc as a function of B for Herschel-Bulkley fluids at different n. Points:

experimental results in [31] obtained for Carbopol™ 980 (n = 0.54 in dark green) and kaolin suspensions (n = 0.25 in light green). Experimental data have

been rescaled to match the Reynolds number definition in the present paper. d) Wave celerity measured in [31] for Carbopol™ 980 (n = 0.54 in dark green)

and kaolin suspensions (n = 0.25 in light green), rescaled by h0
_gb. Each set of points corresponds to a single point in panel c). e), f) Reyc as a function of B for

regularized viscoplastic models of Williamson (e) and Papanastasiou (f). The corresponding regularization parameter ε̂ is indicated in the color bar.

https://doi.org/10.1371/journal.pone.0310805.g006
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different fluids with distinct rheological indices. Moreover, in Fig 6d, we observe that the wave

celerity measurements from the experiments in [31] also conform to the scaling proposed in

Eq 45, once again for two different fluids with differing n. Additionally, our result elucidates

the experimental correlation Reyc � ð1þ 3n=4Þ found in [31]: this simply arises as the average

between the two limits obtained at B = 0 and B = 1.

As shown in Fig 6b, the critical Reynolds number systematically decreases as B increases, a

phenomenon previously interpreted as the destabilizing effect of the yield stress on the flow

[34]. Again, this interpretation is based on reasoning at constant Reynolds number. For com-

parison, we calculated Reθ and examined how it varies when the yield stress τy changes, while

either h0 or Q are kept constant. We represented these trajectories as a function of the dimen-

sionless yield stress B in Fig 6b. When h0 = cst (equivalent to keeping the basal shear stress τb
constant), the Reynolds number of the flow decreases much faster than the critical Reynolds

number. In this scenario, the yield stress exhibits a clear stabilizing effect on the flow, consis-

tent with claims made by other authors [30], albeit with a different non-dimensional scaling.

On the other hand, when Q = cst, the Reynolds number grows and diverges as B! 1. In this

case, the yield stress destabilizes the flow; however, this scenario may not be very realistic as it

implies a diverging flow thickness.

To conclude, we assert that these results are consistent with the literature [30], albeit

expressed using a different set of non-dimensional quantities, leading to a distinct apparent

scaling of Reyc with B. It is noteworthy that no assumptions were made regarding the film

thickness or angle in our analysis, and there was no requirement for the pseudo-plug model

as done previously [30]. However, it’s essential to acknowledge that outside of the long-wave

approximation, our set of equations becomes inconsistent due to viscosity divergence, ren-

dering us unable to solve the generalized Orr-Sommerfeld equation 35. In Herschel-Bulkley

fluids, issues related to viscosity divergence are not limited to this specific flow and pose sig-

nificant challenges in modeling flows of viscoplastic fluids. Similar to shear-thinning fluids,

several attempts have been made to regularize the Herschel-Bulkley rheological law. In the

next subsection, we will explore the impact of these regularizations on the stability

threshold.

Regularized models: Williamson, Papanastasiou. We conclude this section on viscoplas-

tic fluids by examining two regularized viscoplastic rheologies: the Williamson model [57] and

the Papanastasiou model [58]. The Williamson model involves introducing a cutoff ε in the

diverging viscosity term associated with the yield stress. The viscosity is then defined as fol-

lows:

Z _gð Þ ¼ k _gn� 1 þ
ty

εþ _g
; ð63Þ

where k, τy and n are the same as in the Herschel-Bulkley law. In the Papanastasiou model, reg-

ularization is achieved by introducing an exponential term in front of the yield stress term.

This results in the following expression for the viscosity:

Z _gð Þ ¼ k _gn� 1 þ
tyð1 � e� _g=εÞ

_g
: ð64Þ

In both models, the viscosity approaches the Herschel-Bulkley viscosity at high _g, while at low

_g, the diverging term associated with the yield stress is bounded. The transition between these

two behaviors occurs when _g � ε, i.e., when _̂g � ε̂ in non-dimensional form where ε̂ ¼ ε= _gb.

Originally, these models were proposed only for n = 1 as an approximation of a Bingham fluid,

and were later extended to model a Herschel-Bulkley fluid with n 6¼ 1. However, it becomes
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apparent that these propositions are somewhat simplistic, as the viscosity still diverges due to

the power-law term. A potential solution could involve regularizing the power-law term as well,

for instance, using a Carreau model. However, this aspect will be addressed in future research.

Fig 6e and 6f illustrate the critical Reynolds number Reyc obtained for the first time with

these regularized laws as a function of B, for a fixed intermediate value of n = 0.54 correspond-

ing to the Carbopol fluid used in [31], and for different values of the regularization parameter

ε̂. In both models, the critical Reynolds number Reyc approaches the Reyc calculated for a Her-

schel-Bulkley fluid as the regularization parameter becomes sufficiently small. In a sense, the

Herschel-Bulkley fluid, while not strictly a generalized Newtonian fluid, can be viewed as the

uniform limit of a series of regularized rheologies that all satisfy the appropriate set of hypothe-

ses. This result contrasts with the pseudo-plug theory [30], where the base flow is regularized

instead of the rheology. Additionally, we observe that the Papanastasiou regularization con-

verges more rapidly than the Williamson regularization, likely due to the presence of the expo-

nential term. However, apart from this, no clear advantage is evident for preferring one

regularization over the other, possibly because they lack a clear physical micro-mechanism.

Conclusions

In this article, we introduced a unified model to describe the roll waves instability for fluids of

various rheologies within the family of generalized Newtonian fluids. For the first time, we

derived the Orr-Sommerfeld equation for a generalized Newtonian fluid, elucidating the sta-

bility of a parallel flow in 2D. By combining this equation with the appropriate boundary con-

ditions and employing a long-wave expansion, we derived two analytical expressions: one for

the wave speed and another for the critical Reynolds number, which quantifies the onset of

this instability.

We subsequently validated our model with fluids exhibiting various rheologies. In every

instance where these fluids had been previously studied (including power-law, Carreau,

Wyart-Cates, and Herschel-Bulkley fluids), our results exhibited very good agreement with

previous studies and experimental findings. Moreover, we successfully predicted precise and

analytical long-wave characteristics of roll waves in cases where this had never been accom-

plished before. For instance, we provided analytical expressions for the threshold and wave

celerity of Eyring-Powell fluids, as well as for all regularized rheological laws. Previously, it was

believed impossible to derive such analytical expressions for these cases.

Testing our results across a diverse range of fluid rheologies also served to assess the limits

and assumptions inherent in the generalized Newtonian rheology. Perhaps the most surprising

finding is that, for every singular behavior in the rheology that we examined, the expressions

derived from the long-wave analysis still accurately captured the onset of instability, even

when the full Orr-Sommerfeld equation was strictly unsolvable. This observation held true

when the viscosity diverged (as in power-law or Herschel-Bulkley fluids), as well as when the

flow curves exhibited multi-valued behavior (as in Wyart-Cates fluids), even though the insta-

bility described in the latter case was inertialess and fundamentally distinct. In the former case,

a possible explanation is that these singular rheologies (such as power-law or Herschel-Bulkley

fluids) can be viewed as the limit of a series of regularized rheological functions, for which the

critical Reynolds number is always well defined and bounded. In the latter case, another expla-

nation could be that if the strain-imposed rheology tð _gÞ is multivalued, the stress-imposed

rheology _gðtÞ remains well defined, allowing the Orr-Sommerfeld problem to be resolved at

any wave number α.

Future work should indeed explore the behavior at moderate wavelengths. This investiga-

tion could lead to a more precise prediction of the dispersion relation, which would be
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valuable for providing detailed rheological analyses of fluid behavior. Additionally, it would

be intriguing to extend the current model to include rheologies that do not fall within the

generalized Newtonian family. For example, this could involve investigating frictional rheol-

ogy (such as in granular materials), time-dependent rejuvenation (or thixotropy), or even

viscoelastic behavior. Another straightforward extension of this work could be to consider

the interaction of these roll waves with more complex geometries and physical effects

(porous substrate, wavy bottom, thermal gradients or surfactants). Such studies performed

with a generalized Newtonian rheology would hopefully produce an expression of the critical

Reynolds number and wave celerity similar to those obtained in the present work, but with

some additional terms quantifying the relative importance of rheology over these new physi-

cal effects. The complex behaviour already observed in power-law fluids [40, 41, 44] suggests

however that this may not be a small endeavour, and would warrant several comprehensive

studies.

These extensions would enable a more comprehensive understanding of fluid dynamics

across a broader range of materials and conditions.
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