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Abstract: We provide a general description of the measurement capabilities of systems8

that probe the 3D state of polarization of light emitted by a dipole or a collection of dipoles.9

This analysis is based on a generalization of the Stokes parameters for 3D polarization, and10

its goal is to provide insight into what constitutes a good measurement system under specific11

circumstances, through the definition of appropriate merit functions. Three cases are considered:12

the general case of arbitrary states of 3D polarization, the special case of 3D linear full or partial13

polarization states, and the even more specific case of linear dipoles that wobble with rotational14

symmetry around a central direction. Note that the latter two cases are of interest in fluorescence15

microscopy. The analysis presented here is illustrated by applying it to two different approaches16

used commonly in orientation microscopy: PSF engineering and radiometric measurements.17

1. Introduction18

In addition to intensity and phase, the local description of an optical field involves polarization,19

which is the characterization of the geometry of the oscillations of the electric field vector. For20

paraxial light, these oscillations are essentially constrained to a plane normal to the main direction21

of propagation. The statistical description of polarization is based on three parameters that can be22

inferred from intensity measurements, and that determine the main orientation of the oscillations,23

their average ellipticity/handedness, and the uniformity of oscillation (known as the degree of24

polarization). On the other hand, the characterization of an optical field that is not constrained to25

the paraxial regime requires a description of the oscillations of its three Cartesian components.26

This is the case, for example, of fields in focal regions or at the vicinity of sources. The geometric27

description of polarization becomes more complex, and up to eight parameters are required to28

achieve the same level of characterization [1–3]. The measurement of these parameters can be29

referred to as nonparaxial polarimetry. Many approaches have been used to produce arbitrary30

3D polarization states [4–8], typically involving highly focused beams and/or evanescent wave31

components. Characterizing these 3D polarization states generally requires analyzing the field32

that is either scattered by nano-probes [5–7] or emitted by fluorescent molecules excited by the33

unknown field [4, 8].34

Some techniques used in fluorescence microscopy under high numerical aperture (NA) imaging35

conditions can also be regarded as a form of nonparaxial polarimetry, in which the polarization36

state is directly linked to the orientation and wobbling of a fluorescent molecule [9]. These37

molecules usually behave like linear dipoles, whose direction determines both their excitability38

by an external field and the dipolar pattern of the light they radiate. Further, since they are39

attached to structures of biological interest, their 3D direction and wobble provide useful40

information about the sample’s structural properties. Methods like single-molecule orientation41

localization microscopy (SMOLM) enable the 3D spatial localization of emitters while also42

providing information about their 3D orientational behavior. They rely on approaches such as43

polarization channel splitting [10–12] and/or point spread function (PSF) engineering, in which44

the information about the dipole’s 3D localization and orientation is encoded in the shape of the45

single molecule’s PSF [13–17].46



In all of the cases described above, intensity measurements of different projections of the47

radiation from a particle can be used to construct what is referred to as the 3 × 3 second moment48

matrix [1], described in Section 2, which characterizes the second order statistics of the field49

oscillations, and hence its 3D polarization. Prior work based on the Fisher information has been50

proposed for the specific case of fluorescence microscopy [18, 19], for which the matrix can be51

assumed to be real, causing a reduction in the number of parameters being estimated. The Fisher52

information and the corresponding Cramér-Rao bounds have also been used to compare different53

SMOLM techniques [15, 20–22].54

The goal of this work is to provide a general description that is based on the eight parameters55

necessary for the characterization of the 3D polarization state of the field emitted or scattered56

by a molecule/nanoparticle, and to define merit functions that qualify the appropriateness of57

a technique to measure 3D polarization. This approach is based on the decomposition of the58

matrix into a basis composed of the Gell-Mann matrices in order to define generalizations of the59

Stokes parameters [2, 3]. A general description of the high-NA microscopy systems used for60

these measurements is given in Section 3, which also provides conditions for reducing estimation61

bias between the transverse and longitudinal components of the dipole. This section also includes62

a forward model for the measured intensity in terms of the parameters mentioned earlier and63

gives insights into what constitutes a good system for measuring unambiguously different aspects64

of polarization. Section 4 proposes a merit function for the system’s ability to measure 3D65

polarization based on the Fisher information matrix. We also show that this merit function can66

be written as the product of four factors: the measured number of signal photons, a measure67

of the pixel localization of the signal, a measure of the orthonormality of the basis of intensity68

components associated with each Stokes parameter, and a measure of the “monomodality” of69

the pixel detection. The general results of Section 4 are applied in Section 5 to the case of70

fluorescence microscopy, where the number of parameters is reduced (due to the absence of71

spin). The merit function is adapted to this dimensionality reduction, and is also expressed in72

terms of angular parameters that are more easily associated with fluorophore orientation. A73

further simplification is performed for the specific (and commonly used) case of fluorophores74

whose wobbling is assumed to be statistically rotationally symmetric about a main direction.75

Finally, Section 7 illustrates these ideas by applying the merit functions to two different types of76

measurement technique [12,17, 23, 24], and using them for optimizing free parameters in these77

methods.78

Let us stress that the results found here can be applied either to fluorescence microscopy, where79

the goal is to obtain information about the fluorophore’s orientation and dynamics, or to scattering80

microscopy, where the particles act as probes to measure the 3D state of polarization of an incident81

field. Since our focus is to better understand the measurement of 3D polarization/orientation, we82

ignore the estimation of the spatial localization of the particle.83

2. The second moment matrix84

The definition and description of the second moment matrix and its decomposition into general-85

izations of the Stokes parameters has been treated in several prior works, including two recent86

reviews [3,9]. Nevertheless, it is convenient to start by giving a brief description of these concepts.87

Consider an electric dipolar field emanating from some molecule/nanoparticle with known88

position. This dipole is determined by the normalized vector 𝜇̂ = (𝜇𝑥 , 𝜇𝑦 , 𝜇𝑧)
T, with T denoting89

a transpose (so that vectors are assumed to be columns). For the case of a fixed fluorophore, this90

dipole has a linear orientation specified by two spherical angles 𝜂 (the off-plane or polar angle)91

and 𝜉 (the in-plane or azimuthal angle), as shown in Fig. 1(a). However, fluorophores often92

wobble within the detection time, as illustrated in Fig. 1(b), so more parameters are needed to93

describe the statistics of their oscillations. In the more general case of 3D polarimetry, the field94

scattered by a sub-wavelength particle can be described by an elliptic dipolar oscillation with95



Fig. 1. (a) In-plane and off-plane angles, 𝜉 and 𝜂, for a fixed real dipole. (b) Wobbling
dipole, whose directional statistics can be described in terms of a principal direction,
𝑣̂1, and two minor ones, 𝑣̂2,3, which form an orthonormal triad. (c) Fully polarized
3D scattered field, described by an ellipse of polarization with arbitrary ellipticity and
orientation in 3D. Here, the red arrow represents the spin density vector, which is
normal to the plane of the ellipse and whose length is proportional to the area enclosed
by the ellipse. (d) Partially polarized 3D scattered field, described by a fluctuating
polarization ellipse.

some ellipticity and handedness and with arbitrary 3D orientation, as shown in Fig. 1(c). The96

normal to the ellipse following the right-hand rule determines the direction of the spin (shown as97

a red arrow in the figure), whose magnitude is proportional to the ellipse’s area. This ellipse98

can also present fluctuations within the detection time, as illustrated in Fig. 1(d). Simple sets of99

well-chosen intensity measurements of the radiated field allow characterizing the second-order100

statistics of the fluctuating dipolar radiation described earlier. These statistics are encoded in the101

second moment matrix, defined as [13, 14, 18, 25]102

m = ⟨𝜇̂𝜇̂†
⟩𝑇 =

1
𝑇
∫

𝑡0+𝑇

𝑡0
𝜇̂𝜇̂†d𝑡, (1)

where 𝑇 is the integration time of the detection and † denotes a transpose conjugate. If the dipole103

is fixed during this integration time, the second moment matrix factorizes as an outer product; if104

on the other hand the dipole fluctuates within the detection time, this matrix is not factorizable105

and contains information about the statistics of this fluctuation. For the case of fluorescing106

molecules that wobble, the second moment matrix characterizes not only the main direction of107

the molecule but also its directional fluctuations [14]. We assume that the molecule’s wobbling108

takes place at a timescale much shorter than the fluorescence lifetime, since otherwise there could109

be appreciable coupling between absorption and emission events causing the measurements to110

be related to higher-order moments [26, 27]. Note that the matrix m is explicitly Hermitian and111

non-negative-definite, and that it has a trace of unity given the normalization of 𝜇̂. In the general112

case of complex dipoles, the second moment matrix includes eight independent parameters,113

three of which describe spin density of the emission and correspond to the imaginary parts of114

the off-diagonal elements. For the case of fluorescent molecules, on the other hand, the dipole115

emission is typically along a line so that 𝜇̂ is real, as is m, and the second moment matrix contains116

only five independent parameters. In either case, as described later, the quantities measured by117

polarized imaging are typically proportional to the elements of this matrix.118

Decomposition in terms of Gell-Mann matrices. To simplify the treatment, it is common to119

reorganize the second moment matrix as a vector. Many authors [13, 14, 25, 28] do so by simply120

composing a vector with the different elements, e.g. 𝑚⃗ = (𝑚𝑥𝑥 , 𝑚𝑦𝑦 , 𝑚𝑧𝑧 , 𝑚𝑥𝑦 , 𝑚𝑦𝑧 , 𝑚𝑥𝑧)
T.121

Another option is to decompose the matrix in a complete orthogonal basis of Hermitian 3 × 3122



matrices. One such basis is that of the Gell-Mann matrices [29], which can be written as123

Θ11 =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, Θ12 =
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⎜
⎜
⎜
⎜
⎝
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√
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3
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Θ21 =
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⎜
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⎝
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0 0 1
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⎟
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⎝
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⎞
⎟
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⎟
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Θ31 =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟
⎟
⎟
⎟
⎠

, Θ32 =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 i

0 0 0

−i 0 0

⎞
⎟
⎟
⎟
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⎠

, Θ33 =

⎛
⎜
⎜
⎜
⎜
⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

. (2)

These matrices are orthogonal under the inner product of the trace:124

Tr(Θ𝑚𝑛Θ𝑚′𝑛′) = 2𝛿𝑚𝑚′𝛿𝑛𝑛′ , (3)

with 𝛿𝑚𝑚′ being the Kronecker symbol. They are also traceless, meaning that each of them is125

orthogonal to the 3× 3 identity matrix I. Therefore, together with I, the Gell-Mann matrices form126

a complete orthogonal basis for Hermitian 3 × 3 matrices. Given its normalization, the second127

moment matrix can be expressed in terms of the identity and the Gell-Mann matrices as128

m =
1
3

I +
1
√

3
∑
𝑘

𝑠𝑘Θ𝑘 , 𝑠𝑘 =

√
3

2
Tr(mΘ𝑘), (4)

where we introduce the shorthand 𝑘 to represent the two indices 𝑚𝑛, so that 𝑘 runs over the values129

11, 12, 21, 22, 23, 31, 32, 33. The coefficients 𝑠𝑘 are called here the normalized Stokes-Gell-Mann130

(NSG) parameters, in analogy with the normalized Stokes parameters used in paraxial polarization,131

which are the coefficients for the decomposition of a normalized polarization matrix in terms of132

Pauli matrices; in fact, the numbering scheme used here (and in other recent work [3, 9]) for the133

Gell-Mann matrices is chosen to highlight the similarity with the Stokes parameters of paraxial134

polarization [3], as can be seen from writing explicitly all parameters in Eq. (4):135

𝑠11 =
√

3
𝑚𝑥𝑥 −𝑚𝑦𝑦

2
, 𝑠12 =

𝑚𝑥𝑥 +𝑚𝑦𝑦 − 2𝑚𝑧𝑧

2
,

𝑠21 =
√

3 Re(𝑚𝑦𝑧), 𝑠22 =
√

3 Re(𝑚𝑥𝑧), 𝑠23 =
√

3 Re(𝑚𝑥𝑦),

𝑠31 = −
√

3 Im(𝑚𝑦𝑧), 𝑠32 =
√

3 Im(𝑚𝑥𝑧), 𝑠33 = −
√

3 Im(𝑚𝑥𝑦). (5)

That is, the parameters 𝑠1𝑛 encode the diagonal elements of the matrix, while 𝑠2𝑛 and 𝑠3𝑛 encode,136

respectively, the real and imaginary parts of the off-diagonal ones. As mentioned earlier, for a137

typical fluorescent dipole, m is real and only the first five NSG parameters can be different from138

zero. For complex dipoles, however, the parameters 𝑠3𝑛 are needed, and in fact the three-vector139

(𝑠31, 𝑠32, 𝑠33)
T is proportional to the spin density vector of the dipole, and it points in a direction140

normal to the main plane of oscillation of the electrons [30], as shown in Fig. 1(c,d). Note that141

the numerical factors used in the definition of the NSG parameters differ by a factor of
√

3/2142

from those used in the standard Stokes parameters. These normalization factors were chosen143

such that the following inequality is satisfied:144

∑
𝑘

𝑠2
𝑘 ≤ 1, (6)



where the upper bound of unity is achieved only if 𝑚𝑖 𝑗 = 𝜇𝑖𝜇
∗
𝑗 , i.e. in the absence of145

fluctuations/wobbling. Based on this inequality, we group the NSG parameters as an eight-146

component vector, 𝑠⃗ = (𝑠11, 𝑠12, 𝑠21, 𝑠22.𝑠23, 𝑠31, 𝑠32, 𝑠33)
T, where the last three components can147

be ignored when considering fluorophores described by linear dipoles. That is, 𝑠⃗ is constrained148

to the interior and surface of a unit hypersphere, ∣𝑠⃗∣ ≤ 1, in an abstract 8D space (or a 5D space in149

the absence of dipole spin). As discussed elsewhere, this vector is actually constrained to a far150

smaller region within the hypersphere [3].151

Eigenvalues of the second moment matrix. The second moment matrix can also be parametrized152

in terms of its three eigenvalues and the direction of its three normalized eigenvectors as153

m =
3
∑
𝑗=1

𝜆 𝑗 𝑣̂ 𝑗 𝑣̂
†
𝑗 , (7)

where we choose, without loss of generality, 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0, with 𝜆1 + 𝜆2 + 𝜆3 = 1. The three154

eigenvectors are orthonormal, and in the absence of dipole spin they can be chosen as real (as155

shown in Fig. 1(b)). They can then be parametrized in terms of three angles 𝜂, 𝜉 and 𝛽 as156

𝑣̂1 = (sin𝜂 cos 𝜉, sin𝜂 sin 𝜉, cos𝜂)T,

𝑣̂2 = (cos𝜂 cos 𝜉, cos𝜂 sin 𝜉,− sin𝜂)T cos 𝛽 + (− sin 𝜉, cos 𝜉, 0)T sin 𝛽,

𝑣̂3 = −(cos𝜂 cos 𝜉, cos𝜂 sin 𝜉,− sin𝜂)T sin 𝛽 + (− sin 𝜉, cos 𝜉, 0)T cos 𝛽. (8)

That is, 𝜂 and 𝜉 are the polar and azimuthal spherical angles of 𝑣̂1 and 𝛽 is an angle determining157

the orientation of 𝑣̂2 (and hence 𝑣̂3) within the plane normal to 𝑣̂1 (Fig. 1(b)). In cases involving158

dipole spin, on the other hand, the eigenvectors can be complex and require more parameters.159

Different parametrizations have been discussed elsewhere [3] and are not central to our study.160

Whether there is spin or not, a measure of the degree of 3D polarization of the emitted light161

or of fluorophore rigidity (i.e. lack of wobble) can be defined as the magnitude of the NSG162

vector [2, 3, 31, 32]:163

𝑃 = ∣𝑠⃗∣ =

√
(𝜆1 − 𝜆2)2 + (𝜆2 − 𝜆3)2 + (𝜆1 − 𝜆3)2

2
, (9)

The upper limit 𝑃 = 1 is only achieved for 𝜆2 = 𝜆3 = 0, which corresponds to a factorizable second164

moment matrix, describing a fully polarized field or a non-wobbling dipole. In this limiting case165

we can identify 𝜇̂ = 𝑣̂1. The opposite limiting case, 𝑃 = 0, holds only for 𝜆1 = 𝜆2 = 𝜆3 = 1/3166

which indicates complete statistical isotropy, for example by a freely wobbling dipole that explores167

equally all directions. Several alternative measures have been proposed, particularly in the context168

of 3D polarization [3, 33–36]. Within the context of molecular rigidity, Zhang et al. [16, 18, 19]169

defined the rotational mobility or rotational constraint as170

𝛾 = 𝜆1 −
𝜆2 + 𝜆3

2
. (10)

Note that 𝛾 coincides with 𝑃 for 𝜆2 = 𝜆3. This is the case, for example, of the common model in171

which the dipole is assumed to oscillate uniformly within a directional cone of angle 𝛿, for which172

𝑃 = 𝛾 = cos2(𝛿/4) cos(𝛿/2). Also, in the very specific case of a real dipole oscillating around173

the 𝑧 axis such that the off-diagonal elements of the second moment matrix vanish (e.g. when the174

wobble has rotational symmetry about this direction), 𝛾 = −𝑠12.175

As shown in Appendix B the five NSG parameters not associated with spin are all proportional176

to the real or imaginary parts of spherical harmonics of order ℓ = 2, leading to a simple177

proportionality relation between these parameters and the dipole orientation and wobbling178

characteristics, particularly the second order parameters of the dipole’s wobbling distribution.179



Fig. 2. (a) Schematic of the optical setup used to measure 3D polarization. Components:
objective lens (OBJ), tube lens (TL) and relaying lens (L1) for accessing the back-focal
plane (BFP). The black box represents a system (possibly consisting of elements to
manipulate the phase, polarization and/or amplitude) to concentrate the light onto one or
several detectors or detector arrays (DET). (b,c) Polarization distribution and intensity
at the BFP for a transverse dipole aligned with the 𝑥 direction (b), and a longitudinal
dipole aligned with the 𝑧 direction (c), where the green circle corresponds to 𝑢 = 𝑛0,
and the polarization ellipticity and handedness are encoded in the color of the ellipses,
which go from right-hand circular polarization (RCP) to left-hand circular polarization
(LCP) passing through linear polarization (LP).

3. Measurement system180

We begin this section with a review of the mathematical description of a generic microscopy setup181

used to measure the 3D polarization of the field emitted or scattered by a particle [3, 9, 37,38],182

as illustrated in Fig. 2(a). Since in this work we focus on the characterization of m, we assume183

that the position of the particle is known. (In applications such as SMOLM, the particle’s 3D184

localization must be estimated as well.) Let the particle be embedded in a medium with refractive185

index 𝑛0. Before being collected by the objective, the light emitted or scattered by the particle186

typically traverses a flat interface with another medium with refractive index 𝑛1, e.g. a glass187

coverslip that is index-matched to the microscope objective.188

Light distribution at the pupil plane. The field distribution at the back-focal (or pupil) plane189

of the objective is given by Ẽ. This field is well collimated and hence only the two transverse190

components are needed. (Our convention in this work is to use boldface for vectors with only 𝑥191

and 𝑦 components.) The pupil coordinate u is given for convenience in normalized units, so that192

its maximum value corresponds to the NA. The expression for the field Ẽ(u) at the pupil plane is193

simply proportional to G(u) 𝜇̂, where G is the 2 × 3 Green tensor relating each component of the194

dipole to a paraxial field distribution at the pupil plane:195

G(u) =
⎛
⎜
⎝

𝑔0(𝑢) + 𝑔2(𝑢) cos 2𝜑 𝑔2(𝑢) sin 2𝜑 𝑔1(𝑢) cos 𝜑

𝑔2(𝑢) sin 2𝜑 𝑔0(𝑢) − 𝑔2(𝑢) cos 2𝜑 𝑔1(𝑢) sin 𝜑

⎞
⎟
⎠
, (11)



with 𝑢 = ∣u∣ being the radial pupil coordinate and 𝜑 the azimuthal one, and where196

𝑔0,2(𝑢) =
𝑛1
√
𝛾1(𝑢)

2𝑛0
[𝑡p(𝑢) ±

𝑡s(𝑢)

𝛾0(𝑢)
] , 𝑔1(𝑢) =

𝑛1
√
𝛾1(𝑢)

𝑛2
0 𝛾0(𝑢)

𝑢 𝑡p(𝑢), (12)

with 𝛾𝑖(u) =
√

1 − 𝑢2/𝑛2
𝑖 , and where 𝑡p and 𝑡s are the Fresnel transmission coefficients given by197

𝑡s(𝑢) =
2𝑛0𝛾0(𝑢)

𝑛0𝛾0(𝑢) + 𝑛1𝛾1(𝑢)
, 𝑡p(𝑢) =

2𝑛0𝛾0(𝑢)

𝑛1𝛾0(𝑢) + 𝑛0𝛾1(𝑢)
. (13)

Note that in the typical case of 𝑛1 > 𝑛0, light can be collected not only for 𝑢 ≤ 𝑛0 but also198

within the annular pupil region 𝑛1 > 𝑢 > 𝑛0, which corresponds to evanescent components of the199

dipole radiation that couple into propagating ones at the interface between the two media. In the200

context of fluorescence microscopy, this light is referred to as supercritical angle fluorescence201

(SAF) [39,40]. For 𝑢 > 𝑛0 some of the quantities in the equations above become imaginary or202

complex. Also, while here we are not considering the effect of variations in particle position, an203

increase in the distance between the particle and the interface causes an exponential decay in the204

optical power within this outer pupil region; the power within the region 𝑢 > 𝑛0 is appreciable205

only when this distance is smaller than the wavelength.206

Dependence of power collection on dipole orientation. It is interesting to consider how207

Φ = ∫
2𝜋

0 ∫
NA

0 ∣Ẽ(u)∣2𝑢 d𝑢 d𝜑, which quantifies the fraction of the power captured by the208

microscope objective, depends on the orientation of the dipolar radiation emitted or scattered by209

the particle. Note that strong polarization-dependent variations in the total number of measured210

photons hinders the ability to measure 3D polarization. It turns out that considering linear dipoles211

is sufficient for this characterization, so let us then assume for now that the dipole direction 𝜇̂ is212

real. It is easy to see by symmetry arguments that this power depends only on the angle 𝜂 between213

the dipole and the 𝑧 axis, following the simple sinusoidal relation Φ = Φ⊥ sin2
𝜂 +Φ𝑧 cos2 𝜂,214

where Φ⊥ and Φ𝑧 correspond to the two extreme cases of a dipole oriented transversely to the215

axis of the microscope, say, in the 𝑥 direction, and one oriented parallel to the microscope axis.216

These powers are calculated as217

Φ⊥ = ∫
2𝜋

0
∫

NA

0
∣G(u)𝑥∣2𝑢 d𝑢 d𝜑 = 2𝜋∫

NA

0
[∣𝑔0∣

2
+ ∣𝑔2∣

2]𝑢 d𝑢, (14a)

Φ𝑧 = ∫

2𝜋

0
∫

NA

0
∣G(u)𝑧∣2𝑢 d𝑢 d𝜑 = 2𝜋∫

NA

0
∣𝑔1∣

2𝑢 d𝑢. (14b)

These integrals can be solved in closed form but the resulting expressions are too long to provide218

any useful insight. Figure 3(a) shows the relative difference between Φ⊥ and Φ𝑧 as a function of219

the NA and the index mismatch at the interface. We can see that this difference vanishes near220

NA = 𝑛0.221

The closed-form expressions for these two power components become considerably simpler for222

NA = 𝑛0. They are given in Appendix A. From these relations it can be seen that the two powers223

match if 𝑛1/𝑛0 = 1.33. This balance is not achieved exactly for the common case in which the224

first medium is water (𝑛0 = 1.33) and the second is glass (𝑛1 = 1.515), but the relative difference225

between Φ⊥ and Φ𝑧 is only of about 5%, so for the sake of simplification we can assume that the226

two powers are nearly equal. (For these media, exactly balancing these powers would require227

expanding the NA slightly above 𝑛0, but the solution would then depend significantly on the228

distance between the particle and the interface.)229

The balance or near-balance between the transverse and longitudinal power components can230

be understood in the following way: on the one hand, as shown in Fig. 2(b) a transverse dipole231

fills the center of the pupil, which corresponds to smaller angles of incidence at the interface232

and hence to higher transmission, but it also populates regions of the edge of the pupil where233



Fig. 3. (a) Relative difference (Φ⊥ − Φ𝑧)/Φ⊥ between the power captured by the
microscope for a transverse and a longitudinal dipole, as a function of the normalized
NA with respect the immersion liquid’s refractive index and the index mismatch between
the embedding medium and the immersion liquid. (b) Total power for a non-wobbling
emitter with an off-plane angle 𝜂 for different numerical apertures given an index
mismatch corresponding to oil/water. (a-b) The green line corresponds to NA = 𝑛0. In
both, the dipole is assumed to be at the interface.

it is mostly made up of s-polarization components with weaker transmission coefficients; on234

the other hand, as shown in Fig. 2(c) a longitudinal dipole radiates mostly into the edges of the235

pupil, and hence at high angles of incidence, but with p-polarization that is better transmitted.236

Note that these conditions for achieving (near) independence of the power with respect to dipole237

orientation also apply if the dipole has spin or if there are fluctuations. In other words, under238

these conditions the power is (essentially) independent of the NSG parameters. As mentioned239

earlier, this power is then also independent of the particle’s position.240

Polarization splitting and detection. As shown in Fig. 2(a) the field is typically made to pass241

through another system between the pupil and the final detection. This system can contain242

elements such as: i) a pupil mask that modifies the amplitude, phase, and/or polarization at the243

Fourier plane; ii) a polarization-splitting device that separates the field into different polarization244

components that are to be detected separately; iii) a focusing system to form an image or at least245

to concentrate light onto the detectors; and iv) a series of detectors or detector arrays. Let the246

different polarization channels (typically two or four) be identified by the index 𝜎 and, for each247

channel, let the different pixels be labeled by the discrete variable x. We assume for now that248

the pixels are sufficiently small as for the field variation within each of them to be negligible;249

the effect of more extended pixels is discussed towards the end of this section. The measured250

intensity can then be written as251

𝐼(x, 𝜎) = h†
(x, 𝜎)mh(x, 𝜎), (15)

where h(x, 𝜎) is the Green function from the source to the polarization component of the detector252

in question. Consider as an example a type of imaging system used in SMOLM [10–17] where a253

Fourier mask is used to shape the PSF and where the light emerging from this mask is separated254

into polarization components p𝜎 before reaching the image. For this system we can write255

h(x, 𝜎) = H†(x)p𝜎 , where H(x) is the 2×3 matrix whose three columns give the paraxial vector256

field distribution at the image plane, prior to polarization filtering, due to dipoles in the 𝑥, 𝑦 and257

𝑧 directions, respectively. This matrix is given by258

H(x) = 1
𝜆
∫ J(u)G(u) exp(i

2𝜋
𝜆

u ⋅ x) d2𝑢, (16)

where 𝜆 is the wavelength and J(u) is the transmission function for a potentially-birefringent259



pupil mask. While this type of system is important, the analysis that follows applies to a broader260

range of systems.261

If the system is unitary, meaning that no amplitude masks are used and that losses are minimal262

so that essentially all the light that passes through the pupil is captured by the detectors, then263

⟨∣h(x, 𝜎)∣2⟩x,𝜎 ≈ Φ. (17)

where ⟨⋅⟩x,𝜎 denotes a sum over all detector pixels of all polarization channels.264

Measured intensity in terms of NSG parameters. The intensity distribution created by the265

dipole can be written in terms of the NSG parameters as266

𝐼(x, 𝜎) ∝ I0(x, 𝜎) + 𝑠⃗ ⋅ I⃗(x, 𝜎), (18)

with I⃗ = (I11,I12,I21,I22,I23,I31,I32,I33), for267

I0(x, 𝜎) =
𝜅

3
∣h(x, 𝜎)∣2, I𝑘(x, 𝜎) =

𝜅
√

3
h†
(x, 𝜎)Θ𝑘h(x, 𝜎), (19)

where 𝜅 is a normalization constant. The total number of signal photons captured by the268

microscope is given by Ns = ⟨𝐼⟩x,𝜎 ∝ ⟨I0⟩ x,𝜎 + 𝑠⃗ ⋅ ⟨I⃗⟩x,𝜎 . Note that by choosing NA = 𝑛0 (so269

thatNs is roughly independent of dipole orientation) ⟨I𝑘⟩x,𝜎 essentially vanishes in order for the270

dependence on 𝑠⃗ to be suppressed. We will then assume this choice of NA in what follows. It is271

convenient to choose the normalization constant 𝜅 so that ⟨I0⟩x,𝜎 = 1. We henceforth refer to the272

intensity distribution 𝐼(x, 𝜎) as the PSF even in cases where the system is not an imaging one.273

In real conditions, the measurements include some background intensity 𝐼b, so the model for274

the intensity (in photons per pixel) becomes275

𝐼(x, 𝜎) = 𝐼b +Ns[I0(x, 𝜎) + 𝑠⃗ ⋅ I⃗(x, 𝜎)], (20)

where Ns is the number of signal photons arriving from the dipole to the detector.276

Reciprocal interpretation and an identity for the PSF components. The second expression in277

Eqs. (19) can also be written as278

I𝑘(x, 𝜎) =
𝜅
√

3
Tr[ h(x, 𝜎)h†

(x, 𝜎)Θ𝑘]. (21)

That is, to within numerical prefactors, this relation for the PSF components I𝑘 is mathematically279

similar to the definition of the Stokes-Gell-Mann parameters in Eq. (4), applied to a fully polarized280

3D field h(x, 𝜎). That is, if we were to reverse the direction of light propagation and consider the281

detector pixel x for the polarization channel 𝜎 as a source of light with polarization p𝜎 , and if this282

light were to travel back throught the microscope all the way to the particle’s position, it would283

produce an electric field proportional to h. The NSG parameters for this light distribution at the284

particle would then be (
√

3/2𝜅)Tr[h h†
Θ𝑘]/Tr[hh†

] = I𝑘/(2I0). Because this back-propagated285

field would be fully polarized, the norm of these NSG parameters would be unity, leading to the286

following identity that holds for any x and 𝜎:287

4I2
0(x, 𝜎) = ∑

𝑘

I
2
𝑘(x, 𝜎) = ∣I⃗(x, 𝜎)∣2, (22)

which is analogous to Eq. (6) except that it is a strict equality. Note that the sum above is over all288

eight values of 𝑘 , including those associated with spin. Equation (22) and the reciprocal picture289

that lead to it are useful for visualizing what constitutes a good system for measuring m: the290

subset of pixels within all polarization channels that capture the light should each be able to291

couple onto a different (nearly fully polarized) 3D state of polarization at the dipole location,292



so that together they cover all the states that one desires to explore or measure. In particular, if293

we were to consider the case of an imaging system in fluorescent microscopy where the dipoles294

are known a priori to have no spin, we know that the measured intensity will not include the295

components I3𝑛. Nevertheless, Eq. (22) still includes these components. That is, even though296

we might not want to measure spin because we know it is not present, the system will typically297

have some ability to measure it, and this might come at the cost of weakening the remaining298

components I𝑘 linked to parameters that we do want to measure. An ideal system to measure299

orientation and wobble of spinless fluorophores would then have to be designed such that I3𝑛 = 0300

for all pixels over both polarization channels. In other words, in the reverse propagation picture301

all detector pixels should couple to 3D linear polarization states at the dipole location. This302

reciprocal interpretation also illustrates the advantages of polarization splitting and of using303

small pixel sizes in the detection. If the polarization components were not separated before being304

imaged, the light “emitted” from each pixel x would be “unpolarized” in the paraxial sense,305

resulting in a partially-polarized light distribution at the dipole location. That is, the left-hand306

sides of Eqs. (15), (19) and (21) would be independent of 𝜎 because the corresponding right-hand307

sides would include a sum in 𝜎; in particular Eq. (21) would then resemble the calculation of the308

NSG parameters for a (nonfactorizable) 3D partially polarized field. Similarly, if the pixels were309

large enough so that the detected field varies appreciably within each of them, in the reciprocal310

interpretation they would behave as extended, spatially-incoherent sources that, even when fully311

polarized, can lead to a partially-polarized field at the dipole location. In this case Eq. (21) would312

resemble the expression for the NSG parameters of a partially polarized field because in the313

right-hand side, the product h(x, 𝜎)h†(x, 𝜎) would be replaced by an integral of this product in314

the spatial coordinate over the area of the pixel centered at x. Whether because the polarization315

was not filtered or because large pixels were used, the resulting partial polarization at the dipole316

in the reciprocal picture implies that the equality in Eq. (22) must be replaced by the inequality317

4I2
0(x) ≥ ∣I⃗(x, 𝜎)∣2. (23)

The components I𝑘 are then weaker when compared to I0, making the estimation more difficult.318

4. Fisher information in terms of the PSF components319

For a given value of the NSG parameters, the normalized probability for a photon to hit a given320

pixel x, 𝜎 can be written as321

P(x, 𝜎∣𝑠⃗) = 𝐼(x, 𝜎)
⟨𝐼(x, 𝜎)⟩x,𝜎

≈
𝐼b/Ns + I0(x, 𝜎) + 𝑠⃗ ⋅ I⃗(x, 𝜎)

N/Ns
, (24)

whereN = ⟨𝐼b⟩x,𝜎 +Ns is the total measured number of photons (since 𝐼b is the average number322

of background photons per pixel), and we used the relations ⟨I0⟩x,𝜎 = 1 and ⟨I𝑘⟩x,𝜎 ≈ 0,323

the latter resulting from using NA = 𝑛0. That is, the use of NA = 𝑛0 makes this probability324

approximately a linear function of 𝑠⃗, which simplifies the analysis that follows.325

Fisher information matrix. The elements of the Fisher information matrix J (𝑠) for the NSG326

parameters are given by327

J
(𝑠)
𝑘𝑘′
= N ⟨

𝜕𝑠𝑘P𝜕𝑠𝑘′P

P
⟩

x,𝜎
≈ Ns ⟨

I𝑘I𝑘′

𝐼b/Ns + I0 + 𝑠⃗ ⋅ I⃗
⟩

x,𝜎
= Ns ⟨⟨I𝑘I𝑘′⟩⟩ , (25)

where ⟨⟨I𝑘I𝑘′⟩⟩ denotes an inner product between two PSF components I𝑘 and I𝑘′ , defined as328

the sum over all pixels and polarization channels with a non-negative weight function given by329

1/(𝐼b/Ns + I0 + 𝑠⃗ ⋅ I⃗) (which depends on the NSG parameters to be retrieved and on the level of330

background intensity).331



Trace constraint and its upper bound. The inner-product form in Eq. (25) of the Fisher332

information matrix J (𝑠) means that it is a non-negative definite real 8 × 8 matrix. The trace of333

the matrix can be seen from Eq. (23) to be334

TrJ (𝑠) = ∑
𝑘

Ns ⟨⟨I
2
𝑘⟩⟩ ≤ 4Ns ⟨⟨I

2
0 ⟩⟩ . (26)

That is, the trace of the matrix is bound by ⟨⟨I2
0 ⟩⟩. The equality in the last part of the expression335

is achieved by using polarization splitting and sufficiently small pixels. Let us assume for now336

this is the case, and study this result in two limiting situations:337

338

• Consider first the ideal case in which there is no background (𝐼b = 0). If we consider a339

highly unpolarized situation (for example, a fluorophore wobbling freely) in which 𝑠⃗ ≈ 0⃗340

then ⟨⟨I2
0 ⟩⟩ ≈ ⟨I0⟩x,𝜎 = 1 so the trace of the Fisher information matrix is simply 4Ns.341

Typically, as the magnitude of 𝑠⃗ increases, the intensity distribution I0 + 𝑠⃗ ⋅ I⃗ develops342

minima that approach zero and lead to regions with large values of the weight function,343

making the trace of the Fisher information matrix grow, to the point that for ∣𝑠⃗∣ = 1 some344

elements of this matrix can diverge.345

• Consider now the opposite limiting case in which the background 𝐼b dominates. The Fisher346

information then takes the approximate form of an inner product with constant weight,347

namely348

J
(𝑠)
𝑘𝑘′
≈
N 2

s
𝐼b
⟨I𝑘I𝑘′⟩x,𝜎 = Ns 𝑟s/b 𝑁pixel ⟨I𝑘I𝑘′⟩x,𝜎 , (27)

where 𝑟s/b = Ns/(𝐼b𝑁pixel) is the ratio of signal to background photons detected, with349

𝑁pixel = ⟨1⟩ x,𝜎 being the total number of pixels over all polarization channels being350

used in the estimation of m. (In imaging systems with a wide field of view capable of351

measuring polarization for many particles simultaneously, 𝑁pixel is the number of pixels of352

the window(s) used for a specific particle.) The trace of this matrix then reduces to353

TrJ (𝑠) ≈ 4Ns 𝑟s/b 𝑁pixel ⟨I
2
0 ⟩x,𝜎 . (28)

Recall that I0 corresponds to the shape of the intensity distribution over the detector pixels354

for a fully unpolarized (in the 3D sense) dipole, and hence to the intensity distribution355

with maximum possible extension for the corresponding measurement method. Therefore,356

I0 determines the region within the detectors where the intensity distribution (or PSF)357

for a dipole with any orientation/polarization is constrained. Recall also that we chose to358

normalize this distribution according to ⟨I0⟩x,𝜎 = 1. The factor ⟨I2
0 ⟩x,𝜎 in the expression359

for the trace is then a measure of pixel localization: the more restricted I0 is to a small360

set of pixels, the larger ⟨I2
0 ⟩x,𝜎 is. This means that a large value for ⟨I2

0 ⟩x,𝜎 probably361

also leads to a higher signal-to-noise ratio, and in the case of SMOLM, to good transverse362

spatial localization (not considered here). Note, however, that ⟨I2
0 ⟩x,𝜎 can be made larger363

artificially by using larger pixels. (Think, for example, of an extreme case consisting of364

only two pixels with I0 = 1/2 each, leading to ⟨I2
0 ⟩x,𝜎 = 2 × 1/22 = 1/2; joining the two365

pixels into a single one would give ⟨I2
0 ⟩x,𝜎 = 1 but this would certainly not improve the366

measurement.) An appropriate merit function of pixel localization that compensates for367

this effect can then be defined as 𝑟s/b 𝑁pixel ⟨I
2
0 ⟩x,𝜎 , which can be written simply as368

𝑀PL = ⟨⟨I
2
0 ⟩⟩ . (29)



Determinant inequality and a measure of orthonormality. According to the Cramér-Rao369

bounds, if the measurement is unbiased, a measured intensity distribution results in a probability370

density for the unknown parameters 𝑠⃗ that is approximately a Gaussian centered at the expected371

parameter values and with an ellipsoidal cross-section aligned with the eigenvectors of J (𝑠),372

where the width in each of these directions is proportional to the inverse of the square root of373

the corresponding eigenvalue. The total cross-section of the Gaussian is then proportional to374

the inverse of the square root of the determinant of the Fisher information matrix. We can then375

use DetJ (𝑠) (or any monotonic function of it) as the merit function that must be maximized376

in order to guarantee a precise measurement scheme. The trace of a matrix is the sum of its377

eigenvalues, while the determinant is the product of these eigenvalues. Therefore, for fixed378

trace, the determinant is maximized when all eigenvalues are equal, and this leads to a matrix379

proportional to the identity. That is, the constraint on the trace imposes an upper bound for the380

determinant which is only met if J (𝑠) is proportional to the 8 × 8 identity matrix. We then have381

the following two inequalities:382

DetJ (𝑠) ≤ [TrJ (𝑠)

8
]

8

≤ (
Ns

2
⟨⟨I

2
0 ⟩⟩)

8
. (30)

The upper bound to the first inequality is achieved only if the PSF components I𝑘 constitute an383

orthonormal set under the inner product ⟨⟨I𝑘I𝑘′⟩⟩, while the second inequality approaches an384

equality when polarization splitting is used and the pixels are small enough that the field does not385

change significantly within them. We then define merit functions for the orthonormality of the386

basis and for the “monomodality” of the pixel detection (in polarization or spatial field variation),387

respectively, as388

𝑀ON =
8 [DetJ (𝑠)]

1/8

TrJ (𝑠)
=

8 (DetC)1/8

TrC
≤ 1, (31)

𝑀MM =
TrJ (𝑠)

4Ns ⟨⟨I
2
0 ⟩⟩
=

TrC
4 ⟨⟨I2

0 ⟩⟩
≤ 1, (32)

where C is the matrix of inner products of the PSF components, whose elements are 𝐶𝑘𝑘′ =389

⟨⟨I𝑘I𝑘′⟩⟩.390

Complete merit function. The complete merit function 𝑀8(𝑠⃗) is defined as the eighth root391

of the determinant of the Fisher information matrix. It can be written as the product of the392

number of signal photons and the measures of pixel localization, basis orthonormality, and pixel393

monomodality, according to394

𝑀8(𝑠⃗) = [DetJ (𝑠)]
1/8
=

1
2
Ns 𝑀PL 𝑀ON 𝑀MM. (33)

The inverse of the square root of this measure gives the geometric mean of the standard deviation395

in the estimation of 𝑠⃗. Since in general this measure depends on 𝑠⃗ (except in the limit of very396

strong background intensity), any optimization based on it should involve its value over a sample397

of representative states of 3D polarization of interest. Note that the second form of this merit398

function as a product of several factors simply has the goal of helping understand the different399

aspects of what makes a good measurement, as will be discussed in the examples in Section 7;400

the merit function can be computed directly without necessarily calculating these factors.401

5. Merit function for the case of fluorophores402

Let us now consider the specific case of (possibly wobbling) linear fluorophores, whose radiation403

has no spin. If a priori one knows that the measured PSFs should not include the components404



I3𝑛 associated with spin, then we only need to consider a 5 × 5 submatrix of J (𝑠) denoted here405

as J (𝑠). If the sum in 𝑘 is limited to 11, 12, 21, 22, 23, then Eq. (22) must be replaced with406

the inequality 4I2
0(x, 𝜎) ≥ ∑𝑘 I

2
𝑘(x, 𝜎), the equality being attainable only if the measurement407

system is designed so that the three PSF components I3𝑛(x, 𝜎) vanish for all pixels x in all408

polarization channels 𝜎. An optimal system then requires that J (𝑠) be proportional to the 5 × 5409

identity, and this leads to the upper bound410

DetJ (𝑠) ≤ (4
5
Ns ⟨⟨I

2
0 ⟩⟩)

5
. (34)

We can then define the merit function411

𝑀5(𝑠⃗) = [DetJ (𝑠)]
1/5
=

4
5
Ns 𝑀PL 𝑀ON𝑀MM. (35)

where the orthonormality measure now is limited to the five relevant PSF components normalized412

by their upper bound:413

𝑀ON =
5 [DetJ (𝑠)]1/5

TrJ (𝑠)
=

5 (DetC)1/5

TrC
≤ 1. (36)

Note that the quantities in the denominator do not carry a bar because they include all elements,414

so that 𝑀ON accounts also for how much of the measuring capabilities are wasted on the spin415

components of the dipole oscillation, assumed to be nonexistent. It is useful to see the form416

these measures take in terms of the fluorophore orientation parameters. As mentioned earlier,417

orientation is specified by the spherical angles 𝜂 and 𝜉 for the leading eigenvector that indicates418

the main direction of the fluorophore. The angle 𝛽 indicates the direction of the remaining419

eigenvectors within the plane orthogonal to the first one, and the level of wobble is characterized420

by the three eigenvalues 𝜆 𝑗 whose sum is unity. While there are other ways to parametrize the421

eigenvalues [41], let us use 𝑡, 𝜏 ∈ [0, 1] defined as422

𝑡 = 𝜆1 − 𝜆2, 𝜏 = 2(𝜆2 − 𝜆3). (37)

such that423

𝜆1 =
2 + 4𝑡 + 𝜏

6
, 𝜆2 =

2 − 2𝑡 + 𝜏
6

, 𝜆3 =
1 − 𝑡 − 𝜏

3
. (38)

The NSG parameters can then be written in terms of the parameters 𝑡, 𝜏, 𝜂, 𝜉, 𝛽 by first constructing424

m according to Eqs. (7) and (8), and then substituting this construction in Eq. (4). These equations425

are given in Appendix B. A Jacobian matrix between the vector 𝑠⃗ (with five components) and426

these parameters can now be defined as the matrix of derivatives of each element with respect to427

each parameter:428

𝚫 = [(𝜕𝑡 , 𝜕𝜏 , 𝜕𝜂 , 𝜕𝜉 , 𝜕𝛽)𝑠⃗]
T. (39)

The determinant of this matrix gives a very simple expression429

Det𝚫 =
𝜕(𝑠11, 𝑠12, 𝑠21, 𝑠22, 𝑠23)

𝜕(𝑡, 𝜏, 𝜂, 𝜉, 𝛽)
=

9
16

𝑡𝜏(2𝑡 + 𝜏) sin𝜂

=
9
4
(𝜆1 − 𝜆2)(𝜆2 − 𝜆3)(𝜆1 − 𝜆3) sin𝜂. (40)



Let us refer to the set of five parameters that determine the directional wobble of the fluorophore430

as Ω⃗ = (𝑡, 𝜏, 𝜂, 𝜉, 𝛽). (Note that this is just a shorthand notation, since unlike 𝑠⃗, Ω⃗ does not431

define a meaningful vector space.) The Fisher information matrix for the parameters Ω⃗ can be432

calculated then by simply multiplying J (𝑠) by the Jacobian matrix on both sides:433

J (Ω⃗) = 𝚫†J (𝑠)𝚫. (41)

The determinant of this matrix is then related to the merit function defined earlier by434

DetJ (Ω⃗) = [ 9
16

𝑡𝜏(2𝑡 + 𝜏) sin𝜂]
2
𝑀5

5 . (42)

Note that, in the ideal case in which the five relevant PSF elements are orthonormal while the435

three associated with spin are zero (𝑀ON = 1), this matrix reduces to436

J (Ω⃗) ≈ 4
5
Ns𝑀PL𝑀MM𝚫†𝚫. (43)

The resulting expression is easily calculated but too long for reproducing here. It is worth437

mentioning that this matrix is not diagonal, implying some inherent coupling in the estimation438

between the different parameters in Ω⃗ due to their definitions, even though there was no coupling439

in the estimation between the NSG parameters.440

Assumption of symmetric wobble around a main dipole direction. Finally, let us study the441

form of the Fisher information matrix for the more restricted case corresponding to the common442

assumption (not necessarily justified physically) of uniform wobble within a cone around a main443

direction. Mathematically, this assumption implies 𝜆2 = 𝜆3, so that 𝑡 = 𝑃 = 𝛾, 𝜏 = 0, and 𝛽 is444

irrelevant. In this case we are only interested in a smaller submatrix of the Fisher information445

matrix, whose rows and columns are associated with the parameters 𝑡(= 𝑃), 𝜂 and 𝜉,446

J (𝑃,𝜂, 𝜉)
= 𝚫

†
J (𝑠)𝚫, (44)

where Δ is a 5 × 3 rectangular submatrix of the Jacobian, defined as447

𝚫 = [(𝜕𝑡 , 𝜕𝜂 , 𝜕𝜉 )𝑠⃗]
T
∣
𝑡→𝑃,𝜏→0

. (45)

In the ideal case when the PSF basis achieves orthonormality such that 𝑀ON = 1, the Fisher448

information matrix in Eq. (44) greatly simplifies to449

J (𝑃,𝜂, 𝜉) ≈ 4
5
Ns𝑀PL𝑀MM

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0

0 3𝑃2 0

0 0 3𝑃2 sin2
𝜂

⎞
⎟
⎟
⎟
⎟
⎠

. (46)

The fact that this matrix is diagonal means that there is no coupling between the parameters,450

so that the standard deviations (the inverse square roots of the diagonal elements of the Fisher451

information matrix) satisfy452

𝜎𝑃 = 𝜎𝑡 ≥

√
5

4Ns𝑀PL𝑀MM
, (47a)

𝜎𝜂 ≥
1
𝑃

√
5

12Ns𝑀PL𝑀MM
, (47b)

𝜎𝜉 ≥
1

𝑃 sin𝜂

√
5

12Ns𝑀PL𝑀MM
. (47c)



A global directional measure was defined as [17]453

𝜎Dir = 𝑃
2𝜎𝑃 sin𝜂 𝜎𝜂𝜎𝜉 . (48)

This measure remains finite over all values of the parameters, despite the fact that 𝜎𝜉 naturally454

diverges for 𝜂 → 0 and both 𝜎𝜉 and 𝜎𝜂 diverge for 𝑃 → 0. We can now see that the lower bound455

for this measure follows456

𝜎Dir ≥
5
24
√

5 (Ns𝑀PL𝑀MM)
−3/2
≈

1
2
(Ns𝑀PL𝑀MM)

−3/2. (49)

This idealized case helps motivate a definition of a merit function for the general case in which457

the PSF components are not orthonormal (and 𝑀ON is not unity) according to458

𝑀3 =
[DetJ (𝑃,𝜂, 𝜉)

]
1/3

(3𝑃2 sin𝜂)2/3
. (50)

In the ideal case discussed earlier in which the three parameters are decoupled, 𝑀3 = 1/(3𝜎Dir)
2/3.459

When 𝑀ON = 1, this measure is equivalent to 𝑀5, but as will be shown in the examples in the460

next section, 𝑀3 can be different from zero in cases when 𝑀5 vanishes. One can show that, in461

either of the limits 𝑃 → 0 or sin𝜂 → 0, 𝑀3 reduces to a finite value, although this value can462

depend on the angular parameters even for 𝑃 → 0. Note that, for the purpose of understanding463

the different factors, we can also write this merit function as a product of four factors:464

𝑀3(𝑠⃗) =
4
5
Ns 𝑀PL 𝑀ON𝑀MM, (51)

where 𝑀ON is a measure of basis orthonormality when applied to this type of situation, whose465

calculation is not direct but through solving this equation.466

6. Estimation of background and number of signal photons467

The measures just discussed are defined to account for the linear independence between the PSF468

components associated with the NSG parameters. However, the accuracy of a method will also469

depend on how different these components are to I0 and even to a constant background. Consider470

first the relation between a constant intensity background and the PSF components I𝑘 . If, as471

discussed in Sec. 3, the NA is chosen so that the detected intensity is independent of polarization,472

⟨I𝑘⟩ x,𝜎 ≈ 0 and so the PSF components are approximately orthogonal to the background in the473

limit of large 𝐼b. In the opposite limit, if there is no background, this orthogonality is clearly not474

an issue. For intermediate cases in which the weight function differs from a constant, there could475

be some slight correlations between background and I𝑘 , but these are expected to be small.476

The orthogonality between I0 and I𝑘 is not automatically guaranteed, even though it is expected477

that the inner products will not be large given that the latter PSF components contain positive and478

negative values in roughly equal amounts, while I0 ≥ 0. Note that due to their non-negativity, I0479

and 𝐼b are more significantly correlated under the inner product. This correlation can introduce480

bias in the measurements, affecting mostly the estimation of the degree of polarization 𝑃, and481

hence the level of wobbling of a molecule. This correlation can be reduced by using a window482

that is larger than the extent of I0.483

7. Examples484

In this section, we apply the formalism proposed here to two different types of measurement485

techniques. The first is a PSF engineering technique proposed recently called coordinate and486



height superresolution imaging with dithering and orientation (CHIDO) [17], which allows in487

principle full 3D polarimetry. The second is a radiometric technique consisting on separation488

into four polarization components together with segmentation of the pupil, offering more limited489

information.490

7.1. CHIDO491

This PSF-shaping technique relies on the use at the pupil plane of a stress-induced spatially-492

varying birefringent mask, referred to as a stress-engineered optic (SEO) [42] described by the493

Jones matrix494

J(u) = cos(
𝑐𝑢

2NA
)
⎛
⎜
⎝

1 0

0 1

⎞
⎟
⎠
+ i sin(

𝑐𝑢

2NA
)
⎛
⎜
⎝

cos 𝜑 − sin 𝜑

− sin 𝜑 − cos 𝜑

⎞
⎟
⎠
, (52)

where 𝑐 is a parameter proportional to the amount of stress and that determines the strength of495

the increase in birefringence with distance from the center of the pupil. This mask is followed by496

separation into two circular polarization channels: p𝜎 = (1, 𝜎i)T/
√

2 for 𝜎 = ±1.497

Figure 4(a) shows 𝑀8, 𝑀5, and 𝑀3 for one signal photon, averaged over all the valid values of 𝑠⃗498

for each case (through Monte Carlo estimation of the integrals by using 500 values), for different499

values of 𝑐 and 𝐼b. The standard deviations of each measure are also shown. For sufficiently low500

background, all three merit functions peak at 𝑐 ≈ 2𝜋. However, as the background grows, the501

curves drop and tilt, and ultimately 𝑀5 and 𝑀3 peak at around 𝑐 ≈ 0.5𝜋, which is also one of502

the main peaks of 𝑀8 except that this merit function takes slightly higher values at 𝑐 = 0 (no503

SEO). This last peak for 𝑀8 is due to the fact that, in the absence of a birefringent mask, the504

spin components are easier to estimate than the remaining NSG parameters given the circular505

polarization channel splitting. As the background grows further, the curves maintain their general506

shape but simply scale down approximately inversely proportionally to 𝐼b. Note that the standard507

deviations for 𝑀8 and 𝑀5 tend to zero as the background grows, since the dependence of these508

functions of the NSG parameters decreases; this not the case, though, for 𝑀3.509

The reason why larger/smaller values of 𝑐 are preferable in the presence of smaller/larger510

background can be visualized from Fig. 4(b), which shows 𝑀PL, 𝑀ON and 𝑀MM for the two511

extreme cases in (a): no background, and a strong background equal to four times the peak512

value of I0 without SEO. Since we assumed small pixels and we are using polarization splitting,513

𝑀MM is essentially unity in both cases. Similarly, the shape of 𝑀ON does not change much with514

background and the main peak is for 𝑐 between 2𝜋 and 2.5𝜋, for which the modification of the515

field distribution at the pupil by the SEO makes the PSF components I𝑘 sufficiently different, at516

the cost of spreading them spatially. The factor that changes more importantly with background517

is 𝑀PL, which not only drops with growing background, but for a given non-zero background it518

decreases with 𝑐 due to the dilution of the photons over more pixels. The PSF basis I𝑘 over the519

two polarization channels is shown in Fig. 4(c) for 𝑐 = 𝜋/2 and 𝑐 = 2𝜋, and the corresponding520

elements of the Fisher information matrix for these values of 𝑐 in the absence of background and521

for a fully unpolarized dipole (𝑃 = 0) are represented in Fig. 4(d). We see that the PSFs become522

considerably larger for larger 𝑐 and this causes a drop in 𝑀PL, but in the absence of background,523

the more complex structure of the components I𝑘 allows getting closer to orthonormality.524

7.2. Pupil splitting radiometric525

We now consider what is called a radiometric approach, in which the total intensity in each526

channel is integrated, and hence the estimation is based only on the ratios of a small number527

of measurement intensities (making the data analysis computationally simple). In fluorescence528

microscopy, this approach relies on splitting the pupil into different channels in order to estimate529

the off-plane angle 𝜂, in combination with linear polarization projections for estimating the530
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Fig. 4. (a) Averages (solid lines) and standard deviations (pale color bands) for the
measures 𝑀8, 𝑀5 and 𝑀3 in terms of the stress-birefringence parameter 𝑐, for several
levels of background 𝐼b indicated on the right in units of the maximum of the PSF
component I0 for 𝑐 = 0 (no birefringence) times the number of signal photons. (b)
Averages (solid and dashed lines) and standard deviations (pale color bands) for the
measures of pixel localization 𝑀PL, orthonormality 𝑀ON, and monomodality 𝑀MM, in
terms of the stress-birefringence parameter 𝑐, for the two extreme cases of background
intensity 𝐼b in part (a): no background (solid lines) and 4 times the peak intensity
(dashed lines). (c) PSF basis over both polarization channels for 𝑐 = 𝜋/2 (top two rows)
and 𝑐 = 2𝜋 (bottom two rows), where the shown areas represent a square in object space
of length 1.2𝜆. Note that each case was normalized to its maximum and minimum
values; the PSFs for 𝑐 = 2𝜋 would be considerably fainter than those for 𝑐 = 𝜋/2 due
to the larger area they occupy. (d) Elements of the Fisher matrix for 𝑐 = 𝜋/2 (left),
and 𝑐 = 2𝜋 (right), both for 𝑠⃗ = 0⃗ and 𝐼b = 0, and where each was normalized to its
maximum.



in-plane angle 𝜉. Techniques of this type have been proposed that employ three [23, 24] or531

four [12] channels. Here, we explore a version of this approach that is a combination of these prior532

versions, as illustrated in Fig. 5(a): the pupil is split into two channels through an annular mirror,533

the central part having a radius NAc, and the outer annular region extending up to NA = 𝑛0.534

The central channel is subsequently split into two linear polarization channels, corresponding535

to horizontal and vertical polarizations, while the outer annular channel is split into two linear536

polarization channels for polarizations at ±45○. The light captured by these four channels is537

integrated into four “pixels” that compose the PSF.538

Given this reduced number of pixels, it is not possible to recover information about all five539

NSG parameters required for characterizing general wobbling linear dipoles: only 𝑠11, 𝑠12 and 𝑠23540

can be estimated, as shown in Figs. 5(b) and (c). This means that 𝑀8 = 𝑀5 = 0. Nevertheless, 𝑀3541

can differ from zero, so that if we make the assumption of linear dipoles wobbling symmetrically542

around a main direction (𝜆2 = 𝜆3), it is possible to estimate the parameters 𝜂, 𝜉 and 𝑃 = 𝛾, albeit543

with a sign ambiguity for the off-plane angle [12] (as can be seen from the equations in Appendix544

B for 𝑠11, 𝑠12 and 𝑠23 with 𝜏 = 0). Figure 5(d) shows plots of the average and standard deviation545

of 𝑀3 as functions of the cutoff numerical aperture NAc under different levels of background546

intensity (expressed in fractions of the average signal intensity per pixel). In this case we see that547

the merit function peaks at NAc ≈ 0.8𝑛0 regardless of background. This is because for this value548

of the cutoff NA, I12 is significant and approximately orthogonal to I0 as shown in Fig. 5(b),549

where we can also see that the only two other nonzero PSF elements, I11 and I23, are orthogonal550

to each other and to both I0 and I12. Note also that 𝑀3 drops to zero in the limiting cases when551

NAc goes to zero or 𝑛0, since in this case we only have two channels. The values of the relevant552

elements of the resulting Fisher information matrix are shown in Fig. 5(c) for the case of a fully553

wobbling dipole (𝑃 = 0) in the absence of background intensity. Figure 5(e) shows the factors554

contributing to 𝑀3. Note in particular that 𝑀MM ≈ 0.3, which is considerably smaller than unity555

despite the use of polarization splitting, given the radiometric nature of this approach in which556

the light in each channel is integrated (so that the pixels are “large”).557

8. Concluding remarks558

We studied the characterization of the 3D state of polarization of a localized source, such as a559

fluorophore or a sub-wavelength scatterer, by using a high NA optical system. This work is based560

on the use of the eight NSG parameters, which are generalizations of the Stokes parameters in 2D561

polarization, to characterize the second moment matrix even if spin is present. For convenience,562

we chose the conditions under which the detected power is independent of the orientation of the563

polarization state, which for a standard microscope corresponds approximately to using an NA564

equal to the refractive index of the embedding medium. Based on the Fisher information matrix,565

we proposed definitions of merit functions that quantify the ability to measure the second moment566

matrix in several specific situations: full 3D polarimetry (including spin), general wobbling linear567

fluorophores, and linear fluorophores assumed to wobble symmetrically around a main direction.568

In all cases, we provided an analysis of the factors that contribute to these merit functions, which569

include the level of orthonormality of the PSF elements, the concentration of the measurement570

into a small set of pixels, and the coupling of each detector pixel to a specific polarization state.571

An important conceptual aspect of the analysis presented here comes from the relation in572

Eqs. (22) and its generalization in (23). These relations can be interpreted in terms of the573

reversibility of light. We can imagine a situation in which light emerges from each pixel of574

the detector and travels towards the fluorophore. By the time it gets there it will have a 3D575

polarization specified by normalized Stokes-Gell-Mann parameters proportional to I𝑘 . This576

allows understanding which polarization components couple naturally to each detector pixel. A577

good measurement is then one in which we get a well-balanced coupling of all polarizations that578

are relevant to the measurement, so we can sacrifice sensitivity to some polarization states (for579
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Fig. 5. (a) Schematic of the radiometric technique: splitting of the BFP into two
orthogonal linearly polarized channels at the detector (DET), namely, 0 and 90○ for the
inner section (low NA), and ±45○ for the outer annulus (high NA). (b) Stokes basis
and (c) Fisher information matrix for 𝑠⃗ = 0⃗ and NAc = 0.8𝑛0. (d) Average (solid lines)
and standard deviation (pale color bands) for the measure 𝑀3 in terms of the cutoff
numerical aperture, for several levels of background 𝐼b indicated on the right in units of
the average signal intensity per pixel. (e) Averages (solid and dashed lines) and standard
deviations (pale color bands) for the measures of pixel localization 𝑀PL, orthonormality
𝑀ON, and monomodality 𝑀MM, in terms of the cutoff numerical aperture, for the two
extreme cases of background intensity 𝐼b in part (d): no background (solid lines) and 4
times the average signal intensity (dashed lines).

example, those with spin) in order to boost the ability to measure others (e.g. linear polarizations).580

We illustrated the use of these merit functions in the design of measurement systems by581

considering two examples, a system capable of measuring all eight NSG parameters and one582

specific to linear dipoles wobbling with axially-symmetric statistics. In both cases, a physical583

parameter of the system can be optimized based on the merit functions, although the optimal584

value can depend on the level of background.585

Note that the spatial localization of the sources was not discussed here. In applications like586

SMOLM, this localization must be estimated jointly with the 3D polarization, which would587

imply using the determinant of the Fisher information matrix for all parameters, including the588

three spatial variables. While the estimation of position and direction are often intrinsically589

coupled [43], basic estimates of the bounds to these measures can be obtained by considering them590

separately [21], and techniques have been proposed that allow the estimation of the localization591

without precise knowledge of direction/polarization [17].592

Appendix A: Power dependence on polar orientation593

When the numerical aperture is chosen at the limit with SAF, namely NA = 𝑛0, the expressions for594

the captured powers for a transverse and a longitudinal dipole can be simplified to the following595



expressions:596

Φ⊥ =
16𝜋𝛼 (3𝜈4 + 2) 𝜈5

𝑎7𝑏4 +
16𝜋𝜈

15𝑎6𝑏4 [(𝜈 − 1)(6𝜈10
+ 6𝜈9

+ 19𝜈8
− 21𝜈7

+ 47𝜈6
+ 26𝜈5

+ 32𝜈4
− 26𝜈3

− 6𝜈2
− 4𝜈 − 4)

− 𝑏 (6𝜈10
+ 𝜈8
+ 58𝜈6

− 2𝜈4
+ 11𝜈2

+ 1) ], (53a)

Φ𝑧 =
32𝜋𝛼𝜈7 (𝜈4 − 2𝜈2 + 2)

𝑎7𝑏4 −
32𝜋𝜈3

3𝑎6𝑏4 [(𝜈 − 1)𝜈2
(𝜈6
+ 𝜈5
− 𝜈4
− 10𝜈3

+ 4𝜈 + 2) − 𝑏(𝜈8
− 6𝜈6

+ 6𝜈4
− 3𝜈2

− 1)], (53b)

where 𝜈 = 𝑛1/𝑛0, 𝛼 = arctanh (
√
𝜈4−1
𝜈2 ) − arctanh ( 𝜈

2−1
𝜈3+1

√
𝜈2 + 1), 𝑎 =

√
𝜈2 + 1, and 𝑏 =

√
𝜈2 − 1.597

These two captured powers can be shown to agree when 𝜈 ≈ 1.33.598

Appendix B: NSG parameters in terms of fluorophore orientation parameters599

The five relevant NSG parameters for a spinless dipole such as a wobbling fluorophore can be600

written in terms of the orientation angles 𝜂, 𝜉, 𝛽 and the eigenvalues 𝜆𝑖 through the combinations601

𝛾 = 𝜆1 − (𝜆2 + 𝜆3)/2 and 𝜏 = 2(𝜆2 − 𝜆3) as602

𝑠11 =

√
3

16
{[𝜏(cos 2𝜂 + 3) cos 2𝛽 + 4𝛾 sin2

𝜂] cos 2𝜉 − 4𝜏 cos𝜂 sin 2𝛽 sin 2𝜉} , (54a)

𝑠12 = −
1
8
[3𝜏 sin2

𝜂 cos 2𝛽 + 𝛾(3 cos 2𝜂 + 1)] , (54b)

𝑠21 =

√
3

4
[(2𝛾 − 𝜏 cos 2𝛽) cos𝜂 sin 𝜉 − 2𝜏 cos 𝛽 sin 𝛽 cos 𝜉] sin𝜂, (54c)

𝑠22 =

√
3

4
[(2𝛾 − 𝜏 cos 2𝛽) cos𝜂 cos 𝜉 + 𝜏 sin 𝜉 sin 2𝛽] sin𝜂, (54d)

𝑠23 =

√
3

16
{4𝜏 cos𝜂 cos 2𝜉 sin 2𝛽 + [𝜏(cos 2𝜂 + 3) cos 2𝛽 + 4𝛾 sin2

𝜂] sin 2𝜉} . (54e)

Interestingly, in the non-wobbling limit corresponding to 𝛾 = 1 and 𝜏 = 0, these parameters turn603

out to be linked to spherical harmonics with first index ℓ = 2:604

𝑠11 =

√
3

2
sin2

𝜂 cos 2𝜉 = 2
√

2𝜋
5

Re[𝑌2,2(𝜂, 𝜉)], (55a)

𝑠12 = −
1
4
(3 cos 2𝜂 + 1) = 2

√
𝜋

5
𝑌2,0(𝜂, 𝜉), (55b)

𝑠21 =

√
3

2
sin 2𝜂 sin 𝜉 = −2

√
2𝜋
5

Im[𝑌2,1(𝜂, 𝜉)], (55c)

𝑠22 =

√
3

2
sin 2𝜂 cos 𝜉 = −2

√
2𝜋
5

Re[𝑌2,1(𝜂, 𝜉)], (55d)

𝑠23 =

√
3

2
sin2

𝜂 sin 2𝜉 = 2
√

2𝜋
5

Im[𝑌2,2(𝜂, 𝜉)]. (55e)

Let us now consider the situation of a wobbling fluorescent dipole within an angular distribution605

function 𝑓 (𝜃, 𝜙) where (𝜃, 𝜙) give the orientation of the dipole in the (𝑥, 𝑦, 𝑧) frame during the606

averaging detection time. The new NSG parameters become the average of the fixed-dipole607



parameters, due to the linear relation between the contributions of all dipoles contributing to the608

fluorescence signal:609

𝑠11 = 2
√

2𝜋
5 ∫ ∫

Re[𝑌2,2(𝜃, 𝜙)] 𝑓 (𝜃, 𝜙) sin 𝜃𝑑𝜃𝑑𝜙, (56a)

𝑠12 = 2
√

𝜋

5 ∫ ∫
𝑌2,0(𝜃, 𝜙) 𝑓 (𝜃, 𝜙) sin 𝜃𝑑𝜃𝑑𝜙, (56b)

𝑠21 = −2
√

2𝜋
5 ∫ ∫

Im[𝑌2,1(𝜃, 𝜙)] 𝑓 (𝜃, 𝜙) sin 𝜃𝑑𝜃𝑑𝜙, (56c)

𝑠22 = −2
√

2𝜋
5 ∫ ∫

Re[𝑌2,1(𝜃, 𝜙)] 𝑓 (𝜃, 𝜙) sin 𝜃𝑑𝜃𝑑𝜙, (56d)

𝑠23 = 2
√

2𝜋
5 ∫ ∫

Im[𝑌2,2(𝜃, 𝜙)] 𝑓 (𝜃, 𝜙) sin 𝜃𝑑𝜃𝑑𝜙. (56e)

Assuming a decomposition of the distribution function on spherical harmonics 𝑓 (𝜃, 𝜙) =610

∑𝑙,𝑚 𝑓𝑙,𝑚𝑌𝑙,𝑚(𝜃, 𝜙) with −𝑙 ≤ 𝑚 ≤ 𝑙. these expressions, by orthogonality of the spherical611

harmonics, become:612

𝑠11 = 2
√

2𝜋
5

Re[ 𝑓2,2], (57a)

𝑠12 = 2
√

𝜋

5
𝑓2,0, (57b)

𝑠21 = −2
√

2𝜋
5

Im[ 𝑓2,1], (57c)

𝑠22 = −2
√

2𝜋
5

Re[ 𝑓2,1], (57d)

𝑠23 = 2
√

2𝜋
5

Im[ 𝑓2,2]. (57e)

As a consequence, the only accessible information of the wobbling distribution function of the613

molecule is limited to its second order terms (𝑙 = 2,−2 ≤ 𝑚 ≤ 2). The terms 𝑓𝑙=2,𝑚 (and hence614

the NSG parameters) can be expressed easily supposing a distribution of cylindrical symmetry615

along 𝑧 written as ∑𝑙 𝑓𝑙,0𝑌𝑙,0(𝜃, 𝜙) (with here only 𝑙 = 2 pertinent), rotated by the angles (𝜂, 𝜉).616

This rotation uses the Wigner D-matrix elements 𝐷𝑙
𝑚′ ,𝑚(𝜂, 𝜉):617

𝑅𝑜𝑡(𝜂, 𝜉)(𝑌𝑙,𝑚=0(𝜃, 𝜙)) =
𝑙

∑
𝑚′=−𝑙

𝐷𝑙
𝑚′ ,𝑚=0(𝜂, 𝜉)𝑌𝑙,𝑚′(𝜃, 𝜙) (58)

Therefore :618

𝑓𝑙,𝑚 = 𝑓𝑙,0 𝐷
𝑙
𝑚,0(𝜂, 𝜉). (59)

𝐷𝑙
𝑚,0(𝜂, 𝜉) is related to the associated Legendre polynomials functions 𝑃𝑚

𝑙 with:619

𝐷𝑙
𝑚,0(𝜂, 𝜉) =

¿
Á
ÁÀ(𝑙 −𝑚)!
(𝑙 +𝑚)!

𝑃𝑚
𝑙 (cos𝜂) exp(−𝑖𝑚𝜉) (60)

As a consequence, each NSG parameter can be written as a product of functions involving three620

independent variables ( 𝑓𝑙,0, 𝜂, 𝜉), proportional to:621

𝑓𝑙=2,𝑚 = 𝑓2,0

¿
Á
ÁÀ(2 −𝑚)!
(2 +𝑚)!

𝑃𝑚
2 (cos𝜂) exp(−𝑖𝑚𝜉) (61)



with : 𝑚 = 2 for 𝑠11 ∝ Re(f2,2) and 𝑠23 ∝ Im(f2,2), 𝑚 = 0 for 𝑠12 ∝ 𝑅𝑒( 𝑓2,0), 𝑚 = 1 for622

𝑠21 ∝ Im(f2,1) and 𝑠22 ∝ Re(f2,1). This expression emphasizes the effect of wobbling on the623

norm of the Stokes vector 𝑃 = ∣𝑠⃗∣. Since all of the NSG parameters are proportional to 𝑓2,0, this624

(𝑙 = 2, 𝑚 = 0) term of the spherical decomposition of the distribution function is the determinant625

factor quantifying wobbling. This term, which is nothing else than the order parameter of the626

distribution function to the order 2, is expressed as:627

𝑓2,0 = ∫ ∫ 𝑌2,0(𝜃, 𝜙) 𝑓 (𝜃, 𝜙) sin 𝜃𝑑𝜃𝑑𝜙, (62)

with 𝑌2,0(𝜃, 𝜙) =
1
4

√
5
𝜋
(2 cos2 𝜃 −1). In the case where 𝑓 (𝜃, 𝜙) is a symmetric cone distribution628

of width 𝛿, this wobbling factor is equal to 𝑓2,0 = 2(cos3 𝛿
2 − cos 𝛿

2 ), which can be related to the629

eigenvalue of the moment matrix defined in [28].630
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