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Abstract

Reducing CO2 emissions requires urgently deploying large-scale carbon capture tech-

nologies, amongst other strategies. The quest for optimum technologies is a multi-

objective problem involving various stakeholders. Today’s research follows a sequential

approach, with chemists focusing first on material design and engineers subsequently

seeking the optimal process. Eventually, this combination of materials and processes

should operate at a scale that significantly impacts the economy and the environment.

Understanding these impacts requires assessing factors such as greenhouse gas emis-

sions over the lifetime of the capture plant, which usually constitutes one of the fi-

nal steps. In this work, we present the PrISMa (Process-Informed design of tailor-

made Sorbent Materials) platform, which seamlessly connects materials, process de-

sign, techno-economics, and life-cycle assessment. We compare over sixty Case Studies

in which CO2 is captured from different sources in five world regions with different

technologies. These studies demonstrate how the platform simultaneously informs var-

ious stakeholders: identifying the most cost-effective technology and optimal process

configuration, revealing the molecular characteristics of top-performing sorbents, deter-

mining the best locations, and informing on environmental impacts, co-benefits, and

trade-offs. Our platform brings together all stakeholders at an early stage of research,

which is essential to accelerate innovations at a time when they are most needed.

Introduction

We must prepare for a net-zero greenhouse gas emissions world where we cannot allow

anthropogenic CO2 to escape into the atmosphere.1 In this world, we need to connect all

kinds of sources of CO2 (e.g., industries or waste incineration) with CO2 sinks (e.g., geological

storage or chemical industry). We must identify the optimal technology to capture the

CO2 at the source’s conditions and deliver the CO2 at the targeted sink’s specifications.

Importantly, the slow implementation of carbon capture in the last decades2 has taught us

that the optimal capture technology for each sink and source depends on the specific social,
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economic, and regional context. Thus, the CO2 capture challenge cannot be expected to be

solved by a “one-solution-fits-all” approach.

As an alternative, this work explores tailor-made capture technologies. Solid adsorbent-

based carbon capture has the potential to take advantage of modern, reticular chemistry to

synthesize millions of possible adsorbents.3 Indeed, chemists have synthesized about 100,000

novel metal-organic frameworks (MOFs) by combining organic linkers with metal nodes.4,5

Yet, to fully explore the potential of this technology, we need to go beyond the conventional

sequential, time-consuming trial-and-error approach. Computational groups explored mate-

rial genomics as a first step to speed up the discovery process.6–9 Materials are generated

in silico, and molecular simulations predict their adsorption properties.6 While these predic-

tions are sound, the impact has been limited. The main reason is that these studies assume

that the performance of a material in a capture process can be evaluated with a single or a

few basic material adsorption properties (e.g., Henry selectivity or CO2 capacity). In prac-

tice, the optimal material choice depends on the specifics of the process, scale-up, location

attributes, and Life Cycle Assessment (LCA).10–18 Due to a lack of such a system-level con-

textualization, materials discovery has often failed to engage the views of all stakeholders

involved (see Extended Data Figure 1). To evaluate the overall performance of materials, one

needs a holistic approach, which links material properties to the process design and Techno-

Economic Analysis (TEA). Finally, a LCA evaluates environmental impacts beyond climate

change and ensures that we do not emit more Specific carbon dioxide emissions (CO2-eq.

) than what we produce in building and operating the capture plant over its lifetime.19

The entire life cycle captures here not only the operation of the capture plant but also its

construction and disposal as well as the material synthesis and disposal.

The needed reconciliation of the views of the various stakeholders motivated our PrISMa

(Process-Informed design of tailor-made Sorbent Materials) platform, where we seamlessly

link quantum calculations, molecular simulations, process design, TEA, and LCA. Based on

the crystal structure of a sorbent material, we evaluate its performance for a specific carbon
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capture process, connecting a CO2 source with a CO2 sink in a region of the world, using a

total of 50 Key Performance Indicators (KPIs).

The PrISMa platform for carbon capture

The PrISMa platform allows for the interrogation and high-throughput screening of materials

for a given carbon capture Case Study. Such Case Study is defined by the CO2 source,

the destination of the CO2 (sink), the capture technology, the available utilities, and the

geographical region (see Extended Data Table 1a).

At the Materials layer, we use available experimental data or the material’s crystal struc-

ture to predict the adsorption thermodynamics of the main components of the flue gas (i.e.,

CO2, N2, and H2O) using molecular simulations. This thermodynamic data for over a thou-

sand materials, together with process and equipment data, is the input for the Process layer.

We compute process performance parameters at this layer, such as purity, recovery, produc-

tivity, and energy requirements. In the TEA layer, the economic and technical viability of

the capture plant is assessed. Next, the LCA layer evaluates the environmental impacts of

the carbon capture plant over its entire lifetime. By following this holistic approach, the

platform identifies sets of top-performing materials. These structures can then be funneled

to follow-up studies, where more detailed process models will be used and specific aspects

(e.g., sorbents durability, manufacturing) investigated to bring up the technology to pilot

and demonstration scale.

Informing stakeholders’ perspectives

The modular structure of the PrISMa platform enables us to consider the perspectives of

the different stakeholders (see Extended Data Figure 1). We compute a list of 50 KPIs

(see Supplementary Information Table S5) for any combination of source, sink, technology,

utilities, and region shown in Extended Data Table 1a. We carried out a Spearman analysis
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Figure 1| The PrISMa platform screens solid sorbents for CO2 capture applications.
The platform evaluates the performance of each adsorbent from material to LCA layer. (a)
The four layers link life-cycle assessment (LCA), techno-economic analysis (TEA), process
evaluation, and material characterization, and (b) the data flowchart in each layer. A detailed
description of the methods used in each layer can be found in Supplementary Information
Section 3.
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of KPIs in each layer of the platform to identify a set of six reference KPIs (see Extended

Data Table 1b) that encapsulate the most important trends (see Extended Data Figure 2).

In the remainder, we refer mainly to these reference KPIs. Our interactive visualization tool

can access all other KPIs for all Case Studies and over 1200 materials.20

To illustrate the use of the platform, let us first focus on one Case Study: capturing CO2

using a Temperature Vacuum Swing Adsorption (TVSA) process (with a vacuum pressure

of 0.6 bar) from a cement plant located in the United Kingdom (UK). In this study, the

captured CO2 is compressed and sent for geological storage. In Figure 2, we compare the

performance of the materials for some selected KPIs with the Mono-Ethanol-Amine (MEA)

benchmark21 (see Supplementary Information Section 4); many materials outperform the

benchmark for the different process, TEA, and LCA KPIs.

The Net Carbon Avoidance Cost (nCAC) is the KPI that quantifies the cost of avoiding

CO2 emissions into the atmosphere over the life cycle of the plant, and it is deemed to be

the most appropriate metric to make a first selection of the most promising materials for a

given application. The nCAC is not the only criterion, and evaluating materials across all

KPIs and from all stakeholders’ perspectives is important. For such an evaluation, we rank

all materials for the reference KPIs. Figure 3 highlights the top-performing materials for a

given KPI, together with their ranking on the other KPIs across the different layers of the

platform. The comparison of the material rankings in Figure 3 illustrates the complexity of

selecting an optimal material for a given carbon capture application; the top 10 materials

for a given KPI do not necessarily perform well for the other KPIs. The holistic PrISMa

approach allows for extracting relevant information for all stakeholders, as illustrated in the

following sections.

The engineer’s perspective: The engineer must identify and design the best technology

for a separation process. In Figure 4a, we compare the nCAC of the 20 top-performing

materials for the three process configurations, and for three CO2 sources. For all three
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Figure 2| Materials performance for a TVSA carbon capture process at 0.6 bar

added to a cement plant in the UK. Dotted lines in (a), (c), and (d) show the MEA
benchmark (see Supplementary Information Section 4), in (b) the vertical orange dotted line
gives the purity required for geological storage (>96%), and in (a) the blue shaded area gives
the uncertainty. Each dot represents the corresponding KPI of a material. (a) Net Carbon
Avoidance Cost (nCAC) versus recovery (R) with color coding the specific electrical energy
consumption, (b) nCAC versus purity (Pu) with color coding the specific thermal energy
consumption, (c) Specific thermal energy consumption for heating versus productivity (P)
with color coding the recovery, and (d) Material Resources: Metals/Minerals (MR:MM)
versus Climate Change (CC) with color coding the nCAC. Our visualization tool20 gives an
interactive version of this graph.
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Figure 3| Comparison of materials ranking for a TVSA carbon capture process
at 0.6 bar added to a cement plant in the UK. Rankings according to Henry selectivity
(S), purity (Pu), productivity (P), Net Carbon Avoidance Cost (nCAC), Climate Change
(CC), and Material Resources: Metals/Minerals (MR:MM) for a Temperature Vacuum Swing
Adsorption carbon capture process added to a cement plant in the UK. In these graphs, the
top-performing material is ranked number one. Colored lines represent the top 10 performers
for the six reference KPIs. The same color is used to highlight the KPI of interest. Every
line illustrates how the ranking of a specific material (y-axis) changes across all other KPIs
(x-axis). Our visualization tool20 gives an interactive version of this graph.
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Figure 4| Comparison of process configurations and regions. This analysis of the
stakeholders’ perspectives focuses on the 20 materials with the lowest Net Carbon Avoidance
Cost (nCAC). In these violin plots, the white circle gives the median, which we use as
a (conservative) estimate of the performance. The bottom of the violin represents a few
materials with an even better performance. The width indicates the number of structures
with a particular y-value, and the thick black bar contains 50% of the structures. (a)
the Net Carbon Avoidance Cost (nCAC) jointly with the MEA benchmark (black dashed
lines) and (b) purity for three CO2 sources depending on the technologies (temperature
swing adsorption (TSA) and vacuum swing adsorption (TVSA) with two vacuum levels
0.2 bar and 0.6 bar) jointly with the required purity of the CO2 sink (red dashed line), the
five regions’ (c) Climate Change (CC) and (d) effective recovery, respectively. (e) Carbon
Capture Cost (CCC) and (f) the Net Carbon Avoidance Cost (nCAC) for the five regions.
See Supplementary Information Section 8 for the data.
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technologies, we find materials that outperform the benchmark for coal and cement. For

cases with a low CO2 concentration in the feed stream (e.g., Natural Gas Combined Cycle

(NGCC) power plants), the vacuum step in the process configuration reduces the cost, but

no materials are identified with a lower nCAC than the MEA benchmark.

The vacuum step increases the purity of the product stream. This increase is achieved

by rapidly purging the weakly-adsorbed components from the column’s gas phase after the

adsorption step but at the expense of a lower recovery than a TSA process.

Figure 4b shows that with the vacuum step, most materials in the top 20 exceed the

96% purity, while for TSA, only a few materials meet this requirement for geological storage.

Therefore, we focus the remainder on operating TVSA with 0.6 bar for the cement and coal

and on the TVSA with 0.2 bar for the NGCC.

Many more materials meet the purity requirement after optimization (Supplementary

Note 10.3.3). Optimization lowers the nCAC by about 7et−1
CO2

(ca. 10%) and reduces the

differences between the various process configurations. Importantly, we see that the ranking

of the top-performing materials is not impacted significantly, which justifies the discussion

of the non-optimized results in the remainder of this work.

The environmental manager’s perspective: Running a carbon capture plant inher-

ently produces emissions of CO2 and other greenhouse gasses due to an increased demand

for energy and materials. The environmental manager aims to maximize the captured CO2

while simultaneously minimizing these associated CO2-eq. emissions and other possible en-

vironmental impacts.

From this perspective, we are most interested in the cumulative quantity of CO2-eq.

avoided over the plant’s lifetime. To address this, the effective recovery (see Figure 4d)

adjusts the process recovery for the CO2-eq. emissions associated with building and operating

the carbon capture plant as calculated within the Climate Change KPI. For some materials,

we find a CC > 1 (see Extended Data Figure 3a). A capture process with these materials will
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emit more CO2-eq. over the plant’s lifetime than the total amount of CO2 that is captured.

Interestingly, some of these materials rank high in other KPIs (e.g., Henry selectivity). There

can be various reasons why using such materials can result in a high impact on climate

change. For instance, some of them have a very low CO2 working capacity, leading to a huge

material and energy demand per mass of CO2 captured; others, even with comparatively

good working capacities and moderate heat demands, contain metals like gold or rhodium.

For these materials, the environmental impact of their synthesis phase is so large that it

leads to values of CC higher than one. These findings again highlight the importance of

obtaining insights into all aspects of the capture process.

An important environmental KPI is the Material Resources: Metals/Minerals, which

indicates the use of minerals and metals resources over the entire life-cycle of the plant. In

Extended Data Figure 4, we compare the ranking of materials based on their constituent

metals, focusing on some abundant metals (Mg, Zn, and Mn) and rare metals (Co, Lu, and

Ag). The MR:MM ranking will be poorer if a greater amount of the corresponding MOF

is required to remove a unit of CO2 or if the total energy demand is higher. The abundant

metals rank better, while the rank drops for the rare metals. All metals spread across the

entire materials, process, and economic KPIs rankings, which implies that the type of metal

is not the sole determining factor in a capture process. If a MOF scores poorly on MR:MM,

it may inspire chemists to explore similar structures with more abundant metals.

Another important factor in the MOF synthesis is the solvent selection. The PrISMa

platform identifies the greenest solvent from a list of candidates commonly employed in

practice. Anticipated environmental hot spots related to solvent selection are pinpointed in

Supplementary Information Section 8.2.3.

The platform provides additional KPIs related to the process’s environmental impacts

(see Extended Data Figure 3b). These KPIs include the impact on the ecosystem quality,

human health, and the use of resources (land, water, materials, and non-renewable energy)

and allow us to flag materials that impact the environment.
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The CO2 producer’s perspective: A CO2 producer aims to find the most cost-efficient

capture technology to deploy in a specific plant. For example, the host plant might offer

utilities that can be integrated into the capture process, and the platform can guide the

decision on whether such an integration reduces costs.

For example, a cement producer can choose different utilities, but this decision depends

on the impact on the plant’s environmental footprint and cost. Such analysis was conducted

for Switzerland, where the CO2-eq. emissions can be reduced using electric boilers instead

of natural gas-fired ones to supply the heat demand. This replacement significantly reduces

the Climate Change because of the low carbon intensity of its electricity grid and results

in an almost 100% effective recovery. This improvement comes, however, at the expense of

an increase in cost by about 15et−1
CO2

(ca. 20%) due to the high plant operating costs in

Switzerland (see Supplementary Information Section 8.2).

The investor’s perspective: If one needs to perform large-scale carbon capture tomor-

row, the default choice is often the well-established MEA technology. However, our platform

shows that solid sorbent-based capture processes can outperform the MEA benchmark. The

cost reductions increase with CO2 concentration, and for cement, the nCAC is about a factor

two lower than the benchmark. These conclusions should be an important incentive to invest

in further developing these technologies.

Investors are also interested in understanding the economics of deploying carbon capture

plants in different parts of the globe so they can reduce the risk of their investment. The large

cost differences and electricity grid characteristics will make specific regions economically

more beneficial than others. Figure 4e highlight this region-dependency for the Carbon

Capture Cost (CCC). For the cement case, regional electricity and natural gas costs are low

in the US, which makes it favorable in CCC, while it is highest in Switzerland. The region-

dependency of coal costs is rather small, whereas, for natural gas, it is more substantial.
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However, the CCC does not account for the indirect emissions associated with operating

the carbon capture plant and the product loss (e.g., electricity). The Net Carbon Avoidance

Cost (nCAC) corrects the system-based CCC by the Climate Change (CC) (see Figure 4d).

The largest impact is observed for the NGCC case. The high CO2-eq. emissions of the

electricity grid due to the many coal power plants in China, particularly in the Shandong

province, lead to the highest nCAC. In contrast, Switzerland has the lowest because its grid is

dominated by hydroelectricity. The low energy cost and CO2-eq. emissions of the electricity

grid mix make the US beneficial for coal and cement.

The chemist’s perspective: The route from the first synthesis of a new material to its

implementation into a commercial process can take many years. It is, therefore, impor-

tant to provide some guidance at the very early material’s design stage on how molecular

characteristics impact the material’s performance.

An interesting practical question is whether one can synthesize materials that work well

for any CO2 source. Extended Data Figure 5(a) compares the nCAC ranking for NGCC and

coal power plants and the cement plant. We observe a very significant change in ranking if

we go from the NGCC to the coal power plant. If we move from the coal to the cement plant,

the changes in the rankings are smaller but still considerable. This clearly indicates the need

for tailored materials for different capture applications (see Supplementary Note 8.5.1 for

more details).

In our model, we focus on wet flue gasses. Extended Data Figure 5(b) shows the in-

crease in nCAC versus operation with dry flue gasses, and Extended Data Figure 5(a) how

that performance is linked to materials’ properties. An increasing value of α, i.e., water

penetration in the bed, substantially increases cost, with exponential trends after a certain

threshold value. For cement, the increase in nCAC is at least 4.2et−1
CO2

(7%), and the im-

pact of wet operation is amplified to as much as almost 23.4et−1
CO2

(20%) for NGCC. This

highlights the greater need to manage moisture at lower feed CO2 partial pressures to en-
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sure a cost-competitive process. In Supplementary Note 9, we also discuss the limits of our

(ideal) model. Under non-ideal mass transfer conditions, about 60–70% of the materials still

remain within top performers. However, for materials with very high water affinity (e.g.,

zeolite 13X), moisture slippage into the dry part of the bed can undermine their capacity,

which may shift their ranking quite significantly.

Screening over a thousand materials allows us to apply data-driven methods to identify

the molecular characteristics of the top-performing materials. For cement, we show that

by retaining the descriptor related to the pore geometry (i.e., persistence images), we can

accurately predict whether a material has a lower nCAC than the MEA benchmark (see

Supplementary Information Section 8.5.3). These persistence images also rank the impor-

tance of each atom in these predictions. The collection of these atoms characterizes the

molecular features that define the adsorbaphore.22 A common theme in the materials that

outperform MEA is a geometrical rod of metal atoms (highlighted in Extended Data Fig-

ure 8). These features are often correlated with stacked delocalized systems (aromatic rings)

with a separation of 6Å to 11Å (see also Figure S62).

Extending the chemical design space

The more top-performing materials we identify, the higher the chances some materials make

it to the next Technological Readiness Level (TRL). The material layer uses state-of-the-

art Density Functional Theory (DFT) and molecular simulations to predict the materials’

properties in the PrISMa database. These predictions require significant CPU resources but

are accurate and give data that can be used for all possible Case Studies. This approach,

however, does not scale to millions of materials. By leveraging the outcomes from the

platform, we have implemented a Machine Learning (ML) feedback loop to screen a much

larger chemical design space.

We developed an ML model that uses the crystal structure to predict whether a material
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yields an nCAC above or below a given threshold. We only have a relatively limited number

of top-performing materials, so we perform the training in steps. We start to train our

model using an nCAC threshold corresponding to the MEA benchmark and use this model

to screen a larger database. The most promising materials are added to the platform (round

1, in Extended Data Figure 9a. We now have more top-performing materials, which allows

us to retrain the model with a lower threshold and perform the next rounds. Extended

Data Figure 9a and Figure S84 shows that in each round, we decrease the average nCAC.

Extended Data Figure 9c to 9f show the evolution of the predictions of our ML model in the

chemical design space for the three thresholds. Interestingly, there is not one single cluster

of top-performing materials but several clusters of chemically different materials.

The disadvantage of this approach is that a new model needs to be trained for each

Case Study. We can see this for the cement case. Extended Data Figure 9b shows that the

top-performing materials do not reduce the nCAC similarly. This finding is consistent with

the results in Extended Data Figure 5(a), which shows that the ranking of top-performing

materials for NGCC differs greatly from cement.

Experimental testing

The impact of an in silico study like our high-throughput screening is limited if it cannot

reflect the actual performance of the material. As an example, we uploaded the crystal

structure of a new material, MIP-212, which has 1D channels constructed from an alternation

of chains of Al hydroxy-carboxylates and Cu pyrazolates (see Extended Data Figure 7 (a)

and (b)). Extended Data Figure 6 shows that this is a promising material, and we studied

the performance in detail (see Supplementary Note 12.1). The experimental breakthrough

curves (Extended Data Figure 7b) show the separation between the column’s predicted wet

and dry fronts. The significant lapse between the breakthrough times of CO2 and H2O

indicates moisture penetration below 5% of the bed length, which is in good agreement

15



with the predictions of our process model (further details in Supplementary Note 12.1.3).

In addition, we also ranked CALF-20 in Extended Data Figure 6, which gives an nCAC of

71et−1
CO2

. CALF-20 is being commercialized, and the estimated CO2 capture cost for the

Svante process is 50et−1
CO2

.23 A head-to-head comparison is, however, difficult as the two

processes fundamentally differ.

Concluding remarks

The complexity and the scale of the CO2 mitigation problem make it essential to bring all

stakeholders together at an early stage. This holistic approach is presented here for a total

of 63 Case Studies. The PrISMa platform provides engineers with options to identify eco-

nomically and/or environmentally challenging factors in the design phase of optimal capture

technologies; molecular design targets for chemists; local integration benefits for CO2 pro-

ducers; and the best locations for investors; and shows how these decisions are interrelated,

de-risking investment and providing a common basis for identifying the joint way forward.

Adsorption-based technologies are very competitive, with many materials outperforming

the current benchmark. Sets of promising sorbents are identified for further development, as

confirmed by the experimental testing of MIP-212. These studies highlight how the PrISMa

platform speeds up materials discovery and focuses Research and Development (R&D) efforts

towards achievable performance targets at scale.

The impact of this approach goes far beyond carbon capture. The platform’s modular

design allows groups to add additional modules to extend to, for example, other gas separa-

tions, H2 or CH4 storage, etc. Such a bridge between fundamental research and large-scale

deployment will accelerate the speed at which innovations are successfully implemented.
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Data availability

All the results obtained by the platform for all Case Studies presented in this work have been

deposited on Zenodo (https://doi.org/10.5281/zenodo.8042599). On this website, one

can also find the crystal structure (cif files) of all materials studied in this work, together

with the simulated isotherms, values of the heat capacity, and data that characterize the

materials.

The results of this work can also be accessed through our visualization tool on the Ma-

terials Cloud https://prisma.matcloud.xyz/. This tool allows users to inspect all Case

Studies and all KPIs. In addition, the Materials Cloud provides interactive versions of the

graphs presented in this work. Updates and new Case Studies will be made available through

the Materials Cloud. This tool also allows uploading the crystal structure of novel materials

to be analyzed across the various Case Studies.

Code availability

The code for the analysis of the persistence images and the interactive visualization tool

can be found at https://github.com/kjappelbaum/prisma-adosorbaphore and https:

//github.com/ElMouba/PrISMa_VisTool, respectively.
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Extended Data Table 1| (a) Available Case Studies in the PrISMa platform and (b)
Reference Key Performance Indicators (KPIs). All Case Studies have been investigated
under wet and dry feed gas conditions.

(a) Available Case Studies in the PrISMa platform. Any source, sink, technology, utility, and region
in the platform can be combined. Switzerland has no coal-fired power plants, so this combination of source
and region is not considered. Three technologies are available: Temperature Swing Adsorption (TSA) and
Temperature Vacuum Swing Adsorption (TVSA) with two vacuum levels, 0.2 and 0.6 bar. We have a total
of 63 Case Studies. The complete input parameters defining these Case Studies are in Supplementary
Information Table S2.

Source Sink Technology Utility Region

NGCC Geological storage TSA Natural gas boiler UK
Coal TVSA - 0.6 bar Electric boiler US
Cement TVSA - 0.2 bar From host plant China (Guangdong)

China (Shandong)
Switzerland (CH)

(b) The six reference Key Performance Indicators (KPIs). Henry selectivity (S), Purity (Pu),
Productivity (P), Net Carbon Avoidance Cost (nCAC), Climate Change (CC), and Material Resources:
Metals/Minerals (MR:MM). Based on Spearman analysis, we have identified six key performance indicators
that describe the most important trends in each layer of the PrISMa platform (see Supplementary Information
Section 7). A description of all KPIs and data generated by the platform can be found in Supplementary
Information Section 6.

KPI Description Definition (SI)

Materials layer

S Ratio of the CO2 and N2 Henry’s coefficients. (6.1.2)

Process layer

Pu The molar fraction of CO2 in the product stream. (6.2.1)
P The amount of captured CO2 per kg adsorbent during a process cycle (6.2.5)

Techno-economic analysis (TEA) layer

nCAC Quantifies the cost of avoiding emitting CO2 into the atmosphere over the
plant’s life cycle. For power generation Case Studies, the nCAC is calculated
from the levelized cost of electricity and the net carbon intensity of the plant.
For cement, the nCAC is calculated from the costs of carbon capture and the
Climate Change (CC), as we assume that the capture plant does not affect
cement production.

(6.3.4)

life-cycle assessment (LCA) layer

CC Gives the total Global Warming Potential (GWP) due to greenhouse gas
emissions from the capture process to the air and CO2 uptake from the
atmosphere

(6.4.1)

MR:MM Indicates the use of non-renewable, non-fossil natural resources (i.e., minerals
and metals) and considers the availability of a mineral or metal on earth and
the current mining rate. The use of natural resources like minerals and metals
is measured using antimony (Sb) as reference material.

(6.4.2)
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Env. Impacts

Extended Data Figure 1| Stakeholder universe of carbon capture. Illustration of the
perspectives the various stakeholders have on the development of a carbon capture process.
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LCA

TEA

process

material

Extended Data Figure 2| Spearman’s rank correlation matrix for the cement case
in the UK with TVSA process at 0.6 bar. Spearman’s rank correlation matrix of the
rankings considering one material KPI, eight process KPIs, eight TEA KPIs, and 16 LCA
KPIs. A dark blue color represents very strong correlations, while dark red represents lower
correlations. The size of the circle is proportional to the absolute value of the correlation.
The diagonal circles in the matrix have a Spearman’s correlation coefficient of 1 since they
represent the Spearman’s correlation of a KPI with itself. A more detailed description can
be found in Supplementary Information Section 7.
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Extended Data Figure 3|Materials ranking for LCA-KPIs for cement in the UK
with TVSA process at 0.6 bar: (a) Impact of climate change on materials ranking for
materials for which more CO2 is emitted than captured during the entire life cycle of the
capture plant. The materials that are colored red have a Climate Change larger than 1,
which implies that the total CO2-eq. emissions of the capture plant using this material
are larger than the amount of CO2 that is captured. Note that we changed nCAC to the
Carbon Capture Cost (CCC) (see Supplementary Information Section 6.3.6) because the
nCAC is not defined for these materials. (b) Material ranking for all 16 main LCA KPIs:
Climate Change (CC), Water Use (WU), Energy Resources: Non-Renewable (ER:NR), Ma-
terial Resources: Metals/Minerals (MR:MM), Land Use (LU), Acidification (A), Ecotoxicity:
Freshwater (EcoT:F), Eutrophication: Freshwater (Eut:F), Eutrophication: Marine (Eut:M),
Eutrophication: Terrestrial (Eut:T), Human Toxicity: Carcinogenic (HT:C), Human Tox-
icity: Non-Carcinogenic (HT:NC), Particulate Matter Formation (PMF), Ozone Depletion
(OD), Photochemical Ozone Formation: Human Health (POF:HH), and Ionising Radiation:
Human Health (IR:HH). The colored lines show the top 20 materials for nCAC shown in the
first column (red).
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Extended Data Figure 4|Ranking of the two classes of metals for the cement case
in the UK with TVSA process at 0.6 bar. Top: abundant metals (Mg, Zn, Mn), and
Bottom: more rare metals (Co, Lu, Ag). Some MOFs contain more than one type of metal.
All these metals are considered in the KPI MR:MM and can lower the ranks significantly.
A combination of two or three metals is, for example, contained in the worst-performing
Manganese (Mn) materials, leading to their bad performance in MR:MM compared to the
other materials containing the same metal.
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Extended Data Figure 5| Ranking of materials and comparison between wet and
dry flue gasses (a) Ranking of materials for NGCC power plant (TVSA at 0.2 bar), coal
power plant (TVSA at 0.6 bar), and cement plant (TVSA at 0.6 bar). The materials are
ranked using the preferred technology according to the Net Carbon Avoidance Cost (nCAC).
The color coding of the lines shows the number of ranks a material change ranking. (b)
Scatter plots of the increase in nCAC from dry to wet conditions as a function of the fraction
of bed that is moisture-loaded. (top) Cement plant (TVSA at 0.6 bar), (middle) coal power
plant (TVSA at 0.6 bar), (bottom) NGCC power plant (TVSA at 0.2 bar).
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Extended Data Figure 6| Materials performance for a TVSA carbon capture
process at 0.6 bar added to a cement plant in the UK using experimental data: The
dotted lines in (a), (c), and (d) show the MEA benchmark, in (b), the vertical orange dotted
line gives the purity required for geological storage (> 96%), and in (a), the blue-shaded
area gives the uncertainty. Each dot represents a material. The triangles are the structures
for which experimental property data is used directly in the platform (see Supplementary
Information Section 12). (a) CAC versus recovery (R) with color coding the specific energy
consumption, (b) Specific energy consumption versus productivity (P) with color coding the
recovery, and (c) Material Resources: Metals/Minerals (MR:MM) versus Climate Change
(CC) with color coding the nCAC.
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(a)

(e)

(b)

Extended Data Figure 7| MIP-212: Panel (a) shows the structure of MIP-212. Panel
(b) shows the breakthrough curve under a dry and wet flue gas and conditions corresponding
to the cement Case Study.
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Extended Data Figure 8| Identifying the adsorbaphore for the cement Case Study
(TVSA, 0.6 bar) in the UK: The top figures illustrate the methodology; the crystal struc-
ture is converted into a persistence image. We extract the most relevant pixels of the
persistence images from a model trained to predict whether the nCAC is lower than the
MEA-based benchmark. We then identify representative cycles, which are collections of
atoms that generate a corresponding topological feature (i.e., birth/persistence pair). The
bottom figure shows examples of the top-performing structures’ recurring molecular features
(adsorbaphores). Supplementary Information Section 8.5.3 provides more examples of these
top-performing structures, and it gives the details of the methods that are used.
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Extended Data Figure 9| Iterative material discovery: The PrISMa platform was used to train
a series of ML models to predict an nCAC below a set of thresholds (105, 80, and 70et−1

CO2
) for the cement

Case Study in the UK (TVSA, 0.6 bar). (a) shows the nCAC versus purity for the different rounds. (b)
shows how these materials perform for the other Case Studies. (c)–(f) visualize the screening of the chemical
space through dimensionality reduction (UMAP embedding, see Supplementary Note 11). Each data point
corresponds to one MOF. In (d), green dots show the ca. 1200 PrISMa MOFs, and the 30,000 grey dots are
from the large database. In (c)–(f), the colored dots are MOFs with an nCAC better than the threshold.
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