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Symbolic coding of linear complexity for generic
translations on the torus, using continued fractions

N. Pytheas Fogg∗ Camille Noûs†

September 29, 2024

Abstract

In this paper, we prove that almost every translation on T2 admits a symbolic
coding which has linear complexity 2n + 1. The partitions are constructed with
Rauzy fractals associated with sequences of substitutions, which are produced by a
particular extended continued fraction algorithm in projective dimension 2. More
generally, in dimension d ≥ 1, we study extended measured continued fraction al-
gorithms, that associate to each direction a subshift generated by substitutions,
called S-adic subshift. We give some conditions which imply the existence, for
almost every direction, of a translation on the torus Td and a nice generating par-
tition, such that the associated coding is a measurable conjugacy with the subshift
that it defines.

Keywords: symbolic dynamics, continued fraction, renormalization, Rauzy fractal,
bounded remainder set, S-adic system, S-adic subshift, Lyapunov exponent, torus trans-
lation, Pisot substitution conjecture
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∗Institut de mathématiques de Luminy (FRE 3529) Campus de Luminy, Case 907, 13288 Marseille
Cedex 9, France. Email: pytheas-fogg@maths-pour-tous.org
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1 Introduction

The first motivation of this paper is to find symbolic codings with low complexity of
translations on the d-dimensional torus Td. In dimension 1, every irrational translation
on T1 admits a generating partition made of two intervals giving a symbolic coding of
complexity n+1, generating the famous Sturmian words [43][46]. However, the endpoints
of the intervals must be chosen carefully, since most partitions into two intervals lead to
a symbolic coding of complexity 2n [24].

In higher dimension d ≥ 2, a result of Chevallier [23] ensures that, for any minimal
translation on Td, and for any generating partition of Td with polygonal atoms, the
corresponding symbolic coding has a complexity in Ω(nd). Hence, if we want to go below
this bound, we will have to abandon the smooth shape of the atoms, while keeping their
topological and measure-theoretic regularity to avoid trivial constructions: the partitions
must still be generating, the atoms should be the closure of their interior, and their
boundaries should have zero Lebesgue measure.

In the seminal paper [48], for the special case of the translation on T2 with vector
(ρ, ρ2), where ρ = 1.839286755214161 . . . is the real root of X3−X2−X−1, Rauzy con-
structs such a generating partition whose associated subshift is the Tribonacci subshift
with complexity 2n + 1 (see also [22]). This construction was generalized to (count-
ably many) other parameters [33] [17] [2], and highly relies on the algebraic nature of
the translation vector, which is witnessed in the self-similarity of the fractal generating
partition.

Actually, Rauzy does not start from a translation on T2, but first constructs a piece-
wise translation on a fundamental domain of the plane (for the action of Z2 by transla-
tion), and the projection modulo Z2 of each piece forms an atom of a partition in T2:
the translation on T2 is deduced from the domain exchange. If a minimal translation on
T2 is coded with such a liftable generating partition, the resulting complexity is at least
2n+ 1 [11] (this result is generalized in [10]: in dimension d, the bound becomes dn+ 1).
Hence, looking for generating partitions with complexity 2n + 1 for translations on T2

seems to be a reasonable target.
Some known families of subshifts with complexity 2n+ 1 can be tried out. They are

generated by continued fraction algorithms. The first candidate is the Arnoux-Rauzy
algorithm. Unfortunately, the set of points where this algorithm can be iterated is too
narrow; this set is known as the Rauzy gasket, see [9] for references. Another candidate is
the continued fraction algorithm associated with the set of 3-interval exchange transfor-
mations. It is defined for almost every direction and produces subshifts with complexity
2n + 1, but we know since [34] that almost all of them are weakly mixing, see also [7].
Thus, they cannot be conjugate to a translation on a torus. Recently, Cassaigne intro-
duced a continued fraction algorithm which has nice combinatorial properties and which
is defined on the full space of parameters [3, 19].
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The first objective of this paper is to use Cassaigne algorithm to construct, for al-
most every translation on T2, a regular generating partition giving a symbolic coding of
complexity 2n+ 1 (Theorem A).

To this end, we first develop a general framework for constructing Rauzy fractals out
of infinite sequences of substitutions, and use their pieces as the atoms of the generating
partitions (Theorem C). Our approach is direct and provides an alternative to the “dual”
construction of [13]. For this, we use particular topologies on Zd+1, introduced in [42],
that we extend to the S-adic context.

We then prove that, when the sequences of substitutions are generated by an ergodic
extended continued fraction algorithm whose second Lyapunov exponent is negative, the
existence of a single direction that fulfills certain requirements, called a seed point, gives
a set of full measure of good directions that produce nice Rauzy fractals (Theorem B).
Theorem A follows by applying Theorem B to the Cassaigne algorithm.

As byproducts of those constructions, the atoms of the partitions provide bounded
remainder sets (see [49] for some motivation); also, we get a renormalization scheme that
relates the continued fraction algorithm to the first return map on some of the atoms.

Regarding further applications, the symbolic codings that are constructed in this pa-
per with the Cassaigne algorithm are shown, in [21], to satisfy the Boshernitzan criterion
for unique ergodicity [16] (under a mild combinatorial condition involving the existence
of a word builder). In particular, the authors deduce that for almost every translation
of T2, every continuous function T2 → R can be uniformly approximated by measurable
functions whose associated discrete Schrödinger operator has a Cantor spectrum of zero
Lebesgue measure.

During the revision of the present paper, Berthé, Steiner and Thuswaldner proved
independently similar results on the same subject [14]. We discuss differences between
the two approaches in Section 10.1.

2 Statement of the results and outline of the proofs

The three theorems of this paper, that were informally presented in the introduction,
involve a number of objects that will be precisely defined in following sections. In this
section, we give formal statements for the three theorems, with pointers to the definitions.

Our main theorem is the following (see Definition 9 for a definition of a nice generating
partition).

Theorem A. Lebesgue-almost every translation on T2 admits a nice generating partition
giving a symbolic coding with complexity 2n+ 1.

In order to prove it, we use the Cassaigne algorithm [3, 19] and prove that it fulfills
the hypotheses of Theorem B below.

Theorem B involves an extended measured continued fraction algorithm (X, s0, µ),
see Definition 76. The Pisot condition for such an algorithm is defined in Definition 86.
The set of seed points G0 ⊆ X in defined in Definition 90.

We fix a euclidean hyperplane P ⊆ Rd+1 with a cocompact lattice Λ of P , a quotient
map q : P → P/Λ, a map v : G0 → Rd+1 and a vector e0 ∈ Rd+1 such that the map e0− v
takes values in P (see Section 3.1 and 3.2) and prove the following theorem.
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Theorem B. Let (X, s0, µ) be an extended measured continued fraction algorithm sat-
isfying the Pisot condition. Assume G0 6= ∅. Then, for µ-almost every point x ∈ X,
there exist a translation z 7→ z + tx on the torus Td and a nice generating partition such
that the associated symbolic coding is a measurable conjugacy with the uniquely ergodic
subshift associated with x.

Moreover, we can take tx = ψ(q(e0 − v(x))) for a given isomorphism ψ : P/Λ→ Td.

We prove Theorem B by defining, for µ-almost every point x ∈ X, a Rauzy frac-
tal R ⊆ P . We show that its pieces define a nice generating partition of Td (identified
with P/Λ). This is done with Theorem C below, see Definition 50 and Definition 15
for the definitions of a good directive sequence and its direction and Section 3.4 for the
alphabet A.

Theorem C. Let s be a good directive sequence. Then the Rauzy fractal R(s) is a
measurable fundamental domain of P for the lattice Λ. It can be decomposed as a union
R(s) =

⋃
a∈ARa(s) which is disjoint up to sets of Lebesgue measure 0, and each piece

Ra(s) is the closure of its interior.
Moreover, the pieces Ra(s), a ∈ A, of the Rauzy fractal induce a nice generating

partition of the translation by q(e0 − v) on the torus P/Λ, where v is the unit vector of
the direction of s.

This partition defines a symbolic coding of the translation by q(e0−v), and this coding
is a measurable conjugacy with the uniquely ergodic subshift associated with s.

Theorem C does not depend on a continued fraction algorithm. It is proven in Sec-
tion 4. We introduce some topologies in Section 3.7, which play a central role in the proof
of Theorem C. We prove that every good directive sequence gives a nice Rauzy fractal
with all the wanted properties.

Theorem B is proven in Section 6. We first establish in Proposition 92 that the
existence of a seed point implies that µ-almost all points of X are good. Then we use
Theorem C.

Theorem A is proven in Section 8. We first recall some facts about the Cassaigne
algorithm, one of its invariant measures, and the associated Lyapunov exponents. Then
we consider a particular periodic point for this algorithm, and we prove that it is a
seed point. Being a seed point is a decidable property for such periodic points, see
Proposition 108. This allows to apply Theorem B.

3 Tools

3.1 Geometrical setting

Let d ≥ 1 be an integer. In Section 5 we will work with continued fraction algorithms.
To define them in dimension d it is convenient to work in the d + 1-dimensional space
Rd+1, or rather its positive cone Rd+1

+ \ {0}. This is why we introduce some notations
here.

Let (ei)0≤i≤d be the canonical basis of Rd+1 (note the unusual numbering of dimen-
sions). The space Rd+1 is equipped with the classic norm ‖.‖1 defined by ‖(y0, . . . , yd)‖1 =
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∑d
i=0 |yi|. The space we are really interested in is PRd

+ =
(
Rd+1

+ \ {0}
)
/R∗+, the set of

positive directions.
For a vector y ∈ Rd+1

+ \ {0}, we denote by [y] = R∗+y ∈ PRd
+ the corresponding direc-

tion. Conversely, for every x ∈ PRd
+, we denote by v(x) ∈ Rd+1

+ the unique representative
of x such that ‖v(x)‖1 = 1. When y ∈ Rd+1

+ \ {0}, we write v(y) = v([y]) = y
‖y‖1

.

For every matrix M ∈ Md+1(R) and x ∈ PRd
+, we write Mx = [Mv(x)] if Mv(x) ∈

Rd+1
+ \ {0}.

We define a distance on PRd
+ by d(x, y) = ‖v(y)− v(x)‖1, making it a metric space.

Note that PRd
+ is thus isometric to the simplex ∆ = {y ∈ Rd+1

+ | ‖y‖1 = 1}. Open balls
in PRd

+ are denoted B(x, r).

Let h denote the linear form on Rd+1 defined by h(y0, . . . , yd) =
∑d

i=0 yi. Note that,
when y ∈ Rd+1

+ , h(y) = ‖y‖1. Let P be the hyperplane {y ∈ Rd+1 | h(y) = 0}. Open
balls in P are also denoted B(p, r).

In the following we consider the lattice Λ = P ∩ Zd+1 = 〈e1 − e0, . . . , ed − e0〉. Let us
denote by λ the Lebesgue measure on P .

For y ∈ Rd+1
+ \ {0}, let πy denote the projection along y onto P (note that y does

not belong to P as h(y) > 0). This map sends a vector z ∈ Rd+1 to z − h(z)v(y). For
x ∈ PRd

+, we also denote πx = πv(x). Remark that Λ ⊆ P , so Λ is preserved by every
projection πy. It will be convenient (for instance in Lemma 1 below) to also denote by
πx ∈Md+1(R) the matrix of the projection πx in the canonical basis.

Lemma 1. For every matrix M ∈ GLd+1(R) and every x ∈ PRd
+ ∩MPRd

+, we have the
identity πxMπM−1x = πxM .

Proof. Since x ∈ MPRd
+, the direction M−1x is well-defined. The identity comes from

the fact that MπM−1x(y) = My − h(y)Mv(M−1x), and πx(Mv(M−1x)) = 0.

We say that y = (y0, . . . , yd) ∈ Rd+1
+ has a totally irrational direction, or that [y] ∈ PRd

+

is a totally irrational direction, if y0, . . . , yd are linearly independent over Q.

3.2 Translations on the torus

We define the d-dimensional torus as P/Λ, and let q : P → P/Λ denote the quotient
map. We still denote by λ the Lebesgue measure transported on P/Λ. Note that our
definition of a torus differs from the usual one Td = Rd/Zd, but they are isomorphic, in
a non-canonical way that depends on a choice of a basis of Λ. To fix an isomorphism, let
L : P → Rd be the restriction to P of the linear map which sends (xi)0≤i≤d to (xi)1≤i≤d.
Since L(Λ) = Zd, L induces a torus isomorphism ψ : P/Λ → Td such that the following
diagram commutes:

P
L−−−→ Rdy y

P/Λ
ψ−−−→ Td

Let t ∈ P/Λ, and t̂ = (t0, . . . , td) ∈ P be a representative of t. Then t is said to be a
totally irrational vector if t̂ + e0 has a totally irrational direction, i.e., if 1, t1, . . . , td are
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linearly independent over Q (this is independent of the choice of t̂). Note that totally
irrational vectors should not be confused with totally irrational directions.

Remark that any isomorphism ψ : P/Λ→ Td preserves the Lebesgue measure (up to
a multiplicative constant) and totally irrational vectors. This will be used in the proof
of Theorem B.

For t ∈ P/Λ, we consider the associated translation

Tt =

Å
P/Λ −→ P/Λ
z 7−→ z + t

ã
.

We recall that a translation Tt is minimal if, and only if, t is a totally irrational vector
[35].

If x ∈ PRd
+ is a direction, we denote Tx = Tq(πx(e0)). Note that πx(e0) = e0 − v(x).

As a consequence, q(πx(ei)) = q(πx(e0)) for all i ∈ {0, . . . , d}, so e0 could be replaced
with any other vector of the canonical basis in the definition of Tx. Also, it implies that
‖πx(e0)− πx′(e0)‖1 = d(x, x′), which will be used later (see Lemma 25).

3.3 Matrices

Continued fraction algorithms are often expressed with matrices. Here we recall some
facts about matrices, and establish some properties of matrix sequences.

As the space Rd+1 is equipped with the norm ‖.‖1, the operator norm of a matrix
M ∈Md+1(R) is defined by

|||M |||1 = sup
v∈Rd+1\{0}

‖Mv‖1

‖v‖1

.

Moreover, we also define a semi-norm for a non-trivial subspace V :

∣∣∣∣∣∣M|V ∣∣∣∣∣∣1 = sup
v∈V \{0}

‖Mv‖1

‖v‖1

.

Finally we write M > 0 if every coefficient of M is positive.
A matrix M ∈ Md+1(R) is said to be Pisot if it has non-negative integer entries, its

dominant eigenvalue is simple and all other eigenvalues have moduli less than one.

Lemma 2. Let M be an invertible matrix with non-negative integer entries, and x ∈ PRd
+.

Then MPRd
+ ⊆ B(x, |||πxM |||1).

Proof. Let y ∈ PRd
+. Then

d(x,My) = ‖v(Mv(y))− v(x)‖1

=
‖Mv(y)− h(Mv(y))v(x)‖1

h(Mv(y))
.

Observe that ‖Mv(y)− h(Mv(y))v(x)‖1 = ‖πxMv(y)‖1 ≤ |||πxM |||1. Moreover, since M
is invertible and has non-negative integer entries, h(Mei) ≥ 1 for any vector ei of the
canonical basis, hence also h(Mv(y)) ≥ 1. It follows that d(x,My) ≤ |||πxM |||1.
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We now consider sequences of matrices (Mk) = (Mk)k≥0 ∈ (Md+1(R))N, where N
denotes the set of non-negative integers. For the product of consecutive terms in such a
sequence, we use the shorthand notation

M[k,n) = Mk . . .Mn−1.

The following definition generalizes the classical notion of a primitive matrix (a ma-
trix M is primitive when Mn > 0 for some n ∈ N).

Definition 3. Let (Mk) be a sequence of matrices with non-negative entries. We say that
(Mk) is primitive if

∀k ∈ N, ∃n ≥ k, M[k,n) > 0.

We shall use several notions of convergence for a sequence of matrices.

Definition 4. Let (Mk) be a sequence of invertible matrices with non-negative integer
entries. We say that (Mk) is

• cone convergent, if there exists x ∈ PRd
+ such that

⋂
n∈NM[0,n)PRd

+ = {x};

• sum convergent, if there exists x ∈ PRd
+ such that

∑
n

∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1

is a convergent
series;

• exponentially convergent, if there exists x ∈ PRd
+ such that

lim sup
n→∞

1

n
ln
∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1
< 0.

When (Mk) is cone convergent, the unique direction x such that
⋂
n∈NM[0,n)PRd

+ = {x}
is called the direction of (Mk).

Lemma 5. Every exponentially convergent sequence of matrices is sum convergent. Every
sum convergent sequence of matrices is cone convergent. Moreover, the convergences are
for the same direction x ∈ PRd

+.

Proof. The first assertion is clear. Assume that
∑

n

∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1

converges, for some x ∈
PRd

+. Then limn→∞
∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1

= 0. By Lemma 2, M[0,n)PRd
+ ⊆ B(x,

∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1
).

As their diameters tend to 0, the intersection of these balls is {x}. Then
⋂
n∈NM[0,n)PRd

+,
which is non-empty as it is a decreasing intersection of compact sets, must be {x} too.

Lemma 6. Let (Mk) be cone convergent (respectively, sum convergent, or exponentially
convergent) with direction x. For each n ∈ N, the direction M−1

[0,n)x is well-defined and

the shifted sequence (Mn+k)k∈N is cone convergent (respectively, sum convergent, or ex-
ponentially convergent) with direction M−1

[0,n)x.

Conversely, if for some n ∈ N, (Mn+k)k∈N is cone convergent (respectively, sum con-
vergent, or exponentially convergent) with direction x, then (Mk) is cone convergent (re-
spectively, sum convergent, or exponentially convergent) with direction M[0,n)x.
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Proof. Assume that (Mk) is cone convergent with direction x. Let n ∈ N. As x ∈
M[0,n)PRd

+, there exists x′ ∈ PRd
+ such that M[0,n)x

′ = x, so M−1
[0,n)x = x′ is well-defined.

We then have ⋂
k∈N

M[n,n+k)PRd
+ = M−1

[0,n)

⋂
k∈N

M[0,n+k)PRd
+ = {x′}

so (Mn+k)k∈N is cone convergent.
Applying Lemma 1 to the matrix M = M−1

[0,n) and the projection πx′ = πMx, we get
πx′M = πx′Mπx, so that

πx′M[n,n+k) = πx′MπxM[0,n+k),

hence ∣∣∣∣∣∣πx′M[n,n+k)

∣∣∣∣∣∣
1
≤
∣∣∣∣∣∣πx′M ∣∣∣∣∣∣1∣∣∣∣∣∣πxM[0,n+k)

∣∣∣∣∣∣
1
.

Therefore, if (Mk) is sum convergent (respectively, exponentially convergent), then so is
(Mn+k)k∈N.

The proof of the converse is similar.

Lemma 7. Let (Mk) be a sequence of invertible matrices with non-negative integer en-
tries. If (Mk) is cone convergent with a totally irrational direction x, then it is primitive.

Proof. By Lemma 6, the hypotheses are stable under multiplication by M−1
[0,k), so it is

enough to prove that M[0,n) > 0 for some n. Assume that (Mk) is cone convergent with
direction x. Let ε = mini(v(x)i). As x is totally irrational, ε > 0. As (Mk) is cone
convergent, there exists n ∈ N such that M[0,n)PRd

+ ⊆ B(x, ε/2). For every i, every
coordinate of v(M[0,n)ei) is therefore greater than ε/2. Thus, we have M[0,n) > 0.

3.4 Words

We recall usual definitions and notations on words, see [41]. For a fixed d ≥ 1, we define
the alphabet A as the finite set A = {0, . . . , d} (note that A has d + 1 elements). Its
elements are called letters. A finite word is an element of the monoid A∗ =

⋃
n∈NA

n.
The length of a finite word w ∈ An is denoted by |w| = n. The set of non-empty words
is the semigroup A+ =

⋃
n≥1A

n. An infinite word is an element of AN. A word can be
finite or infinite.

The set of words A∗∪AN is endowed with the topology of coordinatewise convergence.
When a word w can be written as a product of three words pfs, p is called a prefix

of w, f is called a factor of w, s is called a suffix of w, and the length of p is called
an occurrence of f in w. The number of occurrences of a finite word f in a word w is
denoted by |w|f .

The complexity of an infinite word w is the map p : N → N which gives, for any
non-negative integer n, the number of factors of w of length n.

A substitution is an element σ of hom(A∗, A∗): for all finite words w1, w2 ∈ A∗, we
have σ(w1w2) = σ(w1)σ(w2). A substitution is characterized by the images of letters. A
non-erasing substitution is an element of hom(A+, A+): it is a substitution that maps
every letter to a non-empty word.

The abelianization map is the monoid morphism ab: A∗ → Zd+1 such that ab(a) = ea
for every letter a in A (recall that (ea)a∈A is the canonical basis of Rd+1). We use the same
notation for the map from hom(A∗, A∗) to Md+1(Z) such that ab(σ) ab(w) = ab(σ(w))

9



for every substitution σ and every finite word w. A substitution σ is said to be unimodular
if |det(ab(σ))| = 1. A substitution σ is said to be Pisot if the matrix ab(σ) is Pisot.

The action of a non-erasing substitution σ can be extended to infinite words by the
limit procedure:

σ(w) = lim
w=ps
|p|→∞

σ(p)

An infinite word w is a fixed point of σ if σ(w) = w. An infinite word w is a periodic
point of σ if there exists an integer m ≥ 1 such that σm(w) = w.

For an integer k ≥ 1, an infinite word w is k-balanced if for any two factors f1, f2 of
w of the same length, and any a ∈ A, we have ||f1|a − |f2|a| ≤ k. An infinite word is
balanced if it is k-balanced for some integer k.

For an infinite word w, the (possibly undefined) frequency vector of w is

freq(w) = lim
w=ps
|p|→∞

ab(p)

|p|
∈ ∆ ⊆ Rd+1

+ .

When this limit exists, we say that w admits a frequency vector. This is in particular
the case if w is balanced (see Proposition 28) or if it is an element of a uniquely ergodic
subshift.

For a non-empty finite word w ∈ A+, we denote by wω the infinite word limn→∞w
n.

Finally, we define the shift map T on AN that maps an infinite word w to its suffix
Tw such that w = aTw with a ∈ A. Remark that with the coordinatewise topology, the
shift map T is continuous. A non-empty subset X ⊆ AN is called a subshift if X is closed
and shift-invariant.

The orbit of w ∈ AN is the set O(w) = {T nw | n ∈ N} and the subshift generated
by w is its orbit closure Ωw = O(w). Given a finite factor f of w, we define the cylinder
[f ] = {x ∈ Ωw | ∃y ∈ Ωw, x = fy}.

3.5 Symbolic coding

A measured topological dynamical system is a triple (X,T, µ) such that X is a compact
topological space, µ is a finite Borel measure, and T : X → X is a µ-almost everywhere
continuous map such that µ(T−1(B)) = µ(B) for any Borel set B of X.

Given a measured topological dynamical system (X,T, µ) and a measurable partition
(Pi)i∈I of X, we associate the map cod: X → IN defined by cod(y) = (in)n∈N when
∀n ∈ N, T ny ∈ Pin . The map cod is called a symbolic coding of the system (X,T, µ) and
the closure of cod(X) defines a subshift over the alphabet I. A generating partition of
the map T is a measurable partition such that the associated coding is injective µ-almost
everywhere.

The atoms of the partitions we will construct will not be smooth, but they will keep
some topological and measure-theoretic regularity: a generating partition (Pi)i∈I of X is
regular if every set P i is the closure of its interior and if the boundary of each Pi has zero
measure.

A measurable subset A of X is said to be a bounded remainder set for the map T
if there exists a constant K such that, for µ-almost every x in X and every positive

10



integer N , ∣∣∣∣∣
N−1∑
n=0

1A(T n(x))−N µ(A)

µ(X)

∣∣∣∣∣ ≤ K,

where 1A is the indicator function of the subset A. As we shall see, the atoms of the
generating partition we will construct are bounded remainder sets.

Now, let Tt be a translation by t on the torus P/Λ. The triple (P/Λ, Tt, λ) is a
measured topological dynamical system, where λ denotes the Lebesgue measure inherited
from P . The generating partitions we will construct on P/Λ actually comes from a
piecewise translation on a measurable fundamental domain of P for the action of Λ:

Definition 8. A finite measurable partition (Pi)i∈I of P/Λ is said to be liftable with
respect to the translation Tt : z 7→ z + t on P/Λ if there exist a measurable fundamental
domain D ⊆ P for the action of Λ, a measurable partition (Di)i∈I of D, and some vectors
(ti)i∈I in P I , such that, for every i in I, Di + ti ⊆ D, q(Di) = Pi, and q(ti) = t.

The measurable map E =

Å
D −→ D
y 7−→ y + ti if y ∈ Di

ã
is called a piecewise trans-

lation or a domain exchange, and is measurably conjugate to the translation Tt via the
quotient map q : P → P/Λ.

Definition 9. A finite measurable partition (Pi)i∈I of P/Λ is said to be a nice generating
partition with respect to the translation Tt on P/Λ if it is generating, regular, liftable,
and if every Pi is a bounded remainder set.

3.6 S-adic systems and S-adic subshifts

Let S ⊆ hom(A+, A+) be a finite set of non-erasing substitutions on the alphabet A.
An S-adic system is a shift-invariant subset of SN. Note that we do not impose that

S-adic systems are topologically closed. For instance, in Section 7.1 we will consider
S = {τ0, τ1} and the S-adic system {s ∈ SN | both τ0 and τ1 occur infinitely often in s}.

An element s = (sk) of an S-adic system is called a directive sequence.
Given a directive sequence s, we define Mk(s) = ab(sk), denoted simply by Mk when

there is no ambiguity on what the directive sequence is.

Definition 10 (S-adic subshift). Let s be a directive sequence. The S-adic subshift
associated with s is the subshift Ωs defined as follows. Let first L ⊆ A∗ be the language
of all factors of finite words of the form s[0,n)(a) for all n ∈ N and a ∈ A, where s[k,n) =
sk ◦ · · · ◦ sn−1. Then Ωs is the set of infinite words w ∈ AN such that all factors of w are
in L.

S-adic subshifts were introduced by Ferenczi [28], where he proves that every word of
linear complexity is an element of some S-adic subshift in an S-adic system with some
additional conditions. This notion has been used in many places thereafter. We refer to
[27] and [12].

Remark 11. There are alternative ways to define subshifts from a directive sequence.
One is to consider the set

Ω′s =
⋂
n∈N

{T ks[0,n)(w) | w ∈ AN, k ∈ N}.

11



The set Ω′s is the set of words that are infinitely desubstitutable by s, and it always holds
that Ωs ⊆ Ω′s.

Another way is to first define an infinite word w by starting from a fixed letter a ∈ A
and taking a limit point of the sequence of finite words

s0(a), s0(s1(a)), s0(s1(s2(a))), . . .

then consider the subshift Ωw generated by w ( i.e., the smallest closed subset of AN in-
variant by the shift and containing w), which is a subset of Ωs.

Here, we will let the directive sequence act on sequences of infinite words, each word
representing a scale on which the corresponding substitution acts.

A word sequence is an element u = (uk) of (AN)
N
. Directive sequences act naturally

on word sequences as follows:Ç
SN × (AN)

N −→ (AN)
N

(s, (uk)k∈N) 7−→ (sk(uk+1))k∈N

å
.

Definition 12. A fixed point of a directive sequence s is a fixed point for the above
action, that is, a word sequence u satisfying:

∀k ∈ N, sk(uk+1) = uk.

We denote by Fix(s) the set of fixed points of s.

Example 18 gives an example of a fixed point of a directive sequence.
Directive sequences always admit fixed points. Indeed, choose a letter a ∈ A and for

each n ∈ N, consider the word sequence u(n) = (u
(n)
k )k∈N defined by u

(n)
k = aω when k ≥ n

and u
(n)
k = s[k,n)(a

ω) when k < n, where s[k,n) = sk ◦ · · · ◦ sn−1. Then let u be a limit
point of this sequence of word sequences when n tends to infinity, in the compact space

(AN)
N

(with the coordinatewise topology). This u is a fixed point of s.
Fixed points of a directive sequence are not unique in general.
This generalizes both the notion of fixed point and the notion of periodic point for a

single substitution σ. Let σω denote the constant directive sequence with all terms equal
to σ. Similarly, for v ∈ AN, let vω denote the word sequence with all terms equal to v.

Lemma 13. Let σ ∈ S be a substitution. We have

• v ∈ AN is a fixed point of σ if, and only if, vω ∈ (AN)
N

is a fixed point of σω;

• if u ∈ (AN)
N

is a fixed point of σω, then u0 is a periodic point of σ, whose period
divides lcm({1, . . . , d+ 1}).

More generally, assume that u is a fixed point of a directive sequence s, and that there is
a positive integer m such that s is periodic with period m, i.e., sn = sn+m for all n ∈ N.
Then u0 is a periodic point of the substitution s[0,m).

12



Proof. The first point is clear. Let u be a fixed point of σω, and for all n ∈ N, let an ∈ A
be the first letter of un. Then, the sequence (an) is periodic, with a period k ≤ d + 1
since an is completely determined by an+1. Now, if limn→∞ |σn(a0)| = ∞, then σnk(a0)
converges as n tends to infinity to the infinite word u0 = uk, so u0 is a periodic point
of σ. Otherwise, for all n ∈ N, σn(an) = a0, and the word sequence (Tun)n∈N is also a
fixed point of σω, where T : AN → AN is the shift map. If we iterate the argument and
take the least common multiple of the periods obtained (each being bounded by d + 1),
it gives a period m for which u0 is a fixed point of σm.

If u = (un) is a fixed point of s = (sn), then (umn)n∈N is a fixed point of the directive
sequence (s[mn,mn+m))n∈N. When s has period m, then (s[mn,mn+m))n∈N = σω, where
σ = s[0,m), and by the previous result it follows that u0 is a periodic point of σ.

Definition 14. For a fixed point u ∈ (AN)
N

of a directive sequence s, we define the
subshift Ωu as the subshift Ωu0, that is the smallest closed subset of AN invariant by the
shift and containing u0.

We extend Definitions 3 and 4 to directive sequences:

Definition 15. We say that a directive sequence s ∈ SN is primitive, cone convergent,
sum convergent, or exponentially convergent if the sequence of matrices (ab(sn)) has the
said property (see Definition 4). When s is cone convergent, the direction of (ab(sn)) is
simply called the direction of s.

Definition 16. We say that a directive sequence s ∈ SN is everywhere growing if for
every a ∈ A, we have

lim
n→∞

∣∣s[0,n)(a)
∣∣ =∞.

It is equivalent to say that the 1-norm of each column of the matrix ab(s[0,n)) tends to
infinity.

Remark that if a directive sequence s is primitive, then for all k ∈ N, and all a ∈ A,
we have

∣∣s[k,n)(a)
∣∣ −−−→
n→∞

∞. In particular, s is everywhere growing.

Proposition 17. Let s ∈ SN be a primitive directive sequence. Then the subshift Ωs is

minimal. In particular, for every fixed point u ∈ (AN)
N

of s, we have Ωu = Ωs. Thus, Ωu

does not depend on the choice of the fixed point u.

Proof. Let w and w′ ∈ Ωs be two words of the subshift. Let p be a prefix of w. Then, there
exist n ∈ N and a ∈ A such that p is a factor of s[0,n)(a). Using primitivity, let N ≥ n
such that ab(s[n,N)) > 0. Now, take a factor f of w′ of length at least 2 maxc∈A

∣∣s[0,N)(c)
∣∣.

There exist k ∈ N and b ∈ A such that f is a factor of s[0,k)(b). Necessarily, we have
k ≥ N , and s[0,k)(b) is a concatenation of words s[0,N)(c), for each letter c of s[N,k)(b).
Hence, there exists c ∈ A such that s[0,N)(c) is a factor of f . Then, the letter a appears
in the word s[n,N)(c). So p is a factor of s[0,n)(a) which is a factor of s[0,N)(c) which is a
factor of f which is a factor of w′. We conclude that for every w,w′ ∈ Ωs, every prefix
of w is a factor of w′, thus the subshift Ωs is minimal.

To end the proof, remark that for any fixed point u of s, we have u0 ∈ Ωs since
limn→∞ s[0,n)(an) = u0, where an is the first letter of un. Hence, by minimality we get
Ωu = Ωs.

13



Let us give an example of a fixed point of a directive sequence. The reader will
recognize that each uk is a Sturmian word, see [46].

Example 18. Let S = {τ0, τ1}, with τ0 =

Å
0 7→ 0
1 7→ 01

ã
, τ1 =

Å
0 7→ 10
1 7→ 1

ã
, and let

us consider the directive sequence s = τ0τ1τ1τ0τ0τ1τ0τ0τ1.... Then, there exists a fixed

point u ∈ ({0, 1}N)
N

of s beginning with

u0 = 01010010100101010010100101001010100101001010010101...

u1 = 11011011101101101110110110111011011101101101110110...

u2 = 10101101010110101011010110101011010101101011010101...

u3 = 00100010001001000100010010001000100010010001000100...

u4 = 01001001010010010100100100101001001010010010010100...

u5 = 10101101011010101101011010101101011010101101011010...

u6 = 00100100010010001001000100100100010010001001000100...

Fixed points of directive sequences encompass both the time and scale dynamics in a
single object. In the context of this paper, the time dynamics corresponds to the action
of the translation on the torus and the scale dynamics corresponds to the action of the
continued fraction algorithm on the space of translations. Symbolically, the shift map on
Ωu0 encodes the time dynamics, while shifting the fixed point (uk) 7→ (uk+1) corresponds
to accelerating the time dynamics.

In Example 18 above, we can visualize how fixed points grasp the multi-scale structure
of the dynamical system with the following alignment:

u0 = 01010010100101010010100101001010100101001010010101...

u1 = 1 1 01 1 01 1 1 01 1 01 1 01 1 1 01 1 01 1 01 1 1 ...

u2 = 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 ...

u3 = 0 0 1 0 0 0 1 0 0 0 1 0 ...

u4 = 0 1 0 0 1 0 0 1 0 ...

u5 = 1 0 1 0 1 1 ...

u6 = 0 0 1 0 ...

As we will see in Section 9, when the substitutions enjoy some recognizability prop-
erties, the scale dynamics corresponds to inducing on some atoms of the partition.

Rokhlin towers and ordered Bratteli diagrams are other combinatorial objects that
account for the multi-scale structure of dynamical systems [26]. An ordered Bratteli
diagram B can be associated with a directive sequence s. When s is everywhere growing,
the minimal infinite paths of B are in bijective correspondence with the fixed points u
of s: the kth edge of the infinite path is encoded by the first letter of the word uk.

3.7 Topologies on the integer half-space and worms

Let us define the integer half-space: H = {z ∈ Zd+1 | h(z) ≥ 0}. For i ∈ N, let
Hi = {z ∈ Zd+1 | h(z) = i} = Λ + ie0.
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Remark 19. When x is a totally irrational direction, then x ∩ Zd+1 = ∅ (recall that a
direction x ∈ PRd

+ is a half-line x ⊆ Rd+1
+ \ {0}), the projection πx is injective on Zd+1,

and πx(H) is dense in P (this follows from the minimality of Tx, see Section 3.2).

The following two definitions are crucial in the rest of the paper.

Definition 20. For any fixed x ∈ PRd
+, we define the topology T (x) on H: a subset

V ⊆ H is open if there exists an open set U ⊆ P such that V = π−1
x (U) ∩H.

Remark that T (x) is the finest topology on H that makes πx : H → P continuous.
It is metrizable if, and only if, x ∩ H = ∅, which is the case if x is a totally irrational
direction.

We introduce the notion of worm:

Definition 21. Given an infinite word w ∈ AN, its worm is the set

W (w) = {ab(p) | p prefix of w} ⊆ Nd+1 ⊆ H.

For a worm and a letter a we also define the subset

Wa(w) = {ab(p) | pa prefix of w} = W (w) ∩ (W (w)− ea).

Remark 22. The subsets Wa(w), a ∈ A, form a partition of W (w): W (w) = ta∈AWa(w).

An example of worm is depicted in Figure 1.

Figure 1: Worm of the word w = (01001)ω. W0(w) in blue squares and W1(w) in red
diamonds.

Lemma 23 (tiling). A worm W tiles the integer half-space by translations: H = W ⊕Λ.

Figure 2 shows an example of such a tiling by the worm (01001)ω, for d = 1.

Proof. The lattice Λ acts on H by translation. The orbits of this action are the cosets Hi.
A worm intersects each coset exactly once.

Lemma 24 (automatic balance). If a worm W (w) has non-empty interior for some
topology T (x) with x ∈ PRd

+, then πx(W (w)) is bounded.
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e1 − e0

Figure 2: Tiling of H by a worm, by translation by the group Λ = 〈e1 − e0〉.

Proof. Let U be an open subset of P such that ∅ 6= π−1
x (U)∩H ⊆ W (w). Up to restricting

it, we assume that U is included in an open ball B(0, r) for some r > 0.
Let us consider the translation by q(πx(e0)) on the d-dimensional torus P/Λ:

Tx = Tq(πx(e0)) =

Å
P/Λ −→ P/Λ
z 7−→ z + q(πx(e0))

ã
For any integer i, π−1

x (U) intersects Hi if, and only if, T ix(0) belongs to the open
subset q(U) of the torus. The translation Tx acts minimally on every orbit closure. By
hypothesis, the open set q(U) intersects the orbit of 0, hence T ix(0) belongs to q(U) for i
in a syndetic subset of N: ∃K ≥ 1,∀i ∈ N, ∃0 < k ≤ K,T i+kx (0) ∈ q(U) [32]. If, for each
integer i, we denote by mi the single element of W (w) ∩Hi, we have ‖mi+1 −mi‖1 = 1.
Consider a point mi of W (w). Then there exists 0 < k ≤ K such that T i+kx (0) ∈ q(U).
Therefore, π−1

x (U) intersects Hi+k, and as π−1
x (U) ⊆ W (w) this intersection must be

{mi+k}. As ‖mi+k −mi‖1 ≤ k ≤ K, it follows that mi is at distance at most K of a
point of π−1

x (U) (see Figure 3).

P

U

π−1
x (U)

≤ K

Figure 3: A worm cannot escape too far between consecutive interior points.

Since the direction x is in PRd
+, the projection πx is 2-Lipschitz. Hence, πx(W (w)) ⊆

B(0, r + 2K), which concludes the proof.
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Lemma 25 (uniform automatic balance). If there exist a radius r > 0, a sequence of
directions x(n) ∈ PRd

+ such that x(n) −−−→
n→∞

x∞ with x∞ a totally irrational direction, and

a sequence of worms W (un) such that ∀n ∈ N, ∃cn ∈ P , π−1
x(n)(B(cn, r)) ∩ H ⊆ W (un),

then πx(n)(W (un)) is uniformly bounded for n ∈ N.

Proof. Following the proof of the previous lemma, we consider the translation Tx∞ by
q(πx∞(e0)) on the torus P/Λ. For every n ∈ N, let Bn = q(B(cn, r)) and B′n =
q(B(cn, r/2)). Since x∞ is a totally irrational direction, the translation Tx∞ acts min-
imally on the whole torus P/Λ. Moreover, every point of P/Λ comes back in uniform
finite time in every B′n. More precisely, there exists a constant K such that for all n ∈ N
and for all y ∈ P/Λ, there exists 0 < k ≤ K such that T kx∞(y) ∈ B′n. If we take n0 such
that for all n ≥ n0, d(πx(n)(e0), πx∞(e0)) = d(x(n), x∞) ≤ r

2K
, then for all y ∈ P/Λ and

all n ≥ n0, there exists 0 < k ≤ K such that T k
x(n)(y) ∈ Bn. Hence, we deduce as in

the proof of the previous lemma that for all n ≥ n0, πx(n)(W (un)) ⊆ B(cn, r + 2K). In
particular, 0 ∈ B(cn, r + 2K). Thus, πx(n)(W (un)) ⊆ B(0, 2r + 4K). The result follows
since πx(n)W (un) is bounded for n < n0 by Lemma 24.

The following lemma is useful to propagate non-emptiness of the interior of a subset
of H when an affine map is applied.

Lemma 26. Let W ⊆ Nd+1 ⊆ H, let x ∈ PRd
+ be a totally irrational direction, let t ∈ H,

and let M ∈ GLd+1(Z) ∩Md+1(N). If W has non-empty interior for the topology T (x),
then MW + t has non-empty interior for the topology T (Mx).

Proof. Let U ⊆ P be a bounded non-empty open subset such that π−1
x (U)∩H ⊆ W . We

have M ∈ GLd+1(Z), so M−1Zd+1 = Zd+1, and M−1(H− t) is a half-space

M−1(H− t) = {z ∈ Zd+1 | h(Mz + t) ≥ 0} = {z ∈ Zd+1 |
d∑
i=0

αizi ≥ β},

for some integer coefficients αi and β. Since the matrix M is non-negative and invertible,
we have αi = h(Mei) > 0 for all i, so v(x) is in the half-space {z ∈ Rd+1 |

∑d
i=0 αizi > 0}.

For every t′ ∈ Rd+1, the intersection of the line t′ + Rv(x) with the set

{z ∈ Rd+1 |
d∑
i=0

αizi ≥ β} \ {z ∈ Rd+1 |
d∑
i=0

zi ≥ 0}

is included in an interval with one extremity in P and with a finite length that depends
continuously on t′. Using that moreover U is bounded we deduce that the set

L = π−1
x (U) ∩M−1(H− t) \H ⊆ Zd+1

is finite. Moreover, we have π−1
x (πx(L)) ∩M−1H = L since πx is injective on Zd+1, and

we have Mπ−1
x (U \ πx(L)) = π−1

Mx(πMx(M(U \ πx(L)))), so

MW + t ⊇M(π−1
x (U) ∩H) + t

⊇M(π−1
x (U) ∩ (M−1(H− t) \ L) + t

= (M(π−1
x (U \ πx(L))) + t) ∩H

= π−1
Mx(πMx(M(U \ πx(L))) + πMx(t)) ∩H.
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Finally πMx(M(U \ πx(L))) 6= ∅ is open, so MW + t has non-empty interior for
T (Mx).

Remark 27. The statement and the proof of Lemma 26 would have been immediate for
the topology defined by the open sets π−1

x (U) ∩ Zd+1 rather than π−1
x (U) ∩H.

We finish this subsection with a result that shows how to relate properties of the worm
to some combinatorial properties of the infinite word:

Proposition 28. An infinite word w ∈ AN is balanced if, and only if, there exists a
direction x ∈ PRd

+ such that πx(W (w)) is bounded.

Proof. First of all, remark that a word u is balanced if, and only if, there exists a
constant K such that, for any two factors f1, f2 of w, ‖ab(f1)‖1 = ‖ab(f2)‖1 implies
‖ab(f1)− ab(f2)‖1 ≤ K.

Assume that πx(W (w)) ⊆ B(0, L). First of all remark that for a finite word f its
length fulfills |f | = h(ab(f)) = ‖ab(f)‖1. Moreover, if p is a prefix of w, then we have
ab(p)− |p| v(x) = πx(ab(p)) ∈ πx(W (w)), so we get ‖ab(p)− |p| v(x)‖1 ≤ L.

Let f be a factor of w and let p be a prefix of w such that pf is a prefix of w. Since
ab(f) = ab(pf)− ab(p) and |f | = |pf | − |p| we obtain:

‖ab(f)− |f | v(x)‖1 ≤ ‖ab(pf)− |pf | v(x)‖1 + ‖ab(p)− |p| v(x)‖1 ≤ 2L.

Thus, if we consider two factors f1 and f2 of w of the same length, we deduce:

‖ab(f1)− ab(f2)‖1 ≤ ‖ab(f1)− |f1| v(x)‖1 + ‖ab(f2)− |f2| v(x)‖1 ≤ 4L.

Thus, the word w is balanced.
Now, assume that w is balanced, and let K be such that for any two factors f1, f2

of w, ‖ab(f1)‖1 = ‖ab(f2)‖1 implies ‖ab(f1)− ab(f2)‖1 ≤ K. Let pn be the prefix of w
of length n. For every k ≥ 1, by cutting pn into

⌊
n
k

⌋
parts of length k and a remaining

factor of length less than k, we get∥∥∥ab(pn)−
⌊n
k

⌋
ab(pk)

∥∥∥
1
≤ K

⌊n
k

⌋
+ k,

so that ∥∥∥∥ 1

n
ab(pn)− 1

k
ab(pk)

∥∥∥∥
1

≤ K

k
+

2k

n
.

Hence, for every N ≥ n ≥ 1 and every k ≥ 1, we have∥∥∥∥ 1

n
ab(pn)− 1

N
ab(pN)

∥∥∥∥
1

≤ 2K

k
+

4k

n
.

Thus, by taking k = b
√
nc, we see that ( 1

n
ab(pn))n≥1 is a Cauchy sequence, so it

converges to some vector v ∈ ∆. Then, for every n ∈ N,

∞∑
k=0

1

2k+1

(
2 ab(pn2k)− ab(pn2k+1)

)
= ab(pn)− nv,
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since limk→∞
1
2k

ab(pn2k) = nv. Moreover,

‖2 ab(pn)− ab(p2n)‖1 = ‖ab(pn)− ab(qn)‖1 ≤ K,

where qn is such that p2n = pnqn. It follows that, for all n ∈ N,

‖πv(ab(pn))‖1 = ‖ab(pn)− nv‖1 ≤
∞∑
k=0

1

2k+1
‖2 ab(pn2k)− ab(pn2k+1)‖1 ≤

∞∑
k=0

K

2k+1
= K,

Hence, πv(W (w)) ⊆ B(0, K + 1).

3.8 Worms and Dumont-Thomas numeration

In all the following we consider S ⊆ hom(A+, A+) a finite set of unimodular substitutions
on the alphabet A. We give a definition of the Dumont-Thomas numeration, which is a
generalization, for a finite set S of substitutions, of the one given for a single substitution
in [25].

Definition 29. The Dumont-Thomas alphabet of S is defined as

Σ = {ab(p) | ∃σ ∈ S, ∃a, b ∈ A, pb prefix of σ(a)} ⊆ Nd+1.

Remark that the Dumont-Thomas alphabet is a finite set, since S and A are finite.
We also introduce an automaton:

Definition 30. We call abelianized prefix automaton of the set of substitutions S, the
automaton A defined as follows:

• the alphabet is Σ× S,

• the set of states is A,

• there is a transition a
t,σ−→ b, with (a, t, σ, b) ∈ A× Σ× S × A if, and only if, there

exist p, v ∈ A∗ such that σ(a) = pbv, with ab(p) = t.

We write a
tn,sn−−−→ ...

t0,s0−−→ b if we have a path of length n + 1 in the automaton A: there
exist states a = an+1, an, ..., a1, a0 = b such that for every 0 ≤ k ≤ n, there is a transition

ak+1
tk,sk−−→ ak. Similarly, we write ...

tn,sn−−−→ ...
t0,s0−−→ b if there is a left-infinite path in A

ending in b.

The automaton A is depicted in Figure 10 for the set of Arnoux-Rauzy substitutions,
and in Figure 11 for the set of Cassaigne substitutions.

The following lemma, whose proof is left to the reader, follows from the construction
of the abelianized prefix automaton.

Lemma 31. For every w ∈ AN, σ ∈ S, and a ∈ A, the following relation holds

Wa(σ(w)) =
⋃

b
t,σ−→a

(ab(σ)Wb(w) + t) .
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Example 32. Let S = {τ0, τ1}, with τ0 =

Å
0 7→ 0
1 7→ 01

ã
and τ1 =

Å
0 7→ 10
1 7→ 1

ã
as

in Example 18. Then, the Dumont-Thomas alphabet is Σ = {0, e0, e1}, where (e0, e1) is
the canonical basis of R2, and the abelianized prefix automaton A is depicted in Figure 4.
For every word w ∈ {0, 1}N we have the relations

W0(τ0(w)) = ab(τ0)W0(w) t ab(τ0)W1(w)

W1(τ0(w)) = ab(τ0)W1(w) + e0

W0(τ1(w)) = ab(τ1)W0(w) + e1

W1(τ1(w)) = ab(τ1)W0(w) t ab(τ1)W1(w).

10

0, τ0

e1, τ1

0, τ1

e0, τ0

0, τ1

0, τ0

Figure 4: Abelianized prefix automaton A for the set of substitutions S of Example 32.

By iterating Lemma 31, we obtain expressions for the worms associated with a fixed
point of a directive sequence.

Lemma 33. Let s ∈ SN be a directive sequence and (Mk) the corresponding matrix
sequence. Consider a fixed point u ∈ Fix(s). For all integers k, l such that 0 ≤ k ≤ l,
and every a ∈ A, we have

Wa(uk) =
⋃

b
tl−1,sl−1−−−−−→...

tk,sk−−→a

M[k,l)Wb(ul) +
l−1∑
i=k

M[k,i)ti.

Lemma 34 (Dumont-Thomas numeration). Let s ∈ SN be a directive sequence and

u ∈ (AN)
N

be a fixed point of s. Let bn be the first letter of the word un. We assume that∣∣s[0,n)(bn)
∣∣ −−−→
n→∞

∞. Then, for every a ∈ A we have

Wa(u0) =
⋃
n∈N

{
n−1∑
i=0

M[0,i)ti | bn
tn−1,sn−1−−−−−→ ...

t0,s0−−→ a}.

Proof. Applying Lemma 33 with k = 0 and l = n, we get

Wa(u0) =
⋃

b
tn−1,sn−1−−−−−→...

t0,s0−−→a

M[0,n)Wb(un) +
n−1∑
i=0

M[0,i)ti.

As bn is the first letter of un, we have 0 ∈ Wbn(un), so that

n−1∑
i=0

M[0,i)ti ∈ Wa(u0)
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when bn
tn−1,sn−1−−−−−→ ...

t0,s0−−→ a.
Conversely, recall that Wa(u0) = {ab(p) | pa prefix of u0}, and consider such a prefix

pa. The hypothesis that
∣∣s[0,n)(bn)

∣∣ is unbounded ensures that there exists n such that

pa is a prefix of s[0,n)(bn). Then there is a path bn
tn−1,sn−1−−−−−→ ...

t0,s0−−→ a in A such that

p = s[0,n−1)(pn−1)...s0(p1)p0, where ti = ab(pi), and thus ab(p) =
∑n−1

i=0 M[0,i)ti.

Finally, the following lemma follows from the definition of transitions in A.

Lemma 35. Let s ∈ SN be a directive sequence. For every a, b ∈ A, the number of paths

b
tl−1,sl−1−−−−−→ . . .

tk,sk−−→ a in the automaton A is equal to (M[k,l))a,b =
∣∣s[k,l)(b)

∣∣
a
.

3.9 Rauzy fractals

In this section, we generalize the classical notion of Rauzy fractals, and we give some
useful properties.

Definition 36. Let w ∈ AN be an infinite word admitting a frequency vector v = freq(w)
(see Section 3.4). We define R(w) as the closure of πvW (w) ⊆ P . For a letter a ∈ A,
we also define Ra(w) as the closure of πvWa(w). The set R(w) is called Rauzy fractal
and the subsets Ra(w) are called its pieces.

Our definition of a Rauzy fractal is a generalization of the classical notion for a fixed
point of a substitution, see [48, 46] for references. Note however that in those classical
definitions, the projection hyperplane is often chosen to be orthogonal to the frequency
vector v. In our setting, we want to be able to compare Rauzy fractals associated with
words with different frequency vectors, so it is more convenient to project onto a fixed
hyperplane P .

Example 37. For w = (01001)ω, we have freq(w) = (3/5, 2/5). So we can define the
Rauzy fractal by projecting on the hyperplane ( i.e., line) x + y = 0, and we get a Rauzy
fractal with only 5 points. See Figure 5.

Using Rauzy fractals, we can give a characterization of the interior of Wa(w) for the
topology T (x), with the following lemma.

Lemma 38. For every open subset B of the hyperplane P , for every totally irrational
direction x ∈ PRd

+, for every infinite word w ∈ AN admitting a frequency vector freq(w) ∈
x and for every letter a ∈ A, we have the equivalence between

1. H ∩ π−1
x (B) ⊆ Wa(w),

2. ∀b ∈ A \ {a}, ∀t ∈ Λ \ {0}, B ∩Rb(w) = ∅ = B ∩ (R(w) + t).

In particular, if R(w) is bounded, then p ∈ H is in the interior of Wa(w) for the
topology T (x) if, and only if,

πx(p) 6∈
⋃

b∈A\{a}

Rb(w) ∪
⋃

t∈Λ\{0}

R(w) + t.
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P

πv

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

W (w) = W0(w) tW1(w)

R(w) = R0(w) ∪R1(w)

Figure 5: The Rauzy fractal R(w) as the closure of the projection of the worm W (w) on
the hyperplane P . Example for w = (01001)ω, so v = (3/5, 2/5).

Proof. By Remark 22, we have

Wa(w) = H \

Ñ ⋃
b∈A\{a}

Wb(w) ∪
⋃

t∈Λ\{0}

W (w) + t

é
,

As πx is injective on H by Remark 19, and B is open, we have the equivalences

H ∩ π−1
x (B) ⊆ Wa(w)⇐⇒ B ∩ πx(H) ⊆ πx (Wa(w))

⇐⇒ B ∩ πx

Ñ ⋃
b∈A\{a}

Wb(w) ∪
⋃

t∈Λ\{0}

W (w) + t

é
= ∅

⇐⇒ B ∩

Ñ ⋃
b∈A\{a}

Rb(w) ∪
⋃

t∈Λ\{0}

R(w) + t

é
= ∅.

When R(w) is bounded, the set
⋃
b∈A\{a}Rb(w) ∪

⋃
t∈Λ\{0}R(w) + t is closed since it

is a locally finite union. Let B be its complement: then the interior of Wa(w) for the
topology T (x) is H ∩ π−1

x (B).

Remark 39. We emphasize the fact that the interior of R(w) need not correspond to the
interior of W (w) for the topology T (x). As x is a totally irrational direction, if an open
set O of P is such that π−1

x (O)∩H ⊆ Wa(w), then O is included in the interior of Ra(w),
but the converse may be false in general.

Rauzy fractals associated with fixed points of directive sequences play a particular
role. We recall the following result, which alreay appears in different form in [31] or [52].

Proposition 40. [12, Theorem 5.7] Let s ∈ SN be a directive sequence, which is every-
where growing and cone convergent with direction x (see Definitions 15 and 16). Then
the subshift Ωs is uniquely ergodic, and for every word w ∈ Ωs, we have freq(w) = v(x).
In particular, if u ∈ Fix(s), then freq(u0) = v(x).
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Corollary 41. Let s ∈ SN be a directive sequence, which is cone convergent with a
totally irrational direction x. Then the subshift Ωs is uniquely ergodic, and for every
word w ∈ Ωs, we have freq(w) = v(x).

Proof. By Lemma 7, total irrationality of x implies primitivity of s. In particular s is
everywhere growing and the hypotheses of Proposition 40 are satisfied.

Remark 42. If s ∈ SN is a cone convergent directive sequence with totally irrational
direction x, then, by Corollary 41, for every fixed point u ∈ Fix(s), the infinite word u0

admits v(x) as frequency vector, hence we can define the Rauzy fractal R(u0).

The following proposition allows to show that the Rauzy fractal does not depend on
the choice of a fixed point u of a directive sequence s, and it gives a useful characterization
with left-infinite paths in the abelianized prefix automaton.

Proposition 43. Let s ∈ SN. We assume that s is primitive and sum convergent, with
direction x. Then, for every letter a ∈ A and every fixed point u ∈ Fix(s), we have

Ra(u0) = {
∞∑
n=0

πx(M[0,n)(s)tn) | ... tn,sn−−−→ ...
t0,s0−−→ a}.

In particular, the Rauzy fractal does not depend on the choice of the fixed point u and is
compact.

Proof. Let u be a fixed point of s. We denote by bn the first letter of the word un. Note
that, since s is primitive, limn→∞

∣∣s[0,n)(bn)
∣∣ =∞. By Lemma 34, for every letter a ∈ A,

we have the equality

Ra(u0) =
⋃
n∈N

{
n−1∑
k=0

πx(M[0,k)tk) | bn
tn−1,sn−1−−−−−→ ...

t0,s0−−→ a}.

Let Qa = {
∑∞

k=0 πx(M[0,k)tk) | ...
tk,sk−−→ ...

t0,s0−−→ a}. We first show the inclusion

Qa ⊆ Ra(u0). Let ...
tk,sk−−→ ...

t0,s0−−→ a be a left-infinite path in the automaton A. Let
ε > 0. By the sum convergence hypothesis, and using the fact that the Dumont-Thomas
alphabet Σ is finite, there exists n ∈ N such that

max
t∈Σ−Σ

‖t‖1

∞∑
k=n

∣∣∣∣∣∣πxM[0,k)

∣∣∣∣∣∣
1
≤ ε

where Σ − Σ = {t − t′ | t, t′ ∈ Σ}. There is a path b
tn−1,sn−1−−−−−→ ...

t0,s0−−→ a, where b
may be different from bn. Thanks to primitivity and Lemma 35, we extend it to a path

bN
t′N−1,sN−1−−−−−−→ ...

t′0,s0−−→ a, for some N > n such that M[n,N) > 0, with t′k = tk when k < n.
We have∥∥∥∥∥

∞∑
k=0

πx(M[0,k)tk)−
N−1∑
k=0

πx(M[0,k)t
′
k)

∥∥∥∥∥
1

≤ max
t∈Σ−Σ

‖t‖1

∞∑
k=n

∣∣∣∣∣∣πxM[0,k)

∣∣∣∣∣∣
1
≤ ε.
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Since
∑N−1

k=0 πx(M[0,k)t
′
k) ∈ Ra(u0) and since Ra(u0) is closed, we deduce that

∞∑
k=0

πx(M[0,k)tk) ∈ Ra(u0).

Therefore, Qa ⊆ Ra(u0).
Let us show the other inclusion. We have⋃

n∈N

{
n−1∑
k=0

πx(M[0,k)tk) | bn
tn−1,sn−1−−−−−→ ...

t0,s0−−→ a} ⊆ Qa

because for every n ∈ N, there exists a left-infinite path ...
0,sk−−→ ...

0,sn−−→ bn as bk is the
first letter of sk(bk+1). Therefore, Ra(u0) ⊆ Qa.

To end the proof, it remains to show that the set Qa is compact. We define a natural
distance on the set of left-infinite paths in the automaton A by taking a distance 2−n

between two paths that coincide for the last n transitions. This makes the set of left-

infinite paths compact, and the map sending a left-infinite path ...
tk,sk−−→ ...

t0,s0−−→ a to the
corresponding sum

∑∞
k=0 πx(M[0,k)tk) is continuous by the sum convergence hypothesis.

So we get the compactness of Qa, and consequently Ra(u0) = Qa.

Definition 44. Let s be a directive sequence. When the Rauzy fractal R(u0) does not
depend on the fixed point u of s, we denote it by R(s), or just R when there is no ambiguity
on s, and its pieces by Ra(s) or Ra.

Examples of non-substitutive Rauzy fractals associated with a directive sequence are
drawn in Figures 6 and 12.

e0 − e1

e2 − e0e2 − e1

0

R0
R1

R2

Figure 6: Approximation of the Rauzy fractal of a directive sequence beginning with
c1c1c0c1c0c0c0c1c1c1c0c1c0c0c1c0c1c0c0c0c0c1c0c1c1c0c0c1c1c1c0c1c1c1c0c0c0c1c0c0c0c1c1c0c0c0,
where c0 and c1 are defined in Section 8.
Here, x = [(0.279291082100669 . . . , 0.1294709739854265 . . . , 0.5912379439139045 . . . )].

The primitivity hypothesis of Proposition 43 may be replaced with the hypothesis
that x is a totally irrational direction.
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Corollary 45. Let s ∈ SN be a sum convergent directive sequence with a totally irrational
direction x ∈ PRd

+.
Then, for every letter a ∈ A and every fixed point u ∈ Fix(s), we have

Ra(u0) = {
∞∑
n=0

πx(M[0,n)(s)tn) | ... tn,sn−−−→ ...
t0,s0−−→ a}.

In particular, we have the properties:

• the Rauzy fractal R(s) and its pieces do not depend on the choice of a fixed point,

• R(s) is compact,

• R(s) and its translates by Λ cover the hyperplane:
⋃
t∈ΛR(s) + t = P ,

• R(s) has non-empty interior.

Proof. Thanks to Lemma 5 and Lemma 7, s is primitive, so we can apply Proposition 43,
hence we deduce the formula, the fact that the Rauzy fractal and its pieces do not depend
on the choice of a fixed point, and their compactness. Now, for any fixed point u ∈ Fix(s),
we have W (u0)⊕Λ = H, and πx(H) is dense in P since x is a totally irrational direction.
Hence, we deduce that the union

⋃
t∈ΛR(s)+ t is dense in P . Since R(s) is bounded, this

union is locally finite, thus locally closed. Hence, we get the wanted covering. The last
point is a consequence of the Baire category theorem: if the interior of R(s) were empty,
then the interior of the countable union

⋃
t∈Λ R(s) + t = P would be empty, which is

absurd.

3.10 Technical lemmas

The following lemma is a quantitative improvement of Lemma 6. It says that the rate of
exponential convergence is invariant under a shift of the directive sequence.

Lemma 46. Let s be a directive sequence and let x ∈ PRd
+ be a direction. Then, for

every k ∈ N, we have the equality

lim sup
n→∞

1

n
ln
∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1

= lim sup
n→∞

1

n
ln
∣∣∣∣∣∣πx(k)M[k,k+n)

∣∣∣∣∣∣
1
,

where x(k) = M−1
[0,k)x. In particular, if s is exponentially convergent with direction x, then

∃C > 0, ∀k ∈ N, ∃n0 ∈ N, ∀n ≥ n0,
∣∣∣∣∣∣πx(k)M[k,k+n)

∣∣∣∣∣∣
1
≤ e−nC .

Proof. Let η be the linear endomorphism of P such that πxM[0,k) = ηπx(k) . Remark that
η is invertible. We have the inequalities∣∣∣∣∣∣πxM[0,k+n)

∣∣∣∣∣∣
1
≤
∣∣∣∣∣∣ηπx(k)

∣∣∣∣∣∣
1

∣∣∣∣∣∣πx(k)M[k,k+n)

∣∣∣∣∣∣
1
,

and ∣∣∣∣∣∣πx(k)M[k,k+n)

∣∣∣∣∣∣
1
≤
∣∣∣∣∣∣η−1πx

∣∣∣∣∣∣
1

∣∣∣∣∣∣πxM[0,k+n)

∣∣∣∣∣∣
1
.
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So we get the wanted equality

lim sup
n→∞

1

n
ln
∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1

= lim sup
n→∞

1

n
ln
∣∣∣∣∣∣πxM[0,k+n)

∣∣∣∣∣∣
1

= lim sup
n→∞

1

n
ln
∣∣∣∣∣∣πx(k)M[k,k+n)

∣∣∣∣∣∣
1
.

We deduce the second part of the lemma by taking

C = −1

2
lim sup
n→∞

1

n
ln
∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1
.

The remaining lemmas in this subsection are topology exercises and are not specific
to the subject of this paper.

Lemma 47. Let B, C, D be open subsets of P . If D ⊆ B ∩ C, then D ⊆ B ∩ C.

Proof. Let x ∈ D. Let r0 > 0 be small enough to have B(x, r0) ⊆ D (balls are assumed
open in this proof). Let r > 0 be such that r ≤ r0.

As D ⊆ B, we get that B(x, r) ⊆ D ⊆ B. If B(x, r) ∩ B = ∅, then x /∈ B which is
absurd. So there exists y ∈ B(x, r)∩B, and since these are open sets, there exists r′ > 0
such that B(y, r′) ⊆ B(x, r) ∩B.

Also, B(y, r′) ⊆ B(x, r) ⊆ C thus there exists z such that z ∈ B(y, r′) ∩ C.
Finally, for every r > 0 we have found z ∈ B ∩ C such that d(x, z) < r (since

z ∈ B(x, r)). Therefore, x ∈ B ∩ C.

The next technical lemmas are useful in the proof of Proposition 92.

Lemma 48. Let H be a closed subset of a metric space X, and let µ be a finite measure
on X such that µ(H) = 0. Then for every ε > 0 there exists an open subset O such that
µ(O) ≤ ε and H ⊆ O.

Proof. For n ≥ 1, let Hn = {x ∈ X | d(x,H) < 1
n
}. We have

⋂
n≥1Hn = H, because H is

closed. The sequence (Hn)n is decreasing for inclusion, thus we deduce limn→∞ µ(Hn) =
µ
(⋂

n≥1Hn

)
= µ(H) = 0. Let ε > 0. There exists n ≥ 1 such that µ(Hn) ≤ ε. Then, the

open set O = Hn suits.

Lemma 49. Let X ⊆ PRd
+ and let µ be a probability measure on X. Let N ⊆ X be the

set of non totally irrational directions of X. We assume that µ(N) = 0. Then, for every
ε > 0 there exists an open set O of X such that O contains all the non totally irrational
directions and such that µ(O) ≤ ε.

Proof. The set N is the union of kernels of linear forms with rational coefficients. Thus,
it is a countable union of closed subsets. Let (Nn)n∈N be closed subsets such that N =⋃
n∈NNn. Let ε > 0. For every n ∈ N, let On be an open set given by Lemma 48 such

that µ(On) ≤ ε
2n+1 and Nn ⊆ On. Then, the open set O =

⋃
n∈NOn satisfies what we

want: we have N ⊆ O and

µ(O) ≤
∑
n∈N

µ(On) ≤
∑
n∈N

ε

2n+1
= ε.
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4 General conditions for the existence of nice Rauzy

fractals

4.1 Statement

Definition 50. Let S be a finite set of unimodular substitutions on A. We say that a
directive sequence s ∈ SN is good if the following four conditions are satisfied:

1. the sequence s is exponentially convergent,

2. the direction x of s is totally irrational,

3. there exist a fixed point u ∈ Fix(s), an increasing sequence of integers (kn)n∈N, and
a positive radius r > 0 such that

∀n ∈ N, ∀a ∈ A, ∃p ∈ P, H ∩ π−1
x(kn)(B(p, r)) ⊆ Wa(ukn),

where x(kn) = M−1
[0,kn)x,

4. the sequence (x(kn)) defined above has a limit which is a totally irrational direction.

Remark 51. The set of good directive sequences is shift-invariant: if a directive sequence
(sn)n∈N ∈ SN is good, then the shifted directive sequence (sn+1)n∈N is also good, and vice
versa.

Remark that for a good directive sequence, the Rauzy fractal does not depend on the
choice of a fixed point, is compact and has non-empty interior by Corollary 45. We recall
Theorem C that will be proven in the rest of this section:

Theorem C. Let s be a good directive sequence. Then the Rauzy fractal R(s) is a
measurable fundamental domain of P for the lattice Λ. It can be decomposed as a union
R(s) =

⋃
a∈ARa(s) which is disjoint up to sets of Lebesgue measure 0, and each piece

Ra(s) is the closure of its interior.
Moreover, the pieces Ra(s), a ∈ A, of the Rauzy fractal induce a nice generating

partition of the translation by q(e0 − v) on the torus P/Λ, where v is the unit vector of
the direction of s.

This partition defines a symbolic coding of the translation by q(e0−v), and this coding
is a measurable conjugacy with the uniquely ergodic subshift associated with s.

4.2 Proof of Theorem C

In all this subsection we assume that s is a good directive sequence with direction x, and
we let x(k) = M−1

[0,k)x, so that ⋂
n≥k

M[k,n)PRd
+ = {x(k)}.

We let u, (kn) and r be as in Definition 50. We denote by R(k) = R(uk) the Rauzy fractal
uniquely defined by the directive sequence (sn)n≥k (which is good by Remark 51), and

by R
(k)
a = Ra(uk) its pieces, for a ∈ A, see Definition 36.
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4.2.1 Step 1: proof that we have a topological tiling

Lemma 52. The Rauzy fractals R(kn) are uniformly bounded.

Proof. Conditions 3 and 4 of Definition 50 ensure that we can apply Lemma 25 to the
directions x(kn) and the worms W (ukn). We get that the sets πx(kn)W (ukn) are uniformly
bounded for n ∈ N, and the result follows by taking the closure.

Lemma 53. For every k ∈ N and every a ∈ A, the set Wa(uk) has non-empty interior
for T (x(k)).

Proof. Consider k ∈ N and a ∈ A. By Condition 3 in Definition 50, we can find l ≥ k such
that the interior of Wb(ul) is non-empty for T (x(l)) for all b ∈ A. Since M[k,l) is invertible,

by Lemma 35 there exists at least one b ∈ A such that there is a path b
tl−1,sl−1−−−−−→ . . .

tk,sk−−→ a
in A. Then, by Lemma 33, M[k,l)Wb(ul) + t ⊆ Wa(uk) for some t ∈ Nd+1. By Lemma 26,
the interior of M[k,l)Wb(ul) + t is non-empty for T (x(k)), and we deduce the result.

Lemma 54. For every k ∈ N and every a ∈ A, the interior of Wa(uk) is dense in Wa(uk)
for T (x(k)). If U ⊆ P is an open set such that π−1

x(k)(U) ∩ H is the interior of Wa(uk),

then the set U is dense in R
(k)
a .

Proof. Consider m ∈ Wa(uk) and V open set containing m. We want to find an element of
V in the interior of Wa(uk). By Lemma 33, m belongs to a set of the form M[k,l)Wb(ul)+tl
for each l ≥ k. By Lemma 52, the sets πx(kn)W (ukn) are uniformly bounded, thus we
deduce with Lemma 46 that the diameter of

πx(k)M[k,kn)Wb(ukn)

is arbitrarily small for n ∈ N large enough, so that m ∈M[k,kn)Wb(ukn)+tkn ⊆ Wa(uk)∩V .
As this set has non-empty interior by Lemmas 53 and 26, it follows that V intersects the
interior of Wa(uk). This proves that the interior of Wa(uk) is dense in Wa(uk).

Now, if U is an open subset of P such that π−1
x(k)(U)∩H is the interior of Wa(uk), then

the projection U ∩ πx(k)(H) is dense in πx(k)(Wa(uk)) which is dense in R
(k)
a . Thus, U is

dense in R
(k)
a .

Lemma 55.

• For every t ∈ Λ \ {0}, R ∩ (R + t) has empty interior.

• For a 6= b ∈ A, Ra ∩Rb has empty interior.

Proof. We denote π = πx(0) . By Lemma 23, we have W (u0) ∩ (W (u0) + t) = ∅. Now
consider U ⊆ P an open set such that π−1(U) ∩ H is the interior of W (u0). Then, we
have

π−1(U) ∩ (π−1(U) + t) ∩H = ∅ =⇒ U ∩ (U + t) ∩ π(H) = ∅
=⇒ U ∩ (U + t) = ∅,

because π(H) is dense in P since the direction x(0) is totally irrational, and π(t) = t since
t ∈ Λ. Moreover, by Lemma 54, the set U is dense in R. Then, by Lemma 47, the empty
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set U ∩ (U + t) is dense in the interior of R ∩ (R + t). We deduce that the interior of
R ∩ (R + t) is empty.

For a 6= b, we have Wa(u0) ∩Wb(u0) = ∅. Let Ua and Ub be open subsets of P such
that W̊a(u0) = π−1(Ua) ∩ H and W̊b(u0) = π−1(Ub) ∩ H. By Lemma 54, the set Ua is
dense in Ra and Ub is dense in Rb. Then, by Lemma 47, the empty set Ua ∩ Ub is dense
in the interior of Ra ∩Rb. We deduce that the interior of Ra ∩Rb is empty.

4.2.2 Step 2: proof that the boundary has zero Lebesgue measure

For every k ∈ N, we let v(k) = v(x(k)). Remark that the direction x(k) being totally

irrational, the numbers v
(k)
a cannot be equal to zero. Let us then define gk = maxa∈A

λ(R
(k)
a )

v
(k)
a

and fk = maxa∈A
λ(∂R

(k)
a )

v
(k)
a

. Let ηk be the linear endomorphism of P such that ηk ◦πx(k+1) =

πx(k) ◦Mk (where the matrix Mk is treated like an endomorphism of Rd+1). This map
is well-defined since Mkx

(k+1) = x(k). Observe that ηk is an invertible map. We write
η[k,l) = ηk ◦ · · · ◦ ηl−1, so that η[k,l) ◦ πx(l) = πx(k) ◦M[k,l).

Lemma 56. For all l > k, we have

∣∣det η[k,l)

∣∣ =
1∥∥M[k,l)v(l)

∥∥
1

.

Proof. Let γ be any fixed basis of P , and let us consider the following two bases of Rd+1:
γl = (γ, v(l)) and γk = (γ, v(k)). Since h(v(l)) = h(v(k)) = 1, we have v(l)− v(k) ∈ P , hence

the transition matrix between the two bases is of the form

Å
Id ∗
0 1

ã
, its determinant is 1.

The linear map M[k,l) sends v(l) to
∥∥M[k,l)v

(l)
∥∥

1
v(k) so that, if

[
η[k,l)

]
denotes the matrix

of η[k,l) in the basis γ, the matrix of M[k,l) in the pair of bases (γk, γl) isÅ[
η[k,l)

]
0

∗
∥∥M[k,l)v

(l)
∥∥

1

ã
.

Hence, detM[k,l) = det η[k,l)

∥∥M[k,l)v
(l)
∥∥

1
. As the matrices Mk are unimodular, we have∣∣detM[k,l)

∣∣ = 1, and the result follows.

The endomorphisms ηk allow to translate Lemma 33 into a relation between Rauzy
fractals.

Lemma 57. For all integers k, l such that 0 ≤ k ≤ l, and every a ∈ A,

R(k)
a =

⋃
b
tl−1,sl−1−−−−−→...

tk,sk−−→a

η[k,l)R
(l)
b +

l−1∑
i=k

πx(k)M[k,i)ti.

In particular,

R(k)
a =

⋃
b
t,sk−−→a

ηkR
(k+1)
b + πx(k)(t).
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Proof. From Lemma 33, projecting both sides by πx(k) , we get

πx(k)Wa(uk) =
⋃

b
tl−1,sl−1−−−−−→...

tk,sk−−→a

πx(k)M[k,l)Wb(ul) +
l−1∑
i=k

πx(k)M[k,i)ti.

We then obtain the first equality by using πx(k)M[k,l) = η[k,l)πx(l) and taking the closure.
The second equality follows when l = k + 1.

Lemma 58. For every k ∈ N, we have gk ≤ gk+1 and fk ≤ fk+1. The limits g =
limk→∞ gk and f = limk→∞ fk exist and are finite.

Proof. As λ
(
ηkR

(k+1)
b +πx(k)(t)

)
= |det ηk|λ

(
R

(k+1)
b

)
, we deduce from Lemma 57 that, for

every k ∈ N,

(
λ(R(k)

a )
)
a∈A ≤

Ö ∑
b
t,sk−−→a

|det ηk|λ(R
(k+1)
b )

è
a∈A

= |det ηk|Mk

(
λ(R

(k+1)
b )

)
b∈A

≤ |det ηk|Mkgk+1v
(k+1).

By Lemma 56, we have

(λ(R(k)
a ))a∈A ≤

1

‖Mkv(k+1)‖1

gk+1Mkv
(k+1) = gk+1v

(k),

thus the sequence (gk) is non-decreasing. The proof is similar for the sequence (fk).
By Lemma 52, λ(R(kn)) is bounded by some constant D > 0. Moreover, as v(kn)

is totally irrational and converges to a totally irrational vector, the numbers v
(kn)
a are

bounded from below by a constant ε > 0. Therefore, the subsequence (gkn) is bounded
by D/ε. As (fk) and (gk) are non-decreasing and fk ≤ gk, it follows that both sequences
have a finite limit.

Let K = {kn | n ∈ N}, and fix a ∈ A. For every b ∈ A, k ∈ K, and l ≥ k, let

Lk,lb = {πx(k)

(
l−1∑
i=k

M[k,i)ti

)
∈ P | b tl−1,sl−1−−−−−→ ...

tk,sk−−→ a},

Ik,lb = {t ∈ Lk,lb | η[k,l)R
(l)
b + t ⊆ B(pk, r)},

where the pk ∈ P are such that H∩π−1
x(k)B(pk, r) ⊆ Wa(uk). Such pk exist by Condition 3

in Definition 50. Lemma 57 then yields

R(k)
a =

⋃
b∈A

⋃
t∈Lk,lb

η[k,l)R
(l)
b + t.

Lemma 59. There exists a uniform constant C > 0 such that for every k ∈ K, there
exists l0 ≥ k such that for every l ≥ l0, we have∑

b∈A

v
(l)
b #Ik,lb ≥ C

∑
b∈A

v
(l)
b #Lk,lb .
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Proof. Let k ∈ K. We first choose l0 ∈ K, l0 ≥ k, such that the diameter of η[k,l0)R
(l0)

is less than r/2. It is possible, using Lemma 46, as the sets R(l0) are uniformly bounded
when l0 ∈ K by Lemma 52. Then, for every l ≥ l0 and every b ∈ A, some translate of
the set η[k,l)R

(l)
b is included in η[k,l0)R

(l0) by Lemma 57, so the diameter of η[k,l)R
(l)
b is also

less than r/2. For every t ∈ Lk,lb , if η[k,l)R
(l)
b + t meets B(pk, r/2), then it is included in

B(pk, r). Thus, ⋃
b∈A

⋃
t∈Ik,lb

η[k,l)R
(l)
b + t ⊇ B(pk, r/2),

so that

gl
∑
b∈A

v
(l)
b #Ik,lb ≥

∑
b∈A

λ(R
(l)
b )#Ik,lb ≥

λ(B(pk, r/2))∣∣det η[k,l)

∣∣ .

Moreover, by Lemma 35, we have
∑

b∈A v
(l)
b #Lk,lb = (M[k,l)v

(l))a =
∥∥M[k,l)v

(l)
∥∥

1
v

(k)
a . We

deduce by Lemma 56, and as v
(k)
a ≤

∥∥v(k)
∥∥

1
= 1:∑

b∈A v
(l)
b #Ik,lb∑

b∈A v
(l)
b #Lk,lb

≥ 1

gl
λ(B(pk, r/2))

1

v
(k)
a

≥ 1

g
λ(B(0, r/2))

where g = liml→∞ gl as in Lemma 58 (note that g ≥ gl > 0). Taking

C =
1

g
λ(B(0, r/2)),

we deduce the result.

Lemma 60. There exists c < 1 such that, for every k ∈ K, there exists l > k such that
fk ≤ cfl.

Proof. Let k ∈ K. For every l ≥ k, by Lemma 57, we have

∂R(k)
a ⊆

⋃
b∈A

⋃
t∈Lk,lb

η[k,l)∂R
(l)
b + t.

Now if t ∈ Ik,lb , then η[k,l)∂R
(l)
b + t is included in the interior of R

(k)
a , thus we deduce

∂R(k)
a ⊆

⋃
b∈A

⋃
t∈Lk,lb \I

k,l
b

η[k,l)∂R
(l)
b + t,

With Lemma 59, we get

λ(∂R(k)
a ) ≤

∣∣det η[k,l)

∣∣∑
b∈A

λ(∂R
(l)
b )#(Lk,lb \ I

k,l
b )

≤
∣∣det η[k,l)

∣∣ fl∑
b∈A

v
(l)
b #(Lk,lb \ I

k,l
b )

≤
∣∣det η[k,l)

∣∣ fl(1− C)
∑
b∈A

v
(l)
b #Lk,lb

= (1− C)fl
∣∣det η[k,l)

∣∣ ∥∥M[k,l)v
(l)
∥∥

1
v(k)
a .

We conclude with Lemma 56 that λ(∂R
(k)
a ) ≤ (1− C)flv

(k)
a , thus fk ≤ (1− C)fl.
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Proposition 61. Let s be a good directive sequence. Then, for every a ∈ A, we have
λ(∂Ra(s)) = 0.

Proof. We deduce from Lemmas 58 and 60 that fk = 0 for all k ∈ N. Then λ(∂R
(k)
a ) = 0

for every a ∈ A.

4.2.3 Step 3: proof that the translation is conjugate to the subshift

We refer to [42]. In the theorem that we recall below, the authors give conditions to
prove that the translation by q(πx(e0)) on the torus P/Λ ' Td is measurably conjugate
to the subshift Ωw generated by a word w ∈ AN.

Theorem 62. [42, Theorem 2.3] Let w ∈ AN be an infinite word, and let x ∈ PRd
+ be a

totally irrational direction. Let R = πx(W (w)) and for all a ∈ A, Ra = πx(Wa(w)). We
assume the following:

• the set πx(W (w)) is bounded,

• the subshift (Ωw, T ) generated by w is minimal,

• the boundaries of Ra, a ∈ A, have zero Lebesgue measure,

• the union
⋃
t∈Λ R + t = P is disjoint up to sets of Lebesgue measure 0.

Then there exists a Borel T -invariant measure µ such that the subshift (Ωw, T, µ) is
measurably conjugate to the translation on the torus (P/Λ, Tx, λ).

We check that each condition is satisfied for the word w = u0:

• boundedness is given by Corollary 45,

• minimality of the subshift Ωu0 = Ωs is given by Proposition 17 since s is primitive
by Lemma 7,

• boundaries of Ra, a ∈ A, have zero Lebesgue measure thanks to Proposition 61,

• thanks to Lemma 55, we have a topological tiling, and thanks to Proposition 61 the
boundaries have zero Lebesgue measure; thus the union

⋃
t∈Λ R + t = P is disjoint

up to sets of Lebesgue measure 0.

Therefore, we can use Theorem 62 for w = u0.

Remark 63. Under the hypotheses of Theorem 62, the domain exchange

Ex =

Å
R −→ R
p 7−→ p+ πx(ea) if p ∈ Ra

ã
is almost everywhere well-defined, and the quotient map q is a measurable conjugacy
between the domain exchange (R,Ex) and the torus translation (P/Λ, Tx).

Hence, we have:
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Remark 64. Consider a good sequence s, then by Corollary 41 (Ωs, T ) is uniquely er-
godic. Moreover, for an irrational vector the torus translation (P/Λ, Tx) is also uniquely
ergodic. These two systems are measurably conjugate: The symbolic coding coming from
the partition of the Rauzy fractal into pieces Ra(s), a ∈ A is a measurable conjugacy
between the torus translation (P/Λ, Tx) and the subshift (Ωs, T ). In particular, it gives a
generating partition.

Figure 7 shows the tiling of P by the Rauzy fractal of Figure 6 for the lattice Λ. The
vector πx(e0) giving the translation in the quotient P/Λ is also depicted.

e0 − e1

e2 − e0e2 − e1

πx(e0)

0

Figure 7: Tiling of P by a Rauzy fractal, and the translation vector πx(e0).

4.2.4 Nice partition

Lemma 65. For every a ∈ A, q(Ra) is a bounded remainder set for the translation Tx
by q(πx(e0)) on the torus P/Λ. For every a ∈ A, we have v(x)a = λ(Ra)

λ(R)
.

Proof. The Rauzy fractal being bounded, there exists a constant K such that R − R ⊆
B(0, K), where R − R = {p − p′ | p, p′ ∈ R} is the set of differences. Let u be a fixed
point of s. By the above conjugacy, for λ-almost every z ∈ P/Λ, there exists an infinite
word w ∈ Ωu such that w is the coding of the orbit of z under the translation for the
measurable partition (q(Ra))a∈A of the torus P/Λ. Then, for every a ∈ A and every
N ∈ N we have the equality

N−1∑
n=0

1q(Ra)(T
n
x (z)) = |pN |a ,

where pN is the prefix of length N of the word w. Since w ∈ Ωu, for every N ∈ N the
word pN is a factor of u0. Thus

ab(pN)−Nv(x) = πx(ab(pN)) ∈ πx(W (u0)−W (u0)) ⊆ R−R ⊆ B(0, K).

Hence, for λ-almost every z ∈ P/Λ and for every a ∈ A we get the inequality∣∣∣∣∣
N−1∑
n=0

1q(Ra)(T
n
x (z))−Nv(x)a

∣∣∣∣∣ ≤ K.

Now, since Tx is ergodic for λ, by the Birkhoff ergodic theorem, we have for every a ∈ A,
v(x)a = λ(Ra)

λ(R)
, so q(Ra) is a bounded remainder set.
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Lemma 66. The partition (q(Ra))a∈A is a liftable, generating and regular partition of
the torus.

Proof. The partition is liftable since the domain exchange Ex is a translation on each
q(Ra), a ∈ A, see Definition 8. By Remark 64, it is a generating partition. Finally it
is also regular by Theorem 62. Altogether, we get that (q(Ra))a∈A is a nice generating
partition.

4.2.5 Conclusion

Now, we prove Theorem C. Starting from a good directive sequence, there exists a Rauzy
fractal R by Remark 42, and it is independent from the choice of a fixed point by Corol-
lary 45. By Lemma 55 (step 1), we know that R and R+t, t ∈ Λ\{0}, have intersection of
empty interior. Since

⋃
t∈ΛR+ t = P , by Corollary 45, we deduce that R is a topological

fundamental domain of P for the lattice Λ. By Proposition 61 (step 2), we know that
the boundaries of R and of the pieces Ra have zero Lebesgue measure. Thus, we deduce
that up to a set of zero Lebesgue measure, R is a measurable fundamental domain of P
for the action of Λ. By Lemma 55, we know that the interior of the intersection of two
pieces is empty. So such intersection Ra ∩ Rb is included in ∂Ra ∪ ∂Rb and it has zero
Lebesgue measure. Thus, we get that the union R =

⋃
a∈ARa is disjoint up to sets of

Lebesgue measure 0. By Lemma 54, for every a ∈ A, the piece Ra is the closure of an
open set, thus it is the closure of its interior. Theorem 62 and Remark 64 (step 3) give
the expected conjugacy.

By Lemma 65, q(Ra) is a bounded remainder set. Finally, by Lemma 66, (q(Ra))a∈A
is a nice partition of the torus.

4.3 Rauzy fractal for a periodic point of a single substitution

If we consider a directive sequence of the form σω, where σ is a unimodular substitution,
then we are back in the classical setting of the Rauzy fractal associated with a single
substitution. In this sense, Theorem C gives a generalization of [42, Theorem 1.3.3].

We say that a substitution is irreducible if the characteristic polynomial of its abelian-
ized matrix is irreducible over Q. See Section 3.3 for the definition of a Pisot substitution.

Lemma 67. Let σ be an irreducible Pisot unimodular substitution, and x ∈ PRd
+ be the

class of a Perron eigenvector of ab(σ). Then x is a totally irrational direction.

Proof. The characteristic polynomial is irreducible over Q and splits with simple roots
over the splitting field. Thus, the Galois group acts transitively on the eigenvectors.
Hence, if x were not a totally irrational direction, it would give a rational non-zero vector
in the left kernel of the matrix of eigenvectors. And this is absurd because this matrix is
invertible. We deduce that x is a totally irrational direction.

Lemma 68. Let σ be an irreducible Pisot unimodular substitution, x ∈ PRd
+ the class of

a Perron eigenvector of ab(σ), u0 ∈ AN a periodic point of σ, and a ∈ A a letter such that
the interior of Wa(u0) is not empty for the topology T (x). Then the directive sequence
σω is good.

Proof. We check that s = σω satisfies the four conditions of Definition 50.
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1. We have

lim
n→∞

1

n
ln
∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1

= lim
n→∞

1

n
ln
∣∣∣∣∣∣πxMn

∣∣∣∣∣∣
1

= ln |β| ,

where β is the second largest eigenvalue of M = ab(σ) in modulus. We have
ln |β| < 0 since σ is Pisot, so s is exponentially convergent.

2. By Lemma 67, x is a totally irrational direction.

3. Assume that u0 is a periodic point of σ of period m. Let u ∈ (AN)
N

be the word
sequence defined by

un = σm−(n mod m)(u0),

where n mod m is the remainder in the division of n by m. We easily check that u
is a fixed point of the directive sequence σω. By Lemma 7, there exists n0 ∈ N such
that for all n ≥ n0, M[0,n) = Mn > 0. We choose n1 ≥ n0 divisible by m. Hence,
we have un1 = u0. Now, for every b ∈ A, we have by Lemma 33

Wb(u0) =
⋃

c
tn1−1,σ−−−−→...

t0,σ−−→b

Mn1Wc(u0) +

n1−1∑
k=0

Mktk.

As Mn1 > 0, by Lemma 35 there exists a path a
tn1−1,σ−−−−→ ...

t0,σ−−→ b, so Mn1Wa(u0) +∑n1−1
k=0 Mktk ⊆ Wb(u0). It follows from Lemma 26 that Wb(u0) has non-empty

interior for all b ∈ A. Hence, we get Condition 3, with the sequence (kn)n∈N =
(mn)n∈N, and with r > 0 small enough so that

∀b ∈ A,∃p ∈ P,H ∩ π−1
x (B(p, r)) ⊆ Wb(u0).

4. For all n ∈ N, x(n) = x, so limn→∞ x
(kn) = x exists and is a totally irrational

direction.

The Pisot substitution conjecture [2] states (or is equivalent to the fact) that the
conclusion of our Theorem C is true for every directive sequence of the form σω, with σ
an irreducible Pisot unimodular substitution: the subshift is measurably conjugate to a
translation on a torus. In [42, Theorem 3.3], the following is proved:

Theorem 69. Let σ be an irreducible Pisot unimodular substitution and x ∈ PRd
+ be the

class of a Perron eigenvector of ab(σ). The following are equivalent:

• σ satisfies the Pisot substitution conjecture,

• there exist a periodic point u0 ∈ AN of σ and a letter a ∈ A such that Wa(u0) has
non-empty interior for T (x).

From Lemma 68 and Theorem 69 we deduce the following

Corollary 70. The converse of Theorem C is true for directive sequences of the form
σω, where σ is an irreducible Pisot unimodular substitution. In other words, if Ωσω is
measurably conjugate to a translation on a torus, then the directive sequence σω is good.

The Pisot substitution conjecture is further discussed in Section 10.6.
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5 Dynamics of continued fractions

5.1 Extended continued fraction algorithms

Definition 71. An extended continued fraction algorithm, denoted (X, s0), is given by

• a subset X ⊆ PRd
+,

• a finite alphabet A = {0, . . . , d}, with d ≥ 1,

• a finite set S ⊆ hom(A+, A+) of unimodular substitutions on the alphabet A,

• a map s0 : X → S such that for every x ∈ X, ab(s0(x))−1x ∈ X.

• a map defined by

F =

Å
X −→ X
x 7−→ ab(s0(x))−1x

ã
.

We use the word extended to indicate that the algorithm uses substitutions. If we do
not use the substitutions, we can retain their matrices ab(s0(x)) only, or even just the
map F .

Definition 72. A continued fraction algorithm, denoted (X,F ), is given by

• a subset X ⊆ PRd
+,

• a map M0 : X → GLd+1(Z)∩Md+1(N), taking a finite number of values, such that
for every x ∈ X, M0(x)−1x ∈ X.

• a map defined by

F =

Å
X −→ X
x 7−→ M0(x)−1x

ã
.

Given a continued fraction algorithm (X,F ), there are several possible choices for S
and s0 to turn it into an extended continued fraction algorithm (X, s0). These choices do
not yield the same subshifts, and not the same complexity function.

Definition 73. When (X, s0) is an extended continued fraction algorithm, we define X0

as the set of x ∈ X such that

• x is a totally irrational direction,

• s0 ◦ F n is continuous at x for all n ∈ N.

When (X,F ) is a continued fraction algorithm, we define X0 as the set of x ∈ X such
that

• x is a totally irrational direction,

• M0 ◦ F n is continuous at x for all n ∈ N.

Remark 74. For every n ∈ N, F n is continuous on X0.
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Remark 75. If s0 is continuous at every totally irrational direction, then so is s0 ◦ F n

for all n, and X0 is the set of totally irrational directions. This is in particular the case
if the regions on which s0 is constant are delimited by rational hyperplanes.

For x ∈ X and i ∈ N, we define si = s0 ◦ F i. The matrices associated with the
substitutions are denoted by Mi = Mi(x) = ab(si(x)), and we recall that M[i,j) stands for
the product of matrices MiMi+1 . . .Mj−1. With the map s0 we can do some higher-level
symbolic dynamics: the map

s =

Å
X −→ SN

x 7−→ s(x) = (sn(x))n∈N

ã
.

is a symbolic coding of the continued fraction algorithm. In particular, we have s ◦ F =
T ◦ s, where T is the shift map on SN.

Definition 76. Let (X, s0) be an extended continued fraction algorithm, and µ a measure
on X. We say that (X, s0, µ) is an extended measured continued fraction algorithm if

1. µ is an ergodic F -invariant Borel probability measure,

2. the map s0 is measurable with respect to µ,

3. µ(X0) = 1,

4. for every measurable Y ⊆ X, we have µ(Y ) = 0 =⇒ µ(F (Y )) = 0,

5. ∃ε > 0,∀x ∈ X0,∀n ≥ 1, µ(F n({y ∈ X0 |M[0,n)(y) = M[0,n)(x)})) > ε.

As above, if we are not interested in the particular choice of substitutions, we will
consider instead the measured continued fraction algorithm (X,F, µ).

Definition 77. Let (X,F ) be a continued fraction algorithm, and µ a measure on X.
We say that (X,F, µ) is a measured continued fraction algorithm if

1. µ is an ergodic F -invariant Borel probability measure,

2. the map M0 is measurable with respect to µ,

3. µ(X0) = 1,

4. for every measurable Y ⊆ X, we have µ(Y ) = 0 =⇒ µ(F (Y )) = 0,

5. ∃ε > 0,∀x ∈ X0,∀n ≥ 1, µ(F n({y ∈ X0 |M[0,n)(y) = M[0,n)(x)})) > ε.

By ergodicity the hypothesis µ(X0) = 1 is equivalent to µ(X0) > 0.
Now we give a criterion to prove that the last condition of Definition 76 is satisfied.

Proposition 78. Assume that we have an extended continued fraction algorithm (X, s0)
and a finite union H of rational hyperplanes of PRd

+ that partition X \ H into a finite
number of pieces (Xi)i∈I such that for every i ∈ I,

• s0 is constant on Xi,

37



• the set F (Xi) \H is a union of pieces: F (Xi) \H =
⋃
j∈J Xj for some J ⊆ I.

If µ is an ergodic F -invariant Borel probability measure on X such that

• for all i ∈ I, µ(Xi) > 0,

• for every measurable Y ⊆ X, we have µ(Y ) = 0 =⇒ µ(F (Y )) = 0,

• the measure of the set of non totally irrational directions is zero,

then (X, s0, µ) is an extended measured continued fraction algorithm as defined in Defi-
nition 76.

Such a family (Xi)i∈I is sometimes called a Markov partition.

Proof. Conditions 1 and 4 are satisfied by assumption. Condition 2 holds since s0 is
constant on the pieces. By Remark 75, with such hypotheses X0 is the set of totally
irrational directions of X, and we have by assumption µ(X \ X0) = 0, so Condition 3
holds. It remains to show Condition 5:

∃ε > 0, ∀x ∈ X0, ∀n ≥ 1, µ(F n({y ∈ X0 |M[0,n)(y) = M[0,n)(x)})) > ε.

Observe that we can replace y ∈ X0 with y ∈ X since F (X0) ⊆ X0 and µ(X0) = 1.
Let us show that for x ∈ X0 and for all n ≥ 1, we have

F n({y ∈ X |M[0,n)(y) = M[0,n)(x)}) ⊇M−1
n−1(x)Xi(Fn−1x) = F (Xi(Fn−1x)),

where i(y) ∈ I is such that y ∈ Xi(y). It will end the proof since the sets F (Xi(Fn−1x))
have positive measure

µ(FXi(Fn−1x)) = µ(F−1(FXi(Fn−1x))) ≥ µ(Xi(Fn−1x)) > 0,

and there are finitely many of them.
The inclusion is equivalent to

{y ∈ X |M[0,n)(y) = M[0,n)(x)} ⊇M[0,n−1)(x)Xi(Fn−1x).

We show the above inclusion for every x ∈ X0 by induction on n.
Let y ∈ M[0,n−1)(x)Xi(Fn−1x). If n = 1, we have y ∈ Xi(x), so M0(y) = M0(x).

Otherwise, by assumption, we have Xi(Fx) ⊆ F (Xi(x)), so

M0(x)Xi(Fx) ⊆ Xi(x).

If we iterate this, we see that we have M[0,n−1)(x)Xi(Fn−1x) ⊆ Xi(x). So, M0(y) = M0(x)
and we have F (y) ∈ M[0,n−2)(F (x))Xi(Fn−1x). By induction hypothesis with x replaced
with F (x), we get that M[0,n)(y) = M[0,n)(x).

The hypotheses of Proposition 78 are satisfied by the usual continued fraction algo-
rithms. See Sections 7 and 8.

Lemma 79. Let (X, s0) be an extended continued fraction algorithm. We have

∀x ∈ X0,∀k ∈ N, ∃r > 0, d(x, y) ≤ r =⇒ ∀i < k, si(x) = si(y).
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Proof. This is an obvious consequence of the definition of the set X0, where sn is contin-
uous for every n ∈ N.

Remark 80. We have x = M[0,k)(x)F k(x), so that x ∈
⋂
k≥0M[0,k)(x)PRd

+. If (Mk(x))
is cone convergent, then its direction must therefore be x.

Remark 81. If x ∈ X0 is such that (Mk(x)) is sum convergent, then its direction is x by
Remark 80, which is totally irrational, so by Corollary 45 there is a unique Rauzy fractal
associated with the directive sequence s(x), which we will denote R(x) = R(s(x)), and its
pieces Ra(x) = Ra(s(x)).

5.2 Lyapunov exponents

Consider a dynamical system (X,T ) with a T -invariant Borel probability measure µ on X.
A cocycle of the dynamical system (X,T ) is a map M : X × N→ GLd+1(R) such that

• M(x, 0) = Id for all x ∈ X,

• M(x, n+m) = M(T n(x),m)M(x, n) for all x ∈ X and n,m ∈ N.

We denote M(x,−n) = M(x, n)−1 for n > 0. Let ‖.‖ be any norm on Rd+1.

Theorem 82 (Oseledets). Let (X,T ) be a dynamical system and µ be an invariant
probability measure for this system. Let M be a cocycle of (X,T ) in GLd+1(R) such
that the maps x 7→ ln |||M(x, 1)|||, x 7→ ln |||M(x,−1)||| are L1-integrable with respect to µ.

Then there exist a measurable set Z ⊆ X with µ(Z) = 1 and measurable functions
r and θi from Z to R, such that for all x ∈ Z there exist

• an integer r(x) with 0 < r(x) ≤ d+ 1,

• r(x) distinct numbers θ1(x) > · · · > θr(x)(x),

• a sequence of linear subspaces

Rd+1 = E1(x) % · · · % Er(x)(x) % Er(x)+1(x) = {0}

such that

y ∈ Ei(x) \ Ei+1(x) ⇐⇒ lim
n→∞

1

n
ln ‖M(x, n)y‖ = θi(x).

If in addition µ is an ergodic measure, then Z can be chosen so that the functions that
map x to r(x), θ1(x), . . . , θr(x)(x), dimE1(x) . . . , dimEr(x) are constant on Z. Then we
denote θi(x) by θi(µ) = θi(M, µ).

The numbers θi(µ), i = 1 . . .m are called Lyapunov exponents of the cocycle [45, 31].
We also use the following formulas, see [12, Theorem 6.3].

Corollary 83. In the ergodic case we have, for every x ∈ Z,

θ1(µ) = lim
n→∞

1

n
ln
∣∣∣∣∣∣M(x, n)

∣∣∣∣∣∣, θ2(µ) = lim
n→∞

1

n
ln
∣∣∣∣∣∣M(x, n)|E2(x)

∣∣∣∣∣∣.
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5.3 Lyapunov exponents for a continued fraction algorithm

In the following, since we use matrix transposition, we consider the dual space
(
Rd+1

)∗
of Rd+1, with the norm ‖.‖∞ defined by ‖ϕ‖∞ = maxi∈A |ϕ(ei)| for ϕ ∈

(
Rd+1

)∗
. For a

vector v ∈ Rd+1 we denote by v◦ the orthogonal in the dual space, i.e., the set of linear
forms which vanish on v.

Lemma 84. Let (X,F ) be a continued fraction algorithm.

• ∀y ∈ X, ∀n ∈ N, ∀N ≥ n, M[0,N)(y) = M[0,n)(y)M[0,N−n)(F
ny).

• ∀y ∈ X, ∀n ∈ N, ∀N ≥ n, πyM[0,N)(y) = πyM[0,n)(y)πFnyM[0,N−n)(F
ny).

• The map Å
X × N −→ GLd+1(R)
(x, n) 7−→ M(x, n) = M t

[0,n)(x)

ã
defines a cocycle.

Proof. For the first point, consider i ≥ n, then F i(y) = F i−n(F n(y)), thus Mi(y) =
Mi−n(F n(y)). Then the second point follows from Lemma 1. Finally, the third point is a
consequence of the definition of a cocycle.

Let now (X,F, µ) be a measured continued fraction algorithm. We use Theorem 82
and Corollary 83 for the cocyle defined in Lemma 84. Remark that the hypothesis of
integrability is automatically satisfied since M0 is measurable and takes only a finite
number of values. In the following we consider the set Z given by Theorem 82 for this
cocycle (x, n) 7→M t

[0,n)(x). In particular we have the following corollary.

Corollary 85. For every x ∈ Z and ϕ ∈ (Rd+1)∗ we have

lim
n→∞

1

n
ln
∥∥ϕM[0,n)(x)

∥∥
∞ = θi(µ) ⇐⇒ ϕ ∈ Ei(x) \ Ei+1(x),

and

θ1(x) = θ1(µ) = lim
n→∞

1

n
ln
∣∣∣∣∣∣∣∣∣M t

[0,n)(x)
∣∣∣∣∣∣∣∣∣
∞

= lim
n→∞

1

n
ln
∣∣∣∣∣∣M[0,n)(x)

∣∣∣∣∣∣
1
,

θ2(x) = θ2(µ) = lim
n→∞

1

n
ln
∣∣∣∣∣∣∣∣∣M t

[0,n)(x)|E2(x)

∣∣∣∣∣∣∣∣∣
∞
.

Definition 86. A measured continued fraction algorithm (X,F, µ) is said to satisfy the
Pisot condition if θ1(µ) > 0 > θ2(µ) and, for µ-almost every point x, codim(E2(x)) = 1.

Lemma 87. Let x ∈ Z. Assume that (Mn(x)) is cone convergent and codim(E2(x)) = 1.
Then

E2(x) = v(x)◦ = {ϕ ◦ πx | ϕ ∈
(
Rd+1

)∗}.
Proof. Let ϕ ∈ E2(x) (a linear form, or a line vector), and let w = e0 + · · ·+ ed ∈ Rd+1

+ .
By the Hölder inequality,∣∣ϕM[0,n)w

∣∣ ≤ ∥∥ϕM[0,n)

∥∥
∞ ‖w‖1 .
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Let us denote wn = v(M[0,n)w). We obtain

1

n
ln |ϕwn| ≤

1

n
ln
∥∥ϕM[0,n)

∥∥
∞ +

1

n
ln ‖w‖1 −

1

n
ln
∥∥M[0,n)w

∥∥
1
.

On the one hand, ∥∥M[0,n)w
∥∥

1
=

d∑
i=0

∣∣e∗iM[0,n)w
∣∣ .

Choosing i such that e∗i 6∈ E2(x), which is possible since E2(x) 6=
(
Rd+1

)∗
, we have

limn→∞
1
n

ln
∥∥e∗iM[0,n)

∥∥
∞ = θ1(µ) by Corollary 85. Moreover,

∥∥e∗iM[0,n)

∥∥
∞ ≤ e∗iM[0,n)w

since M[0,n) has non-negative entries, so

lim inf
n→∞

1

n
ln
∥∥M[0,n)w

∥∥
1
≥ lim

n→∞

1

n
ln
∥∥e∗iM[0,n)

∥∥
∞ = θ1(µ).

On the other hand, limn→∞
1
n

ln
∥∥ϕM[0,n)

∥∥
∞ ≤ θ2(µ) since ϕ ∈ E2(x), so we get

lim sup
n→∞

1

n
ln |ϕwn| ≤ θ2(µ)− θ1(µ) < 0.

We also have wn −−−→
n→∞

v(x) by hypothesis of cone convergence and by Remark 80. We

deduce
ϕv(x) = lim

n→∞
ϕwn = 0,

so ϕ ∈ v(x)◦. Since codim(E2(x)) = 1 = codim(v(x)◦) we obtain that E2(x) = v(x)◦. The
last equality follows from the fact that πx(v(x)) = 0 and Im(πx) = P is a hyperplane.

Lemma 88. Let x ∈ Z. Assume that (Mn(x)) is cone convergent and codim(E2(x)) = 1.
Then ∣∣∣∣∣∣πxM[0,n)(x)

∣∣∣∣∣∣
1
≤ (d+ 1)

∣∣∣∣∣∣∣∣∣M t
[0,n)(x)|E2(x)

∣∣∣∣∣∣∣∣∣
∞
.

Proof. Recall that πx is the projection on P with respect to the direction x.∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1

= sup
w∈Rd+1,‖w‖1≤1

∥∥πxM[0,n)w
∥∥

1

= sup
w∈Rd+1,‖w‖1≤1

d∑
i=0

∣∣e∗iπxM[0,n)w
∣∣

≤
d∑
i=0

sup
w∈Rd+1,‖w‖1≤1

∣∣e∗iπxM[0,n)w
∣∣ ≤ d∑

i=0

∥∥e∗iπxM[0,n)

∥∥
∞ .

By Lemma 87,
e∗i ◦ πx ∈ E2(x) = {ϕ ◦ πx | ϕ ∈ (Rd+1)∗}.

It follows that ∥∥e∗iπxM[0,n)

∥∥
∞ ≤

∣∣∣∣∣∣∣∣∣M t
[0,n)|E2(x)

∣∣∣∣∣∣∣∣∣
∞
‖e∗i ◦ πx‖∞ .
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For i ∈ A, let vi = e∗i (v(x)). As πx(ej) = ej − v(x), we have e∗i ◦ πx(ej) = δi,j − vi, so that
‖e∗i ◦ πx‖∞ = max(vi, 1− vi) ≤ 1. We conclude

∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1
≤
∣∣∣∣∣∣∣∣∣M t

[0,n)|E2(x)

∣∣∣∣∣∣∣∣∣
∞

d∑
i=0

‖e∗i ◦ πx‖∞

≤ (d+ 1)
∣∣∣∣∣∣∣∣∣M t

[0,n)|E2(x)

∣∣∣∣∣∣∣∣∣
∞
.

From Lemma 88 and Corollary 85, we deduce the following

Corollary 89. Let x ∈ Z. Assume that the sequence of matrices (Mn(x)) is cone con-
vergent and that codim(E2(x)) = 1. Then

lim
n→∞

1

n
ln
∣∣∣∣∣∣πxM[0,n)(x)

∣∣∣∣∣∣
1

= θ2(µ).

Proof. By Lemma 87, E2(x) = {ϕ ◦ πx | ϕ ∈ (Rd+1)∗}. Let ϕ ∈ (Rd+1)∗ \ {0} be a linear
form such that ϕ ◦ πx ∈ E2(x)\E3(x). Then, using Lemma 88, we have the inequalities∥∥ϕπxM[0,n)

∥∥
∞ ≤

∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1
‖ϕ‖∞ ≤ (d+ 1)

∣∣∣∣∣∣∣∣∣M t
[0,n)|E2(x)

∣∣∣∣∣∣∣∣∣
∞
‖ϕ‖∞ .

By Corollary 85, as ϕ ◦ πx ∈ E2(x) \ E3(x), we have

lim
n→∞

1

n
ln
∥∥ϕπxM[0,n)

∥∥
∞ = lim

n→∞

1

n
ln
∣∣∣∣∣∣∣∣∣M t

[0,n)|E2(x)

∣∣∣∣∣∣∣∣∣
∞

= θ2(µ).

Thus, by the squeeze theorem we get that the limit

lim
n→∞

1

n
ln
∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1

exists and is equal to θ2(µ).

6 A lot of good points

The aim of this section is to prove that existence of one seed point ensures a set of full
µ-measure with good directive sequences (see Proposition 92). With this result, and with
Theorem C, the proof of Theorem B will be easy.

In all this section, (X, s0, µ) is an extended measured continued fraction algorithm
satisfying the Pisot condition (see Definition 86).

6.1 Preliminaries

Definition 90. We define the set of seed points G0 as the set of points x ∈ X0 such that

• (Mn(x)) is exponentially convergent,

• there exist a letter a ∈ A and a fixed point u ∈ Fix(s(x)) such that Wa(u0) has
non-empty interior for the topology T (x) (see Definitions 12, 20, and 21).
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Recall that X0 is defined in Definition 73.

Definition 91. We define the set of good points

G = {x ∈ X | s(x) is a good directive sequence},

where a good directive sequence is defined in Definition 50.

Note that, if x ∈ G, then by Remark 80 the directive sequence s(x) has direction x.
The goal of this section is to prove:

Proposition 92. Let (X, s0, µ) be an extended measured continued fraction satisfying the
Pisot condition. If G0 6= ∅, then µ(G) = 1.

In the proof of Proposition 92, we need a variant of the notion of seed point:

Definition 93. We define G1 as the set of x ∈ X0 such that

• (Mn(x)) is exponentially convergent,

• there exists a fixed point u ∈ Fix(s(x)) such that, for all a ∈ A, Wa(u0) has non-
empty interior for the topology T (x).

The definitions of G1 and G0 differ only by their last properties where we ask that
the interior is not empty for every a ∈ A rather than for one letter.

In the following, we introduce some more notations.

Definition 94. For C > 0, let

ZC = {x ∈ X0 | ∀n ∈ N,
∣∣∣∣∣∣πxM[0,n)(x)

∣∣∣∣∣∣
1
≤ Ce−

n
C }.

Let B be a ball of positive radius in P and let C > 0. For every a ∈ A, we define

Ga
B,C = {x ∈ ZC | ∃u ∈ Fix(s(x)), π−1

x (B) ∩H ⊆ Wa(u0)}.

Remark 95. By Lemma 38 the inclusion π−1
x (B)∩H ⊆ Wa(u0) is equivalent to a property

about the Rauzy fractal and its pieces, but by Proposition 43 the Rauzy fractal doesn’t
depend on the choice of a fixed point, thus we have

Ga
B,C = {x ∈ ZC | ∀u ∈ Fix(s(x)), π−1

x (B) ∩H ⊆ Wa(u0)}

Remark 96. These sets are linked to G0 and G1 by

G0 =
⋃
C>0

⋃
(Ba)a∈A

balls of positive radius

⋃
a∈A

Ga
Ba,C ,

G1 =
⋃
C>0

⋃
(Ba)a∈A

balls of positive radius

⋂
a∈A

Ga
Ba,C .

Lemma 97. Let x ∈ X0. Then (Mn(x)) is exponentially convergent if, and only if, there
exists C > 0 such that x ∈ ZC.
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Proof. Let l = lim supn→∞
1
n

ln
∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1
. Clearly, if x ∈ ZC for some C > 0, then

l ≤ − 1
C

, so (Mn(x)) is exponentially convergent.
Conversely, if (Mn(x)) is exponentially convergent, then l < 0. There exists n0 ∈ N

such that for all n ≥ n0, ∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1
≤ enl/2.

If we take C = max(maxn<n0

∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1
e−nl/2, 1, −2

l
), we have x ∈ ZC .

Lemma 98. We have
lim
C→∞

µ(ZC) = 1.

Proof. Let Y be the set of directions x ∈ X0 such that (Mn(x)) is exponentially conver-
gent. We have µ(Y ) = 1 by Corollary 89, as θ2(µ) < 0. And by Lemma 97, we have
Y =

⋃
C>0 ZC . Since ZC is increasing with C, we get limC→∞ µ(ZC) = µ(Y ) = 1.

6.2 Proof of Proposition 92

The strategy is to prove

G0 6= ∅ =⇒ µ(G0) > 0 =⇒ µ(G1) > 0 =⇒ µ(G) = 1.

In the following each step corresponds to one of these implications.

6.2.1 Step 1: G0 6= ∅ =⇒ µ(G0) > 0

Lemma 99. We have

∀x ∈ G0,∃C > 0,∀r > 0, µ(B(x, r) ∩ ZC) > 0.

Proof. Let x ∈ G0. Let ε > 0 such that

∀n ≥ 1, µ(F n({y ∈ X0 |M[0,n)(y) = M[0,n)(x)})) ≥ 2ε.

This is given by our hypotheses on the measured continued fraction algorithm (Condi-
tion 5 in Definition 77).

Now, for every K > 1, let

OK = {y ∈ X | 1 < K min
i

(v(y)i)}.

We have µ
(⋃

K>1OK

)
= 1, since X0 ⊆

⋃
K>1OK . So there exists K > 1 such that

µ(OK) > 1− ε.
By Lemma 98, there exists C ′ ≥ 1 such that µ(ZC′) > 1− ε. We choose the constant

C = (K + 1)CxC
′, where Cx ≥ 1 is such that x ∈ ZCx (see Lemma 97). Let r > 0.

By hypothesis of exponential convergence, we can take n ∈ N large enough so that∣∣∣∣∣∣πxM[0,n)

∣∣∣∣∣∣
1
≤ r. By Lemma 2, M[0,n)(x)X is included in B(x, r).

Then, we take

Y = M[0,n)(x) (ZC′ ∩OK) ∩ {y ∈ X0 |M[0,n)(y) = M[0,n)(x)}.
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By the previous inequalities, we have µ(F n(Y )) = µ(M−1
[0,n)(x)Y ) > 0. By the definition

of a measured continued fraction algorithm (Condition 4 in Definition 77), it follows that
µ(Y ) > 0.

We have Y ⊆ X0 ∩ B(x, r) by construction. Let us show the inclusion Y ⊆ ZC . Let
y ∈ Y . For all N ≥ n, we have by Lemma 84∣∣∣∣∣∣πyM[0,N)(y)

∣∣∣∣∣∣
1
≤
∣∣∣∣∣∣πyM[0,n)(y)

∣∣∣∣∣∣
1

∣∣∣∣∣∣πFnyM[0,N−n)(F
ny)
∣∣∣∣∣∣

1

≤
∣∣∣∣∣∣πyM[0,n)(x)

∣∣∣∣∣∣
1

∣∣∣∣∣∣πFnyM[0,N−n)(F
ny)
∣∣∣∣∣∣

1

because M[0,n)(y) = M[0,n)(x) by construction of Y . Now, let us show that we have∣∣∣∣∣∣πyM[0,n)(x)
∣∣∣∣∣∣

1
≤ (K + 1)Cxe

−n/C .

Recall that h : Rd+1 → R is the linear form such that for every w ∈ Rd+1
+ , h(w) = ‖w‖1.

Now, for every z ∈ X and w ∈ Rd+1, we have πzw = w − h(w)v(z). Let M = M[0,n)(x).
We have x ∈ ZCx and C ≥ Cx, so for every w ∈ Rd+1,

‖Mw − h(Mw)v(x)‖1 = ‖πxMw‖1 ≤ Cxe
−n/C ‖w‖1 .

Let y′ = F n(y), so that My′ = y. The previous inequality applied with w = v(y′)
gives

‖Mv(y′)− h(Mv(y′))v(x)‖1 ≤ Cxe
−n/C .

By the triangle inequality, and using that v(y) = Mv(y′)
h(Mv(y′))

, we have

‖πyMw‖1 = ‖Mw − h(Mw)v(y)‖1

≤ ‖Mw − h(Mw)v(x)‖1 +

∣∣∣∣ h(Mw)

h(Mv(y′))

∣∣∣∣ ‖Mv(y′)− h(Mv(y′))v(x)‖1 ,

so we get

‖πyMw‖1 ≤ Cxe
−n/C

Å
‖w‖1 +

∣∣∣∣ h(Mw)

h(Mv(y′))

∣∣∣∣ã .
Since y′ ∈ OK , we have h(Mv(y′)) ≥ 1

K
|||M |||1, and |h(Mw)| ≤ |||M |||1 ‖w‖1. Thus,

‖w‖1 +

∣∣∣∣ h(Mw)

h(Mv(y′))

∣∣∣∣ ≤ (K + 1) ‖w‖1 .

We deduce that
∣∣∣∣∣∣πyM[0,n)(x)

∣∣∣∣∣∣
1
≤ (K + 1)Cxe

−n/C . And by construction of Y we have
F n(y) ∈ ZC′ , and C ≥ C ′, so∣∣∣∣∣∣πFnyM[0,N−n)(F

ny)
∣∣∣∣∣∣

1
≤ C ′e−(N−n)/C .

We deduce that ∣∣∣∣∣∣πyM[0,N)

∣∣∣∣∣∣
1
≤ Ce−N/C .

Hence, we get that Y ⊆ B(x, r) ∩ ZC with µ(Y ) > 0, so µ(B(x, r) ∩ ZC) > 0.

The next lemma says that if x is in G0, then there exists a set of positive measure
of points close to x where the Rauzy fractals are close to each other for the Hausdorff
distance δ in P defined by

δ(A1, A2) = max

Ç
sup
p∈A1

d(p,A2), sup
p∈A2

d(p,A1)

å
,

for any subsets A1, A2 of P .
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Lemma 100. For every x ∈ G0, and every ε > 0, there exist C > 0 and V ⊆ B(x, ε)∩ZC
such that µ(V ) > 0 and ∀y ∈ V, ∀a ∈ A, δ(Ra(x), Ra(y)) ≤ ε.

Proof. Let x ∈ G0. Let C > 0 be given by Lemma 99. Let k ∈ N be big enough to have

Ce−k/C

1− e−1/C
max
t∈Σ
‖t‖1 ≤

ε

3
,

where Σ ⊆ Zd+1 is the finite Dumont-Thomas alphabet for our S-adic system, see Defini-
tion 29. Then, we choose r(k) = ε

3 max
(ti)∈Σk |h(

∑k−1
i=0 M[0,i)(x)ti)| , so that for all y ∈ B(x, r(k)),

∀(ti)0≤i<k ∈ Σk,

∥∥∥∥∥πx
(
k−1∑
i=0

M[0,i)(x)ti

)
− πy

(
k−1∑
i=0

M[0,i)(x)ti

)∥∥∥∥∥
1

≤ ε

3
.

Then, we take r > 0 given by Lemma 79 such that d(x, y) ≤ 2r =⇒ ∀i < k, si(x) =
si(y). We can assume that r ≤ r(k) and r ≤ ε by taking the minimum of the three values,
and we let V = B(x, r) ∩ ZC . Let us show that the set V has the desired property. We
have µ(V ) > 0 by Lemma 99.

Let y ∈ V . Then (Mn(y)) is sum convergent with a totally irrational direction. Hence,
we can use Corollary 45, and we get that

Ra(y) = {
∞∑
n=0

πy(M[0,n)(y)tn) | ... tn,sn(y)−−−−→ ...
t0,s0(y)−−−−→ a},

and we get a similar description for Ra(x).

Let p ∈ Ra(x), and let . . .
tn,sn(x)−−−−→ . . .

t0,s0(x)−−−−→ a be a left-infinite path in the abelianized
prefix automaton A such that

p =
∞∑
n=0

πx(M[0,n)(x)tn).

We have si(x) = si(y) for all i < k, and the matrices of the substitutions in S are

invertible, so we can take a left-infinite path . . .
t′n,sn(y)−−−−→ . . .

t′0,s0(y)
−−−−→ a in the automaton A

such that ti = t′i for all i < k. This defines a point p′ ∈ Ra(y) by

p′ =
∞∑
n=0

πy(M[0,n)(y)t′n).

We have the inequalities

‖p− p′‖1 ≤

∥∥∥∥∥πx
(
k−1∑
i=0

M[0,i)(x)ti

)
− πy

(
k−1∑
i=0

M[0,i)(y)ti

)∥∥∥∥∥
1

+

∥∥∥∥∥
∞∑
n=k

πx
(
M[0,n)(x)tn

)∥∥∥∥∥
1

+

∥∥∥∥∥
∞∑
n=k

πy
(
M[0,n)(y)t′n

)∥∥∥∥∥
1

.
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Then using that x ∈ ZC and y ∈ ZC , we have

‖p− p′‖1 ≤
ε

3
+
∞∑
n=k

Ce−n/C ‖tn‖1 +
∞∑
n=k

Ce−n/C ‖t′n‖1

≤ ε

3
+ 2

Ce−k/C

1− e−1/C
max
t∈Σ
‖t‖1

≤ ε.

By reverting the role of x and y, we also show that for any point p ∈ Ra(y), there
exists a point p′ ∈ Ra(x) such that ‖p− p′‖1 ≤ ε, so we get the wanted inequality

δ(Ra(x), Ra(y)) ≤ ε.

Lemma 101. If G0 6= ∅ then µ(G0) > 0.

Proof. Let x ∈ G0. Let a ∈ A, and let u be a fixed point of s(x). Assume that there exists
an open ball Ba = B(ca, ra) of positive radius ra > 0 in P such that H∩π−1

x (Ba) ⊆ Wa(u0).
Then, by Lemma 38, for all b ∈ A \ {a} and t ∈ Λ \ {0},

Ba ∩Rb(x) = ∅ = Ba ∩ (R(x) + t).

We take the C > 0 and V ⊆ B(x, ε) ∩ ZC given by Lemma 100 for ε = ra/2. Let
B′a = B(ca, ra/2) be the open ball with half the radius of Ba and same center. Let us
show that for all b ∈ A \ {a} and t ∈ Λ \ {0} we have

∀y ∈ V, B′a ∩Rb(y) = ∅ = B′a ∩ (R(y) + t).

If b ∈ A \ {a}, then for all y ∈ V and for all p ∈ Rb(y),

d(ca, p) ≥ d(ca, Rb(x))− d(p,Rb(x)) ≥ ra − δ(Rb(x), Rb(y)) ≥ ra − ra/2 = ra/2,

so B′a ∩Rb(y) = ∅. If t ∈ Λ \ {0}, then for all y ∈ V and all p ∈ R(y) + t,

d(ca, p) ≥ d(ca, R(x) + t)− d(p,R(x) + t) ≥ ra − δ(R(x) + t, R(y) + t) ≥ ra/2,

so B′a ∩ (R(y) + t) = ∅.
By Lemma 38, we deduce that for every y ∈ V , we have the inclusion π−1

y (B′a)∩H ⊆
Wa(u

′
0), for any choice of a fixed point u′ of s(y). We get that V ⊆ Ga

B′a,C
, so the set G0

has positive measure by Remark 96.

6.2.2 Step 2: µ(G0) > 0 =⇒ µ(G1) > 0

Lemma 102. We have µ(G0) > 0 =⇒ µ(G1) > 0.

Proof. If µ(G0) > 0, then by the Poincaré recurrence theorem

µ
( ⋂
n∈N

⋃
k≥n

F−kG0

)
> 0.
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Let x ∈
⋂
n∈N

⋃
k≥n F

−kG0. As (Mn(x)) is cone convergent by Lemma 5, and as x is a
totally irrational direction, we deduce from Lemma 7 that there exists n0 ∈ N such that
M[0,n0)(x) > 0. Choose n ≥ n0 such that F n(x) ∈ G0. Let u be a fixed point of s(x), and
a ∈ A a letter, such that Wa(un) has non-empty interior for the topology T (F nx). For
every b ∈ A, we have by Lemma 33

Wb(u0) =
⋃

c
tn−1,sn−1(x)−−−−−−−→...

t0,s0(x)−−−−→b

M[0,n)(x)Wc(un) +
n−1∑
k=0

M[0,k)(x)tk.

Since M[0,n)(x) > 0, we know that for every b, the letter c = a appears in this union. The
interior of Wa(un) is non-empty for the topology T (F nx), so by Lemma 26 the interior
of Wb(u0) is non-empty for the topology T (x), for every b ∈ A. By Lemma 6, (Mk(x))
is exponentially convergent as (Mk(F

nx)) is. Thus, x ∈ G1. So G1 contains the set⋂
n∈N

⋃
k≥n F

−kG0 which has positive measure.

6.2.3 Step 3: µ(G1) > 0 =⇒ µ(G) = 1

Lemma 103. The set G is measurable and F -invariant.

Proof. Since we assume that µ is a Borel measure, the fact that G is a measurable set is
an exercise left to the reader. By Remark 51, G is F -invariant.

Lemma 104. If µ(G1) > 0, then µ(G) = 1.

Proof. By Remark 96,

G1 =
⋃
C>0

⋃
(Ba)a∈A

balls of positive radius

⋂
a∈A

Ga
Ba,C .

If µ(G1) > 0, then, as the union can be reduced to a countable union, there exists a
family (Ba)a∈A of balls of positive radius and a real number C > 0 such that

µ
( ⋂
a∈A

Ga
Ba,C

)
> 0.

By Lemma 49, there exists on open set O ⊆ X containing all the non totally irrational
directions such that µ(O) < µ

(⋂
a∈AG

a
Ba,C

)
. Let Y =

⋂
a∈AG

a
Ba,C
\O.

First of all we claim that ⋂
n0∈N

⋃
n≥n0

F−n(Y ) ⊆ G.

Indeed, the first two conditions of Definition 50 are clearly satisfied since Y ⊆ ZC ensures
exponential convergence and total irrationality. If m is inside

⋂
n0∈N

⋃
n≥n0

F−n(Y ), then
there exist infinitely many n such that F n(m) belongs to Y . Using Remark 95, we obtain
the third condition of Definition 50. The last condition follows from the fact that the
set O is open.
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Now we apply the Poincaré recurrence theorem: We have µ(Y ) > 0, thus

µ
( ⋂
n0∈N

⋃
n≥n0

F−n(Y )
)
> 0.

We deduce µ(G) > 0. By Lemma 103, G is an F -invariant set, thus by ergodicity we
have µ(G) = 1.

Combining Lemmas 101, 102, and 104 yields a proof of Proposition 92.

6.3 Proof of Theorem B

By hypothesis, we can apply Proposition 92. We deduce that µ(G) = 1. Now we apply
Theorem C for each point x ∈ G: the pieces of the Rauzy fractal induce a nice generating
partition of the translation by q(e0 − v(x)) on the torus P/Λ. The associated symbolic
coding is a measurable conjugacy with the uniquely ergodic subshift Ωs(x) associated
with x. If ψ : P/Λ→ Td is an isomorphism, then the subshift is measurably conjugate to
the translation by tx = ψ(q(e0 − v(x))) on the torus Td.

6.4 Finding seed points

The conditions to be a seed point are not easily checked in general. The goal of this
section is to see how seed points with a periodic directive sequence can effectively be
found.

In this section, for a finite sequence (σ0, . . . , σk−1) in S+, we denote by τ the substitu-
tion τ = σ[0,k) = σ0◦· · ·◦σk−1, and by s the periodic directive sequence s = (σ0 . . . σk−1)ω.
The following subroutines will be used in the proof of Propositions 108 and 110.

Subroutine 105.
Input: A finite sequence of substitutions (σ0, . . . , σk−1) ∈ S+.
Algorithm: If τ is Pisot and if the characteristic polynomial of the matrix ab(τ) is
irreducible, then return the direction x ∈ PRd

+ which is the class of a Perron eigenvector
of ab(τ). Otherwise, reject.

If Subroutine 105 rejects, then s cannot be exponentially convergent or there does not
exist a direction x with directive sequence s that is totally irrational. If the subroutine
returns a direction x, then x is a totally irrational direction (Lemma 67), s is exponentially
convergent with direction x, and τ is a primitive substitution since the characteristic
polynomial of ab(τ) is irreducible. Moreover, the direction x is computable, and we can
decide whether x satisfies a given rational linear inequality.

Subroutine 106.
Input: A finite sequence of substitutions (σ0, . . . , σk−1) ∈ S+ such that Subroutine 105
returns a direction x.
Algorithm: Iterate over all letters a ∈ A and all the finitely many fixed points u0 of τm,
where m = lcm({1, . . . , d + 1}). For each pair (a, u0), use [42, Theorem 5.12] to decide
whether the interior of Wa(u0) is empty for the topology T (x), by checking whether the
regular language describing it (denoted by L̊ in that paper) is empty, which is decidable.
If it is the case for some pair (a, u0), accept. Otherwise, reject.
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By the second point of Lemma 13, for every fixed point u ∈ Fix(s), the infinite word
u0 is a fixed point of τm. The primitivity of τ implies that each fixed point of τm is
determined by its first letter, so there are finitely many of them. Hence, Subroutine 106
accepts if, and only if, there exist a letter a ∈ A and a fixed point u ∈ Fix(s) such
that Wa(u0) has non-empty interior for the topology T (x), which corresponds to the last
condition of Definition 90.

Remark that the computation in [42] is done for the bi-infinite topology, but it is
possible to adapt it to our setting.

Definition 107. A rational polytope is a subset Q of PRd
+ such that there exists an

integer k ≥ 1 and a matrix M ∈Mk,d+1(Q) with no zero row such that

{x ∈ PRd
+ |Mx < 0} ⊆ Q ⊆ {x ∈ PRd

+ |Mx ≤ 0}.

We say that an extended continued fraction algorithm (PRd
+, s0) is rational if, for

every σ in S, s−1
0 {σ} is a rational polytope.

Proposition 108. Let (PRd
+, s0) be a rational extended continued fraction algorithm.

Determining, given a finite sequence of substitutions (σ0, . . . , σk−1) ∈ S+, whether there
exists a seed point x ∈ G0 for (PRd

+, s0) such that s(x) = (σ0 . . . σk−1)ω, is decidable.

Proof. Let us provide a decision algorithm, together with a proof of correctness.
Let us consider an input (σ0, . . . , σk−1) ∈ S+.
We run Subroutine 105, and reject if the subroutine rejects.
Otherwise, we check whether the direction x returned by Subroutine 105 belongs to

the open rational polytope

k−1⋂
l=0

ab(σ[0,l))

◦˚�s−1
0 {σl}

where

◦˚�s−1
0 {σl} denotes the interior of s−1

0 {σl}.
If x does not belong to this polytope, we reject since s cannot be a directive sequence

produced by (PRd
+, s0). If it does, we know that:

• the directive sequence of x is s,

• x belongs to X0, by Remark 75,

• (Mn(x)) is exponentially convergent.

Then, we run Subroutine 106 to decide whether the last condition of Definition 90 is
satisfied. We accept if, and only if, this subroutine accepts.

Proposition 108 allows to decide whether a given substitution τ produces a seed
point. But the substitution has to be guessed first, and the extended continued fraction
algorithm has to be rational. Now, we will see how we can find a seed point with
periodic directive sequence as long at it exists (semi-decision), and weaken the rationality

50



hypothesis on the continued fraction algorithm. If we remove the rationality hypothesis
on the continued fraction algorithm, we should still assume some computability to query
it. Since computable functions are continuous and since s0 : X → S is in general not
continuous (S is discrete), the classical notion of computability is too restrictive. However,
we are not interested in the behaviour of s0 on the boundary of the sets s−1

0 {σ} (for σ ∈ S)
since being a seed point requires being a continuity point of s0, so we can define a weaker
notion of computability.

Definition 109. We say that an extended continued fraction (X, s0) is interior-computable
if

• it is possible to semi-decide whether a computable element x ∈ PRd
+ belongs to X,

• for every σ in S, the interior of s−1
0 {σ} is a recursively enumerable open set (see

e.g. [53]): there exists a Turing machine that outputs a sequence of pairs (ci, ri) ∈
PQd

+ ×Q∗+ such that
◦˚�s−1

0 {σ} =
⋃
i∈N

B(ci, ri) ∩X.

Proposition 110. Let (X, s0) be an interior-computable extended continued fraction al-
gorithm. Determining whether there exists a seed point x ∈ X with a periodic directive
sequence s(x) is semi-decidable.

Proof. Let us provide a semi-decision algorithm, together with a proof of correctness.
Using a scheduler, we start a parallel computation for every finite sequence of substi-

tutions (σ0, . . . , σk−1) ∈ S+.
For each sequence (σ0, . . . , σk−1), we run Subroutine 105. We ignore the sequence

if the subroutine rejects. If the subroutine returns an element x ∈ PRd
+, we start a

computation to semi-decide whether x ∈ X. If this computation finishes by accepting x
as an element of X, from the interior-computability of (X, s0), we compute a recursive
enumeration (ci, ri) of the open set

k−1⋂
l=0

ab(σ[0,l))

◦˚�s−1
0 {σl}.

In parallel, we check whether x belongs to some B(ci, ri): this might loop forever, but
if x belongs to some B(ci, ri), it will eventually be found. When it is the case, we deduce
that:

• the directive sequence of x is s,

• x is totally irrational (by Subroutine 105),

• s0◦F n is continuous at x for all n ∈ N since it is continuous for all n ∈ {0, . . . , k−1}
and F k(x) = x,

• (Mn(x)) is exponentially convergent.

51



Then, we run Subroutine 106 to decide whether the last condition of Definition 90 is
satisfied. If this subroutine accepts, we return the point x as a seed point with periodic
directive sequence s. Otherwise, we ignore (and let the algorithm continue with other
finite sequences of substitutions).

Hence, if there exists a periodic seed point, it will eventually be found.

Remark 111. The last condition of Definition 90 can also be checked for directions with
periodic directive sequence using the balanced pair algorithm, see [40] and [51].

7 Examples of continued fraction algorithms

Here we list some classical examples of continued fraction algorithms and we check if the
hypotheses of Theorem B are fulfilled.

7.1 Classical one-dimensional continued fraction algorithm

Let d = 1. The algorithm is defined on the whole X = PR1
+. Let S = {τ0, τ1}, where

τ0 =

Å
0 7→ 0
1 7→ 01

ã
, τ1 =

Å
0 7→ 10
1 7→ 1

ã
.

Remark that this example is constructed on the same set S as in Example 18, and
that the abelianization of the substitutions are

ab(τ0) =

Å
1 1
0 1

ã
, ab(τ1) =

Å
1 0
1 1

ã
.

We define the extended continued fraction algorithm as:

s0 =

Ö
X −→ S

[(x0, x1)] 7−→
®
τ0 if x0 ≥ x1

τ1 if x0 < x1

è
.

The associated continued fraction algorithm is:

F =

Ö
X −→ X

[(x0, x1)] 7−→
®

[(x0 − x1, x1)] if x0 ≥ x1

[(x0, x1 − x0)] if x0 < x1

è
.

This algorithm is known as the additive continued fraction algorithm in dimension
one, see [4].

Remark that with the change of coordinates x = x0

x1
, we obtain the mapÖ

[0,+∞] −→ [0,+∞]

x 7−→
®
x− 1 if x ≥ 1

x
1−x if x < 1

è
.
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There exists an ergodic invariant measure for this algorithm which is absolutely con-
tinuous with respect to the Lebesgue measure, its density can be expressed as 1

x
in the

above coordinate system, but this measure has infinite volume. So we cannot apply our
Theorem B.

The usual acceleration of this algorithm restricted to (0, 1) is given by the mapÅ
(0, 1) −→ (0, 1)
x 7−→ { 1

x
}

ã
, defined almost everywhere. This map has an invariant ergodic

probability measure which is absolutely continuous with respect to the Lebesgue measure,
with density 1

log 2
1

1+x
, see [4]. But it cannot be described with a finite number of matrices,

so we cannot apply our Theorem B with this acceleration either.
However, this additive algorithm is well-known, and for every totally irrational di-

rection, fixed points of the directive sequence s(x) are constituted of Sturmian words.
See [46] for more details. It could be shown that for every totally irrational direction
x ∈ PR1

+, the directive sequence s(x) is good. Hence, we deduce by Theorem C that for
such a direction x there exists a generating partition of the translation by q(e0−v(x)) on
the torus P/Λ ' T1 such that the associated symbolic coding is a measurable conjugacy
with the subshift Ωs(x). We easily check that, when x is a totally irrational direction,
Tx = Tq(e0−v(x)) spans the set of irrational translations of P/Λ.

On the other hand, the complexity of the subshift Ωs(x) is p(n) = n+1. Thus, we get,
for every irrational translation on T1, a generating partition giving a symbolic coding of
complexity n+ 1. This partition is made of two intervals, and we recognize the classical
conjugacy between irrational translations of T1 and Sturmian subshifts, see [46] for more
details.

7.2 Brun algorithm

Now we give an example of a continued fraction algorithm which does not have associated
substitutions (i.e., not an extended continued fraction algorithm). Let d = 2 (but the
definition easily generalizes to any d ≥ 1). Let X be PR2

+. For ζ ∈ S3 (the permutation
group on the set {0, 1, 2}) we define Xζ = {[(x0, x1, x2)] ∈ X | xζ(0) < xζ(1) < xζ(2)}.
Then we define the six matrices

B012 =

Ñ
1 0 0
0 1 0
0 1 1

é
, B021 =

Ñ
1 0 0
0 1 1
0 0 1

é
, B120 =

Ñ
1 0 1
0 1 0
0 0 1

é
,

B102 =

Ñ
1 0 0
0 1 0
1 0 1

é
, B201 =

Ñ
1 0 0
1 1 0
0 0 1

é
, B210 =

Ñ
1 1 0
0 1 0
0 0 1

é
.

Then we define M0 : X → GL3(Z) by M0(x) = Bζ if x ∈ Xζ . If x is in X and not
in some Xζ , then we extend the definition arbitrarily. The following will not depend on
these choices.

The Brun algorithm is then defined, as any algorithm of continued fraction, by

F =

Å
X −→ X
x 7−→ (M0(x))−1x

ã
.

In other words, the algorithm subtracts from the largest coordinate the largest of the
remaining ones.
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Lemma 112. [3] The following function is a density function of an invariant probability
measure for F :

(x0 + x1 + x2)3

2xζ(1)(xζ(0) + xζ(2))xζ(2)

where (x0, x1, x2) is any representative of x ∈ Xζ.

Lemma 113. Let µ be the invariant probability measure given by Lemma 112. Then
(X,F, µ) is a measured continued fraction algorithm.

Proof. We have to check the hypotheses of Definition 77. Property 1 is proved in [38, 50].
Properties 2, 3 and 4 follow from the fact that µ is absolutely continuous with respect to
the Lebesgue measure. Note that here X0 is just the set of totally irrational directions by
Remark 75. Property 5 is obtained by applying Proposition 78 on the partition (Xζ).

General conditions that permit to check the Pisot condition for the Brun algorithm
with the measure µ are given in [6].

As said at the beginning of this section, the Brun algorithm is not an extended
continued fraction algorithm, but we can extend it. In [36], some choices have been made
to associate a finite set of substitutions with this algorithm. Denoting bζ the substitution
with matrix Bζ such that bζ(a) starts with a for every letter a ∈ {0, 1, 2}, we find that

b210b021b102 =

Ñ
0 7→ 0210
1 7→ 10
2 7→ 210

é
=

Ñ
0 7→ 10
1 7→ 2
2 7→ 0

é3

.

e1 − e0

e2 − e0
e2 − e1

0

Figure 8: Rauzy fractal of the directive sequence (b210b021b102)ω.

The Brun extended continued fraction algorithm is rational (see Definition 107), so
we can use Proposition 108 and check that the Perron eigenvector of the substitution
b210b021b102 is a seed point. Therefore, we can apply Theorem B, and we get:

Proposition 114. For µ-almost every point x of X, the S-adic subshift associated with
x is measurably conjugate to a translation on the torus P/Λ.
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7.3 Arnoux-Rauzy algorithm

Let again d = 2. The Arnoux-Rauzy extended continued fraction algorithm is defined by

s0 =

á
X −→ S

[(x0, x1, x2)] 7−→


ar0 if x0 > x1 + x2

ar1 if x1 > x0 + x2

ar2 if x2 > x0 + x1

ë
where S = {ar0, ar1, ar2} with

ar0 =

Ñ
0 7→ 0
1 7→ 10
2 7→ 20

é
, ar1 =

Ñ
0 7→ 01
1 7→ 1
2 7→ 21

é
, ar2 =

Ñ
0 7→ 02
1 7→ 12
2 7→ 2

é
.

The associated continued fraction algorithm is

F =

á
X −→ X

[(x0, x1, x2)] 7−→


[(x0 − x1 − x2, x1, x2)] if x0 > x1 + x2

[(x0, x1 − x0 − x2, x2)] if x1 > x0 + x2

[(x0, x1, x2 − x1 − x0)] if x2 > x0 + x1

ë
.

In other words, the algorithm subtracts from the largest coordinate the sum of the
other ones. Here again we extend this definition to the boundaries of the sets with an
arbitrary choice. In this case, the set X is defined a posteriori as the subset of points
of PR2

+ for which F n is defined for all n ∈ N. This set is known as the Rauzy gasket, and
is depicted in Figure 9.

[(0,1,0)][(1,0,0)]

[(0,0,1)]

Figure 9: The Rauzy gasket X ⊆ PR2
+.

For this set S of substitutions, the Dumont-Thomas alphabet is Σ = {0, e0, e1, e2},
and the abelianized prefix automaton A is depicted in Figure 10.

The Arnoux-Rauzy algorithm has been well studied, see [5, 9]. In [6], some sufficient
conditions for a measured continued fraction algorithm to satisfy the Pisot condition are
given. One of these conditions is independent of the ergodic measure. It is called the
Pisot property. The Arnoux-Rauzy algorithm satisfies the Pisot property [6].

It appears that this algorithm has a lot of ergodic measures. One of them has been
introduced in [8]. This measure is a good candidate, but we have not checked whether it
fulfils all the hypotheses needed in Definition 77.
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1

0 2

0, ar0

0, ar1

0, ar2

e0, ar1

e0, ar2

0, ar0

0, ar1

0, ar2

e1, ar0

e1, ar2

0, ar0

0, ar1

0, ar2

e2, ar1

e2, ar0

Figure 10: Abelianized prefix automaton for the Arnoux-Rauzy substitutions.

8 Application: Cassaigne algorithm and two-dimen-

sional translations

First we define the Cassaigne extended measured continued fraction algorithm, and show
that it fulfills the hypotheses of Theorem B. Then we will prove Theorem A. In all this
section d = 2.

8.1 Description of the algorithm

The algorithm is defined on the whole X = PR2
+. Let µ be the measure on ∆ with

density a
(1−x0)(1−x2)

with respect to the Lebesgue measure on ∆, where a is chosen so that

µ(∆) = 1. It can be viewed as a probability measure on X thanks to the bijection v
between X and ∆.

Let S = {c0, c1}, where

c0 =

Ñ
0 7→ 0
1 7→ 02
2 7→ 1

é
, c1 =

Ñ
0 7→ 1
1 7→ 02
2 7→ 2

é
.

We define the extended continued fraction algorithm as:

s0 =

Ö
X −→ S

[(x0, x1, x2)] 7−→
®
c0 if x0 ≥ x2

c1 if x0 < x2

è
.

The associated continued fraction algorithm is:

F =

Ö
X −→ X

[(x0, x1, x2)] 7−→
®

[(x0 − x2, x2, x1)] if x0 ≥ x2

[(x1, x0, x2 − x0)] if x0 < x2

è
.
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The matrices associated with the substitutions c0 and c1 are:

ab(c0) =

Ñ
1 1 0
0 0 1
0 1 0

é
, ab(c1) =

Ñ
0 1 0
1 0 0
0 1 1

é
.

For this set S of substitutions, the Dumont-Thomas alphabet is Σ = {0, e0}, and the
abelianized prefix automaton A is depicted in Figure 11.

10 20, c0

0, c1

0, c1

0, c0

e0, c0

e0, c1

0, c1

0, c0

Figure 11: Abelianized prefix automaton for S = {c0, c1}.

Lemma 115. (X, s0, µ) is an extended measured continued fraction algorithm and satis-
fies the Pisot condition.

Proof. We refer to [3] for a proof of the F -invariance of the measure µ.
By [50], we know that the Selmer algorithm is ergodic. Moreover, we know that

the Cassaigne algorithm is conjugate to the semi-sorted form of Selmer algorithm [20].
Ergodicity of the semi-sorted form of Selmer algorithm cannot be simply deduced from
ergodicity of the usual (sorted) form, but arguments of [50] can be adapted to prove it,
thus we deduce the ergodicity of the measure µ. See also [29] for a direct proof.

It is well-known that for the Selmer algorithm the second Lyapunov exponent is
strictly negative, with Lebesgue-almost surely codim(E2(x)) = 1, see [44]. As before
we cannot directly deduce the Pisot condition, but the same method can be applied
with the semi-sorted Selmer algorithm. Thus, by conjugacy we deduce θ2(µ) < 0 and
codim(E2(x)) = 1 for µ-almost every x ∈ X, so the Pisot condition is satisfied. The
Cassaigne algorithm fulfills the conditions of Proposition 78 with the hyperplane {x ∈
PR2

+ | x0 = x2}, since µ is absolutely continuous with respect to the Lebesgue measure.
Hence, (X, s0, µ) is an extended measured continued fraction algorithm.

Figure 12 illustrates approximations of Rauzy fractals R(x) obtained by choosing
points x ∈ PR2

+ randomly for the Lebesgue measure and applying the Cassaigne algorithm
to compute the directive sequence up to a certain integer n that we choose in order to
have enough points, and enough precision. We then plot the set of points

Qa = {
n∑
k=0

πx(M[0,k)tk) | b
tn,sn−−−→ ...

t0,s0−−→ a}

with a color depending on the letter a.
If the Rauzy fractal associated with the point F n+1(x) is bounded and not too

large (which occurs with high probability), then the Hausdorff distance between the
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E E E E

Figure 12: Approximations of random Rauzy fractals, and the associated domain ex-
changes.

approximation Qa and the Rauzy fractal R(x) is at most a few pixels. Rauzy frac-
tals of this article have been drawn using the Sage mathematical software and the
badic package. These are available here: https://www.sagemath.org/ and https:

//gitlab.com/mercatp/badic.

8.2 There exists a seed point

In this section, we show that a particular substitution gives a seed point for the Cassaigne
continued fraction algorithm. Since the Cassaigne algorithm is rational, it would be
sufficient to apply the algorithm of Proposition 108 to (c0, c1). However, we would like
to present a more geometric approach, that relies on an identification of the projection
plane P with the complex field C.

We consider the substitution c0c1 =

Ñ
0 7→ 02
1 7→ 01
2 7→ 1

é
. Let w = (c0c1)ω(0) ∈ AN be its

unique fixed point. Its abelianization is the matrix M = ab (c0c1) =

Ñ
1 1 0
0 1 1
1 0 0

é
.

The characteristic polynomial of M is X3−2X2+X−1. It is an irreducible polynomial
over Q, with one real root greater than 1 and two complex roots of modulus less than 1.
Thus, the substitution c0c1 is Pisot unimodular.

Let β be the eigenvalue of M with negative imaginary part. Let x0 ∈ PR2
+ be the

class of a Perron eigenvector of M . The goal of this section is to prove that x0 is a seed
point:

Proposition 116. The point x0 is in G0 (see Definition 90).
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0

0 21

10

1
0

Figure 13: Automaton describing the projection by φ of the worm W (w).

We need to prove several lemmas first.

Lemma 117. The point x0 is in X0, see Definition 73.

Proof. The point x0 is a totally irrational direction by Lemma 67. We deduce the conti-
nuity of s0 ◦ F n at x0 for every n ∈ N by Remark 75.

The projection plane P can be identified with C, so that πx0M acts by multiplication
by β:

Lemma 118. Consider the linear map φ from R3 to C given by φ(v) = ev, for the line
vector e = (1, β2 − β, β − 1). This map induces a bijection between P and C. For every
v ∈ R3, we have φ(Mv) = βφ(v) and φ(πx0v) = φ(v).

Proof. Remark that the line vector e is a left-eigenvector of M for the eigenvalue β. Let
v ∈ R3. We have φ(v) = ev, so φ(Mv) = eMv = βev = βφ(v). As x0 is the class
of a right eigenvector of M for an eigenvalue different from β, we have ex0 = 0, thus
φ(πx0v) = φ(v − h(v)v(x0)) = φ(v).

Now we check that the rank of φ is 2, so its kernel is the vector space spanned by x0,
which intersects P only at 0. Thus, φ induces a bijection between P and C.

With Lemmas 34 and 118, we can project the worm W (w) on the complex plane

φ(Wa(w)) = {
n−1∑
k=0

tkβ
k | n ∈ N, 0

tn−1−−→ ...
t0−→ a} ⊆ C,

where 0
tn−1−−→ ...

t0−→ a denotes a path in the automaton φ(A) of Figure 13 (we do not
label the edges by the substitution since there is only one in this case). This automaton
φ(A) is obtained from the abelianized prefix automaton A for the substitution c0c1 by
replacing edge labels (t, c0c1) with φ(t).

Figure 14 shows the Rauzy fractal R of the directive sequence (c0c1)ω and its image
φ(R) by φ.

The following lemma permits to find good bounding boxes (for example good disks)
that contain the pieces of the Rauzy fractal.

Lemma 119. If there exist (Oa)a∈A bounded open subsets of C and an integer n ∈ N
such that for every a ∈ A we have

⋃
b
tn−1−−→...

t0−→a

(
βnOb +

n−1∑
k=0

tkβ
k
)
⊆ Oa,

then for all a ∈ A, we have φ(Ra) ⊆ Oa.
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e0 − e1

e2 − e0e2 − e1

0

Figure 14: Rauzy fractal of (c0c1)ω in P (left) and its projection by φ on C (right).

Proof. Let y ∈ φ(Ra). By Corollary 45, there exists an infinite path ...
tn−→ ...

t0−→ a in the
automaton φ(A) of Figure 13 such that

y =
∞∑
k=0

tkβ
k.

Let b ∈ A such that b
tn−1−−→ ...

t0−→ a is a path in the automaton. Let l be the distance
between βnOb +

∑n−1
k=0 tkβ

k and the complement of Oa. As Ob is bounded, the first set
is compact so that l > 0. We denote by D the usual distance on C. Let k ∈ N be
large enough such that

∣∣βkn∣∣maxc∈A supz∈φ(R) D(z, Oc) < l, and let c ∈ A such that

c
tkn−1−−−→ ...

tn−→ b
tn−1−−→ ...

t0−→ a is a path in the automaton. We have
∑∞

j=kn tjβ
j−kn ∈ φ(R),

again by Corollary 45. So D(
∑∞

j=kn tjβ
j, βknOc) < l.

Thus, D(y, βknOc +
∑kn−1

j=0 tjβ
j) < l. Moreover, we have the inclusion

βknOc +
kn−1∑
j=0

tjβ
j ⊆ βnOb +

n−1∑
k=0

tkβ
k

by iterating k − 1 times the inclusion of the hypothesis. So, we get that y is in Oa.

Corollary 120. For the Rauzy fractal associated with (c0c1)ω we have the inclusions

φ(R0) ⊆ O0 = B(−0.19− 0.15i, 0.75),

φ(R1) ⊆ O1 = B(0.5− 0.6i, 0.655),

φ(R2) ⊆ O2 = B(0.865 + 0.123i, 0.566).

Proof. We use Lemma 119 for n = 8, and check the result by computer, see Figure 15.

In the following we denote by za and ra the center and the radius of the ball Oa for
a = 0, 1, 2.

Now we can prove Proposition 116:

Proof of Proposition 116. We check all the conditions in Definition 90 to show that x0 is
a seed point:
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Figure 15: Bounding balls found from Lemma 119 for n = 8.

• By Lemma 117, x0 ∈ X0.

• We have

lim
n→∞

1

n
ln
∣∣∣∣∣∣πx0M[0,n)(x0)

∣∣∣∣∣∣
1

= lim
n→∞

1

2n
ln
∣∣∣∣∣∣πx0M

n
∣∣∣∣∣∣

1
=

1

2
ln |β| < 0,

so (Mn(x0)) is exponentially convergent.

• We have 0 6∈ R1 ∪ R2 by Corollary 120 since 0 6∈ B(0.5 − 0.6i, 0.655) ∪ B(0.865 +
0.123i, 0.566).

• For t ∈ Λ \ {0, e1− e2, e2− e1}, we check that |φ(t)| > 1.5 > maxa∈A ra + |za|, so by
Corollary 120, we get that 0 6∈ R + t.

For t ∈ {e1−e2, e2−e1}, we check that for all a ∈ A, |za + φ(t)| > ra, thus 0 6∈ R+t.

• We have 0 6∈ R1 ∪ R2 ∪
⋃
t∈Λ\{0}R + t, so by Lemma 38 we have that 0 is in the

interior of W0(w). In particular, the interior of W0(w) is non-empty. Furthermore,

there exists a fixed point u ∈ (AN)
N

of the directive sequence s(x0) = (c0c1)ω such
that u0 = w is the fixed point of the substitution c0c1.

8.3 Proof of Theorem A

We refer to [19, Proposition 6] for the proof of the following result:

Lemma 121. Consider a directive sequence s in SN, where S = {c0, c1}. Assume that s
cannot be written as a finite sequence followed by an infinite concatenation of c2

0 and c2
1

(which is the case if the direction of s is totally irrational). Then Ωs is minimal and has
complexity 2n+ 1.
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Figure 16: Proof that 0 6∈ R1 ∪R2 ∪
⋃
t∈Λ\{0}R + t thanks to covering with balls.

Now we proceed with the proof of Theorem A. Let (X, s0, µ) be the Cassaigne ex-
tended measured continued fraction algorithm. By Lemma 115 and Proposition 116, it
satisfies the hypotheses of Theorem B. Since µ is absolutely continuous with respect to
the Lebesgue measure, the conclusion holds for Lebsegue-almost every x ∈ PR2

+.
The map x 7→ tx of Theorem B does not map PR2

+ to T2, though: as tx = ψ(q(e0 −
v(x))), its image is ψ(q(e0 − ∆)). The translation vectors tx = (a1, a2) ∈ [0, 1]2 satisfy
a1 + a2 ≥ 1. However, remark that a symbolic coding of the translation by −tx can be
easily constructed from the coding of the translation by tx, and that (e0−∆)∪(∆−e0) is a
measurable fundamental domain of P for the action of Λ. Thus, the set {ψ(q(e0−v(x))) |
x ∈ G} ∪ {ψ(q(v(x)− e0)) | x ∈ G} is of full measure in T2.

Hence, we get for Lebesgue-almost every translation on T2 a nice generating parti-
tion such that the associated symbolic coding is a conjugacy with the subshift. With
Lemma 121 we deduce the result.

9 Renormalization schemes

The Poincaré recurrence theorem ensures that, given a measurable map T : Z → Z which
preserves a finite measure on Z, and for a measurable set U ⊆ Z of positive measure, we
can define the induced map (or first return map) on the set U as:

TU =

Å
U −→ U
z 7−→ T rU (z)(z)

ã
,

where rU(z) = inf{n > 0 | T n(z) ∈ U} is finite for almost every point z of U , so TU is
defined almost everywhere on U .

Finding consistent induction subsets for a family of dynamical systems is an important
step in the construction of a renormalization scheme.
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9.1 Dimension 1

In dimension 1, the following is well-known [46]. There is, up to translation, only one
fundamental interval for the action of Z on R, I = [0, 1]. If we lift a translation Tt on
the 1-dimensional torus T1 = R/Z to the fundamental interval I, we get a piecewise
translation on I with a discontinuity at 1− t (assuming t ∈ [0, 1]). Hence, it is natural to
partition the unit interval into two pieces ([0, 1− t], [1− t, 1]). If we induce on the larger
piece, and rescale linearly to recover an interval of length 1, we get a new translation
on the torus T1. The resulting translation vector is obtained from the original one by
applying one step of the classical additive continued fraction algorithm (see Section 7.1).
The process can be iterated indefinitely unless t is rational.

This construction translates to the following renormalization scheme. Let P denote
the family of irrational translations on the torus endowed with a partition of a funda-
mental interval into two pieces as above:

P = {(Tt, ([0, 1− t], [1− t, 1])) | t ∈ [0, 1] \Q}

The renormalization scheme, which is the composition of inducing on the larger piece,
rescaling, and recreating the new pieces, can be written as:

R =

Ö
P −→ P

(Tt, ([0, 1− t], [1− t, 1])) 7−→

{
(T t

1−t
, ([0, 1−2t

1−t ], [1−2t
1−t , 1])) if t < 1/2

(T 2t−1
t
, ([0, 1−t

t
], [1−t

t
, 1])) if t > 1/2

è
.

This renormalization scheme does not depend on the fundamental interval chosen
when lifting, the induction set is prescribed by the discontinuity and the (positive) scaling
factor is prescribed by the length of the induction set. Hence, the renormalization scheme
is somehow canonical.

9.2 Dimension 2 with the Cassaigne algorithm

In higher dimension, there is no obvious induction set. There is not even an obvious
fundamental domain to lift the translation. The goal of this section is to describe, in an
informal discussion, a renormalization scheme in dimension 2 that relies on the Rauzy
fractals that we constructed for the Cassaigne algorithm.

Let us first look at the symbolic level. Let us consider a good directive sequence
s = (sk) for the Cassaigne algorithm, and let u be one of its fixed points. Assume first
that s starts with c0. The word u0 = c0(u1) is a concatenation of the three finite words
0, 02 and 1. Those three words are return words on the pair {0, 1}, i.e., any word in Ωu0

starting with 0 or 1 can be written in a unique way as a concatenation of 0, 02 and 1,
and 0 and 1 appear only at the first positions of those three words. Hence, inducing the
subshift Ωu0 on the clopen set [0] ∪ [1] = Ωu0 \ [2] leads to a subshift conjugate to Ωu1 ,
whose directive sequence is (sk+1).

Now, assume that the directive sequence s starts with c1. In this case, the images
of the letters by c1 are not return words, and we have to look backwards: the reverse of
the images of the letters by c1, that is 1, 20 and 2, are return words on the pair {1, 2}
in the left-infinite word obtained by reversing u0. A workaround could be to reverse
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c1(1) in the definition of c1 to be 20 as this would not change the continued fraction
algorithm; however, this would increase the complexity of the associated subshift, which
we cannot afford. Instead, we remark that inducing on T ([1]) ∪ T ([2]) = T (Ωu0 \ [0]),
where T denotes the shift map, leads again to a subshift conjugate to Ωu1 , whose directive
sequence is again (sk+1).

All those remarks translate to the geometrical level. As in Section 8.3, we work on
half the translations, namely those of the form Tx. Let Tx be a translation on the torus
P/Λ for some good point x ∈ G, let Ex be the associated lifted domain exchange on the
Rauzy fractal R(x) ⊆ P , which is partitioned into three pieces (R0(x), R1(x), R2(x)). To
define the induction set, we distinguish two cases:

• (bottom type) If λ(R0(x)) ≥ λ(R2(x)), let U = R0(x) ∪R1(x).

• (top type) If λ(R0(x)) < λ(R2(x)), let U = Ex(R1(x)) ∪ Ex(R2(x)).

Let us notice that the vector (λ(R0(x)), λ(R1(x)), λ(R2(x))) belongs to the direction x
by Lemma 65 and that the conditions for bottom and top are the same as the conditions
defining the sets s−1

0 {c0} and s−1
0 {c1}.

Then, the induced map (Tx)q(U) is conjugate to the translation TF (x). Indeed, U is a
measurable fundamental domain of P for the action of the lattice Λ′ = ηΛ, where η is
the linear endomorphism of P such that η ◦ πFx = πx ◦ ab(s0(x)) that was introduced in
Section 4.2.2. The induced map (Tx)q(U) can be rescaled to the translation TF (x) on the
reference torus P/Λ: the linear map that sends U to R(F (x)) is η−1.

Given a translation equipped with the partition of the torus P/Λ into three pieces,
we described a way to define an induction set and to rescale the induced map into a new
translation on the original torus P/Λ. This induced-rescaled map inherits the partition
(R0(F (x)), R1(F (x)), R2(F (x))). This partition can be described without relying on the
knowledge of F (x), so that the renormalization scheme sustains itself. To this end, let
us consider the bottom type (the top type is similar): the induction set U is the union of
the two pieces R0(x) and R1(x). But while the return time in U of any element of R1(x)
is 1, the return time of elements of R0(x) is either 1 or 2. Hence, the piece R0(x) can
be subdivided into two pieces R0(x) ∩ r−1

U {1} and R0(x) ∩ r−1
U {2} = r−1

U {2}, and we get
the partition into three pieces (R0(x)∩ r−1

U {1}, r
−1
U {2}, R1(x)) which refines the partition

(R0(x), R1(x)) (note that the order of the new pieces matters for the next induction step).
To sum up, if G ⊆ PR2

+ denotes the set of good points and G ⊆ SN denotes the set
of good sequences, let us denote P = {(Tx, (R0(x), R1(x), R2(x))) | x ∈ G} the set of
translations on the torus P/Λ endowed with the partition of a fundamental domain of
P/Λ into three pieces that can be obtained by applying Theorem B for the Cassaigne
algorithm. Let R : P → P denote the renormalization scheme which consists in applying
the operations of inducing, rescaling and partitioning as described above. Let ~λ : P →
PR2

+ denote the map (T, (P0, P1, P2)) 7→ [(λ(P0), λ(P1), λ(P2))]. Let ι : G → P denote the
map s 7→ (Tx, (R0(x), R1(x), R2(x))), where x is the direction of the directive sequence s.
Then, the following diagram is commutative:
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P
~λ−−−→ G ⊆ PR2

+
s−−−→ G ⊆ SN ι−−−→ P

R
y yF yshift

yR
P

~λ−−−→ G ⊆ PR2
+

s−−−→ G ⊆ SN ι−−−→ P
It is remarkable that this scheme is pretty similar to the famous Rauzy-Veech induction

for interval exchange maps [47] (we named the top and bottom types after the naming
scheme of [54]).

R0(x)R1(x)

R2(x)

R0(Fx)

R1(Fx)

R2(Fx)

R0(F 2x)
R1(F 2x)

R2(F 2x)

top bottom
Ex EF (x) EF 2(x)

Figure 17: Two steps of induction, rescaling, partitioning. The sets of induction are
outlined in black. Note that the pictures look flipped (and stretched) from one step to
the next one, this is due to the fact that the rescaling matrices have negative determinant.

Figure 17 shows two steps of induction, rescaling and partitioning starting from the
direction x = [(0.256005715380561..., 0.286881483823029..., 0.457112800796410...)]. The
associated directive sequence is s(x) = c1c0c1c0c1c0c0c0c1c0c0c0c1c1c0c0c0c0c0c0c1c1c0c1c0...
It corresponds to the translation by

t = (0.743994284619438...,−0.286881483823029...,−0.457112800796410...)

on the torus P/Λ. The figure shows the Rauzy fractals R(x), R(Fx) and R(F 2x), with R0

in red, R1 in green and R2 in blue. The upper row of the figure shows the decomposition
R(y) = R0(y) ∪ R1(y) ∪ R2(y), while the lower row shows the decomposition R(y) =
(R0 + πy(e0)) ∪ (R1(y) + πy(e1)) ∪ (R2(y) + πy(e2)) obtained after applying the domain
exchange Ey, for y = x, F (x), F 2(x) respectively.
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9.3 Other algorithms

This construction of a renormalization scheme can be generalized to some other extended
continued fraction algorithms. For the Brun algorithm, which was extended in Section 7.2
with the substitutions as in [36], the complement of the image of the second largest piece
of the Rauzy fractal is a suitable induction set U (in this case, all types are top). Another
choice of substitutions will lead to a different renormalization scheme.

For the Arnoux-Rauzy algorithm (see Section 7.3), we cannot conclude so easily since,
due to the lack of a probability measure satisfying the hypotheses of Definition 77, we
could not identify a large subset of the Rauzy gasket for which we could construct Rauzy
fractals. However, from the symbolic description of the algorithm, we could bet that once
there will be such a construction, the image of the largest piece of the Rauzy fractal will
be a convenient induction set.

10 Remarks and open problems

10.1 Comments on the results of other papers

In [14] the authors prove some theorems on the same subject. Their Theorem 3.1 is in
the same spirit as our Theorem B. Their proof follows the same lines as ours: start from
a single “seed” directive sequence, use the control provided by the Pisot condition to
extend that property to a set of positive measure, then propagate it almost everywhere
by ergodicity. Regarding the construction of Rauzy fractals, they rely on the paper
[13] which is in the same spirit as our Theorem C but needs some hypotheses such as
irreducibility and balancedness for the directive sequences or coincidence conditions on
the subshift. In our theorem these conditions are not assumed, and are replaced with our
notion of good directive sequence. Also, their Theorem 3.8 is in the same spirit as our
Lemma 65. Finally, their Corollary 6.3 is in the same spirit as our Theorem A.

10.2 Translation vectors vs directions

The link between a continued fraction algorithm and torus translations was done by
mapping every direction x ∈ PRd

+ to a translation vector of Td via the composition:

χ : PRd
+

v // ∆
f
// P

q
// P/Λ

ψ
// Td .

The map f =

Å
∆ −→ P
y 7−→ e0 − y

ã
is affine (and injective), which is why we could trans-

port results holding for almost every direction to results holding for almost every torus
translation. Note however that the map χ is not surjective, so that we had to project
the simplex twice to cover all possible torus translations in dimension 2 in the proof of
Theorem A (Section 8.3). If t is an element of T2, either t or −t is the image of some
direction x ∈ PR2

+. Since the translation Tt is conjugate to the translation T−t, we get
the result for almost every translation on T2.

In higher dimensions, if we identify Td with the unit hypercube [0, 1]d, the image of
PRd

+ is the convex hull Sd of {0, e1, . . . , ed}, whose Lebesgue measure is only 1/d!.
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If α ∈ GLd(Z) is an automorphism of Td, Tt is conjugate to Tα(t). As shown in [30],
there exist an explicit finite family (αi)0≤i<d! of elements of GLd(Z) and a family (ni)0≤i<d!

of elements of Zd such that [0, 1]d =
⋃

0≤i<d! αi(Sd) + ni, that is,

Td =
⋃

0≤i<d!

αi(χ(PRd
+)).

Such a tiling is also known as a Kuhn triangulation [39].
Therefore, if we want to go from a particular translation Tt on Td to a projective

direction and study its dynamics through continued fractions, it suffices to find to which
atom αi(Sd) of the triangulation it belongs, and to associate the direction x = χ−1(α−1

i (t))
(note that χ is injective, except on the finite set {[e0], . . . , [ed]}, which is mapped to {0}).

10.3 Exceptional directions in the Cassaigne algorithm

To finish with the Cassaigne algorithm, we list some sets of non-generic directions. Let
x = [(x0, x1, x2)] ∈ PR2

+ be a direction and s(x) be its associated directive sequence. We
have equivalence between dimQ spanQ(x0, x1, x2) = 1 and the fact that the sequence s(x)
is eventually constant. Moreover, dimQ spanQ(x0, x1, x2) = 1 if, and only if, s(x) is not
everywhere growing. Also, the property dimQ spanQ(x0, x1, x2) ≤ 2 is equivalent to the
fact that s(x) can be written as the concatenation of a finite sequence followed by an
infinite concatenation of c2

0 and c2
1 (even runs) [19, Lemma 1].

Those directions are somehow exceptional for trivial reasons. A natural question is
to understand the set of translation vectors in T2 for which the conclusion of Theorem A
holds. Our proof shows that it is a subset of measure one in the set of totally irrational
translations. Can we extend the result of Theorem A to all totally irrational translations?
It is not possible with our proof, but maybe we can use some other continued fraction
algorithm, or some unrelated method. Indeed, there are subshifts defined by the Cas-
saigne algorithm which are not balanced [1], so there are directions where we cannot use
this algorithm to construct symbolic codings of translations on T2. More generally, one
may ask whether some subshifts defined by the Cassaigne algorithm are weakly mixing,
see [18].

10.4 Optimality of the complexity

Recall that for a minimal translation on T2, the complexity 2n + 1 obtained by the
Cassaigne algorithm is the lowest that can be reached using nice generating partitions,
since they are liftable [11].

However, without the liftability condition, it is possible to artificially lower the com-
plexity by a simple recoding. For example, we can replace the partition (q(Ra))a∈A with
the partition (q(R0), q(R1∪R2)), and still get a regular generating partition (however not
liftable) that yields a subshift with complexity at most 2n for n ≥ 1. See [20] for more
on computing the complexity of the subshifts produced by the Cassaigne algorithm.

10.5 Higher dimensions

Another natural question is to generalize Theorem A for d ≥ 3. A good candidate could
be the Brun algorithm which can be defined in any dimension d. Numerical experiments
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tend to show that that the second Lyapunov exponent should be negative if d < 10 [15]
[37]. It is not an extended continued fraction algorithm, but we can extend it. It seems
that for any reasonable choice of substitutions, the complexity is linear. It would remain
to find a seed point in order to generalize Theorem A for d < 10, with some higher but
linear complexity.

The example of Section 7.2 (the Rauzy fractal of which is shown on Figure 8) is a
seed point for d = 2. Its natural generalization gives also a seed point for d = 3, but fails
for d ≥ 4 as the substitution is no longer a Pisot substitution. However, if we instead
consider

b2
210b

2
021b

2
102 =

Ñ
0 7→ 100
1 7→ 2
2 7→ 0

é3

then its generalization to any dimension seems to give a seed point for the Brun algorithm:Ñ
0 7→ 100
i 7→ (i+ 1) if 1 ≤ i ≤ d− 1
d 7→ 0

éd+1

.

10.6 Pisot substitution conjecture

As explained in Corollary 70, we can relate Theorem C to the Pisot substitution conjec-
ture. We can restate the Pisot substitution conjecture [2] as:

Conjecture 122 (Reformulation of the Pisot substitution conjecture). For every irre-
ducible Pisot unimodular substitution σ, the directive sequence σω is good.

A generalization of the Pisot substitution conjecture could be:

Conjecture 123 (Generalization of the Pisot substitution conjecture). Let S be a set
of unimodular substitutions. Let s ∈ SN be a directive sequence such that there exist a
totally irrational direction x ∈ PRd

+ and a constant C > 0 such that for every k and

n ∈ N,
∣∣∣∣∣∣∣∣∣πM−1

[0,k)
xM[k,k+n)

∣∣∣∣∣∣∣∣∣
1
≤ Ce−n/C. Then, s is good.

The conjecture could be made even more general:

Conjecture 124 (Further generalization of the Pisot substitution conjecture). Let S be
a set of unimodular substitutions. Let s ∈ SN be a directive sequence such that there exists

a totally irrational direction x ∈ PRd
+ such that

∑
n

∣∣∣∣∣∣∣∣∣πM−1
[0,k)

xM[k,k+n)

∣∣∣∣∣∣∣∣∣
1

converges uni-

formly in k. Then the subshift associated with s is measurably conjugate to a translation
on the torus Td.
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Nomenclature

Greek alphabet
β complex eigenvalue, 58
∆ simplex, 6
δ Hausdorff distance, 45
ηk endomorphism of P , 29
η[k,n) product ηk . . . ηn−1, 29
θi(x) Lyapunov exponent, 39
ι map from G to P , 64
Λ integer lattice in P , 6
Λ′ integer lattice after induction, 64
λ Lebesgue measure, 6
~λ map from P to PRd

+, 64
µ Borel measure, 10
πy, πx projection on P along y or v(x), 6
ρ Tribonacci number, 3
Σ Dumont-Thomas alphabet, 19
σ generic substitution, 9
τ0, τ1 Sturmian substitutions, 52
ϕ linear form on Rd+1, 40
φ linear map from R3 to C, 59
χ map from PRd

+ to Td, 66
ψ torus isomorphism from P/Λ to Td, 6
Ω(nd) growth rate, 3
Ωs S-adic subshift, 11
Ωw subshift generated by w, 10
wω periodic word, 10
σω constant directive sequence, 12
Latin alphabet
A alphabet, 9
A∗ finite words, 9
AN infinite words, 9
A abelianized prefix automaton, 19
ab abelianization map, 9
ar0, ar1, ar2 Arnoux-Rauzy substitutions, 55
B(p, r) ball in the hyperplane P , 6
B(x, r) ball in the projective space, 6
B Bratteli diagram, 14
bζ substitution for Brun algorithm, 54
c0, c1 Cassaigne substitutions, 56
cod symbolic coding, 10
D distance on C, 60
d dimension, 5
d(x, y) distance, 6
E domain exchange, 11
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Ei(x) Lyapunov space, 39
Ex domain exchange, 32
(ei)0≤i≤d basis of Rd+1, 5
F extended continued fraction algorithm, 36
f limit of (fk), 30
fk measure of the boundary of the Rauzy fractal, 29
Fix(s) set of fixed points, 12
freq(w) frequency vector, 10
G good points, 43
G0 seed points, 42
G1 auxiliary set related to good points, 43
Ga
B,C seed set with explicit bound, 43
G good sequences, 64
g limit of (gk), 30
gk measure of Rauzy fractal, 29
H integer half-space, 14
h sum of coordinates, 6
hom(A∗, A∗) substitutions, 9
hom(A+, A+) non-erasing substitutions, 9
(kn) integer sequence, 27
L linear map from P to Rd, 6
Mk(s) kth matrix of s, 11
M[k,n) product Mk . . .Mn−1, 8
Md+1(R) square matrices, 6
Mk,d+1(Q) rectangular matrices, 50
n integer, 3
O(w) orbit, 10
P hyperplane where h cancels, 6
P family of translations, 63
p(n) complexity function, 9
PRd

+ set of positive directions, 6
q quotient map P → P/Λ, 6
R(s) Rauzy fractal of a directive sequence, 24
R(w) Rauzy fractal of a word, 21
R(x) Rauzy fractal associated with a direction, 39
Ra(w) piece of the Rauzy fractal, 21
R renormalization scheme, 63
rU return time, 62
S finite set of substitutions, 11
s = (sk) directive sequence, 11
s = s(x) directive sequence associated with x, 37
s[k,n) product of substitutions, 11
s0 map defining an extended continued fraction algorithm, 36
T shift map, 10
Tt translation on the torus by vector t, 7
Tx translation on the torus associated with direction x, 7
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TU induced map, 62
T (x) topology on H, 15
Td torus, 6
tx translation vector associated with direction x, 5
U open subset of P , 15
u = (uk) word sequence, usually fixed point, 12
V open subset of H for some topology T (x), 15
v(x) representative of x of norm 1, 6
v(k) vector of norm 1, 29
w word, 9
W (w) worm, 15
Wa(w) subset of a worm, 15
X base set of a dynamical system, 10
x(k) kth element of a sequence of directions, 25
Z subset of measure one in Oseledets theorem, 39
ZC set of points with explicit exponential convergence, 43
Other symbols
[f ] cylinder, 10
[y] direction of the vector y, 6
|w| length of a word, 9
|w|f number of occurrences of f in w, 9
1A indicator function, 11
‖.‖1 norm, 5
|||M |||1 operator norm, 7∣∣∣∣∣∣M|V ∣∣∣∣∣∣1 operator semi-norm, 7
v◦ orthogonal in the dual space, 40
� topological closure, 10
◦Ù� topological interior, 50
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