
HAL Id: hal-04796749
https://hal.science/hal-04796749v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Brief Announcement: Know Your Audience
Bernadette Charron-Bost, Patrick Lambein-Monette

To cite this version:
Bernadette Charron-Bost, Patrick Lambein-Monette. Brief Announcement: Know Your Audience.
PODC ’24: 43rd ACM Symposium on Principles of Distributed Computing, Jun 2024, Nantes (France),
France. pp.243-246, �10.1145/3662158.3662784�. �hal-04796749�

https://hal.science/hal-04796749v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Brief Announcement: Know your audience
Communication models and computability in anonymous networks

Bernadette Charron-Bost
CNRS, DI ENS

École Normale Supérieure
Paris, France

charron@di.ens.fr

Patrick Lambein-Monette
Unaffiliated
Paris, France

patrick@lambein.name

ABSTRACT
In distributed computing, questions of computability are exquisitely
sensitive to minute details of the model assumptions, and there is
no universally agreed upon model of network computing. Here, we
study which functions are computable by deterministic and anony-
mous agents in either static or dynamic networks. We consider var-
ious communication assumptions common in the literature, and in
each case we strive to characterize the set of computable functions,
organizing existing results as well as offering new ones, alongside
new proofs which bring new understanding of this computability
landscape.

CCS CONCEPTS
• Theory of computation → Computability; Distributed algo-
rithms.

KEYWORDS
anonymous networks, distributed computability

ACM Reference Format:
Bernadette Charron-Bost and Patrick Lambein-Monette. 2024. Brief An-
nouncement: Know your audience: Communication models and computabil-
ity in anonymous networks. In ACM Symposium on Principles of Distributed
Computing (PODC ’24), June 17–21, 2024, Nantes, France. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3662158.3662784

1 INTRODUCTION
Function computation [1–4, 6, 8, 10, 11, 13–15, 17–23, 25–32, 34, 35]
is a fundamental problem of distributed computing in networks. Of-
ten, it is assumed that each agent in the network starts with a unique
identifier, e.g., in the well-known local model, in which case the
question of which functions can be computed becomes essentially
moot. Indeed, by running a straightforward flooding algorithm, it is
possible for all 𝑛 agents to recover all pairs ((id𝑖 , val𝑖))1⩽𝑖⩽𝑛 , after
which any function 𝑓 (val1, . . . , val𝑛) can be computed, as long as
it is invariant under permutation of its arguments. Similarly, if we
allow randomized algorithms, then once again various methods
allow for computing the same functions, possibly with some caveats
such as “with high probability”. In short, with either identifiers or

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
Request permissions from owner/author(s).
PODC ’24, June 17–21, 2024, Nantes, France
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0668-4/24/06
https://doi.org/10.1145/3662158.3662784

randomization, questions of distributed computability in networks
are rather trivial.

If, however, we look at anonymous networks of deterministic
agents, then computability becomes a non-trivial question of much
importance, as function computation is an extremely commonplace
building block of many distributed applications. Here, our objec-
tive is to understand the fundamental limitations and capabilities
for function computation by networked systems of anonymous,
deterministic agents, operating under asynchronous starts in either
static or dynamic networks. We do this by describing a minimalist
model of network computing, and then studying how varying the
model assumptions, in particular as it relates to the communication
primitives, impacts the set of computable functions. We cover the
common communication models found in the literature, and, in
each case, strive to characterize computable functions. The current
paper only gives a high-level summary of our work. While Tables 1
and 2 give a high-level summary of our argument, we refer the
reader to our preprint [12] for precise definitions of our models,
methods, results, as well as their proofs.

We define three classes of functions of arbitrary arity, i.e., of
type 𝑓 :

⋃
𝑛⩾1𝛺

𝑛 → 𝑋 . First, set-based functions, whose value
only depend on the set of its input values. Second, frequency-based
functions, which can depend on the relative frequencies of the input.
Third, multiset-based functions, which can depend on the multiset
of the input. A prototypical example of a set-based function is the
maximum, an example of a frequency-based function is the average,
and an example of a multiset-based function is the sum. As these
examples illustrate, the inclusion between the three classes is strict.

In terms of communication, we consider four distinct models.
In the base case of blind (local) broadcast, in a round 𝑡 , an agent 𝑖
prepares and sends a message 𝑚𝑖 (𝑡) which is delivered to each
of 𝑖’s round 𝑡 outneighbors. This message is entirely determined
from the agent’s state obtained at the end of the previous round.
Our second model, outdegree awareness, only differs in one way:
the message𝑚𝑖 (𝑡) may now also depend on agent 𝑖’s outdegree
in the round 𝑡 communication graph. Transmissions in these two
models are isotropic, in the sense that, in any given round, any two
messages coming from the same sender are the same. In contrast,
in our third model of output port awareness, each agent 𝑖 has access
to different ports, each linking to a different outneighbor, and sends
one message per port in each round.1 Finally, our fourth model
of symmetric communications corresponds to the restriction of the
blind broadcast model, to the class of networks with bidirectional
links.

1In this work, we only consider output port awareness in the context of static networks,
as it is difficult to meaningfully define output ports in a dynamic context.

https://orcid.org/0009-0007-0132-8138
https://orcid.org/0000-0002-9401-8564
https://doi.org/10.1145/3662158.3662784
https://doi.org/10.1145/3662158.3662784

PODC ’24, June 17–21, 2024, Nantes, France Bernadette Charron-Bost and Patrick Lambein-Monette

Table 1: Computable functions in static, strongly connected networks of 𝑛 anonymous agents

no centralized help

a bound over 𝑛 is known

𝑛 is known

one leader

simple
broadcast

outdegree
awareness

symmetric
communications

output port
awareness

set-based frequency-based frequency-based frequency-based

set-based frequency-based frequency-based frequency-based

set-baseda multiset-based multiset-based multiset-based

set-based multiset-based multiset-based multiset-based

a J. Chalopin pointed out to us that this result does not hold for 𝑛 = 2 or 3.

2 PRELIMINARIES
Network and computation model. We adopt a standard model

of distributed computing in networks. In each round 𝑡 = 1, 2, . . .
of an execution, each agent 𝑖 ∈ [𝑛] ≔ {1, . . . , 𝑛} sends a mes-
sage, receives some messages from the network, then undergoes
an internal transition to a new state before starting the next round.
The patterns of message reception in a given round 𝑡 define a
directed graph 𝔾(𝑡) = ([𝑛], 𝐸𝑡), where (𝑖, 𝑗) ∈ 𝐸𝑡 means that
agent 𝑗 received agent 𝑖’s message in round 𝑡 . The infinite se-
quence 𝔾 = 𝔾(𝑡)𝑡⩾1 is the dynamic graph modeling the behavior
of the network over the execution.

The knowledge that each agent may possess about the network
is captured by a set of possible dynamic graphs, called a network
class, over which the execution might take place: the larger the
class, the less information the agents have about the network.
Since we consider anonymous networks, we restrict our atten-
tion to network classes that are closed under graph isomorphisms.
Then, for example, the class of static networks can be expressed
as

⋃
𝑛⩾1{(([𝑛], 𝐸𝑡))𝑡 |∀𝑡, 𝑡 ′ : 𝐸𝑡 = 𝐸𝑡 ′ }, and similarly for other

network classes. As we are looking for algorithms that tolerate
asynchronous starts, we remark that an agent who begins its exe-
cution in some round 𝑠 + 1 can be modeled as an isolated vertex in
each communication graph 𝔾(𝑡) for 1 ⩽ 𝑡 ⩽ 𝑠 , so that our dynamic
graph model captures the case of asynchronous starts. In contrast,
a self-stabilizing algorithm is expected to produce a correct result
under synchronous starts and arbitrary initial states of the agents.
Self-stabilizing algorithms obviously tolerate asynchronous starts,
while the converse is not necessarily true.

Finally, let us briefly recall what is meant by “computing” a func-
tion in an anonymous context. Unless the algorithm has a constant
runtime, it is generally impossible to get the agents to irrevoca-
bly decide on a return value. Indeed, this would essentially amout
to computing a bound 𝑁 ⩾ 𝑛, which is impossible, as is shown
here. Instead, each agent 𝑖 is equipped with an output variable 𝑥𝑖 .
Given a metric space (𝑋, 𝛿), we say that an execution 𝛿-computes
some value 𝑥∗ if lim𝑡→∞ 𝛿 (𝑥𝑖 (𝑡), 𝑥∗) = 0 for each agent 𝑖 . An algo-
rithm A is then said to 𝛿-compute some function 𝑓 :

⋃
𝑛⩾1𝛺 → 𝑋

on some dynamic graph𝔾with𝑛 nodes if any of its executions start-
ing with input values 𝑣1, . . . , 𝑣𝑛 𝛿-computes the value 𝑓 (𝑣1, . . . , 𝑣𝑛).
Finally, an algorithm A 𝛿-computes the function 𝑓 on the network
class C if it is the case for every graph of the class, in which case the
function 𝑓 is said to be 𝛿-computable. Note that if 𝛿 is the discrete
metric, then in any execution there exists some round 𝑡∗ after which

all variables 𝑥𝑖 (𝑡) are constant. We therefore say that the algorithm
computes 𝑓 in finite time, in which case 𝑓 is computable for every
other metric. Similarly, if 𝑋 = ℝ𝑘 , an algorithm which computes 𝑓
for the Euclidean metric is said to compute 𝑓 asymptotically or
approximately.

Graph fibrations. Over static graphs, the homotopic notion of
graph fibration [7] captures the idea of indistinguishability of nodes
with respect to the executions of a distributed algorithm. Recall
that a (directed, multi-)graph 𝐺 is composed of a non-empty set
of vertices 𝑉𝐺 = {1, . . . , 𝑛𝐺 }, and a set 𝐸𝐺 of edges defined by two
functions 𝑠𝐺 , 𝑡𝐺 : 𝐸𝐺 → 𝑉𝐺 , which specify the source and the
target vertices of each edge. A graph morphism between two graphs
𝐺 and 𝐻 , which we denote 𝜑 : 𝐺 → 𝐻 , is defined by a pair of
functions 𝜑𝑉 : 𝑉𝐺 → 𝑉𝐻 and 𝜑𝐸 : 𝐸𝐺 → 𝐸𝐻 which commute
with the source and targets functions. A fibration is a surjective
morphism 𝜑 : 𝐺 → 𝐵 with the additional following property: for
every edge 𝑒 of the graph 𝐵 (called the base of 𝜑) and for each
vertex 𝑖 of the graph 𝐺 with 𝜑𝑉 (𝑖) = 𝑡𝐵 (𝑒), there exists a unique
edge 𝑒̃ 𝑖 of 𝐺 such that 𝜑𝐸 (𝑒̃ 𝑖) = 𝑒 and 𝑡𝐺 (𝑒̃ 𝑖) = 𝑖 . The fibre 𝜑−1 (𝑖)
of some vertex 𝑖 ∈ 𝑉𝐵 is the set of vertices of𝐺 that are mapped to 𝑖 .
A fibration 𝜑 : 𝐺 → 𝐵 defines an equivalence relation on𝑉𝐺 whose
classes are the fibres: for any 𝑖, 𝑗, 𝑘 such that 𝑗, 𝑘 ∈ 𝜑−1 (𝑖), the
nodes 𝑖, 𝑗, 𝑘 have similar inneighborhoods, and there is a bijective
correspondence between the edges of 𝐺 coming to 𝑗 and those
coming to 𝑘 . Informally, a morphism is a fibration when it is a local
isomorphism with respect to the incoming edges of each nodes. All
of the above notions extend to the case where either the edges or
vertices of the graphs are colored, with the additional condition
that morphisms ought to be compatible with the coloring functions.

Graph fibrations were developed by Boldi and Vigna [5–7, 9] as a
refinement of the concept of graph coverings, which Angluin used
in her seminal work [1], and in subsequent works by others [16, 24,
33, 35] to study computability in anonymous networks. The power
of fibrations lie in the fundamental Lifting lemma [9, Lemma 2],
which, informally, states that for any fibration 𝜑 : 𝐺 → 𝐵 and
any execution of a distributed algorithm A over 𝐵, there exists an
execution of A over𝐺 in which all nodes of the same fiber 𝜑−1 (𝑖)
are indistinguishable, and their behavior is the same as that of 𝑖 in
the original execution over 𝐵. The execution ofA over the graph 𝐵

is entirely determined by the input values of the nodes in 𝐵, and
the execution over the graph 𝐺 is obtained by copying fibre-wise
the input values, i.e., each node 𝑗 ∈ 𝑉𝐺 gets input 𝜔𝜑

𝑗
≔ 𝜔𝜑𝑉 (𝑗) ,

Brief Announcement: Know your audience PODC ’24, June 17–21, 2024, Nantes, France

Table 2: Computable functions in dynamic networks of 𝑛 anonymous agents with finite diameter

no centralized help

a bound over 𝑛 is known

𝑛 is known

one leader

simple
broadcast

outdegree
awareness

symmetric
communications

set-based ? ?a

set-based frequency-based frequency-based

set-based multiset-based multiset-based

set-based ? ?a
a Di Luna and Viglietta’s algorithms [22, 23] exactly compute frequency-based functions only in the model
of synchronous starts.

where 𝝎 ∈ 𝛺𝑉𝐵 is the input vector for the graph 𝐵. From the Lifting
lemma, we get the following corollary for computability.

Lemma 2.1. Let 𝜑 : 𝐺 → 𝐵 be a fibration, and 𝑓 be a function
of variable arity over 𝛺 . If some algorithm 𝛿-computes 𝑓 on both
graphs 𝐺 and 𝐵, then for any 𝝎 ∈ 𝛺𝑉𝐵 we have 𝑓 (𝝎) = 𝑓 (𝝎𝜑).

As we consider network classes that are closed under graph
isomorphisms, Lemma 2.1 implies that computable functions have
to be insensitive to the permutation of their arguments.

3 COMPUTABILITY RESULTS
Static networks. The notion of graph fibrations allows us to es-

tablish our main theorem for static networks: an exact character-
ization of computable functions when assuming one of a) output
port awareness, b) symmetric communication links, or c) outdegree
awareness.

Theorem 3.1. Let (𝑋, 𝛿) be a metric space. In any of the three
communication models with either output port awareness, symmetric
communications, or outdegree awareness, and for any function 𝑓 :⋃

𝑛∈ℕ>0 𝛺
𝑛 → 𝑋 , the following assertions are equivalent:

(i) 𝑓 is frequency-based;
(ii) 𝑓 is 𝛿-computable in the class of static strongly connected

networks.

The proof can be found in our pre-print [12]. For the impossibility
result, we extend an existing argument for symmetric communica-
tions [18]. For the positive results, we start with Boldi and Vigna’s
universal self-stabilizing algorithm [9], which is finite-state and
computes in finite time a minimum base of the network graph 𝐺 ,
i.e., a graph 𝐵∗ such that i) there exists a fibration 𝜑∗ : 𝐺 → 𝐵∗, ii)
any fibration 𝐵∗ → 𝐵′ is an isomorphism (the graph 𝐵∗ is fibra-
tion prime). Under any of our three communication assumptions,
it is possible to show that, from the minimum base 𝐵∗, one can
reconstruct the vector of the cardinalities of the fibres of 𝜑∗ up to a
constant multiplicative vector, from which we deduce the relative
frequencies of the input values of the execution. This allows us to
compute any frequency-based function for the discrete metric, and
thus for any metric. While it was known that output port aware-
ness or symmetric communications make it possible to reconstruct
the frequency vector, the novelty of our approach is to show the
same for outdegree awareness, as well as to show that the three
approaches work because they imply the same constraint on the

vector of fibre cardinalities for any fibration with base 𝐵∗ – namely,
that they lie in a subspace of rank 1 which can be computed from
the graph 𝐵∗.

In addition to Theorem 3.1, we deduce additional results by con-
sidering additional assumptions: namely, if some agent is initially
distinguished as leader, if all agents know the number 𝑛 of agents,
or if all agents know some bound 𝑁 ⩾ 𝑛. Our computability results
are collected in Table 1.

Dynamic networks. Positive results are, unsurprisingly, harder
to obtain in the dynamic case, and, in contrast to the static case,
the computability landscape isn’t complete. Recently, Di Luna and
Viglietta have proposed a remarkable method for dynamic networks
with symmetric communications [22, 23], which allows for comput-
ing frequency-based functions in finite time, with a runtime that is
linear in the dynamic diameter of the network. In particular, if every
communication graph is strongly connected, then the runtime of
the algorithm is linear in 𝑛. Unfortunately, this algorithm is not
self-stabilizing, nor does it tolerate asynchronous starts. Moreover,
as the computation depends on the construction of an infinitely
growing history tree, the algorithm requires both an infinite number
of states and an infinite bandwidth.

Here, we take another approach to compute frequency-based
functions, based on average consensus algorithms derived from sta-
tistical physics – namely, the Metropolis and Push-Sum algorithms,
both of which use iterated averaging to asymptotically compute the
average of input values. Each algorithm works for a different model:
Push-Sum assumes outdegree awareness, while Metropolis requires
both outdegree awareness and symmetric communications; we pre-
viously proposed a variant of the latter [11] which doesn’t require
outdegree awareness to compute the average, at the cost of a worse
runtime. Compared to Di Luna and Viglietta’s linear-time algo-
rithm, these methods only compute the average in an approximate
manner, and their runtime is non-linear; however, these algorithms
are conceptually very simple, they tolerate asynchronous starts,
and they use no persistent memory, in the sense that state-update
rules correspond to discrete differential equations of order one. As-
suming either a bound 𝑁 ⩾ 𝑛 or knowledge of 𝑛, we can turn these
asymptotic algorithms into exact, finite-state algorithms for com-
puting frequency-based functions (resp. multiset-based functions).
Our computability results are summarized in Table 2.

PODC ’24, June 17–21, 2024, Nantes, France Bernadette Charron-Bost and Patrick Lambein-Monette

REFERENCES
[1] Dana Angluin. 1980. Local and Global Properties in Networks of Processors

(Extended Abstract). In Proceedings of the 12th Annual ACM Symposium on Theory
of Computing, April 28-30, 1980, Los Angeles, California, USA, Raymond E. Miller,
Seymour Ginsburg, Walter A. Burkhard, and Richard J. Lipton (Eds.). ACM, 82–93.
https://doi.org/10.1145/800141.804655

[2] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta.
2006. Computation in networks of passively mobile finite-state sensors. Dis-
tributed Comput. 18, 4 (2006), 235–253. https://doi.org/10.1007/s00446-005-0138-3

[3] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. 2007. The
computational power of population protocols. Distributed Comput. 20, 4 (2007),
279–304. https://doi.org/10.1007/s00446-007-0040-2

[4] Florence Bénézit, Vincent D. Blondel, Patrick Thiran, John N. Tsitsiklis, and
Martin Vetterli. 2010. Weighted Gossip: Distributed Averaging using non-doubly
stochastic matrices. In IEEE International Symposium on Information Theory,
ISIT 2010, June 13-18, 2010, Austin, Texas, USA, Proceedings. IEEE, 1753–1757.
https://doi.org/10.1109/ISIT.2010.5513273

[5] Paolo Boldi, Shella Shammah, Sebastiano Vigna, Bruno Codenotti, Peter Gemmell,
and Janos Simon. 1996. Symmetry Breaking in Anonymous Networks: Character-
izations. In Fourth Israel Symposium on Theory of Computing and Systems, ISTCS
1996, Jerusalem, Israel, June 10-12, 1996, Proceedings. IEEE Computer Society,
16–26.

[6] Paolo Boldi and Sebastiano Vigna. 1997. Computing Vector Functions on Anony-
mous Networks. In SIROCCO’97, 4th International Colloquium on Structural In-
formation & Communication Complexity, Monte Verita, Ascona, Switzerland, July
24-26, 1997, Danny Krizanc and Peter Widmayer (Eds.). Carleton Scientific, 201–
214.

[7] Paolo Boldi and Sebastiano Vigna. 2002. Fibrations of graphs. Discret. Math. 243,
1-3 (2002), 21–66. https://doi.org/10.1016/S0012-365X(00)00455-6

[8] Paolo Boldi and Sebastiano Vigna. 2002. Universal Dynamic Synchronous Self-
Stabilization. Distributed Computing 15, 3 (2002), 137–153. https://doi.org/10.
1007/s004460100062

[9] Paolo Boldi and Sebastiano Vigna. 2002. Universal dynamic synchronous self-
stabilization. Distributed Comput. 15, 3 (2002), 137–153. https://doi.org/10.1007/
s004460100062

[10] Bernadette Charron-Bost and Patrick Lambein-Monette. 2018. Randomization
and Quantization for Average Consensus. In 2018 IEEE Conference on Decision
and Control (CDC) (Miami Beach, FL). IEEE, 3716–3721. https://doi.org/10.1109/
CDC.2018.8619817

[11] Bernadette Charron-Bost and Patrick Lambein-Monette. 2022. Computing Out-
side the Box: Average Consensus over Dynamic Networks. In 1st Symposium
on Algorithmic Foundations of Dynamic Networks, SAND 2022, March 28-30,
2022, Virtual Conference (LIPIcs, Vol. 221), James Aspnes and Othon Michail
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 10:1–10:16. https:
//doi.org/10.4230/LIPIcs.SAND.2022.10

[12] Bernadette Charron-Bost and Patrick Lambein-Monette. 2023. Know Your Audi-
ence. https://doi.org/10.48550/arXiv.2311.17728 arXiv:2311.17728 [cs]

[13] George Cybenko. 1989. Dynamic Load Balancing for Distributed Memory
Multiprocessors. J. Parallel and Distrib. Comput. 7, 2 (1989), 279–301. https:
//doi.org/10.1016/0743-7315(89)90021-X

[14] Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport. 2017. Load
Balancing with Bounded Convergence in Dynamic Networks. In IEEE INFOCOM
2017 - IEEE Conference on Computer Communications (Atlanta, GA, USA). IEEE,
1–9. https://doi.org/10.1109/INFOCOM.2017.8057000

[15] Leonhard Euler. 1755. Institutiones calculi differentialis.
[16] Faith E. Fich and Eric Ruppert. 2003. Hundreds of impossibility results for

distributed computing. Distributed Comput. 16, 2-3 (2003), 121–163. https:
//doi.org/10.1007/s00446-003-0091-y

[17] Balazs Gerencser and Julien M. Hendrickx. 2019. Push-Sum With Transmission
Failures. IEEE Trans. Automat. Control 64, 3 (2019), 1019–1033. https://doi.org/
10.1109/TAC.2018.2836861

[18] Julien M. Hendrickx, Alexander Olshevsky, and John N. Tsitsiklis. 2011. Dis-
tributed Anonymous Discrete Function Computation. IEEE Trans. Autom. Control.

56, 10 (2011), 2276–2289. https://doi.org/10.1109/TAC.2011.2163874
[19] David Kempe, Alin Dobra, and Johannes Gehrke. 2003. Gossip-Based Computa-

tion of Aggregate Information. In 44th Symposium on Foundations of Computer
Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings. IEEE
Computer Society, 482–491. https://doi.org/10.1109/SFCS.2003.1238221

[20] Fabian Kuhn, Nancy Lynch, and Rotem Oshman. 2010. Distributed Computation
in Dynamic Networks. In Proceedings of the 42nd ACM Symposium on Theory
of Computing - STOC ’10 (Cambridge, Massachusetts, USA). ACM Press, 513.
https://doi.org/10.1145/1806689.1806760

[21] Patrick Lambein-Monette. 2020. Average consensus in anonymous dynamic net-
works: An algorithmic approach. (Consensus de moyenne dans les réseaux dy-
namiques anonymes: Une approche algorithmique). Ph. D. Dissertation. Polytech-
nic Institute of Paris, France. https://tel.archives-ouvertes.fr/tel-03168053

[22] Giuseppe Antonio Di Luna and Giovanni Viglietta. 2022. Computing in Anony-
mous Dynamic Networks Is Linear. In 63rd IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3,
2022. IEEE, 1122–1133. https://doi.org/10.1109/FOCS54457.2022.00108

[23] Giuseppe Antonio Di Luna and Giovanni Viglietta. 2023. Optimal Computation
in Leaderless and Multi-Leader Disconnected Anonymous Dynamic Networks. In
37th International Symposium on Distributed Computing, DISC 2023, October 10-12,
2023, L’Aquila, Italy (LIPIcs, Vol. 281), Rotem Oshman (Ed.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 18:1–18:20. https://doi.org/10.4230/LIPIcs.DISC.
2023.18

[24] Shlomo Moran and Manfred K. Warmuth. 1993. Gap Theorems for Distributed
Computation. SIAM J. Comput. 22, 2 (1993), 379–394. https://doi.org/10.1137/
0222028

[25] Angelia Nedic and Ji Liu. 2017-02. On Convergence Rate of Weighted-Averaging
Dynamics for Consensus Problems. 62, 2 (2017-02), 766–781. https://doi.org/10.
1109/TAC.2016.2572004

[26] Angelia Nedic, Alex Olshevsky, and Michael G. Rabbat. 2018. Network Topology
and Communication-Computation Tradeoffs in Decentralized Optimization. Proc.
IEEE 106, 5 (2018), 953–976. https://doi.org/10.1109/JPROC.2018.2817461

[27] Angelia Nedić, Alex Olshevsky, AsumanOzdaglar, and John N. Tsitsiklis. 2009. On
Distributed Averaging Algorithms and Quantization Effects. IEEE Trans. Automat.
Control 54, 11 (2009), 2506–2517. https://doi.org/10.1109/TAC.2009.2031203

[28] Alex Olshevsky. 2017. Linear Time Average Consensus and Distributed Op-
timization on Fixed Graphs. SIAM J. Control. Optim. 55, 6 (2017), 3990–4014.
https://doi.org/10.1137/16M1076629

[29] John N. Tsitsiklis. 1984. Problems in Decentralized Decision Making and Com-
putation. Ph. D. Dissertation. Massachusetts Institute of Technology. https:
//www.mit.edu/~jnt/Papers/PhD-84-jnt.pdf

[30] John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael Athans. 1986. Distributed
Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms.
IEEE Trans. Automat. Control 31, 9 (1986), 803–812. https://doi.org/10.1109/TAC.
1986.1104412

[31] Lin Xiao and Stephen Boyd. 2004. Fast Linear Iterations for Distributed Averaging.
Systems & Control Letters 53, 1 (2004), 65–78. https://doi.org/10.1016/j.sysconle.
2004.02.022

[32] Lin Xiao, Stephen Boyd, and Sanjay Lall. 2005. A Scheme for Robust Distributed
Sensor Fusion Based on Average Consensus. In IPSN 2005. Fourth International
Symposium on Information Processing in Sensor Networks, 2005. (Los Angeles, CA,
USA). IEEE, 63–70. https://doi.org/10.1109/IPSN.2005.1440896

[33] Masafumi Yamashita and Tiko Kameda. 1989. Electing a Leader when Processor
Identity Numbers are not Distinct (Extended Abstract). In Distributed Algorithms,
3rd International Workshop, Nice, France, September 26-28, 1989, Proceedings (Lec-
ture Notes in Computer Science, Vol. 392), Jean-Claude Bermond and Michel Raynal
(Eds.). Springer, 303–314. https://doi.org/10.1007/3-540-51687-5_52

[34] Masafumi Yamashita and Tiko Kameda. 1996. Computing Functions on Asyn-
chronous Anonymous Networks. Math. Syst. Theory 29, 4 (1996), 331–356.
https://doi.org/10.1007/bf01192691

[35] Masafumi Yamashita and Tsunehiko Kameda. 1996. Computing on Anonymous
Networks: Part I- Characterizing the Solvable Cases. IEEE Trans. Parallel Dis-
tributed Syst. 7, 1 (1996), 69–89. https://doi.org/10.1109/71.481599

https://doi.org/10.1145/800141.804655
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1109/ISIT.2010.5513273
https://doi.org/10.1016/S0012-365X(00)00455-6
https://doi.org/10.1007/s004460100062
https://doi.org/10.1007/s004460100062
https://doi.org/10.1007/s004460100062
https://doi.org/10.1007/s004460100062
https://doi.org/10.1109/CDC.2018.8619817
https://doi.org/10.1109/CDC.2018.8619817
https://doi.org/10.4230/LIPIcs.SAND.2022.10
https://doi.org/10.4230/LIPIcs.SAND.2022.10
https://doi.org/10.48550/arXiv.2311.17728
https://arxiv.org/abs/2311.17728
https://doi.org/10.1016/0743-7315(89)90021-X
https://doi.org/10.1016/0743-7315(89)90021-X
https://doi.org/10.1109/INFOCOM.2017.8057000
https://doi.org/10.1007/s00446-003-0091-y
https://doi.org/10.1007/s00446-003-0091-y
https://doi.org/10.1109/TAC.2018.2836861
https://doi.org/10.1109/TAC.2018.2836861
https://doi.org/10.1109/TAC.2011.2163874
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1145/1806689.1806760
https://tel.archives-ouvertes.fr/tel-03168053
https://doi.org/10.1109/FOCS54457.2022.00108
https://doi.org/10.4230/LIPIcs.DISC.2023.18
https://doi.org/10.4230/LIPIcs.DISC.2023.18
https://doi.org/10.1137/0222028
https://doi.org/10.1137/0222028
https://doi.org/10.1109/TAC.2016.2572004
https://doi.org/10.1109/TAC.2016.2572004
https://doi.org/10.1109/JPROC.2018.2817461
https://doi.org/10.1109/TAC.2009.2031203
https://doi.org/10.1137/16M1076629
https://www.mit.edu/~jnt/Papers/PhD-84-jnt.pdf
https://www.mit.edu/~jnt/Papers/PhD-84-jnt.pdf
https://doi.org/10.1109/TAC.1986.1104412
https://doi.org/10.1109/TAC.1986.1104412
https://doi.org/10.1016/j.sysconle.2004.02.022
https://doi.org/10.1016/j.sysconle.2004.02.022
https://doi.org/10.1109/IPSN.2005.1440896
https://doi.org/10.1007/3-540-51687-5_52
https://doi.org/10.1007/bf01192691
https://doi.org/10.1109/71.481599

	Abstract
	1 Introduction
	2 Preliminaries
	3 Computability results
	References

