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CONTINUUM OF COUPLED WASSERSTEIN GRADIENT FLOWS

CLÉMENT CANCÈS, DANIEL MATTHES, ISMAEL MEDINA, AND BERNHARD SCHMITZER

Abstract. We study a system of drift-diffusion PDEs for a potentially infinite number of in-
compressible phases, subject to a joint pointwise volume constraint. Our analysis is based on the

interpretation as a collection of coupled Wasserstein gradient flows or, equivalently, as a gradient
flow in the space of couplings under a ‘fibered’ Wasserstein distance. We prove existence of weak

solutions, long-time asymptotics, and stability with respect to the mass distribution of the phases,

including the discrete to continuous limit. A key step is to establish convergence of the product of
pressure gradient and density, jointly over the infinite number of phases. The underlying energy

functional is the objective of entropy regularized optimal transport, which allows us to interpret

the model as the relaxation of the classical Angenent–Haker–Tannenbaum (AHT) scheme to the
entropic setting. However, in contrast to the AHT scheme’s lack of convergence guarantees, the

relaxed scheme is unconditionally convergent. We conclude with numerical illustrations of the

main results.

1. Introduction

1.1. Problem setup. Let X ⊂ Rd be the closure of a bounded and connected open set with
smooth boundary, and let Y ⊂ Rd′

be compact. Let L denote the Lebesgue measure on X, µ be a
L-absolutely continuous probability measure on X and ν an arbitrary probability measure on Y .

We will denote by ρ a probability measure on X × Y , absolutely continuous with respect to
L⊗ ν and with density r in L1(X × Y,L⊗ ν). Furthermore, let V ∈ C2(X × Y ) be a non-negative
function and κ > 0 be a positive parameter.

Motivated on the one hand by multiphase porous media flows —see for instance [4] for a pre-
sentation of the physical models, [18] for some elements of mathematical analysis in the two-phase
context, and for [31, 10, 11] for a variational reinterpretation of the multiphase flow problem (see
also [30, 12, 14])—, and on the other hand by the classical Angenent-Haker-Tannenbaum (AHT)
scheme for L2 optimal transport [2] — see below for a detailed explanation — we study the following
stratified gradient flow:

∂tr(t, x, y) = κ∆Xr(t, x, y) +∇X ·
(
r(t, x, y)∇X [V (x, y)−Π(x)]

)
, (1)

0 = n ·
(
κ∇Xr(t, x, y) + r(t, x, y)∇X [V (x, y)−Π(t, x)]

)
for x ∈ ∂X, (2)

µ(x) =

∫
Y

r(t, x, y) dν(y), (3)

where ∇X and ∇X · denote the gradient and the divergence with respect to the variable x ∈ X only.
The pressure Π in (1) is implicitly given via the first marginal constraint (3), where by slight

abuse the notation we use the symbol µ(x) for the (Lebesgue) density of the Lebesgue-absolutely
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2 CLÉMENT CANCÈS, DANIEL MATTHES, ISMAEL MEDINA, AND BERNHARD SCHMITZER

continuous measure µ. Note that the mass at level y ∈ Y , that we denote second marginal, is
constant in time thanks to the divergence structure of (1) and the no-flux boundary condition (2).
Assuming the initial condition has second marginal ν, it will be subsequently preserved over time.

Formally, (1)–(3) is a y-wise Wasserstein gradient flow for the potential energy

E(ρ) =
∫
X×Y

V (x, y) dρ(x, y) + κH(ρ) + ιΓ(µ,ν)(ρ), (4)

where H denotes the weighted negative entropy

H(ρ | ν) :=
∫
X×Y

(r log r − r + 1) dx dν(y) (5)

(we will write H(ρ) whenever ν is clear from the context) and ιΓ(µ,ν) is the indicator function of the
feasible couplings (or transport plans) between µ and ν, see (16) below for a rigorous definition.

1.2. First motivation: multiphasic flows. (1)–(3) arises naturally as a generalization of multi-
phase models such as those studied in [11, 13] to the case of a (possibly) infinite number of species.
Indeed, Equations (1)–(3) boil down to such models when the space Y is finite, or equivalently if
the measure ν is made of a finite number of Dirac masses:

ν =

k∑
i=1

miδyi
, with (yi)

k
i=1 ⊂ Y and

k∑
i=1

mi = 1. (6)

The measure µ then corresponds to the porosity of the material, i.e. the local ratio of void space
available for the fluid in the solid porous structure, within which the multiphase and incompressible
fluid is flowing. The function V (·, yi) then denotes the intrinsic potential energy of the i-th species.
Condition (3) is then interpreted as the constraint that the whole porous space is occupied by the
fluid mixture.

In our setting, κ is a given positive constant that encodes the intensity of the term κH(ρ), which
could be interpreted as a capillary energy term. The limiting case of vanishing capillarity κ = 0 is
known to be highly complex. Even in the seemingly simple two-phase case, the well-posedness of
the problem remains widely open. In the one-dimensional case d = 1, the problem reduces to some
Burgers’ type equation [31]. It is now well understood that in this particularly simple setting, the
JKO scheme selects the unique entropy solution in Kruzkov’s sense [31, 26]. In larger dimension,
tools from convex integration can even be used to construct multiple weak solutions [20, 36, 24].
Moreover when the space dimension d is greater or equal to two, there is no available criterion to
charaterize the solution captured by the JKO scheme, and up to our knowledge there is also no
general existence theorem unless the external potential is identically equal to zero [37].

Let us expand on the physical interpretation of (1)-(3). Formally, (1) can be written as:

∂trt +∇X · (rtvt) = 0, with vt(x, y) := ∇X [Πt(x)− V (x, y)− κ log rt(x, y)]. (7)

Integrating (7) with respect to the Y -marginal ν yields:

0 = ∂tµ = ∂t

(∫
Y

rt(x, y) dν(y)

)
= −∇X ·

(∫
Y

rt(x, y)vt(x, y) dν(y)

)
. (8)

Equation (8) shows that the X-projection of the momentum field ρtvt results in an X-divergence-
free velocity field, therefore preserving the pointwise X-marginal constraint. In fact, the following
decomposition (closely related to the Helmholtz decomposition) holds:

−∇X [V (x, y) + κ log rt(x, y)] = −∇Πt(x) + vt(x, y). (9)
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The left-hand side corresponds to the steepest descend direction for (4) once one removes the
marginal constraint. Thus, the velocity field vt(x, y) encodes the divergence-free part of the uncon-
strained velocity field, with ∇Πt(x) claiming the gradient component. Whenever the left-hand side
can be written as a sheer gradient of a function on X, the velocity field vt becomes identically zero,
resulting in a stationary point of (1)-(3). Intuitively, vt will progressively cancel the curl component
of the left-hand side until such a stationary point is attained. This will become clearer when we
explore the connections to the AHT scheme [2] in Section 1.3.

For future reference, let us conclude by stating the elliptic equation satisfied by Πt, which is a
direct consequence of (8) plus the marginal constraints:

∇ · [µ(x)∇Πt(x)] = κ∆µ(x) +∇ ·
[∫

Y

∇XV (x, y)r(t, x, y) dν(y)

]
. (10)

1.3. Second motivation: Angenent-Haker-Tannenbaum scheme. The field of computa-
tional optimal transport offers an alternative interpretation for the evolution equations (1)–(3).
From this perspective, the energy (4) is the entropic transport score of the coupling ρ between µ
and ν for the cost function V and regularization strength κ. This entropic objective is a common
approximation to the classical, unregularized optimal transport problem (corresponding to κ = 0),
which has gained increased popularity thanks to the availability of efficient solvers, most notably the
Sinkhorn algorithm [21, 33] and the connection to stochastic optimal control problems [17, 27, 29].
From this perspective, the evolution equations (1)–(3) address the solution of the entropic transport
problem by evolving the density of the transport plan in the direction of steepest descent of the
entropic score E , conditioned to keeping the marginals feasible.

A similar philosophy is central to the Angenent-Haker-Tannenbaum (AHT) scheme [2, 35], a
classical algorithm for unregularized optimal transport (i.e. (4) for κ = 0) and V strictly convex. In
this regime the minimizers of E are very sparse —when µ has a density, each x ∈ X sends mass to
a single y ∈ Y [7, 25] — which motivates the parametrization of the current plan ρ as a transport
map. Hence, the AHT scheme considers a minimizing flow for E in the space of transport maps,
progressively removing the curl component of an initial transport map T0 until only the gradient
component remains. Formally, for T0 : X → Y verifying ν = T0♯µ, the AHT evolution is driven by:

Tt = T0 ◦ s−1
t with s0 = idX , ∂tst = vt ◦ st, ∇ · (µvt) = 0 (11)

where vt is a velocity field whose divergence constraint ensures (st)♯µ = µ, and therefore —if such
st exists— Tt stays a feasible transport map between µ and ν at all times t ≥ 0. vt is chosen among
the feasible velocity fields to realize the steepest descent for the transport cost

E(T ) =

∫
X

V (x, T (x))µ(x) dx, ∂tE(Tt) =

∫
X

⟨∇XV (x, Tt(x)), vt(x)⟩µ(x) dx

with respect to some metric of choice. In [2] the velocity field is chosen as vt(x) = ut(x)/µ(x), where
ut(x) is the L2(X) projection of x 7→ −∇XV (x, Tt(x)) onto the space of divergence-free velocity
fields. If one chooses instead the L2(X,µ)-metric, the steepest descent is given by setting vt to the
projection of the vector field x 7→ −∇XV (x, Tt(x)) onto the subspace satisfying ∇ · (µvt) = 0 in
L2(X,µ). This projection is given by

vt(x) := ∇Π(x)−∇XV (x, Tt(x)), with ∇ · [µ(x)∇Π(x)] = ∇ · [µ(x)∇XV (x, Tt(x))] (12)

Leaving aside the (challenging) problem of existence of solutions to (11)-(12), the similarities
between (7) and (12) are striking. Indeed, Π satisfies both in (10) and in (12) the same elliptic
equation, once we (formally) allow in the former the choice κ = 0 and that ρt is given by a Monge
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plan ρt = (id, Tt(x))♯µ. Moreover, the AHT velocity field vt(x) = ∇Π(x) − ∇XV (x, Tt(x)) is also
analogous to that in (7), once we consider that in the AHT only points of the form (x, Tt(x))
carry mass, and therefore the velocity field can be given as a function of x instead of (x, y). For
these reasons one may additionally interpret (1)–(3) as a relaxation of the AHT scheme to entropic
optimal transport, which inevitably requires the relaxation from transport maps to transport plans.

Leaving aside the well-posedness issues of the AHT scheme — which largely align with those
outlined in Section 1.2 for the limit of vanishing κ in multiphase flows—, the main drawback of
the AHT scheme is that it is unable to escape certain suboptimal configurations. Even though, by
construction, the score E(T ) is non-increasing along solutions of (11)-(12), the stationary points
are all the feasible maps T that verify that x 7→ ∇XV (x, T (x)) is curl-free. Unfortunately this
characterization does not suffice to grant optimality, and may in some cases include not only the
best but also the worst transport map, as shown by the following example:

X = Y = [−1, 1]d, µ = ν = 1
2d
L, V (x, y) = |x− y|2, T (x) := −x, ∇XV (x, T (x)) = 4x.

In this case the optimal transport map would correspond instead to T ∗ : x 7→ x, and T thus
corresponds to the map maximizing the total transport cost. However, since ∇XV (x, T (x)) is curl-
free, the velocity field vt given by (12) is identically zero, and the trajectory Tt with initial condition
T0 = T remains stationary in an utterly suboptimal configuration.

Except for special cases [8, 35], convergence of the AHT scheme to the optimal transport map
thus remains an open question. Up until now, the question of whether a suitable relaxation can
make the AHT scheme unconditionally convergent has remained open as well. We expect that
regularization by diffusion for κ > 0 helps the algorithm to escape from such configurations.

1.4. Outline.
Existence of weak solutions. We dedicate Section 2 to recall the relevant optimal transport back-

ground. Under suitable regularity assumptions, in Section 3 we build an approximating sequence
for the gradient flow of the energy E by means of a minimizing movement scheme and discuss the
relevant a-priori estimates. Section 4 shows convergence of such approximating sequences to a con-
tinuous limit trajectory ρ with values on P(X × Y ) and a pressure Π in L2

loc(R≥0;H
1(X)). (ρ,Π)

satisfy the system of partial differential equations:∫ ∞

0

∫
X×Y

∂tψ dρ =

∫ ∞

0

∫
X×Y

(
∇Xψ · ∇X [V −Π]− κ∆Xψ

)
dρ−

∫
X×Y

ψ(0) dρ0 (13)

for all ψ ∈ C∞
c (R≥0 ×X × Y ) with ∇Xψ · n ≡ 0 on ∂X, and∫

X

∇ξ · ∇Π(t)µdx =

∫
X

∇ξ ·
[∫

Y

∇XV (x, y)r(t, x, y) dν(y)

]
dx− κ

∫
X

µ∆ξ dx (14)

for all ξ ∈ C∞(X) with ∇ξ ·n = 0 on ∂X and a.e. t ∈ R≥0, where r is the density of ρ w.r.t L⊗ ν.
Stability of solutions. Section 5 shows stability of weak solutions under convergence of the

marginals µ and ν and of the initial condition ρ0. This relates the continuous ν limit to previous
multiphasic flow studies such as [30, 12, 14], identifying our dynamics as the limit of the multiphasic
case when the mass of each phase ν is not a discrete measure supported on a finite set but rather
a general probability measure.

Asymptotic convergence to the minimizer of E. In Section 6 we show that weak solutions converge
to the unique minimizer of the energy E as t goes to infinity. The relevance of this result stems
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from the non-convexity of E in the fibered topology of the minimizing movement scheme. We also
discuss implications to computational optimal transport.

The regime κ = 0. In Section 7 we discuss the κ = 0 regime, and whether the results of Section 6
may apply to this limit. As explained in Section 1.2, existence of solutions remains an open problem
even in for the two-phase case, since the only source of regularity (the entropic term) in (1)–(3)
is lost. However, from the computational optimal transport perspective this regime is extremely
interesting, as it would correspond to a relaxation of the AHT scheme to the space of transport
plans, while staying in the unregularized transport regime.

We show that, even though we cannot provide existence of solutions in the general case, the
κ = 0 regime shares with the AHT scheme the existence of suboptimal stationary configurations.
For instance, for V (x, y) = |x−y|2, all initial conditions of the form ρ0 = (id,∇ϕ)♯µ with ϕ ∈ C2(X)
turn out to be stationary. The intuition is that, for τ sufficiently small, ρ0 becomes a stationary
point of the minimizing movement scheme, and therefore also a stationary constant weak solution.
We conclude that a relaxation to the space of transport plans does not improve the convergence
properties of the AHT scheme significantly, and that some kind of regularization is a necessary
component for an unconditionally convergent variant of the AHT algorithm.

Numerical simulations. Finally, Section 8 exemplifies the stability and convergence results with
numerical simulations of the minimizing movement scheme. Experimentally we observe linear con-
vergence to the energy E , which may open the door to novel numerical methods for the solution of
entropic optimal transport in geometric domains.

1.5. General hypotheses.

• We assume X ⊂ Rd and Y ⊂ Rd′
to be compact sets. X is further assumed to have

connected interior and a smooth boundary.
• We will employ the symbol µ for both a probability measure on X and its density with
respect to dx; the context should resolve any ambiguity. We will also assume that µ is
bounded away from zero and from above, and that it has finite Fisher information:

1

4
∥∇ logµ∥2L2(X,µ) =

∫
X

|∇√
µ|2 dx <∞. (15)

Note that the boundedness away from zero and from above of µ makes the L2(X) and
L2(X,µ) norms (resp. H1(X) and H1(X,µ) norms) equivalent, so we will often use them
interchangeably. Finiteness of these norms for the marginal µ is needed to prove “horizon-
tal” regularity of the solution r in H1.

• We denote by ν a probability measure on Y .
• We use the symbol ρ to denote a coupling between µ and ν. Its Radon-Nykodym derivative
with respect to L⊗ ν, which (when it exists) is an element of L1(X × Y,L⊗ ν), is denoted
by r. We will use Lebesgue as the X-reference measure instead of µ because it simplifies
the change of variables formula. Integration of a measurable function f on X with respect
to the Lebesgue measure is simply denoted by

∫
X
f dx.

• V will be a positive C2(X × Y ) function, and κ will represent a positive parameter.
• Finally, we assume that the initial condition ρ0 has finite energy E(ρ0).
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2. Preliminaries

In the following chapters we will leverage the theory of optimal transportation to build an
approximation sequence for the solutions of (1)–(3). For a thorough exposition of optimal transport
we refer to [35, 38].

For Z ⊂ Rd a compact set, denote by M(Z) the set of Radon measures on Z, by M+(Z)
the set of positive Radon measures on Z and by P(Z) the set of probability measures on Z. For

Z1 ⊂ Rd, Z2 ⊂ Rd′
compact sets and ρ1 ∈ P(Z1), ρ2 ∈ P(Z2) two probability measures, Γ(ρ1, ρ2)

denotes the set of couplings or transport plans between ρ1 and ρ2:

Γ(ρ1, ρ2) := {γ ∈ P(Z1 × Z2) | P1γ = ρ1, P2γ = ρ2} (16)

where the maps P1 and P2 denote the projections of measures on Z1 × Z2 to its marginals, i.e.

(P1γ)(S1) := γ(S1 × Z2) and (P2γ)(S2) := γ(Z1 × S2)

for γ ∈ P(Z1 × Z2), S1 ⊂ Z1, S2 ⊂ Z2 measurable.
The optimal transport problem between ρ1 and ρ2 with a continuous cost function c : Z1×Z2 →

R≥0 is then given by

min
γ∈Γ(ρ1,ρ2)

∫
Z1×Z2

c(z1, z2) dγ(z1, z2). (17)

For compactly supported marginals and a lower-semicontinuous cost function c, Problem (17) ad-
mits a minimizer.

When d = d′ and c(z1, z2) = |z1 − z2|p with p ∈ [1,∞), the minimal score of (17) is (the p-th
power of) the Lp Wasserstein distance (denoted by Wp) between ρ1 and ρ2. With no subscript,
W will be understood to denote the W2 distance. When z2 7→ c(z1, z2) is strictly convex for all
z1 ∈ Z1 (as is the case for the Lp distance with p > 1) and ρ1 is Lebesgue-absolutely continuous,
the unique minimizer of (17) is of the form γ = (id, T )♯ρ1 [7, 25], and T solves the so-called Monge
problem:

min
T♯ρ1=ρ2

∫
Z1

c(z, T (z)) dρ1(z). (18)

The optimal transport problem (17) admits the dual formulation:

sup
Φ(z1)+Ψ(z2)≤c(z1,z2)

∫
Z1

Φ(z1) dρ1(z1) +

∫
Z2

Ψ(z2) dρ2(z2) (19)

where the supremum runs over continuous functions from Z1 (resp. Z2) to R. If c is uniformly
continuous maximizers for (19) exist.

When Z1 = Z2 =: Z, the Lp-Wasserstein distance for p = 1 takes a particularly convenient form:

W1(ρ1, ρ2) = sup
Lip(Φ)≤1

∫
Z

Φ(z) d(ρ1 − ρ2)(z), (20)

which is known as the Kantorovich-Rubinstein formula. On the other hand, for p = 2 it is customary
to rewrite the dual relation (19) as:

1

2
W(ρ1, ρ2)

2 = sup
Φ(z1)+Ψ(z2)≤ 1

2 |z1−z2|2

(∫
Z1

Φ(z1) dρ1(z1) +

∫
Z2

Ψ(z2) dρ2(z2)

)
. (21)

This re-scaling allows to identify the optimal transport map T as T = id−∇Φ (ρ1-almost every-
where). Besides, W1 and W2 satisfy an order relation: for γ1 and γ2 optimal transport plans
between ρ1 and ρ2 for W1 and W2 respectively, it holds:
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W1(ρ0, ρ1) =

∫
Z2

|z − z′|dγ1(z, z′) ≤
∫
Z2

|z − z′|dγ2(z, z′)

≤
(∫

Z2

|z − z′|2 dγ2(z, z′)
)1/2

= W2(ρ0, ρ1),

(22)

where the first inequality comes from the optimality of γ1 and in the second we use Jensen’s
inequality.

A notion of ‘fiber-wise’ Wasserstein distance will be central to our study. Let Z = X × Y with
X ⊂ Rd and Y ⊂ Rd′

compacts and let ν ∈ P(Y ). For ρ ∈ P(X × Y ) with P2ρ = ν, define the
disintegration of ρ with respect to its second marginal as the measurable selection of probability
measures (ρy)y∈Y satisfying:∫

X×Y

ψ(x, y) dρ(x, y) =

∫
Y

[∫
X

ψ(x, y) dρy(x)

]
dν(y) (23)

for all ψ ∈ C(X × Y ). ρy is uniquely defined ν-almost everywhere. Then for ρ1, ρ2 ∈ P(X × Y )
with common second marginal, i.e. P2ρ1 = P2ρ2 = ν, define the fiber-wise Wasserstein distance
WF by

WF (ρ1, ρ2)
2 :=

∫
Y

W(ρ1,y, ρ2,y)
2 dν(y) (24)

WF is a metric by [32], and for our case of study admits the following reformulations:

Lemma 1. If ρ1 or ρ2 is L ⊗ ν-absolutely continuous, the fiber-wise Wasserstein distance WF

admits the following equivalent formulations:

WF (ρ1, ρ2)
2 = inf

γ ∈ M+(X × X × Y )
P13γ = ρ1,P23γ = ρ2

∫
X×X×Y

|x− x′|2 dγ(x, x′, y) (25)

= inf
γ̃ ∈ Γ(ρ1, ρ2)
y = y′ γ̃-a.e.

∫
X×Y×X×Y

|(x, y)− (x′, y′)|2 dγ̃(x, y, x′, y′), (26)

Remark 1. Even though the different order in the variables of γ and γ̃ may appear confusing at
first, it answers to the different interpretation we attach to each formulation. Equation (25) should
be interpreted in the sense that the W-optimal transport plan in each fiber (that we may denote as
γy) can be wrapped into a joint measure γ. On the other hand, (26) exposes the relation between
WF and the Wasserstein distance on P(X × Y ), being the former a more constrained version of
the latter (and therefore yielding a higher score).

Remark 2. We make the density assumption in Lemma 1 for simplicity to avoid issues with
measurability. Alternatively, one could employ a measurable selection theorem.

Proof of Lemma 1. For any feasible plan γ in (25) one can define a feasible γ̃ in (26) with the same
score as the pushforward of γ by the map:

(x, x′, y) 7→ (x, y, x′, y). (27)

Viceversa, for any feasible γ̃ in (26), its pushforward by

(x, y, x′, y′) 7→ (x, x′, y). (28)
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yields a feasible plan for (25). For each y ∈ Y let ρ1,y and ρ2,y denote respectively the y-
disintegration of ρ1 and ρ2 w.r.t ν. Since either ρ1 or ρ2 have a density, the L2-optimal transport
plan between ρ1,y and ρ2,y is unique and a weak* continuous function of the marginals, and hence
measurable. Let us denote such optimal plan by γ∗y . Then one can define a candidate γ∗ for (25)
by the measure acting as:∫

X×X×Y

ϕ(x, x′, y) dγ∗(x, x′, y) :=

∫
Y

[∫
X×X

ϕ(x, x′, y) dγ∗y(x, x
′)

]
dν(y). (29)

One can easily check that with this choice the right hand side of (25) equals the left hand side;
therefore:

WF (ρ1, ρ2)
2 ≥ inf

γ ∈ M+(X × X × Y )
P13γ = ρ1,P23γ = ρ2

∫
|x− x′|2 dγ(x, x′, y). (30)

For the reversed inequality, note that for any γ feasible for the right hand side of (25), it holds
P3γ = ν, and the disintegration of γ with respect to ν (denoted again by γy) provides a feasible
transport plan between ρ1,y and ρ2,y. This means that, for ν-a.e. y ∈ Y ,

W(ρ1,y, ρ2,y)
2 ≤

∫
X×X

|x− x′|2 dγy(x, x′), (31)

so that integrating in Y and taking the infimum yields the remaining inequality. □

Unfortunately, the metric WF does not turn the space of probability measures on X × Y into a
compact metric space. The reason is that when ν does not have finite support, it is possible to build
a sequence of measures on X × Y that are increasingly oscillating in the horizontal direction, so
that the resulting sequence has no Cauchy subsequence (cf. [32, Example 3.15]). As a consequence,
the initial step of extracting a cluster point of the discrete trajectories of a gradient flow —which
for the W metric is straighforward —becomes an obstacle in the case of the WF metric.

Nevertheless, WF bounds the W metric on the product space X × Y (see Remark 1 and [32,
Proposition 3.10], and therefore we will still be able to extract cluster points with respect to the
standard Wasserstein distance on X × Y . Adding this remark to (22) yields:

Lemma 2. For ρ1, ρ2 probability measures on X × Y with identical Y -marginal it holds:

W1(ρ1, ρ2) ≤ W2(ρ1, ρ2) ≤ WF (ρ1, ρ2). (32)

We will write ρ ≪ L ⊗ ν for a coupling ρ ∈ Γ(µ, ν) that is absolutely continuous with respect
to the measure L ⊗ ν. This grants the existence of an L1 density or Radon-Nykodim derivative,
that we will typically denote by r. The following Lemma collects some useful calculus rules for
absolutely continuous couplings:

Lemma 3. Let ρ ∈ Γ(µ, ν) with µ≪ dx and ρ≪ L⊗ ν. Denote by r the density of ρ with respect
to L ⊗ ν. Then:

i) For a.e. x ∈ X it holds: ∫
Y

r(x, y) dν(y) = µ(x), (33)

and the disintegration of ρ w.r.t. its first marginal at x is given by the measure r(x,·)
µ(x) ν.
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ii) For ν-a.e. y ∈ Y it holds: ∫
X

r(x, y) dx = 1, (34)

and the disintegration of ρ w.r.t. its second marginal at y has a density given by r(·, y).
Proof. i) For a continuous test function ξ ∈ C(X),∫

X

ξ(x)

[∫
Y

r(x, y) dν(y)

]
dx =

∫
X×Y

ξ(x)r(x, y) dxdν(y) =

∫
X×Y

ξ(x) dρ(x, y)

=

∫
X

ξ(x) dµ(x) =

∫
X

ξ(x)µ(x) dx,

and it is straightforward to verify that the disintegration of ρ with respect to µ at x ∈ X is given

by r(x,·)
µ(x) ν; indeed, for any ψ ∈ C(X × Y ),

∫
X

[∫
Y

ψ(x, y)
r(x, y)

µ(x)
dν(y)

]
dµ(x) =

∫
X

[∫
Y

ψ(x, y)
r(x, y)

µ(x)
dν(y)

]
µ(x) dx

=

∫
X×Y

ψ(x, y)r(x, y) dxdν(y) =

∫
X×Y

ψ(x, y) dρ(x, y).

An analogous computation yields ii). □

Remark 3. In view of Lemma 3, if ρ1, ρ2 ∈ Γ(µ, ν) are absolutely continuous w.r.t. L ⊗ ν with
respective densities r1 and r2, their fibered Wasserstein distance may be denoted as:

WF (ρ1, ρ2)
2 :=

∫
Y

W(r1(·, y), r2(·, y))2 dν(y). (35)

The following lemma collects some useful facts about the structure of the minimizers of the
energy E ; the proof can be found in [6, Prop 2.5, (iii)] and references therein. The assumptions are
not minimal, but adequate for our matter of study.

Lemma 4 (Minimizers of E). Assume that V ∈ C(X × Y ), and let µ≪ L. Then:

(1) E has a unique minimizer ρ∗ ∈ Γ(µ, ν).
(2) There exist measurable Π∗ : X → R and Ψ∗ : Y → R such that

ρ∗ = exp

(
Π∗ ⊕Ψ∗ − V

κ

)
L ⊗ ν (36)

(3) Conversely, if Π : X → R and Ψ : Y → R are such that ρ := exp
(
Π⊕Ψ−V

κ

)
L⊗ ν belongs to

Γ(µ, ν), then ρ is the unique minimizer of E.
During most of this article the marginals µ and ν will be fixed, and therefore the energy (4) and

entropy (5) are defined without ambiguity. However, for some results (mainly Lemma 13) we will
need to consider sequences (µn)n and (νn)n of marginals and respective couplings ρn ∈ Γ(µn, νn).
In that case it becomes practical to make the dependence of the energy in the marginals explicit,
and hence define:

E(ρ | µ, ν) :=
∫
X×Y

V (x, y) dρ(x, y) + κH(ρ | ν) + ιΓ(µ,ν)(ρ). (37)

The following Lemma will prove useful:
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Lemma 5. The marginal-dependent energy (37) is lower-semicontinuous under joint weak* con-
vergence of its arguments.

Proof. Let (µn)n be a sequence in P(X) converging weak* to µ, and analogously (νn)n be a sequence
in P(Y ) converging weak* to ν. Let ρn ∈ P(X × Y ) for all n converge to ρ ∈ P(X × Y ).

E(ρ | µ, ν) is a sum of three contributions. The first one is simply integration with respect to a
fixed continuous function so it is continuous with respect to weak* convergence of ρn. The second
entropic contribution is lower-semicontinuous with respect to joint weak* convergence of its first
and second argument [1], as is the case here. For the convex indicator function note the following:
if ρn /∈ Γ(µn, νn) for all n, then E(ρn | µn, νn) = +∞ and there is nothing to prove. If however
ρn ∈ Γ(µn, νn) along some subsequence, then also ρ ∈ Γ(µ, ν) by weak* continuity of the marginal
projection operators. Therefore, the last contribution is also jointly weak* lower-semicontinuous
with respect to its arguments. □

3. Discrete minimizing movements

We will construct an approximate solution via minimizing movements. To that end, fix a time
step τ > 0 and define, for any given ρ̄ ∈ Γ(µ, ν),

Eτ
(
ρ | ρ̄

)
:=

1

2τ
WF (ρ, ρ̄)

2 + E(ρ). (38)

Starting from ρ0τ := ρ0, define ρnτ for n = 1, 2, . . . inductively as minimizer of the respective
Eτ (· | ρn−1

τ ). We will denote by rnτ the density of ρnτ with respect to L ⊗ ν.

Lemma 6. The minimizing movement scheme (38) is well-defined and yields a unique minimizer.
Moreover, rnτ > 0 for µ⊗ ν-almost every (x, y) ∈ X × Y and each n ∈ N.

Proof. We will show existence of minimizers of (38) by constructing an auxiliary convex problem.
First let us show that the minimizing movement step (38) can be equivalently written as:

ρn = P13γ
n, with

γn = argmin
γ ∈ M+(X × X × Y )

P1γ = µ,P23γ = ρn−1

∫
X×X×Y

( |x− x′|2
2τ

+ V (x, y)

)
dγ(x, x′, y) + κH(P13γ). (39)

Intuitively, γ represents a collection of transport plans on (γy)y ⊂ M+(X × X) indexed by the
variable Y , the constraint P23γ = ρn−1 grants that the second marginal of γy is ρn−1

y , and the
constraint P1γ ensures that the new iterate ρn has the right first marginal prescribed by µ; the
second marginal is automatically satisfied since no transport happens along the Y -axis and it is
therefore inherited from ρn−1. Rewriting (38) in this form will allow us to use the direct method
of calculus of variations on the space M+(X ×X × Y ), simplifying the analysis.

The proof of equivalence is very similar to that in Lemma 1. First note that any feasible candidate
ρ in (38) must be absolutely continuous with respect to L ⊗ ν, otherwise the entropy term would
yield an infinite value. Likewise, any feasible plan γ in (39) must have a L⊗ν-absolutely continuous
projection P13γ. Now, for ρ a feasible candidate for (38), and ν-a.e. y ∈ Y , define γy as the W-
optimal transport plan between the y-disintegration of ρ and ρn−1 w.r.t ν (denoted respectively by
ρy and ρn−1

y ). By absolute continuity of ρ, Brenier’s theorem grants uniqueness of such optimal
transport plan. Then one can define a candidate γ for (39) by the measure acting as:∫

X×X×Y

ϕ(x, x′, y) dγ(x, x′, y) :=

∫
Y

[∫
X×X

ϕ(x, x′, y) dγy(x, x
′)

]
dν(y). (40)
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One can easily check that the value Eτ (ρ | ρn−1) is equal to that of the primal objective (39)
applied to γ. Conversely, if γ is a feasible candidate for the primal problem (39), its score is
necessary larger or equal than Eτ (P13γ | ρn−1), since the V and H terms yield the same value,
and the transport part is optimal in (38). We conclude that the minimization of Eτ (· | ρn−1) is
equivalent to the convex problem (39) (i.e. they share the same optimal values, and if there are
minimizers for one of them we showed how to construct a minimizer for the other).

Next, all the terms constituting the functional in (39) are lower-semicontinuous in γ. By the
marginal constraints any admissible γ lies in P(X×X×Y ), which is pre-compact under the weak*
topology (by compactness of X and Y ). Therefore the direct method in the calculus of variations
yields existence of a minimizer γn. Besides, the strict convexity of the entropy H guarantees that
ρn := P13γ

n is unique, which yields a unique minimizer for Eτ (· | ρn−1).
To show positivity of the newly obtained ρn, let ε ∈ (0, 1) and consider the feasible coupling

ρε := (1 − ε)ρn + εµ ⊗ ν. We will show that if ρn were to vanish in a set A ⊂ X × Y with
(µ ⊗ ν)(A) > 0 then there would exist a value of ε > 0 such that Eτ (ρε | ρn−1) < Eτ (ρn | ρn−1),
which would contradict the optimality of ρn. To that end let us bound the upper derivative of
Eτ (ρε | ρn−1) with respect to ε (denoted by DεEτ (ρε | ρn−1)) at ε = 0. First, denote by γ
(resp. γ⊗) a feasible transport plan between ρn (resp. µ⊗ ν) and ρn−1 for problem (25). Then one
can build a WF -feasible transport plan between ρε and ρ

n−1 as γε := (1−ε)γ+εγ⊗. Consequently:
WF (ρε, ρ

n−1)2 ≤ (1− ε)WF (ρ
n, ρn−1)2 + ε(diamX)2 ≤ WF (ρ

n, ρn−1)2 + ε(diamX)2, (41)

so DεWF (ρε, ρ
n−1)2

∣∣
ε=0

≤ (diamX)2. For the potential term, by linearity:∫
X×Y

V dρε = (1− ε)

∫
X×Y

V dρn + ε

∫
X×Y

V d(µ⊗ ν) ≤
∫
X×Y

V dρn + ε∥V ∥∞, (42)

and thus Dε ⟨V, ρε⟩
∣∣
ε=0

≤ ∥V ∥∞. Finally, for the entropic term, let H(ρ) =
∫
X×Y

f(r) dxdν(y),

with f(s) := s log s− s+ 1. f is a convex function with derivative f ′(s) = log s. Since f is convex,
the finite difference (f(s+ h)− f(s))/h converges monotonously to f ′(s) as h→ 0. This allows us
to use the monotone convergence theorem in the following calculation

d

dε
H(ρε)

∣∣
ε=0

= lim
ε→0

1

ε
(H(ρε)−H(ρ)) = lim

ε→0

∫
X×Y

1

ε
[f(rn + ε(µ− rn))− f(rn)] dx dν(y)

=

∫
X×Y

log(rn(x, y))[µ(x)− rn(x, y)] dx dν(y)

=

∫
X×Y

log(rn(x, y)) d(µ⊗ ν)(x, y)−H(ρn) +

∫
X×Y

(1− rn(x, y)) dxdν(y)

≤
∫
X×Y

log(rn(x, y)) d(µ⊗ ν)(x, y) + |X| − 1.

where the last step holds by the positivity of the entropy. Thus, defing C = (diamX)2/(2τ) +
∥V ∥∞ + |X| − 1 <∞ we obtain

DεEτ (ρε | ρn−1)
∣∣
ε=0

≤ C +

∫
X×Y

log(rn(x, y)) d(µ⊗ ν)(x, y), (43)

which by optimality of ρn implies that rn must be positive (µ⊗ ν)-almost everywhere. □

Lemma 7. The iterates satisfy

W(ρmτ , ρ
n
τ ) ≤ WF (ρ

m
τ , ρ

n
τ ) ≤ C

√
τ |m− n| (44)
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with C =
√
2E(ρ0).

Proof. (44) follows from the classical JKO energy estimates applied to (38): choosing ρn−1
τ as a

competitor in (38), one gets:

WF (ρ
n
τ , ρ

n−1
τ )2 ≤ 2τ(E(ρn−1

τ )− E(ρnτ )). (45)

W.l.o.g. let n < m. Then the triangle inequality for the fiber metric WF followed by Jensen’s
inequality yields:

WF (ρ
m
τ , ρ

n
τ )

2 ≤
(

m∑
k=n+1

WF (ρ
k
τ , ρ

k−1
τ )

)2

≤ (m− n)

m∑
k=n+1

WF (ρ
k
τ , ρ

k−1
τ )2.

Finally, using the energy estimate (45):

≤ 2(m− n)τ(E(ρnτ )− E(ρmτ )) ≤ 2E(ρ0)τ(m− n),

and the bound in W follows from Lemma 2, non-negativity of E , and the finiteness of the initial
energy. □

Lemma 8. For each n = 1, 2, . . ., there is a map Πn
τ ∈ H1(X) such that, for ν-a.e. y ∈ Y ,

ρn−1
τ,y =

(
idX +τ∇X

[
V (·, y)−Πn

τ + κ log rnτ (·, y)
])

♯
ρnτ,y. (46)

Πn
τ can be chosen to have zero mean with respect to µ for all n and τ . Besides, it holds∫

X×Y

|∇X(V −Πn
τ + κ log rnτ )|2 dρnτ =

WF (ρ
n, ρn−1

)2
τ2

. (47)

In particular, for any 0 ≤ k1 < k2,

E(ρk1
τ ) +

k2∑
n=k1+1

τ

∫
X×Y

|∇X(V −Πn
τ + κ log rnτ )|2 dρnτ ≤ E(ρ0). (48)

Moreover, ρnτ is bounded away from zero and from above with a uniform bound depending on κ
and τ but not on n. Furthermore, for each N ∈ N:

τ

N∑
n=1

(
κ2
∫
X×Y

|∇X

√
rnτ |2 dxdν(y) +

∫
X

∣∣∇Πn
τ

∣∣2 dµ) ≤ 4E(ρ0) + CτN, (49)

with C a constant depending only on ∥∇XV ∥∞, κ, and the Fisher information of µ.

Proof. In this proof we will drop the subscript τ for better readability.
We extend the method developed in [35]. Let Φ : X × Y → R be a measurable function such

that, for ν-a.e. y ∈ Y , the map x 7→ Φ(x, y) is the optimal dual potential in (21) between ρny and

ρn−1
y , i.e.,

(idX −∇XΦ(·, y))♯ρny = ρn−1
y (50)

for those y. For ν-a.e. y ∈ Y , the density rn(·, y) is positive a.e. on X by Lemma 6, hence Φ(·, y) is
Lipschitz continuous for those y, with a y-uniform Lipschitz constant given by diam(X). Further,
Φ(·, y) is unique up to an additive constant, again thanks to positivity of ρn and the connectedness
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of X; we assume that Φ(·, y) is normalized to have zero average (that normalization will be changed
at the end of the proof). Finally, as outlined in Section 2, optimality implies that

1

2
W
(
rn(·, y), rn−1(·, y)

)2
=

1

2

∫
X

∣∣∇XΦ(x, y)
∣∣2rn(x, y) dx, (51)

=

∫
X

[
Φ(x, y)rn(x, y) + Ψ(x, y)rn−1(x, y)

]
dx, (52)

for ν-a.e. y ∈ Y , where Ψ(·, y) is the corresponding Kantorovich potential (cf. (21)).
Now let θ ∈ L∞(X × Y,L ⊗ ν) be a perturbation satisfying∫
X

θ(x, y)rn(x, y) dx = 0 for ν-a.e. y ∈ Y ,

∫
Y

θ(x, y)rn(x, y) dν(y) = 0 for a.e. x ∈ X. (53)

Then ρε := (1 + εθ)ρn ∈ Γ(µ, ν), at least for sufficiently small ε ≥ 0, i.e., ε < 1/∥θ∥L∞ , since
(53) guarantees the conservation of the marginals µ and ν. Notice further that the corresponding
density rε(·, y) is positive for ν-a.e. y ∈ Y . Let Φε and Ψε be such that Φε(·, y) is the Kantorovich
potential from rε(·, y) to rn−1(·, y) for ν-a.e. y ∈ Y , made unique by normalization to zero average,
and Ψε(·, y) is the respective c-transform. Again by positivity of the densities, and by boundedness
of X, we may conclude that Φε(·, y) → Φ(·, y) uniformly as ε → 0 for ν-a.e. y ∈ Y [24, Theorem
1.52]. By optimality of ρn in E(· | ρn−1), and of Φ and Ψ for the transport, we then have

1

τ

∫
X×Y

[
Φε(x, y)rε(x, y) + Ψε(x, y)r

n−1(x, y)
]
dxdν(y) + E(ρε)

≥ 1

τ

∫
X×Y

[
Φ(x, y)rn(x, y) + Ψ(x, y)rn−1(x, y)

]
dx dν(y) + E(ρn)

≥ 1

τ

∫
X×Y

[
Φε(x, y)r

n(x, y) + Ψε(x, y)r
n−1(x, y)

]
dxdν(y) + E(ρn).

After subtraction and division by ε > 0, it follows that

1

τ

∫
X×Y

Φε(x, y)(r
nθ)(x, y) dxdν(y) +

∫
X×Y

V (x, y)(rnθ)(x, y) dxdν(y)

+
κ

ε

∫
X×Y

(
rε log rε − rε − rn log rn + rn

)
dx dν(y) ≥ 0.

Passing to ε → 0, recalling that Φε(·, y) → Φ(·, y) uniformly and Φ is uniformly bounded by
boundedness of the domain, we can extract the limit of the first two terms by means of dominated
convergence. For the third term, since s 7→ f(s) = s log s− s+ 1 is a differentiable convex function
with f ′(s) = log s, it holds pointwise that f(rε) − f(rn) ≥ εθrn log rn, which in the ε → 0 limit
yields: ∫

X×Y

[
1

τ
Φ(x, y) + V (x, y) + κ log rn(x, y)

]
θ(x, y) dρn(x, y) ≥ 0.

Given that θ ∈ L∞(X × Y,L⊗ ν) is arbitrary subject to (53), we conclude that there are functions
P ∈ L1(X,µ) and Q ∈ L1(Y, ν) such that

1

τ
Φ(x, y) + V (x, y) + κ log rn(x, y) = P (x) +Q(y); (54)

see Lemma 17 from the Appendix for details. Since Q only shifts the level of the potentials Φ(·, y)
—which does not affect the x-gradient—, (46) and (47) follow in view of (50) with Πn := P . P can
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be chosen to have zero mean with respect to µ by adding an additional global constant offset to Φ.
Moreover, summing (47) in time and using (45) yields (48).

Let us now show that rn is uniformly bounded from above and away from zero, with a bound
that does not depend on the iteration number n. The function Φ/τ +V is uniformly Lipschitz in x
by (50), with Lipschitz constant L := diam(X)/τ+∥∇V ∥∞, so (54) implies that κ log rn−Πn must
be uniformly L-Lipschitz in x as well. To deduce the individual regularity of each rn and Πn, define
first the auxiliary function σ := rne−Πn/κ. Then κ log σ = κ log rn − Πn, so κ log σ is L-Lipschitz
in x. Now note that, since |∇X(κ log rn − Πn)| is uniformly bounded by L, after averaging in Y
the Lipschitz bound cannot be worse. Therefore we find that µ-almost everywhere in X:

Lµ ≥
∣∣∣∣∫

Y

∇X(κ log rn −Πn)rn dν(y)

∣∣∣∣ = ∣∣∣∣κ∫
Y

(∇X log σ)σeΠ
n/κ dν(y)

∣∣∣∣ = ∣∣∣∣κ∫
Y

(∇Xσ)e
Πn/κ dν(y)

∣∣∣∣
=

∣∣∣∣κ∇X

(∫
Y

σ dν(y)

)
eΠ

n/κ

∣∣∣∣ = ∣∣∣κ∇(µe−Πn/κ
)
eΠ

n/κ
∣∣∣ = µ|∇(κ logµ−Πn)|.

This shows that the function Πn − κ logµ is also L-Lipschitz, and since by assumption ∇ logµ is
an L2 function, ∇Πn is in L2 as well.

We will now show the uniform lower bound of rn. Define Ψ(x, y) = κ log rn(x, y) − κ logµ(x),
which by (54) can be rewritten as:

Ψ(x, y) = Πn(x)− κ logµ− 1

τ
Φ(x, y)− V (x, y). (55)

Therefore Ψ has an x-Lipschitz constant of 2L. On the other hand note that, by the properties of
disintegrations (Lemma 3), for ν-a.e. y ∈ Y it holds:

1 =

∫
X

r(x, y) dx =

∫
X

r(x, y)

µ(x)
dµ(x) =

∫
X

eΨ(x,y)/κ dµ(x), (56)

and consequently:

0 = κ log

∫
X

eΨ(x,y)/κ dµ(x). (57)

Since the log-sum-exp behaves like a weighted average, (57) is between the maximum and minimum
value of Ψ; and since Ψ is continuous in x andX is connected, we conclude that for ν-a.e. y ∈ Y there
exists a point x̂ ∈ X such that Ψ(x̂, y) = 0. As a result, |Ψ| is uniformly bounded by 2LdiamX.
We conclude that there exists a finite constant C > 0 depending on diam(X), τ , ∥∇V ∥∞, κ and
the lower and upper bounds of µ (but not on n) such that rn = µ exp(Ψ/κ) is bounded as:

e−C ≤ rn(x, y) ≤ eC . (58)

For the estimate (49) let us further develop (47):

1

τ2
WF (ρ

n, ρn−1
)2

=

∫
X×Y

∣∣∇X(V −Πn + κ log rn)
∣∣2 dρn

=

∫
X

∣∣∇Πn
∣∣2 dµ+

∫
X×Y

∣∣∇X(V + κ log rn)
∣∣2 dρn − 2

∫
X×Y

∇Πn · ∇X(V + κ log rn) dρn.

Rearranging terms, and noting that the second contribution is always non-negative:∫
X×Y

∣∣∇Πn
∣∣2 dµ ≤ 1

τ2
WF (ρ

n, ρn−1
)2

+ 2

∫
X×Y

∇Πn · ∇X (V + κ log rn) dρn. (59)
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Note that for the entropic term we can write:∫
X×Y

∇Πn · ∇X log rn dρn =

∫
X×Y

∇Πn · ∇Xr
n

rn
dρn =

∫
X×Y

∇Πn · ∇Xr
n dx dν(y)

=

∫
X

∇Πn · ∇µdx =

∫
X

∇Πn · ∇ logµdµ.

Thus, summing (59) in time:

N∑
n=1

τ

∫
X×Y

∣∣∇Πn
∣∣2 dµ(x) ≤ N∑

n=1

1

τ
WF (ρ

n, ρn−1
)2

+ 2τ

∫
X×Y

∇Πn · ∇X (V + κ log rn) dρn,

and using (45) for the first term:

≤ 2E(ρ0) +
N∑

n=1

2τ

∫
X×Y

∇Πn · ∇XV dρn + 2τκ

∫
X

∇Πn · ∇ logµdµ

≤ 2E(ρ0) +
√
Nτ
(
2∥∇XV ∥∞ + 2κ∥∇ logµ∥L2(X,µ)

)( N∑
n=1

τ

∫
X

∣∣∇Πn
∣∣2 dµ)1/2

≤ 2E(ρ0) + 1

2
Nτ
(
2∥∇XV ∥∞ + 2κ∥∇ logµ∥L2(X,µ)

)2
+

1

2

N∑
n=1

τ

∫
X

∣∣∇Πn
∣∣2 dµ.

The bound on Πn in (49) now follows from cancelling half of the sum in time and accounting for
(15). To obtain the bound on

√
rn, we expand the derivative of Φ in a different way:

1

τ

∫
X×Y

|∇XΦ|2 dρn = τ

∫
X×Y

|∇X(κ log rn + V −Πn)|2 dρn

≥ τ

∫
X×Y

[
κ2

2
|∇X

√
rn|2 − 2|∇XV |2rn − 2|∇Πn|2rn

]
dxdν(y).

Using the already established estimate on ∇Πn, the remaining part of (49) follows. □

Lemma 9. For every ψ ∈ C∞(X ×Y ) with n ·∇Xψ(x, y) = 0 for all x ∈ ∂X, y ∈ Y , we have that∫
X×Y

ψ d

[
ρnτ − ρn−1

τ

τ

]
= −

∫
X×Y

∇Xψ · ∇X

[
V −Πn

τ

]
dρnτ + κ

∫
X×Y

∆Xψ dρnτ + τ Rn
τ (ψ), (60)

where the remainder is bounded as∣∣Rn
τ (ψ)

∣∣ ≤ 1

2
∥ψ∥C2Sn

τ , Sn
τ :=

WF (ρ
n
τ , ρ

n−1
τ )2

τ2
. (61)

In particular, for every ξ ∈ C∞(X) with n · ∇Xξ(x) ≡ 0 on ∂X,∫
X

∇Xξ · ∇XΠn
τ dµ−

∫
X×Y

∇Xξ · ∇XV dρnτ + κ

∫
X×Y

∆Xξ dµ(x) = τ Rn
τ (ξ). (62)
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Proof. Integrating ρn−1
τ with respect to ψ and using (46) to perform:∫

X×Y

ψ(x, y) dρn−1
τ (x, y) =

∫
X×Y

ψ(x+ τ∇X [V −Πn
τ + κ log rnτ ], y)r

n
τ (x, y) dx dν(y)

=

∫
X×Y

[ψ(x, y) + τ∇Xψ · ∇X(V −Πn
τ + κ log rnτ )]r

n
τ dxdν(y)

+
τ2

2
Rn

τ (ψ),

where the remainder Rn
τ (ψ) is bounded by the second-order term:

|Rn
τ (ψ)| ≤ ∥∇2

Xψ∥∞
∫
X×Y

|∇X(V −Πn
τ + κ log rnτ )|2 dρnτ ≤ ∥∇2

Xψ∥∞
∫
X×Y

WF (ρ
n
τ , ρ

n−1
τ )2

τ2
.

Then (60) follows by collecting the finite difference in ρnτ and integrating the entropic term by
parts, while (62) results from choosing ψ(x, y) = ξ(x). □

4. Existence of weak solutions

Throughout this section we denote by Π̄τ and ρ̄τ the piecewise-constant interpolations of the
iterates (Πn

τ )n and (ρnτ )n:

ρ̄τ (t) = ρ⌊t/τ⌋τ , r̄τ (t) = r⌊t/τ⌋τ , Π̄τ (t) = Π⌊t/τ⌋
τ , for all t ∈ [0,∞). (63)

The main result is their convergence to weak solutions of the evolution equation (1)-(3). There
is a technical aspect worth noting. Although most of the terms in the time-integrated version of
(60) can be shown to converge by sheer weak* compactness of ρ̄τ , the pairing between Π̄τ and ρ̄τ
poses a special difficulty, since both converge only weakly. The control on the horizontal derivatives
of ρ̄τ provided by Lemma 8 is unfortunately insufficient to extract even weak convergence of the
pairing ρ̄τ∇Π̄τ .

Fortunately, as we shall show in Lemma 10 below, thanks precisely to the horizontal regularity
bound shown in Lemma 8, the Y -average of ρ̄τ against a smooth test function yields a sequence
converging strongly to the corresponding average of the limiting ρ. Since the potential Π̄τ is merely
a function on X, integration against this strongly convergent sequence of averages yields the desired
convergence of the joint product. This intuition is made rigorous by the following Lemma:

Lemma 10. There are functions ρ ∈ C(R≥0; Γ(µ, ν)) and Π ∈ L2
loc(R≥0;H

1(X)) such that, in the
limit τ → 0, at least along a suitable sequence and for each T ∈ (0,∞):

ρ̄τ (t)⇀ ρ(t) locally uniformly w.r.t. t ∈ R≥0 in W, (64)

Π̄τ ⇀ Π weakly in L2([0, T ];H1(X)). (65)

Moreover, define for any given ζ ∈ C1
c (R≥0 ×X × Y ) the vertical averages

ωτ (t, x) :=

∫
Y

ζ(t, x, y)r̄τ (t, x, y) dν(y), ω(t, x) :=

∫
Y

ζ(t, x, y)r(t, x, y) dν(y). (66)

where r̄τ ∈ L1(X × Y,L ⊗ ν) and r ∈ L1(X × Y,L ⊗ ν) denote respectively the densities of ρ̄n and
ρ with respect to L ⊗ ν. Then, along the same sequence as above,

ωτ → ω strongly in L2([0, T ]×X), (67)

ωτ∇Π̄τ ⇀ ω∇Π weakly in L1([0, T ]×X). (68)
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The limit (ρ,Π) satisfies, for all ψ ∈ C∞
c (R+ × X × Y ) with ∇Xψ · n ≡ 0 on ∂X the weak

equation:∫ ∞

0

∫
X×Y

∂tψ dρ =

∫ ∞

0

∫
X×Y

[
∇Xψ · ∇X [V −Π]− κ∆Xψ

]
dρ−

∫
X×Y

ψ(0) dρ0. (69)

The potential Π is given for a.e. time as the unique solution satisfying
∫
X
Πdµ = 0 of the elliptic

equation: ∫
X

∇ξ · ∇Π(t) dµ =

∫
X

∇ξ ·
[∫

Y

∇XV (x, y)r(t, x, y) dν(y)

]
dx− κ

∫
X

∆ξ dµ (70)

for all ξ ∈ C∞(X) with ∇ξ · n = 0 on ∂X.

Proof. For the convergence of the trajectories (64) we employ the refined version of Ascoli-Arzela
in [1, Proposition 3.3.1]: we use Lemma 7 for the equicontinuity of ρ w.r.t. W, while the pointwise
compactness follows from the compactness of (P(X × Y ),W) for X and Y compact. The fact
that E(ρ̄τ ) is uniformly bounded by E(ρ0) imposes a uniform upper bound on H(ρ̄τ ), which by
lower-semicontinuity of the energy (Lemma 5) implies that

E(ρ(t)) ≤ lim inf
τ→0

E(ρ̄τ (t)) ≤ E(ρ0), (71)

and thus ρ(t) must have a density with respect to L⊗ν for all t ≥ 0, denoted by r(t). On the other
hand, the weak convergence of the potentials (65) is a direct consequence of the uniform bound
(49) and the weighted Poincaré inequality for functions with zero mean [22].

For (67) let us first identify the limit. For a fixed ζ ∈ C1
c (R≥0×X×Y ), integrating with respect

to a test function ψ ∈ C0(R≥0 ×X):∫ ∞

0

∫
X

ψ(t, x)ωτ (t, x) dxdt =

∫ ∞

0

∫
X×Y

ψ(t, x)ζ(t, x, y) dρ̄τ (t, x, y)

→
∫ ∞

0

∫
X×Y

ψ(t, x)ζ(t, x, y) dρ(t, x, y) =

∫ ∞

0

∫
X

ψ(t, x)

[∫
Y

ζ(t, x, y)r(t, x, y) dν(y)

]
dxdt

=

∫ ∞

0

∫
X

ψ(t, x)ω(t, x) dxdt (72)

This shows at least weak* convergence of ωτ dxdt to ωτ dxdt. For showing a stronger convergence,
we use the version of the Aubin-Lions lemma given in [34, Theorem 2]. As Banach space, we choose
B := L1(X), as properly coercive integrand, we use

F(ω) =

∫
X

|∇Xω|dx+ ∥ω∥L∞(X),

and the pseudo-distance is the dual norm in C1(X), i.e.,

g(ω1, ω2) = sup

{∫
X

ξ(x)
(
ω1(x)− ω2(x)

)
dx

∣∣∣∣ ξ ∈ C1(X), ∥ξ∥C1(X) ≤ 1

}
.

Let us first show that ωτ is uniformly bounded in L∞([0, T ]×X): since ρτ (t) ∈ Γ(µ, ν) for a.e. t ∈
R≥0, it holds:

|ωτ (t, x)| =
∣∣∣∣∫

Y

ζ(t, x, y)r̄τ (t, x, y) dν(y)

∣∣∣∣ ≤ ∥ζ∥∞
∫
Y

r̄τ (t, x, y) dν(y) = ∥ζ∥∞µ(x) (73)
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for a.e. (t, x) ∈ R≥0×X, and the upper bound on µ completes the claim. Further, ωτ inherits from
ρ̄τ the regularity of its X-gradient:∫ T

0

(∫
X

|∇Xωτ |dx
)

dt =

∫ T

0

∫
X

∣∣∣∣∇X

∫
Y

ζ(t, x, y)r̄τ (t, x, y) dν(y)

∣∣∣∣ dtdx
≤
∫ T

0

∫
X×Y

|∇X(ζr̄τ )| dtdx dν(y)

≤ T∥∇Xζ∥∞ + ∥ζ∥∞
∫ T

0

∫
X×Y

|∇X r̄τ | dtdx dν(y)

= T∥∇Xζ∥∞ + ∥ζ∥∞
∫ T

0

∫
X×Y

2
√
r̄τ∇X(

√
r̄τ ) dtdxdν(y)

≤ T∥∇Xζ∥∞ + 2∥ζ∥∞
√
T

(∫ T

0

∫
X×Y

∣∣∇X

√
r̄τ
∣∣2 dtdxdν(y))1/2

.

Where we used Cauchy-Schwarz in the last inequality. In virtue of Lemma 8, we conclude∫ T

0

(∫
X

|∇Xωτ |dx
)

dt ≤ T∥∇Xζ∥∞ +
∥ζ∥∞
2κ

√
T (C + E(ρ0)).

In combination with the L∞-bound, we thus have

sup
τ

∫ T

0

F(ωτ ) dt <∞. (74)

Further, the Y -averages ωτ also inherit the uniform regularity in time from ρ̄τ : testing with ξ ∈
C1(X), we obtain that∫

X

ξ(x)[ωτ (mτ, x)− ωτ (nτ, x)] dx =

∫
X×Y

ξ(x)[(ζr̄τ )(mτ, x, y)− (ζr̄τ )(nτ, x, y)] dxdν(y)

=

∫
X×Y

ξ(x)[ζ(mτ, x, y)− ζ(nτ, x, y)]r̄τ (mτ, x, y) dxdν(y)

+

∫
X×Y

ξ(x)ζ(nτ, x, y)[r̄τ (mτ, x, y)− r̄τ (nτ, x, y)] dx dν(y)

≤ ∥ξ∥C1(X)∥ζ∥C1(R≥0×X×Y )

[
τ(m− n) +W1(ρ

m
τ , ρ

n
τ )
]

≤ ∥ξ∥C1(X)∥ζ∥C1(R≥0×X×Y )

[
τ(m− n) + C

√
τ(m− n)

]
where we used (20) in the first inequality, and Lemmas 2 and 7 in the last. In other words, we have
that ∫ T−h

0

g
(
ωτ (t+ h), ωτ (t)

)
dt→ 0 as h↘ 0, uniformly in τ ∈ (0, 1). (75)

Since (74) and (75) are verified, it follows by means of [34, Theorem 2] that ωτ converges to a limit
ω∗ ∈ L1([0, T ] × X), in L1(X), in measure with respect to time. Moreover, since the limit was
already identified in (72), in particular we have that ω∗ = ω. Invoking the uniform L∞-bound (73)
again, we conclude that actually ω ∈ L∞([0, T ]×X), and that ωτ → ω strongly in Lp([0, T ]×X),
for any p ∈ [1,∞).

In particular, the convergence ωτ → ω is strong in L2([0, T ] ×X), and so (68) follows by weak
convergence of (∇Π̄τ )τ .
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We now turn to the weak formulation. Let ψ ∈ C∞
c (R+ × X × Y ) with ∇Xψ · n ≡ 0 on ∂X.

Since ψ is compactly supported, for each τ there exists an N such that ψ ≡ 0 for t > Nτ . Hence,∫ ∞

0

∫
X×Y

∂tψ(t, x, y) dρ̄τ (t, x, y) =

N−1∑
n=0

∫ (n+1)τ

nτ

∫
X×Y

∂tψ(t, x, y) dρ
n
τ (x, y) dt

=

N−1∑
n=0

∫
X×Y

[
ψ((n+ 1)τ, x, y)− ψ(nτ, x, y)

]
dρnτ (x, y)

= −
∫
X×Y

ψ(0, x, y) dρ0(x, y)−
N−1∑
n=1

τ

∫
X×Y

ψ(nτ, x, y) d

[
ρnτ − ρn−1

τ

τ

]
The first term is the last term of (69). For the second term we turn to (60):∫ ∞

0

∫
X×Y

∂tψ(t, x, y) dρ̄τ (t, x, y) +

∫
X×Y

ψ(0, x, y) dρ0(x, y)

= −
N−1∑
n=1

τ

[
−
∫
X×Y

∇Xψ(nτ) · ∇X

[
V −Πn

τ

]
dρnτ + κ

∫
X×Y

∆Xψ(nτ) dρ
n
τ + τRn

τ (ψ(nτ))

]
. (76)

Let us first control the remainder:
N−1∑
n=1

τ2Rn
τ (ψ(nτ)) ≤ τ

N−1∑
n=1

τRn
τ (ψ(nτ)) ≤ τ∥ψ∥C2

N−1∑
n=1

WF (ρ
n
τ , ρ

n−1
τ )2

2τ
≤ τ∥ψ∥C2E(ρ0).

which yields an O(τ) contribution. Lemma 10 allows to control the rest of integrands, so that
replacing ψ(nτ) by ψ(t) in (76) only incurs in an o(1) error. Thus, back to (76):∫ ∞

0

∫
X×Y

∂tψ(t, x, y) dρ̄τ (t, x, y) =

∫ ∞

0

∫
X×Y

∇Xψ(t, x, y) · ∇XV (x, y) dρ̄τ (t, x, y)

−
∫ ∞

0

∫
X

∇XΠ̄τ (t, x) ·
[∫

Y

∇Xψ(t, x, y)r̄τ (t, x, y) dν(y)

]
dtdx

−
∫ ∞

0

∫
X×Y

∆Xψ(t, x, y) dρ̄τ (t, x, y)

−
∫
X×Y

ψ(0, x, y) dρ0(x, y) + o(1).

The first and third lines converge by sheer integration of the weak* convergent (ρ̄τ )τ against con-
tinuous functions, while the second line converges in virtue of (68), and the last line is constant (up
to the o(1) term).

Finally, (70) follows from testing (69) with ψ(t, x, y) = θ(t)ξ(x), for θ with compact support and
satisfying θ(0) = 0:

0 =

∫ ∞

0

∫
X

∂tθ(t)ξ(x) dµ(x) dt =

∫ ∞

0

∫
X×Y

∂tθ(t)ξ(x) dρ(t, x, y)

=

∫ ∞

0

∫
X×Y

θ(t)∇ξ(x) · ∇X [V −Π] dρ(t, x, y)− κ

∫ ∞

0

∫
X×Y

θ(t)∆Xξ(x) dρ(t, x, y).

=

∫ ∞

0

∫
X

θ(t)∇ξ(x) ·
[
−µ∇Π+

∫
Y

∇XV (·, y)r(·, ·, y) dν(y)
]
− κ

∫ ∞

0

∫
X

θ(t)∆Xξ(x) dµ(x) dt,
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and the claim follows from the arbitrariness of θ. □

Lemma 11. Let (ρt,Πt)t be a limit trajectory as in Lemma 10 and rt ∈ L1(X × Y,L ⊗ ν) denote
the density of ρt with respect to L ⊗ ν. Define the dissipation of the energy E as:

I(ρt,Πt) :=

∫
X×Y

|∇X(V −Πt + κ log rt)|2 dρt. (77)

Then for all 0 ≤ t1 < t2 ≤ ∞ the integral of the dissipation is lower-semicontinuous along the
converging subsequences in Lemma 10, i.e.:∫ t2

t1

I(ρt,Πt) dt ≤ lim inf
k→∞

∫ t2

t1

I((ρ̄n)t, (Π̄n)t) dt. (78)

In particular,

0 ≤ E(ρt1) +
∫ t2

t1

I(ρt,Πt) dt ≤ E(ρ0). (79)

Proof. For simplicity in this proof we will remove the bars from ρ̄n and Π̄n; simply note that they
refer to the piecewise constant discrete trajectories. Then:

∫ t2

t1

I((ρn)t, (Πn)t) dt =

∫ t2

t1

∫
X×Y

|∇X(V −Πn + κ log rn)|2 dρn

=

∫ t2

t1

∫
X×Y

|∇X(V + κ log rn)|2 dρn (80)

−
∫ t2

t1

∫
X×Y

2∇X(V + κ log rn) · ∇XΠn dρn (81)

+

∫ t2

t1

∫
X

|∇Πn|2 dtdµ. (82)

For (80), defining σn := rne
V/κ we have∫ t2

t1

∫
X×Y

|∇X(V + κ log rn)|2 dρn = κ2
∫ t2

t1

∫
X×Y

|∇Xσn|2σne−V/k dxdν(y)

= 4κ2
∫ t2

t1

∫
X×Y

e−V/k|∇X
√
σn|2 dxdν(y).

which is lower-semicontinuous, since σn inherits ρn’s regularity properties outlined in Lemma 12.
The next term (81) can be rewritten as follows:∫ t2

t1

∫
X×Y

∇X(V + κ log rn) · ∇XΠn dρn =

=

∫ t2

t1

∫
X

∇Πn ·
[∫

Y

ρn∇XV dν(y)

]
dtdx+ κ

∫ t2

t1

∫
X

∇Πn · ∇ logµdµ,

where the first contribution converges thanks to Lemma 13 and the second by sheer weak con-
vergence of ∇(Πn)t (plus the fact that logµ ∈ H1(X,µ), thanks to the finite Fisher informa-
tion of µ). The last term (82) is lower-semicontinuous under weak convergence of (Πn)n in
L2([t1, t2];H

1(X,µ)).
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Finally, (79) is a direct consequence of (48) and the lower-semicontinuity of both energy and the
integrated dissipation. □

Lemma 12. The weak solutions (ρ,Π) of (69)-(70) extracted as the limit of the minimizing move-
ment scheme in Lemma 10 satisfy, for all 0 < t1 < t2 <∞:

W2(ρt1 , ρt2) ≤ W2
F (ρt1 , ρt2) ≤ E(ρ0)(t2 − t1). (83)∫ t2

t1

∫
X

∣∣∇Πt

∣∣2 dtdµ(x) ≤ C(t2 − t1). (84)

2κ2
∫ t2

t1

∫
X×Y

∣∣∇X
√
rt
∣∣2 dtdx dν(y) ≤ E(ρ0) + C(t2 − t1). (85)

with C a finite constant depending only on ∥∇XV ∥∞, ∥∇√
µ∥2 and κ.

Remark 4. Even though the weak solutions constructed in Lemma 10 can (a priori) only be shown
to be continuous in the W metric, a posteriori Lemma 12 yields regularity in time with respect to
the WF metric.

Proof of Lemma 12. For (83) we will use the Benamou-Brenier formula fiberwise. For given t1 < t2,
and for each s ∈ [0, 1] consider ϱs := ρ((1− s)t1 + st2) with density given by r̃s ∈ L1(X × Y,L⊗ ν)
and πs := Π((1− s)t1 + st2). For each y ∈ Y , define the velocity field:

vs : (x, y) 7→ (t2 − t1)∇X [V (x, y)− πs(x) + κ log r̃s(x, y)], (86)

The pair (r̃s, vs) thus constructed is a feasible weak solution for the continuity equation:

∂sr̃s(x, y) +∇X · (r̃s(x, y)vs(x, y)) = 0

∇X(r̃svs) = 0 on ∂X
(87)

Now, by the Benamou-Brenier formula,

WF (ϱ0, ϱ1)
2 =

∫
Y

W(r̃0(·, y), r̃0(·, y)) dν(y) ≤
∫
Y

[∫ 1

0

∫
X

|vs(x, y)|2r̃s(x, y) dxds
]
dν(y)

=

∫ 1

0

∫
X×Y

|vs(x, y)|2 dϱs(x, y) ds

= (t2 − t1)
2

∫ 1

0

∫
X×Y

|∇X [V (x, y)− πs(x) + κ log r̃s(x, y)]|2 dϱs(x, y) ds,

and after a change of variables we eventually obtain:

WF (ρ(t1), ρ(t2))
2 = (t2 − t1)

∫ t2

t1

∫
X×Y

|∇X [V (x, y)−Πt(x) + κ log rt(x, y)]|2 dρt(x, y) dt

≤ (t2 − t1)E(ρ0),
where in the last inequality we used Lemma 11.

For (84) we test (70) with (an approximating sequence of) Πt and integrate by parts to obtain:∫
X

|∇Πt|2 dµ(x) =
∫
X×Y

∇Πt · ∇XV dρt + κ

∫
X

∇Πt · ∇ logµdµ(x)

≤ ∥∇XV ∥∞
(∫

X×Y

|∇Πt|2 dρt
)1/2

+ κ

(∫
X×Y

|∇Πt|2 dµ
)1/2(∫

X×Y

|∇ logµ|2 dµ
)1/2

,
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where we used Cauchy-Schwartz. Then, using that ∥∇ logµ∥L2(X,µ) = 2∥∇√
µ∥L2(X) and simplify-

ing one ∥∇Πt∥L2(X,µ) term yields:(∫
X×Y

|∇Πt|2 dµ
)1/2

≤ ∥∇XV ∥∞ + 2κ∥∇√
µ∥2, (88)

and (84) follows by integration in time.
To obtain (85) we expand (79):

E(ρ0) ≥
∫ t2

t1

I(ρt,Πt) dt =

∫ t2

t1

∫
X×Y

|∇X(V −Π+ κ log r)|2 dρ (89)

=

∫ t2

t1

∫
X×Y

|∇XV |2 dρ+
∫ t2

t1

∫
X

|∇Π|2 dµdt+ κ2
∫ t2

t1

∫
X×Y

|∇X log r|2 dρ (90)

+ 2

∫ t2

t1

∫
X×Y

[κ∇XV · ∇X log r − κ∇X log r · ∇XΠ−∇XV · ∇XΠ] dρ (91)

To bound the Fisher information of ρ we solve for the last term in (90):

4κ2
∫ t2

t1

∫
X×Y

|∇X

√
r|2 dx dν(y) ≤ E(ρ0)− 2

∫ t2

t1

∫
X×Y

κ∇XV · ∇X log r dρ

+ 2

∫ t2

t1

∫
X×Y

[κ∇X log r · ∇XΠ−∇XV · ∇XΠ] dρ

Now all the inner products are straightforward to bound:

−2κ

∫ t2

t1

∫
X×Y

∇XV · ∇X log r dρ

≤ 2κ

∫ t2

t1

(∫
X×Y

|∇XV |2 dρt
)1/2(∫

X×Y

|∇X log r|2 dρt
)1/2

dt

≤ 4κ∥∇XV ∥∞
√
t2 − t1

(∫ t2

t1

∫
X×Y

|∇X

√
r|2 dxdν(y) dt

)1/2

≤ 2∥∇XV ∥2∞(t2 − t1) + 2κ2
∫ t2

t1

∫
X×Y

|∇X
√
ρ|2 dxdν(y) dt,

where we used ab ≤ a2/2 + b2/2 for a = 2∥∇XV ∥∞
√
t2 − t1 and b encompassing the rest. For the

next term:

2κ

∫ t2

t1

∫
X×Y

∇X log r · ∇XΠdρ ≤ 2κ

∫ t2

t1

∫
X

∇µ · ∇Πdx ≤ 2κ

∫ t2

t1

∫
X

∇ logµ · ∇Πdµ

≤ 4κ

(∫ t2

t1

∫
X

|∇Π|2 dµ
)1/2 √

t2 − t1

(∫
X

|∇√
µ|2 dx

)1/2

≤ 2κ

∫ t2

t1

∫
X

|∇Π|2 dµ+ 2κ(t2 − t1)

∫
X

|∇√
µ|2 dx,
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where we used a similar bound. For the remaining term:

2

∫ t2

t1

∫
X×Y

∇XV · ∇XΠdρ ≤ 2∥∇XV ∥∞
√
t2 − t1

(∫ t2

t1

∫
X

|∇Π|2 dµ
)1/2

≤ ∥∇XV ∥2∞(t2 − t1) +

∫ t2

t1

∫
X

|∇Π|2 dµ

Finally, collecting all the contributions and using (84) yields the desired bound. □

5. Stability of weak solutions

In the following sections, for a weak solution (ρ,Π) of (69)-(70) we will denote by ρt the measure
ρ(t) (which is for a.e. t a feasible coupling in Γ(µ, ν) with density with respect to L ⊗ ν given by
rt ∈ L1(X × Y,L ⊗ ν)), and analogously we will denote by Πt the function Π(t).

We start with a preliminary result that will be useful below:

Lemma 13 (Stability of solutions). Let (µn)n ⊂ P(X) be a sequence with uniformly bounded Fisher
information ∥∇√

µn∥2 ≤ C <∞ and uniformly bounded from above and away from zero, converging

strongly to µ in L2(X), and let (νn)n ⊂ P(Y ) converge to ν weak*. For each n ∈ N let (ρn,Πn)
be a weak solution to the continuity equation (69)-(70) with initial condition ρ0n ∈ Γ(µn, νn) and
satisfying the estimates in Lemma 12. Further assume that (ρ0n)n converges weak* to ρ0 ∈ Γ(µ, ν),
and that E(ρ0n | µn, νn) is uniformly bounded in n.

Then, up to the extraction of a subsequence, (ρn)n converges on compact sets to a weak solution
of (69)-(70) with initial condition ρ0. More precisely, for each T > 0,

ρn ⇀ ρ locally uniformly w.r.t. t ∈ R≥0 in W, (92)

Πn ⇀ Π weakly in L2([0, T ];H1(X)). (93)

Moreover, define for any given ζ ∈ C1
c (R≥0 ×X × Y ):

ωn(t, x) :=

∫
Y

ζ(t, x, y)rn(t, x, y) dν(y), ω(t, x) :=

∫
Y

ζ(t, x, y)r(t, x, y) dν(y). (94)

where rn ∈ L1(X × Y,L⊗ νn) and r ∈ L1(X × Y,L⊗ ν) denote respectively the densities of ρn and
ρ. Then, along the same sequence as above,

ωn → ω strongly in L2([0, T ]×X), (95)

ωn∇Πn ⇀ ω∇Π weakly in L1([0, T ]×X). (96)

Proof. As in Lemma 10, for the convergence of the trajectories (92) we employ the refined version
of Ascoli-Arzela in [1, Proposition 3.3.1]: we use Lemma 12 for the equicontinuity of ρ w.r.t. W,
while the pointwise compactness follows from the compactness of (P(X × Y ),W) for X and Y
compact. This yields existence of a W-continuous limit trajectory ρ, to which (ρn)n converges
locally uniformly. Besides, ρt has marginals µ and ν for all t ≥ 0 by weak* convergence of (µn, νn)
to (µ, ν) and continuity of the projection operators PX and PY .

To show density of ρt with respect to L ⊗ ν note first that, by Lemma 11, E(ρn(t) | µn, νn) ≤
E(ρ0n | µn, νn) ≤ C, since by assumption the energy of the initial datum is uniformly bounded, and
by Lemma 79 the energy is non-increasing. On the other hand, the joint lower-semicontinuity of
the energy with respect to weak* convergence (Lemma 5) implies:

E(ρ(t) | µ, ν) ≤ lim inf
n→∞

E(ρn(t) | µn, νn) ≤ lim inf
n→∞

E(ρ0n | µn, νn) ≤ C, (97)
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which shows that ρ(t) has a density with respect to L ⊗ ν for all t ≥ 0.
Now, the bounds (84) and (85) are uniform in n, since they only depend on the energy of the

initial datum, the Fisher information of µn, κ and ∥∇XV ∥∞, all of which are uniformly bounded by
assumption. In view of this, (84) together with the the weighted Poincaré inequality for functions
with zero mean [22] imply the weak convergence of the potentials Πn to a limit trajectory Π ∈
L2([0, T ];H1(X,µ)) for all T > 0. Further, the uniform control on the horizontal Fisher information
of (ρn)n given by (85) implies convergence of the vertical averages (95) and (96) in a similar fashion
to the proof in Lemma 10. The main difference is that now the marginals µn and νn vary along the
converging sequence, but this can be factored into the proof without major issues.

The remaining step is to show that ρ and Π verify their respective continuity equations. Let
ψ ∈ C∞

c (R+×X×Y ) with ∇Xψ ·n ≡ 0 on ∂X, and test (62) with ψ for the weak solution (ρn,Πn):∫
X×Y

ψ(0) dρ0n =

∫
R≥0×X×Y

[
∇Xψ · ∇XV −∇Xψ · ∇Πk − κ∆Xψ − ∂tψ

]
dρn. (98)

The left-hand side converges by weak* convergence of the initial conditions. Likewise, the first,
third and last term of the right-hand side converge by sheer weak* convergence of ρn to ρ. The
remaining term can be shown to converge in virtue of (96): defining (uk)n and u as

un(t, x) :=

∫
Y

∇Xψ(t, x, y)rn(t, x, y) dν(y), u(t, x) :=

∫
Y

∇Xψ(t, x, y)r(t, x, y) dν(y), (99)

and using (96) we obtain convergence also of the remaining term from (98):∫ T

0

∫
X×Y

∇Xψ · ∇Πn dρn =

∫ T

0

∫
X

∇Πn(x) · un(t, x) dtdx

→
∫ T

0

∫
X

∇Π(x) · u(t, x) dtdx =

∫ T

0

∫
X×Y

∇Xψ · ∇Πdρ.

where T the threshold after which ψ(t) is identically zero.
Finally, the fact that Π obeys its respective weak equation (70) follows by testing (98) with a test

function with no dependence in y, plus noting that ρn converges weak* to ρ and that µn converges
strongly to µ in L2(X):∫ T

0

∫
X

∇Xξ · ∇Π dtdµ = lim
n

∫ T

0

∫
X

∇Xξ · ∇Πn dtdµn

= lim
n

−κ
∫ T

0

∫
X

∆Xξ dtdµn +

∫ T

0

∫
X×Y

∇Xξ · ∇XV dρn

= −κ
∫ T

0

∫
X

∆Xξ dtdµ+

∫ T

0

∫
X×Y

∇Xξ · ∇XV dρ

□

Remark 5. Lemma 13 allows to extract the continuum limit of finite, multiphasic flows such as
those studied in [11] by crafting a pertinent sequence of discrete second marginals νn converging to
a weak* limit ν. We illustrate this convergence with numerical examples in Section 8.
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6. Asymptotic limit of weak solutions

In this section we show that any weak solution (ρt,Πt) converges as t → ∞ to the unique
minimizer of the energy E . This contrasts with the behavior of the solutions of the AHT scheme
(corresponding to κ = 0 and ρt being of Monge type, cf. Section 1.2 and also Section 7 further
below), which are not guaranteed to converge to the optimizer and can stay stationary in suboptimal
configurations.

Lemma 14. For a sequence of weak solutions (ρn,Πn) with initial conditions (ρ0n)n and fixed
marginals µ and ν converging to (ρ,Π) on a time interval (t1, t2) ⊂ [0,∞) under the same conditions
of Lemma 13, the integral of the dissipation is lower-semicontinuous, i.e.:∫ t2

t1

I(ρt,Πt) dt ≤ lim inf
k→∞

∫ t2

t1

I((ρn)t, (Πn)t) dt. (100)

Proof. The proof is analogue to that of Lemma 11, replacing the regularity estimates coming from
the minimizing movement scheme by the weak solution estimates in Lemma 12. □

Lemma 15. Let ρ∞ ∈ Γ(µ, ν), with a non-negative density r∞ ≥ 0 in L1(X×Y,L⊗ν), and let Π∞
be the corresponding pressure given by (70). If I(ρ∞,Π∞) = 0, then ρ∞ is the unique minimizer
of the energy E.
Proof. By assumption:

0 =

∫
X×Y

∣∣∇X

(
κ log r∞(x, y) + V (x, y)−Π∞(x)

)∣∣2 dρ∞(x, y). (101)

First we will show that Π∞ is bounded. Since r∞ is non-negative, the gradient in (101) must
vanish wherever r∞ is strictly positive, i.e.

∇Π∞(x) = ∇XV (x, y) + κ∇X log r∞(x, y) for ρ∞-a.e. (x, y). (102)

Multiplying by ρ∞ and integrating in Y one finds:

∇Π∞(x)µ(x) =

∫
Y

∇XV (x, y)r∞(x, y) dν(y) + κ∇µ(x) for a.e. x, (103)

or

∇Π∞(x) =

∫
Y

∇XV (x, y)
r∞(x, y)

µ(x)
dν(y) + κ∇ logµ(x) for a.e. x. (104)

Since
∫
Y
r∞(x, y) dν(y) = µ(x) and ∇XV is bounded, we deduce Π∞ − κ logµ is bounded on X,

and in view of the uniform bounds on µ so is Π∞. Now, defining σ := e(V−Π∞)/κr∞ we can rewrite
(101) as:

0 =

∫
X×Y

|κ∇X log σ|2 σe−(V−Π∞)/κ dxdν = 4κ2
∫
X×Y

∣∣∇X

√
σ
∣∣2 e−(V−Π∞)/κ dxdν. (105)

And since both V and Π∞ are bounded, κ is positive and X has connected interior, σ(x, y) must
be for each y equal to a positive constant eΨ(y)/κ. Rearranging terms yields:

r∞(x, y) = exp

(
Π∞(x) + Ψ(y)− V (x, y)

κ

)
. (106)

Finally, since the measure ρ∞ = r∞ dxdν(y) has marginals µ and ν and its density takes the
form of the diagonal scaling (106), we conclude by Lemma 4 that it is the unique minimizer of E ,
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or analogously, the optimal entropic plan between µ and ν with cost function V and regularization
strength κ. The optimal entropic dual potentials are thus Π∞ and Ψ. □

Lemma 16. The weak solutions (ρt,Πt)t obtained in Lemma 10 tend as t → ∞ to the unique
minimizer of E.
Proof. Our convergence argument follows a similar rationale to that in [28]. Let (ρ,Π) be a weak
solution of (69)-(70). There exist cluster points of the trajectory (ρt)t by sheer weak* compactness
in the space of probability measures on X × Y ; let us denote such a cluster point by ρ∗ and the
converging subsequence of times by (tn)n. By weak* continuity, ρ∗ preserves the marginals and
positivity of the trajectory ρ.

Let us define functions ρn(s) := ρ(tn + s), Πn := Π(tn + s) for s ∈ [0, 1]. Since each (ρn,Πn) is a
weak solution of (69)-(70) with initial condition ρn(0) = ρ(tn) → ρ∗, the stability of weak solutions
(Lemma 13) grants convergence of (a subsequence of) (ρn,Πn)n to a weak solution (ρ′,Π′) with
initial condition ρ∗. Now, since the dissipation I of the original weak solution (ρ,Π) is positive and

summable, the integrals of the form
∫ 1

0
I(ρn(s),Πn(s)) ds must converge to zero, which combined

with Lemma 14 implies that the dissipation vanishes in the asymptotic limit:

0 ≤
∫ 1

0

I(ρ′(s),Π′(s)) ds ≤ lim inf

∫ 1

0

I(ρn(s),Πn(s)) ds = 0 (107)

Since I is a non-negative quantity (for ρ ≥ 0), this means that I(ρ′(s),Π′(s)) is identically zero,
which by Lemma 15 implies that ρ′(s) and ρ∗ are equal to the unique minimizer of E , given by (106).
Since this convergence holds along any subsequence, the whole trajectory converges to ρ∗. □

7. Stationarity in the unregularized case

Section 6 showed that solutions to (1)-(3) converge as t→ ∞ to the minimizer of E . In contrast,
the AHT scheme does not enjoy such a global convergence. As explained in Section 1.2, equations
(1)-(3) introduce two kinds of modifications with respect to the AHT scheme: a relaxation (enlarging
the space of transport maps to that of transport plans) and a smoothing (adding an entropic
regularization term to the energy). In this section we show that the relaxation step is not sufficient
to endow the AHT scheme with convergence properties analogous to those of (1)-(3), and that some
kind of regularization appears to be necessary.

As reviewed in Section 1.2, the problem of existence of solutions becomes in general much harder
for κ = 0, since the a priori estimate on the horizontal gradients of ρ (or r) is lost. In fact, for
an absolutely continuous ν, weak solutions to (1)-(3) may be extremely degenerate, possibly giving
mass to a single point in each y-fiber. Due to these difficulties we will not attempt to provide a
comprehensive picture of the κ = 0 case. Instead, we will exemplify that, when weak solutions
exist, they face the same type of obstacle for asymptotic convergence to the energy minimizer that
is observed in the AHT scheme. The reason is that in the κ = 0 regime there exist suboptimal
stationary points of the evolution equation. We will demonstrate this by showing that, whenever
V ∈ C2(X×Y ) satisfies the twist condition (i.e., ∇XV (x, ·) is injective for all x), any initial datum
ρ0 of the form

ρ0 = (id, T∗)♯µ, with T∗(x) = ∇XV (x, ·)−1(∇Π∗(x)), T∗♯µ = ν (108)

with Π∗ in C2(X) stays stationary by the discrete minimizing movement when τ is small enough.
As a consequence, in this case a limit trajectory exists and is constantly equal to the initialization,
which in general will be suboptimal for the energy.
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Let us show this in detail. For κ = 0 the minimizing movement (38) becomes:

ρnτ ∈ argmin
ρ∈Γ(µ,ν)

1

2τ
WF (ρ, ρ

n−1
τ )2 + E0(ρ), E0(ρ) :=

∫
X×Y

V dρ. (109)

Our argument hinges on a primal-dual argument for the minimizing movement. In analogy to
Lemma 6, (109) can be rewritten as

ρn = P13γ
n, with γn ∈ argmin

γ∈Γ(µ,ρn−1)

∫
X×X×Y

( |x− x′|2
2τ

+ V (x, y)

)
dγ(x, x′, y), (110)

with respective (pre)-dual problem

sup
Π ∈ C(X)

Ψ ∈ C(X × Y )

∫
X

Π(x) dµ(x) +

∫
X×Y

Ψ(x′, y) dρn−1(x′, y)

s.t. Π(x) + Ψ(x′, y) ≤ |x− x′|2
2τ

+ V (x, y) for all (x, x′, y) ∈ X ×X × Y.

(111)

We can show that ρ0 is stationary by the minimizing movement —or, equivalently, optimal for
the primal problem (110) when choosing ρn−1 = ρ0 — by building a dual certificate. Choosing
Π = Π∗, we can obtain a feasible Ψ by computing the c-transform of Π∗ with respect to the cost

function c(x, x′, y) := |x−x′|2
2τ + V (x, y):

Ψ∗(x
′, y) := inf

x∈X

|x− x′|2
2τ

+ V (x, y)−Π∗(x).

For τ sufficiently small, and for each (x′, y) ∈ X × Y , the expression in the infimum is a uniformly
convex function of x (thanks to the assumed smoothness of Π∗). So a sufficient condition for x̂ to
attain the infimum is that it satisfies:

(x̂− x′)/τ +∇XV (x̂, y)−∇∗Π(x̂) = 0. (112)

Now, for (x′, y) in the support of ρ0 = (id, T∗)♯µ , (108), one has y = ∇XV (x′, ·)−1(∇Π∗(x
′)),

so choosing x̂ = x′ verifies (112). Thus, for ρn−1-a.e. (x′, y), Ψ∗ is given by:

Ψ∗(x
′, y) = V (x′, y)−Π∗(x

′). (113)

The dual score then reads:∫
X

Π∗ dµ+

∫
X×Y

Ψ∗ dρ
n−1 =

∫
X

Π∗ dµ+

∫
X×Y

(V −Π∗) dρ
n−1 =

∫
X×Y

V dρn−1, (114)

which matches the primal score (110) for γ∗ := (id, id, T )♯µ. Hence we obtained a primal-dual
certificate, showing that for τ sufficiently small ρ0 is a minimizer of (110) and therefore a stationary
point of the minimizing movement scheme (109).

8. Numerical simulations

In this Section we showcase with numerical simulations the main theoretical results discussed
above. Our numerical experiments are based on solving the minimizing movement scheme (38), or
more precisely its formulation as a convex optimization problem (39), using the Chambolle-Pock
primal-dual method [16]. Our approach differs from traditional numerical approaches to simulate
multiphase porous media flows (see for instance [19, 3, 23]) as it builds on the variational interpreta-
tion of the problem rather than on a direct discretization of the partial differential equations (1)–(3).
Let us mention the contribution [9] where an augmented Lagrangian approach extending the ideas
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of [5] to the context of multiphase porous media flows was compared to the more classical (and
non-variational) phase-by-phase upstream mobility finite volume scheme [23].

To keep the figures intuitive and simple we fix X = Y = [0, 1], V (x, y) = |x− y|2/2, and µ = dx
the Lebesgue measure on X. We set κ = 0.01. Unless otherwise stated we discretize µ to a set of
M = 256 equispaced points with equal weights in [0, 1]. We set the second marginal ν likewise to a
sum of N ∈ {4, 16, 64, 256} equispaced dirac deltas with equal weights. For the initialization ρ0 we
choose either the product initialization ρ0 = µ ⊗ ν or the flipped initialization ρ0 = (id, 1 − id)♯µ,
each discretized appropriately.

We fix the timestep to τ = 0.25. For smaller values of τ we encounter discretization artefacts
that hinder the convergence of the JKO step: When X is discretized, the minimal cost for moving
a particle horizontally becomes quantized, since it must move by at least one pixel, and it may
therefore be more expensive than the potential gain by following a small X-gradient of V , especially
when τ is very small. To alleviate this issue one could use entropic regularization in the transport
term WF (see e.g. [15]); however in this work we prefer to illustrate faithfully the behavior of the
minimizing movement without introducing additional terms.

Figure 1 shows an example of the first iterations in the minimizing scheme for a product initial-
ization and N = 4. Note how the accumulation of mass of species 1 at the left boundary and of
species 4 at the right boundary makes up for the gap left by the other species.
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Figure 1. Discrete trajectory ρ̄τ for N = 4 and product initialization. Each band
represents a phase, with hue indicating density.

Figure 2 shows a comparison of the same evolution for several choices of the number of species N .
It is interesting to note how the evolution is consistent for the several values of N (i.e. convergence is
achieved in approximately the same time), and the intermediate steps in the evolution are strikingly
similar, in agreement with the stability of weak solutions shown in Lemma 13.

An analogous observation can be made for Figures 3 and 4. Here the initialization is a flipped
plan, which constitutes a worse initial score for E than the product coupling from Figures 1 and
2. This explains the longer time to convergence; however the final coupling remains essentially
identical to the final coupling for the product initialization. Note that as N → ∞ this example
tends to a trajectory which does not fulfill our assumptions since the initial entropy H(ρ0) tends
to ∞ as N → ∞. Nevertheless, the convergence to the global optimizer still appears to hold.

Convergence to the minimizer of E is examined in greater detail in Figures 5 and 6. Figure 5
shows the final discrete iterate (corresponding to t = 10) under the two studied initializations and
several choices of N with the corresponding optimizer of E , namely ρ∗, obtained with the Sinkhorn
algorithm. There appar to be no discernable differences in the images. For a quantitative analysis,
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Figure 2. Comparison of discrete trajectories for different number of species N
and product initialization. Note how the trajectories tend to a consistent limit as
N increases.
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Figure 3. Discrete trajectory ρ̄τ for N = 4 and flipped initialization.
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Figure 4. Comparison of discrete trajectories for different number of species N
and flipped initialization. Note how the trajectories again tend to a consistent
limit, even when the initial conditions have unbounded entropy as N → ∞

in Figure 6 we plot the relative score difference

∆E(ρt) :=
E(ρt)− E(ρ∗)

E(ρ∗)
≥ 0 (115)

with respect to the elapsed time t, for the two initializations and either M = N = 64 or M = N =
256. There are two features of interest in the curves. The first is that ∆E decreases until it reaches
a plateau, which is encountered first for lower resolutions. This is due to discretization artefacts,
as mentioned at the beginning of this section. The second interesting feature is that, even though
the flipped initialization takes a longer time to converge (as it has a higher initial score), the final
score is approximately independent on the initialization. Furthermore, the convergence rate seems
to be independent of the initialization and approximately linear, indicated by the straight, parallel
lines Figure 6.
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Figure 5. Comparison of the final discrete iterate (corresponding to t = 10) and
the minimizer of E .
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Figure 6. Evolution of the relative difference between E(ρt) and E(ρ∗).

Finally, Figures 7 and 8 show a trajectory for a µ with discontinuous density, hence not satisfying
our Fisher information bound assumption. Concretely, we use the density

µ(x) :=

{
a for x ∈ [0, 1] \ [0.5− δ, 0.5 + δ],

b for x ∈ [0.5− δ, 0.5 + δ].
(116)
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Figure 7. Discrete trajectory ρ̄τ for µ featuring a bottleneck, N = 4 and prod-
uct initialization. We change the visualization with respect to previous figures to
showcase better the effect of the bottleneck on the density of the different phases.
Here the width the different bands represents the density of the respective species.
Their combined densities add up to µ, which is given by (116).

with δ = 1/8, b = a/2 and a chosen so that ∥µ∥ = 1 This creates a bottleneck with reduced capacity
for mass transport in the middle region. The discontinuity in µ is reproduced by each slice r(·, y)
and we observe congestion at the boundaries of the bottleneck region; however the relative density
r(·, y)/µ(·) remains continuous for all times. Again, the trajectories show a consistent behavior for
all values of N considered, which may indicate that the Fisher information bound hypothesis could
be further relaxed.

In conclusion, the numerical simulations of this section exemplify the stability of the weak so-
lutions of (69)-(70) as the second marginal ν tends to a continuum, as well as the asymptotic
convergence to the minimizer of the energy E as time goes to infinitiy. Moreover, there is some
numerical evidence that the convergence rate may be linear. The simulations provide interesting
insights on how a continuum of particles (the species y ∈ Y ) find an optimal arrangement of po-
sitions (the points x ∈ X) by local exchanges, subject to a volume constraint, that may include
obstructions and bottlenecks.

Appendix A. A technical lemma

Lemma 17. Let γ ∈ P(X × Y ) with respective marginals µ ∈ P(X) and ν ∈ P(Y ) be given,
and assume that γ possesses a density u ∈ L1(X × Y, µ ⊗ ν) with respect to µ ⊗ ν. Further, let
f ∈ L1(X × Y, γ) have the following property: for every θ ∈ L∞(X × Y, µ⊗ ν) satisfying∫

X

f(x, y) θ(x, y)u(x, y) dµ(x) = 0 for ν-a.e. y ∈ Y ,∫
Y

f(x, y) θ(x, y)u(x, y) dν(y) = 0 for µ-a.e. x ∈ X,

(117)

it follows that ∫
X×Y

f(x, y) θ(x, y) dγ(x, y) = 0. (118)

Then there are P ∈ L1(X,µ) and Q ∈ L1(Y, ν) such that f(x, y) = P (x) +Q(y) for γ-a.e. (x, y) ∈
X × Y .
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Figure 8. Comparison of discrete trajectories for µ featuring a bottleneck, prod-
uct initialization and different number of species N . Note how the trajectories
again tend to a consistent limit, even when µ has (in the continuum limit) un-
bounded Fisher information.

Proof. This is an application of the Hahn-Banach separation theorem. Define

U := {P (x) +Q(y) |P ∈ L1(X,µ), Q ∈ L1(Y, ν)}.

This is a subspace of L1(X × Y, γ), since∫
X×Y

|P (x) +Q(y)|dγ(x, y)

≤
∫
X

|P (x)|
(∫

Y

u(x, y) dν(y)

)
dµ(x) +

∫
Y

|Q(y)|
(∫

X

u(x, y) dµ(x)

)
dν(y)

= ∥P∥L1(X,µ) + ∥Q∥L1(Y,ν).
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Further, the subspace U is closed since convergence of fn with fn(x, y) = Pn(x)+Qn(y) in L
1(X×

Y, γ) is equivalent to convergence of Pn and Qn in the respective Banach spaces L1(X,µ) and
L1(Y, ν).

Fix some f∗ ∈ L1(X × Y, γ) that is not in U ; the claim is proven if we can verify the existence
of some θ∗ ∈ L∞(X × Y, µ ⊗ ν) that satisfies (117), but not (118) with f = f∗. Since U is closed,
f∗ has a positive distance to U , and the Hahn-Banach theorem thus guarantees the existence of a
continuous linear functional φ∗ : L1(X × Y, γ) → R with φ∗(U) = {0} and φ∗(f∗) = 1. By L1-L∞

duality, there exists some θ∗ ∈ L∞(X × Y, µ⊗ ν) such that

φ∗(f) =

∫
X×Y

f θ∗ dγ for all f ∈ L1(X × Y, γ).

Further, φ∗(U) = {0} implies for f(x, y) := a(x) + b(y) with arbitrary a ∈ L∞(X,µ) and b ∈
L∞(Y, ν) that

0 = φ∗(f) =

∫
X

a(x)

(∫
Y

θ∗(x, y)u(x, y) dν(y)

)
dµ(x) +

∫
Y

b(y)

(∫
X

θ∗(x, y)u(x, y) dµ(x)

)
dν(y).

Hence θ∗ satisfies the conditions (117). On the other hand, one has

1 = φ∗(f∗) =

∫
X×Y

f∗ θ∗ dγ,

i.e., f∗ does not satisfy (118) for the choice θ = θ∗. □

Remark 6. In case that γ = µ⊗ν is a product measure, i.e., u ≡ 1, one does not need the abstract
machinery of the Hahn-Banach theorem. Then, for any given f∗ ∈ L1(X × Y, γ) that is not of the
form f(x, y) = P (x)+Q(y), a suitable test function θ∗ satisfying (117) but not (118) for f = f∗ can
be obtained very explicitly. The generalization of that construction to γ that are not of product
form is unclear.
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[2] Sigurd Angenent, Steven Haker, and Allen Tannenbaum. Minimizing flows for the Monge-Kantorovich problem.
SIAM J. Math. Anal., 35(1):61–97, 2003.

[3] K. Aziz and A. Settari. Petroleum Reservoir Simulation. Elsevier Applied Science Publishers, Londres, 1979.
[4] J. Bear and Y. Bachmat. Introduction to modeling of transport phenomena in porous media. Kluwer Academic

Publishers, Dordrecht, The Netherlands, 1990.

[5] J.-D. Benamou, G. Carlier, and M. Laborde. An augmented Lagrangian approach to Wasserstein gradient flows
and applications. In Gradient flows: from theory to application, volume 54 of ESAIM Proc. Surveys, pages 1–17.

EDP Sci., Les Ulis, 2016.

[6] Mauro Bonafini and Bernhard Schmitzer. Domain decomposition for entropy regularized optimal transport.
Numerische Mathematik, 149:819–870, 2021.

[7] Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl.

Math., 44(4):375–417, 1991.
[8] Yann Brenier. Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations. Journal

of Nonlinear Science, 19(5):547–570, 10 2009.



CONTINUUM OF COUPLED WASSERSTEIN GRADIENT FLOWS 35
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