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Abstract

This paper focuses on the study and development of an efficient numerical

method designed to simulate the radar cross section (RCS) of objects buried

in lossy ground and illuminated by a plane wave. The primary objective

aligns with the overarching challenge of detecting buried targets in the gro-

und using an airborne radar system. In this scenario, a source antenna illu-

minates a considered 3D domain, and sensors receive the scattered field

from the targets. To enable accurate and efficient simulations, the proposed

tool utilizes a Cartesian/unstructured mesh and employs hybrid method

that combines two finite volume solvers. In the contents of the paper, we

first present a strategy for obtaining Cartesian/unstructured meshes. Subse-

quently, we study the hybridization of two specific finite volume schemes.

Additionaly, a ground and a Near- to Far-field model are introduced for

buried targets. To validate and showcase the advantages of our hybrid

approach, practical examples are presented. Finally, the strategy designed

for handling meshes composed of multiple Cartesian and unstructured

zones is detailed.

KEYWORD S

buried objects, finite volume methods, hybrid Cartesian/unstructured mesh generation,
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1 | INTRODUCTION

The growing concern in the study of system electromagnetic (EM) environment is frequently dealt with simulation
tools. In this paper, we are especially interested in remote sensing problem staging airborne source and sensor. In the
context of buried object detection, efficient numerical simulations can indeed be beneficial, by helping to predict
the expected scattering response of the buried target and thus allowing an a priori evaluation of the detection
capabilities.

Due to the increasing complexity of structures, more and more efficient simulation methods are required. For evalu-
ating the scattered fields (SFs) from objects buried in a lossy medium, previous studies1–3 have used the ubiquitous
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Yee's scheme4 based on finite difference time domain technique (FDTD).5 However, despite its efficiency and robust-
ness, this method is limited by the use of Cartesian grids (ST*), so it requires a high level of discretization to accommo-
date objects with curved parts, which increases the computational cost. Alternative approaches such as the finite
volume time domain (FVTD) scheme6–8 using unstructured meshes (UNST) provide better geometric representations.
Moreover, when dealing with simulations involving buried objects, it is necessary to account for multiple media charac-
terized by diverse propagation speeds. The FVTD scheme exhibits the capability to manage meshes featuring locally
refined cells of varying sizes, specifically designed to accommodate these distinct velocity media. Nevertheless, the com-
putation of EM fields by this method generally requires higher computation time and storage capacities than the FDTD
approach. Thus, to improve the modeling capabilities, a natural idea is to employ hybrid ST/UNST grids coupled with a
hybrid FDTD/FVTD scheme.9,10 This involves meshing the computational domain using a Cartesian grid with locally
unstructured mesh areas (around curved surfaces) and applying FDTD on the Cartesian part and FVTD on the unstruc-
tured part. However, the stability of hybrid FDTD/FVTD-UNST strategy is not clearly demonstrated for the most of the
solutions proposed so far and is consequently still rarely used.

Our objective is to propose a new stable hybrid method for solving unsteady Maxwell's equations, in order to deal
with remote sensing problems. In pursuit of this, our focus lies on hybridization based on finite volume approaches in
which stability is ensured. Then, we suggest to apply an FVTD-USNT scheme on unstructured part and a less
ressource-intensive FVTD-ST scheme on remaining computational domain. We chose FVTD schemes that, according to
us, provide the most efficient solutions both in the ST- and UNST-parts. This strategy additionally allows for the possi-
bility of locally refining specific sections within these hybrid meshes.

This paper is organized as follows. In Section 2, we present the hybrid ST/UNST mesh generation strategy. Mov-
ing on to Section 3, we formulate and study a hybrid FVTD-ST/UNST technique. We start by presenting the general
principle of the finite volume method. Following this, we introduce the chosen FVTD-ST scheme, designed to man-
age the ST-part of our hybrid meshes. Subsequently, we focus on the more-ressource intensive FVTD-UNST scheme,
capable of handling the UNST-part or entire hybrid ST/UNST meshes. To reduce the computation cost of this
approach, we introduce and discuss two strategies: variable approximation order and local time stepping. These strat-
egies are tested through numerical examples, considering a hybrid ST/UNST mesh representing a PEC (perfect elec-
tric conductor) sphere in free space. Next, in Section 3.4, we explain the implementation principle of the hybrid
FVTD-ST/UNST method and evaluate its capabilities through numerical results, still considering our free-space
hybrid sphere mesh. We especially highlight the existing and prospective benefits of the hybrid FVTD-ST/UNST
approach in comparison to pure FDTD or FVTD methods. Additionally, in Section 4, we focus on evaluating SFs
from a buried object in a lossy medium, particularly in the context of simulating airborne radar measurements. We
introduce established models from the existing literature, into our finite volume approach, specifically designed to
handle scenarios involving a ground, with transmitters and receivers positioned far away from the air-ground inter-
face. We also discuss the advantages of using locally refined meshes and examine the challenges associated with uti-
lizing the hybrid FVTD-ST/UNST scheme. Finally, we conclude with reflections on the method's applicability and
offer suggestions for future work.

2 | GENERATION OF HYBRID CARTESIAN/UNSTRUCTURED MESHES

Cartesian meshes are easier to implement and process but curved surfaces are approximated using “stair-cased” repre-
sentations. In UNST meshes, curves are properly accommodated using body-fitted meshes, though more complex to
generate and implement. Therefore in our study, we aim to make the most of both methods and generate hybrid
ST/UNST grids to reduce computational cost (reducing the number of UNST cells) while preserving correct consider-
ation of the geometry.

The principle of our hybrid grid generation strategy includes several steps that can be performed automatically.
Considering an object with curved surfaces, these generation steps are as follows:

1. Generate a triangular surface mesh for the considered object. We have developed specific tools for this purpose, but
open-source software such as GMSH11 is also applicable.

*In this paper, the abbreviation ‘ST’ is intentionally used to refer to Cartesian meshes, to echo the abbreviation“UNST” for unstructured.
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2. Generate a Cartesian mesh adapted to the 3D computational domain, and immerse the object generated in the first
step. Define a global object area in the Cartesian mesh, corresponding to the object enclosed by a specific volume
(the future unstructured part).

3. Create a surface mesh of triangular elements at the boundary between the global object area and the Cartesian
mesh. Generate an unstructured tetrahedral volume mesh between the surface meshes of the object and the Carte-
sian/global object area boundary.

4. Finally, merge the Cartesian mesh and the UNST-part of the global object area to generate the hybrid mesh.

Resulting hybrid mesh can be seen as a Cartesian mesh in which an unstructured part is included around the object
of interest. Figure 1 shows an example of a hybrid mesh with a spherical object. The unstructured mesh is composed of
either tetrahedral cells or polyhedral cells with more than six faces. There is specific UNST cells with a particular geom-
etry lay at the interface: a rectangular surface on one side to connect to the Cartesian part of the mesh, and a split sur-
face with two triangles to match tetrahedral cells on the other one (Figure 2). This kind of hybrid grids can be used
without difficulty with an FVTD technique. Indeed, the principle of the FVTD method is based on the exchange of
fluxes through the interfaces of the volume cells.

FIGURE 1 Cross section of a Hybrid ST/UNST grid perpendicular to x-axis and generation steps. Step 1: Surface mesh of a sphere. Step

2: External Cartesian volume mesh. Step 3: UNST volume mesh between the sphere and Cartesian boundary surface meshes. Step 4: Final

hybrid mesh.

FIGURE 2 Cell hybridization interface between a Cartesian mesh and an unstructured mesh.
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3 | HYBRID FINITE VOLUME ON CARTESIAN/UNSTRUCTURED MESH
METHOD

The FVTD method is a flexible numerical scheme based on differential equations, used for simulating 3-D EM
problems.6–8 Unlike the FDTD method, FVTD-UNST techniques can support meshes with cells of different shapes and
then correctly accommodate curved geometries but require a higher computational cost. Thus, considering hybrid
meshes, a practical approach to achieving accurate solutions while minimizing computational cost is to combine two
finite volume methods. The idea is to exclusively apply the more ressource intensive FVTD-UNST method to the
UNST-part and utilize another less costly scheme on the ST-part, such as an appropriate FVTD-ST scheme. We actually
propose a hybridization of meshes associated with a hybridization of numerical schemes. In this section, following the
introduction of the general principle of the finite volume scheme, we present and compare two implementations of
FVTD methods, one on ST meshes and the other on UNST meshes.

3.1 | General principle of the finite volume scheme

The general principle of the FVTD method consists in solving the conservative form of Maxwell's equations on each ele-
mentary cell that can be written as:

∂U
∂t

þr�F Uð Þ¼ 0, ð1Þ

where U ¼ Ex ,Ey,Ez,Hx ,Hy,Hz
� �T

and

F Uð Þ¼

0
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where ϵ0 and μ0, the electric permittivity and magnetic permeability of free space. Integrating (1) over the volume V of
a computation domain cell yields:

∂

∂t

Z
V
UdV þ

Z
S
F U�ð Þ �ndS¼ 0, ð2Þ

where U* = (E*, E*)T. E* and E* represent the values of E and H on the surface s with unit normal vector n pointing
outward from volume V. The numerical flux F(U*) is defined as ((n � H*)/ϵ0, �(n�H*)μ0)

T. In this paper, only cell-
centered FVTD schemes are considered to evaluate the field components. In each cell, electric field E and magnetic
field H are computed at the center of gravity of that respective cell. After discretization of the computational domain,
we obtain for each cell of volume Vi:

Vi
∂Ui

∂t
¼�

XNs

l¼1

SlF U�
l

� �
nl, ð3Þ

where Ns denotes the number of surface Sl bounding the cell i, and nl represents the outward unit normal vector to the
surface Sl. Therefore, to compute fields at the center of the cells, it is necessary to evaluate numerical fluxes on their
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boundary surfaces. To achieve this, we use the field values from the volumes adjacent to the considered cell. Specifi-
cally, to approximate numerical fluxes (n � H* and n � E*) in free space at the interface between two volumes VL and
VR, we utilize tangential continuity of the fields and characteristic equations as described by Bonnet et al.,7 to obtain:

n�H� ¼ 1
2

n� HRþHL
� �þ ffiffiffiffiffi

ϵ0
μ0

r
n�n� ER�HL

� �� �
, ð4Þ

n�E� ¼ 1
2

n� ERþEL
� �þ ffiffiffiffiffi

μ0
ϵ0

r
n�n� HR�HL

� �� �
, ð5Þ

where E L and HL represent the electric and magnetic field values at the center of volume VL and ER and HR field
values at the center of volume VR.

3.2 | Finite volume method on Cartesian mesh (FVTD-ST method)

In this subsection, we provide the FVTD scheme that will be applied to the ST-part of our hybrid mesh. Utilizing the
general principle of the finite volume method outlined earlier, we delve into the chosen numerical flux approximation
in this scheme. To minimize the computational cost, we opt for a noncentered Godunov's approximation and incorpo-
rate a γ parameter to weight dissipation (γϵ[0,1]). This approach represents a simplified version of the βγ approxima-
tion, where the arguments in the flux definition are replaced with extrapolated arguments involving gradients from
adjacent cells and a weighting factor β to minimize dispersion.12 In the context of implementation within our hybridiza-
tion strategy, based on our numerical experiments, we find it is unnecessary to complicate the flux calculation using
the βγ method to increase the order of approximation.

Finally, to calculate fluxes in free space at the interface between two volumes VL and VR, we introduce only the
additional parameter γ into to (4) and (5) as follows:

n�H� ¼ 1
2

n� HRþHL
� �þ γ

ffiffiffiffiffi
ϵ0
μ0

r
n�n� ER�HL

� �� �
, ð6Þ

n�E� ¼ 1
2

n� ERþEL
� �þ γ

ffiffiffiffiffi
μ0
ϵ0

r
n�n� HR�HL

� �� �
: ð7Þ

The use of Cartesian meshes, where cells are indexed by (i, j, k), simplifies flux computation and does not require
the storage of flux quantities. For the cell (i, j, k), the time derivative of magnetic component Hx can be thus written as
follows:

∂Hx

∂t
i, j,kð Þ ¼� 1

μ0

n�y�E� i, j� 1
2 ,k

� �� �
x

∂y
þ nþy�E� i, jþ 1

2 ,k
� �� �

x

∂y
þ n�z�E� i, j,k� 1

2

� �� �
x

∂z
þ nþz�E� i, j,kþ 1

2

� �� �
x

∂z

 !
,

ð8Þ

where ()x denotes the x�component and n±y, n±z represent unit normal vectors at the specified boundary surfaces of cell
(i,j,k), expressed in the Cartesian basis (x, y, z). Considering the interface (i, j�1/2, k), we have:

n�y�E� i, j�1
2
,k

� �� �
x

¼Ez i, j�1,kð ÞþEz i, j,kð Þ
2

�γ

2
μ0c0 Hx i, j,kð Þ�Hx i, j�1,kð Þð Þ

, ð9Þ

where c0 ¼ 1=
ffiffiffiffiffiffiffiffiffiϵ0μ0

p
, the speed of light in the medium. In the case of the interface between (i, j+ 1/2, k):
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nþy�E� i, jþ1
2
,k

� �� �
x

¼�Ez i, jþ1,kð Þ�Ez i, j,kð Þ
2

�γ

2
μ0c0 Hx i, j,kð Þ�Hx i, jþ1,kð Þð Þ

: ð10Þ

Fluxes are expressed in an analogous way on each interface.
Note that by setting γ = 0, we obtain a centered Godunov approximation. A value of γ that is too high results in

excessive dissipation, while an excessively low value, although reducing dissipation, leads to parasitic oscillations char-
acteristic of centered fluxes.12

For temporal discretization, we use an explicit leap-frog scheme. The time step dtST should satisfy a CFL criterion
given, in free space, by13:

dtST ≤
dl
c0
, ð11Þ

where dl denotes the spatial step size.

3.3 | Finite volume method on unstructured mesh (FVTD-UNST method)

In contrast to the previous Cartesian approach, utilizing unstructured meshes complicates the computation of numeri-
cal fluxes, leading to a higher computational cost. This complexity arises because evaluating fluxes necessitates storing
field values and related information for each adjacent cell. Consequently, the FVTD-UNST scheme requires more mem-
ory than the FVTD-ST technique. Additionally, to ensure the stability of the FVTD-UNST scheme, the time step dtUNST

must satisfy the following nonoptimal CFL condition14:

dtUNST ≤ min
k¼1,NV

1
c0

Vk

ΣNS
l¼1Sl

, ð12Þ

where NV is the number of cells in the computational domain and NS the number of surfaces Sl that enclose the vol-
ume Vk.

Therefore, the time step could be very small, as it needs to correspond to that of the smallest cell. This requirement
can be constraining and costly for the computation.

In the following Section 3.3.1, we introduce two options to overcome these constraints and reduce the computation
time: variable approximation order and local time stepping strategies. Subsequently, in Section 3.3.2, we provide exam-
ples in free space illustrating the advantages of both strategies.

3.3.1 | Variable approximation order and local time stepping strategies

The variable approximation order consists in choosing a local flux approximation, which depends on cell size. We opt
for a GODUNOV scheme (spatial order 0) for the smallest cells and a MUSCL scheme15 (spatial order 1) for the other
cells. The latter requires evaluating internal gradients for each field component, that is 18 additional unknows, and con-
sequently increasing the computational cost. Therefore, limiting the use of MUSCL scheme to specific cells reduces the
computation of gradients, lowering both computational cost and memory requirements. We consider, based on our
numerical experiments, that the approximation using a Godunov scheme is sufficiently accurate for cells with dimen-
sions dr < λ/30, where dr denotes the radius of the circle within which the considered cell is inscribed and λ the
wavelength.

The second improvement option involves introducting local time stepping instead of using a single global time step
for the entire simulation. A minimum time step dtmin and a maximum time step dtmax are computed based on cell size.
The global time step dtUNST is not simply the previously calculated minimum time step. Instead, N cell classes are
defined, and for each class Ni, a local time stepping is computed:

6 of 20 MAZZOLO and FERRIERES
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dtNi
loc ¼ 3Ni�1dtmin : ð13Þ

The global time step dtUNST is then set as the maximum among the computed local time steps, as follows:

dtUNST ¼ 3N�1dtmin ð14Þ

In each time iteration, fields for each cell class Ni are computed recursively at their respective local time steps until
reaching the global time. The use of local time stepping enables varying computation times for different cell class,
rather than employing the smallest time step dtmin for all cells. This approach ultimately results in a significant reduc-
tion in central processing unit (CPU) time.

3.3.2 | Numerical examples in free space

We conducted tests on a hybrid ST/UNST mesh representing a PEC sphere with a radius of 0.5 m in free space

(Figure 1). The input waveform's time function is defined as a Gaussian pulse: Ex ¼Aexp
� t�t0ð Þ2

b2

� �
, with A= 1, t0= 10 ns

and b= 1 ns. The constants were chosen to ensure sufficient energy propagation within the frequency range of interest,
specifically ranging from 100 to 500MHz (λmin= 3m, λmax= 0.6m). The incident wave is introduced using the SF formu-
lation.1 The computational space is a rectangular cuboid of dimensions 2.4m� 2.4m� 2.6m, within which five absorb-
ing layers, also known as PML (perfectly matched layer),16 were introduced in each direction (±x, ±y, ±z). ST cells

have edges of dHl ¼ 0:04m (≈ λmax=15), and UNST cells for surface mesh object have edges of a= 0.08m (≈ λmax=8). We
computed the backscattered radar cross section (RCS) as function of frequency, using our stand-alone FVTD-UNST
method, both with and without local approximation order, as well as with and without the local time stepping. The
RCS of a target is a property that can be analytically computed for a PEC sphere using Mie series.17 Therefore, we can
validate our results using the solution provided by the RCSsphere MATLAB function from the Radar Toolbox,18 repre-
sented in black in Figure 3.

To highlight the advantages of variable approximation order, we conducted three simulations employing local time
stepping with a GODUNOV approximation, a MUSCL approximation and variable order. In the case of the latter, flux
approximation was carried out using the GODUNOV's method for 2761 cells and the MUSCL approach for 221939 cells.
The results in Figure 3 indicate that the solutions provided by the MUSCL approximation alone and the variable
approximation order are nearly identical and closest to the analytical solution. In contrast, the solution from the

FIGURE 3 Sphere RCS as function of frequency, computed using FVTD-UNST simulations with different numerical flux

approximations.
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GODUNOV's method alone deviates significantly from the analytical solution, especially at higher frequencies. Addi-
tionally, employing variable approximation order reduces computation time compared with a MUSCL scheme alone
(Table 1). Therefore, using variable-order for flux approximation based on cell size enhances accuracy compared with a
uniform Godunov's approach and saves time over a MUSCL approximation alone.

Then, we conducted two simulations with variable approximation order: one without local time stepping and the
other with it. In the first approach, considering the hybrid mesh used, the global time step dtUNST was 2.1629 � 10�12 s.
However, in the second approach, we defined three cell classes (Table 2) and the global time step dtUNST was set to
1.9466 � 10�11 s. For similar solutions, the computation time for the simulation without local time stepping is 6.4 times
higher than the computation time for the simulation with local time step. This clearly demonstrates significant
improvements achieved by implementing local time stepping. Given these results, the two proposed strategies will lead
to a much more efficient scheme in terms of CPU time.

3.4 | Hybrid FVTD-ST/UNST scheme

The proposed hybrid method, combining FVTD-ST and FVTD-UNST techniques does not encounter stability problems
because the use of two types of finite volume methods ensures consistent numerical fluxes at interfaces. Stability is not
easily guaranteed with other hybrid approaches, such as FDTD/FVTD-UNST hybridization.10

In our hybridization process between the FVTD-ST and FVTD-UNST schemes, a global time step needs to be
defined. However, time steps in ST- and UNST-parts are not necessarily identical. Consequently, the global time step
dtglobal used for the complete simulation is chosen as the minimum between the time steps of the ST- and UNST-parts
to ensure the stability. The hybridization is performed on a free space interface. Time iterations are performed on the
global time step and the computations for the ST- and UNST-parts are performed on separate CPUs. In each time itera-
tion within the UNST-part, fields for each cell class are computed recursively at each local time step until reaching the
global time. Electric and magnetic field information is then exchanged between the finite volume schemes at time meet-
ing points (Figure 4).

Our objective was to compare the efficiency of our hybrid method with that of our FVTD-UNST, FVTD-ST (with
parameter γ = 0.01) techniques, as well as the classic FDTD scheme. To achieve this, we applied our hybrid method to
the hybrid sphere mesh used previously to test the stand-alone FVTD-UNST approach. We then applied FVTD-ST (with
parameter γ = 0.01), FDTD techniques on a Cartesian mesh equivalent to the hybrid mesh, with ST cells having edges
of length dCl ¼ 0:04m. The results of these simulations are shown in Figure 5. It is obvious that the solution closest to
the analytical solution is achieved with unstructured finite volume approach on the hybrid mesh, still represented in
dark blue. However, despite the improvements made through the use of variable approximation order and local time
stepping, the computation time is significantly higher compared with finite difference or finite volume techniques on
Cartesian meshes.

The hybrid solution is relatively similar to the FVTD-UNST one, but it is critical to note that the hybrid method
offers a significant computational time advantage due to the reduced number of operations in ST-part (Table 3). While

TABLE 1 Gain in central processing unit (CPU) times compared to that obtained with variable approximation order (TCPU
vo ) for FVTD-

UNST computations on hybrid mesh, depicting a PEC sphere in free space, with varying numerical flux approximations.

Approximation type GODUNOV MUSCL

CPU time 0.4 TCPU
vo 1.1 TCPU

vo

TABLE 2 Distribution of mesh cells into three classes and their corresponding local time steps.

Class Number of cells per class dtloc

1 1133 2.1623 � 10�12 s

2 17 657 6.4886 � 10�12 s

3 205 910 1.9466 � 10�12 s

8 of 20 MAZZOLO and FERRIERES

 10991204, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jnm

.3270 by O
N

E
R

A
, W

iley O
nline L

ibrary on [21/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the results are satisfactory, we do notice some attenuation and dispersion for higher frequencies compared to the ana-
lytical solution.

In our investigation, we set out to determine whether the issue stemmed from employing an excessively large spatial
step. To assess this, we started by reducing the cell edge size a of the UNST surface mesh of the sphere by a factor of
2 (≈ λmax=15 instead of ≈ λmax=8). As we can see in Figure 6, this does not improve the results and increases the com-
putation time by a factor of 1.4. From these results, we note that an edge size a of 0.08m for the UNST surface mesh is
sufficient for achieving a conformal representation of the sphere. However, it does not prevent dispersion and attenua-
tion at higher frequencies.

FIGURE 4 Diagram explaining the Hybrid method: FVTD-UNST and FVTD-ST field computations carried out separately, with field

information exchanged.

FIGURE 5 Sphere RCS as function of frequency obtained from FDTD, FVTD-ST, FVTD-UNST, and hybrid FVTD-ST/UNST

computations.

TABLE 3 Gain in central processing unit (CPU) times for RCS computations of a PEC sphere in free space using FVTD-ST schemes on a

Cartesian mesh, the FVTD-UNST scheme and the hybrid FVTD-ST/UNST method on a hybrid mesh, compared to that obtained with FDTD

on a Cartesian mesh (TCPU
FDTD).

FVTD-ST FVTD-UNST Hybrid Method

CPU time 2.5 TCPU
FDTD 158.5 TCPU

FDTD 54.7 TCPU
FDTD

MAZZOLO and FERRIERES 9 of 20
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We then reduce the cell edge size dHl of the ST-part by a factor of 2 (≈ λmax=30 instead of ≈ λmax=15). This time, as
can be seen in Figure 7, the results are improved and fit in better with the analytical solution, but with a higher compu-
tational time (Table 4).

We also aimed to determine if FDTD method with a finer mesh provide better results than our hybrid approach. To
assess this, we need to reduce the cell edge size dCl of the Cartesian mesh by a factor of 4, giving a cell edge size of

FIGURE 6 Sphere radar cross section (RCS) as function of frequency, computed using hybrid FVTD-ST/UNST simulations with varying

cell edge size a of the sphere surface mesh.

FIGURE 7 Sphere radar cross section (RCS) as function of frequency: Results obtained from FDTD computations on Cartesian mesh

and hybrid FVTD-ST/UNST computations on two different hybrid meshes.

TABLE 4 Gain in central processing unit (CPU) times for radar cross section computations of a perfect electric conductor sphere in free

space using the finite difference time domain technique (FDTD) scheme on Cartesian mesh with cell edge size dCl , and hybrid FVTD-ST/

UNST method on a hybrid mesh with cell edge size dHl ¼ 0:2m in the ST-part, compared to that obtained with hybrid FVTD-ST/UNST

method (TCPU
Hyb ) on a hybrid mesh with cell edge size dHl ¼ 0:4m in ST-part.

FDTD Hybrid FVTD-ST/UNST method

dCl ¼ 0:01m dHl ¼ 0:02m

CPU time 3.6 TCPU
Hyb 5.3 TCPU

Hyb

10 of 20 MAZZOLO and FERRIERES
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dCl ¼ 0:01m (≈ λmax=60 instead of ≈ λmax=15). The number of cells is then multiplied by 43. The corresponding solution
is shown in Figure 7. We observe that indeed, the FDTD method produces a result closer to the analytical solution, but
with higher computational time and higher memory requirements compared with our hybrid method with four times
larger cell edges in the ST-part (Table 4). However, it must be acknowledged that we need to decrease the mesh size in
the ST-part to 0.02m to achieve a hybrid solution close to that of the finite difference method, leading to higher compu-
tational costs in the end. Nevertheless, in light of our ongoing work, there is room for improvement in our hybrid
FVTD-ST/UNST method. Indeed, it is not fully optimized in terms of the number of operations per iteration, especially
regarding the FVTD-ST scheme and regarding computations within the PML. Moreover, in complex scenarios, espe-
cially those involving multi-layered ground with varying wave propagation speeds, our hybrid method and meshes are
positioned to outperform traditional approaches. Indeed, when employing Cartesian meshes, variations in ground per-
mittivity may require finer meshing, increasing the number of cells in the entire computational domain. In contrast,
hybrid meshes allow us to consider cell nonconformity, and local refinement areas, thereby limiting the number of cells
in the computational domain. Consequently, our hybrid method is expected to yield more efficient and accurate solu-
tions compared with finite difference or finite volume methods used stand-alone on Cartesian meshes, while
maintaining a lower computational cost than using FVTD-UNST method stand-alone on a hybrid mesh.

4 | SIMULATIONS OF SCATTERING BY A BURIED OBJECT IN
LOSSY MEDIA

In the previous section, we have introduced an efficient hybrid method for evaluating SFs. As emphasized, the true
capabilities of our hybrid meshes and scheme are expected to shine in scenarios involving more intricate media than
free space, especially in simulating SFs from buried objects in lossy media. Within the context of our application,
focused on simulating airborne radar measurements, this section introduces models from existing literature capable of
handling such configurations. We outline our approach to efficiently integrate these models into the finite volume tech-
nique. Then, we provide some examples to validate their implementation in the FVTD-UNST scheme and demonstrate
the benefits of using locally refined meshes. Finally, we explain and elaborate the adaptation and challenges of using
this models in the hybrid FVTD-ST/UNST scheme.

4.1 | Models related to the consideration of the ground

In the simulation of airborne measurements within the context of detecting buried objects, it is imperative to consider
various models in our numerical schemes. This is especially essential for the introduction of a plane wave source in the
presence of the ground and for the far-field evaluation. Following,3 the incident field is evaluated by solving a 1-D Max-
well problem in the presence of the bi-medium (air/ground). This is achieved by exploiting invariance in the direction
perpendicular to the plane of incidence and introducing a time delay. The general principle is as follows: Field values
are obtained numerically via an 1-D auxiliary simulation, carried out along with the main simulation. A smaller time
step dt1D is used in the 1-D auxiliary grid for calculating the incident field, ensuring stability. And to conform to the
main-grid time spacing, the 3-D time step dt3D must be an odd multiple of the 1-D grid time step: dt3D = (2M�1)dt1D
(with M an integer). Updates for 1-D-grid are done in a single main grid update cycle. The 3-D source is updated from
1-D while ensuring correspondence of each field component between the 3-D and 1-D time axes (Figure 8).

Considering the local time stepping in FVTD-UNST, the source update is more complex. Indeed, remember that
presence of cell classes with local time stepping means that the global time step of the FVTD-UNST method,
corresponding to dt3D, is: dt1D = 3(N�1)dtmin (with dtmin the minimum time step of the UNST-part). In this case, to con-
form to the main-grid time spacing, it's the minimum time step dtmin that must be an odd multiple of the 1-D grid time
step: dtmin = (2M�1)dt1D. The 3-D source is updated for each cell class from 1-D while ensuring correspondence of each
field component between the 3-D and 1-D time axes. As mentioned earlier, fields for each cell class are computed recur-
sively at each local time step until reaching the global time (Figure 9). The incident field is then introduced using the
SF formulation.1

Concerning the computation of the far SFs, we should introduced it using a Near- to Far-field transformation in fre-
quency domain, akin to the approach outlined in19 for the FDTD scheme. This transformation is performed in
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frequency domain because, in the presence of a lossy dielectric half-space such as the ground, the Green's functions
involved in the computation of the far-field are very difficult to express in the time domain.

Regarding our hybrid method, we choose to implement the Near-to-Far-field transformation in frequency domain,
using SFs computed with FVTD-ST scheme, along with the computation of the incident field in the FVTD-UNST

FIGURE 8 Time step reduction in the 1-D auxiliary grid for stability and correspondance between 3-D and 1-D times axes, with

dt3D = 3dt1D (M = 2).

FIGURE 9 Time step reduction in the 1-D auxiliary grid for stability and correspondance between 3-D and 1-D times axes in the UNST-

part, for dtUNST = 3dtmin in presence of two cell classes, and dtmin = 3dt1D (M = 2).
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scheme. We initially implement the two models presented here into our FVTD-UNST scheme to establish an FVTD
framework able to handle air/ground/object scenarios and utilizing hybrid meshes. However, to fully capitalize on the
advantages offered by our hybrid FVTD-ST/UNST scheme within this context, further investigation is required, and
adjustments need to be incorporated. The chosen strategy and its associated challenges are elaborated upon in detail in
Section 4.3.

4.2 | Numerical examples

In this section, we validate the previously introduced models using our FVTD-UNST method stand-alone, through
examples from the literature that feature a cube and a sphere buried in a homogeneous ground. Subsequently, we
revisit and adapt the latter to examine and highlight the benefits of using locally refined meshes.

4.2.1 | Validation of the models for ground consideration

Our tests for validation are performed on diffraction problems on a dielectric cube and a dielectric sphere buried in a
half-space medium (Figures 10 and 11). Both the objects and the medium are lossy, with relative permittivity values of
ϵ0c ¼ 2:9 and ϵ0g ¼ 3:0, and conductivity values of σc= 0.001669 and σg= 0.003338, respectively. The time function of the

input waveform is a Gaussian pulse defined by: Ey ¼Aexp
� t�t0ð Þ2

b2

� �
, with A= 1, t0= 2.5 ns and b= 0.25 ns. The selected

frequency is 600MHz (λ= 0.5m in free space). Following,2 the computational domain consists of 903 cells, each mea-
suring 0.005m (λ/100) on a side. Along the z-axis, the lower 60 cells represent the ground, while the upper 30 cells rep-
resent free space. We incorporated five PMLs16 in each direction (±x, ±y, ±z), adapted to the presence of a lossy
dielectric medium. It should be noted that for the cube mesh, only hexahedral cells are used, whereas for the sphere, a
hybrid ST/UNST mesh with tetrahedral cells around the object is employed (similar to the one shown in Figure 1).

Figures 12 and 13 present a comparison between the scattered electric fields obtained by Hill20 and our simulations.
Our FVTD results are similar to those of the Reference 20 but slightly higher, with a relative error estimated to be
around 8% on average for the cube and 5% for the sphere, based on peak values. We considered this relative error
acceptable, taking into account the differences in computational methods and acknowledging that Hill20 employs the
Born approximation, which, according to him, introduces an estimated error of 10% in his calculations. Moreover,
under normal incidence conditions (θi = 0), our results for the cube also demonstrate agreement with those of a more
recent study.2

FIGURE 10 Geometry for a lossy dielectric cube buried in a lossy homogeneous ground illuminated by an incident plane wave.

MAZZOLO and FERRIERES 13 of 20
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4.2.2 | Locally refined meshes

In this section, we revisit the previous examples. However, instead of using meshes with cells of identical sizes, we
employ locally refined hybrid meshes. For both the cube and the sphere, we define two areas: one containing free space
and the other containing the ground and the object. The EM wave propagation speed in the ground is given by:
vg ¼ c0=

ffiffiffiffiffi
ϵ0g

p
(with c0, the wave propagation speed in free space). Given the relative permittivity value of the ground, the

wave propagation speed in the ground will be almost two times slower than in free space. Therefore, we choose to
maintain a cell edge size of 0.005m in the ground (�λg/58) but to coarsely mesh the part representing free space with
cells having an egde size of 0.015m (�λg/33). The dimensions of the computational domain remain unchanged; how-
ever, the number of cells in the zone representing free space has been divided by three. Subsequently, we will refer to
these new configurations as refined meshes Acube and Asphere. Figure 17, located in Section 4.3, shows an illustration of
the cross-section of the mesh Asphere. Figures 14 and 15 show that the results obtained for normal incidence (θi= 0�)
using refined meshes are very close to those we obtained previously with uniform meshes, and approach those obtained
by Hill.20 Furthermore, when comparing the computation times, the use of the refined meshes Acube and Asphere, signifi-
cantly reduces the computational costs. Indeed, in both cases, the computational time is reduced by a factor of 1.5. This
reduction is partly due to the smaller number of cells to be processed but also thanks to the local time stepping. Indeed,

FIGURE 11 Geometry for a lossy dielectric sphere buried in a lossy homogeneous ground illuminated by an incident plane wave.

FIGURE 12 The far-zone scattered radiation electric fields from a buried dielectric cube for an y-polarized wave at various incidence

angles θi. Comparison between20 (black curves) and our simulations (blue curves).
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since two cell domains with significantly different sizes have been established regarding the cube, two cell classes along
with their respective local time steps have been defined (Table 5). Thus, the global time step used here
(dtUNST= 7.4999� 10�12 s) is three times larger than when using the non-refined mesh (dtUNST= 2.4999� 10�12 s).
Regarding the sphere, the global time step has not changed (dtUNST= 4.1897� 10�12 s), since five classes have been
defined in both cases (uniform mesh and refined mesh Asphere); only the number of cells assigned to each class has
evolved due to the smaller number of cell in the zone corresponding to the air (Table 6).

These examples demonstrate the possibility of using a mesh with two different cell size areas: one for the air and
another for the ground and object, thereby reducing computational cost. Refined hybrid meshes with more than two
zones are also conceivable when necessary.

To conclude, let's consider one final example that of a cube with a higher relative permittivity compared with that
of the ground. As the relative permittivity of a dielectric material in the computational scene increases, finer meshing

FIGURE 13 The far-zone scattered radiation electric fields from a buried dielectric sphere for an y-polarized wave at normal incidence

θi = 0�. Comparison between20 (black curve) and our simulations (blue curve).

FIGURE 14 The far-zone scattered radiation electric fields from a buried dielectric cube for an y-polarized wave at normal incidence

angle θi = 0�. Comparison between20 (black curves) and our simulations (blue and red curves).
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of the material becomes necessary. Since only the permittivity of the object has changed, we can consider only reducing
the mesh size corresponding to it without modifying those of the ground and free space. The cube now has a permittiv-
ity value ϵ0c of 12.0 instead of 2.9. To accommodate this new high permittivity material, we halved the cell size rep-
resenting the cube (the cells now have edges of 0.0025m �λg/58). Subsequently, we will refer to this configuration as
refined mesh Bcube. Before performing the computation, we ensured that using this new refined mesh while keeping ϵ0c
at 2.9 would yield the same results as before, which indeed proved to be the case.

Figure 16 presents the result obtained with ϵ0c ¼ 12:0 and the refined mesh Bcube with three distinct zones (the cube,
the ground and free-space), in the case of normal incidence. Comparing the results obtain with ϵ0c ¼ 2:9 (Figure 15) and
with ϵ0c ¼ 12:0 (Figure 16), we observe that the amplitude of the radiated field is higher when the permittivity contrast
between the ground and the object is more significant. One possible explanation for this observation is that the higher
the contrast between the ground and the object, the more pronounced the object's response is.

FIGURE 15 The far-zone scattered radiation electric fields from a buried dielectric sphere for an y-polarized wave at normal incidence

θi = 0�. Comparison between20 (black curve) and our simulations (blue and red curves).

TABLE 5 Distribution of mesh cells into two classes for FVTD-UNST computations on the refined mesh Acube, in the case of the

dielectric cube, and their corresponding local time steps (dtUNST = 7.4999 � 10�12 s).

Class Number of cells per class dtloc

1 686 664 2.4999 � 10�12 s

2 13 872 7.4999 � 10�12 s

TABLE 6 Distribution of mesh cells into five classes for FVTD-UNST computations on the uniform mesh and the refined mesh Asphere,

in the case of dielectric sphere, and their corresponding local time steps (dtUNST = 4.1897 � 10�12 s).

Class dtloc Number of cells per class Number of cells per class
Uniform mesh Refined mesh Asphere

1 5.1725 � 10�14 s 4 4

2 1.5517 � 10�13 s 16 12

3 4.6552 � 10�13 s 17 039 17 149

4 1.3966 � 10�12 s 1 003 896 690 573

5 4.1897 � 10�12 s 2 13 874
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Treating this scenario with a uniform mesh increases the number of cells by a factor of 8.8. Consequently, for identi-
cal solutions, this results into an increase of this order of magnitude in computation time compared with the simulation
using the refined mesh Bcube. The gain obtained thanks to refinement is substantial. Once again, this is due to the
reduction in the number of cells to represent free space and the use of local time-stepping (two classes of cells: one for
free space and one for the ground and object), similar to the previous example.

In these examples, we have demonstrated the advantages of using locally refined meshes over uniform meshes, with
our FVTD-UNST method, for handling complex scenarios involving multilayered media with varying propagation
velocities and objects with diverse permittivities. Instead of meshing the entire domain based on the highest permittiv-
ity value, this approach enables a fine mesh only in necessary areas by adjusting the cell size according to the specific
dielectric properties of each object or medium in the computational scene.

An additional advantage of employing locally refined zones lies in the ability to implement a local time stepping,
thereby reducing computational costs.

The last example, featuring rectangular shapes, is certainly not the most relevant for effectively showcasing or capi-
talizing on our FVTD-UNST associated with locally refined hybrid meshes. Indeed, for this type of configuration the
FDTD method is more suitable and remains more efficient in terms of computation time. However, the future imple-
mentation of the hybrid FVTD-ST/UNST method on such meshes will attenuate this performance difference, as we
have seen in the case of the free space example in Section 3.4. Moreover, the combination of the hybrid FVTD-ST/
UNST method with hybrid-refined meshes should surpass the FDTD approach, in terms of accuracy and computational
cost, in the presence of more complex scenarios involving curved geometries.

4.3 | Hybrid FVTD-ST/UNST approach for multiple ST- and UNST-zones

In the previous subsections, we validated the models required to consider scenarios involving objects buried in
homogeneous grounds, first introducted in the stand-alone FVTD-UNST scheme. We have also demonstrated through
the previous examples, that in the presence of multiple mediums with different propagation velocities, our stand-alone
FVTD-UNST approach associated with locally refined hybrid meshes present real advantages. However, there is still-
room for performance improvement by adapting and utilizing the hybrid FVTD-ST/UNST solution for multiple ST- and
UNST-zones.

Let's illustrate our strategy considering an air/ground/object scenario where we employ a hybrid ST/UNST mesh,
processed by our hybrid FVTD-ST/UNST solver. The air and the ground are two distinct dielectric zones. We can
choose to employ either a hybrid ST/UNST mesh in which there is only one ST-area with a constant spatial step

FIGURE 16 The far-zone scattered radiation electric fields from a buried dielectric cube for an y-polarized wave at normal incidence

angle θi = 0�.
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encompassing both air and ground, or a locally refined hybrid ST/UNST mesh with two ST-areas of different mesh sizes
tailored to the distinct propagation speeds.

Considering the first possibility, we are constrained to use the smallest spatial step, adapted to the medium with the
slowest propagation speed, for the entire ST-zone. The two distinct propagation speeds (in air and ground) imply two
distinct time steps. Thus, we end up with a Cartesian mesh with a constant spatial step and two temporal steps. If the
approach described in Section 3 suggests adopting the smaller of these time steps as the global time step for the ST-part
(dtST), this is clearly not the most judicious approach. Despite restricting the use of the FVTD-UNST solver only to
UNST-parts, using the same minimal time step for all ST-parts is not very efficient. Therefore, to consider the two time
steps, it is necessary to introduce a local time stepping strategy similar to the one employed in the FVTD-UNST scheme
into the FVTD-ST technique. The challenge lies in defining time meeting points between the two schemes. To accom-
plish this correctly, we propose defining an equal number of classes with identical local time steps for all schemes, with
time meeting points set at the time steps of the largest class. This requires each scheme to know the minimum of the
maximum time step of all schemes (FVTD-ST and FVTD-UNST) as well as the minimum of the minimum time step of
all schemes.

By adopting this approach, the computational principle is similar to a global stand-alone FVTD-UNST computation,
in which all volumes are seen as unstructured. However, with the advantage of locally using simpler, less costly FVTD-
ST calculations, making the hybrid solver more efficient than the standalone FVTD-UNST approach on the same mesh.
Nevertheless, an obvious improvement from a mesh perspective can still be made, which is to not use the same spatial
step for the entire ST-zone, in order to limit over-meshing.

Now, let's consider the use of a locally refined hybrid mesh. The air and the ground are represented by two Carte-
sian areas with their respective constant spatial steps tailored to the propagation speeds. Generally, the air zone should
have a larger mesh size, as discussed in examples in Section 4.2.2. An evident advantage here is the reduction of cells in
the air zone, thanks to the use of locally refined meshes. At the air/ground interface, cells with more than six faces may
be present, thus becoming part of the UNST-portion (Figure 17). Overall, we would then have two ST-zones (air and
ground) and one UNST-zone encompassing the UNST cells around the object as well as those at the air/ground
interface.

To integrate this into the hybridization strategy, the idea is to consider hybridization between three schemes: two
FVTD-ST and one FVTD-UNST. The time meeting points would then be defined via local time stepping strategy, as
presented previously. This should present no more difficulty than the initial FVTD-ST/UNST hybrid strategy consider-
ing only one ST-zone and one UNST-zone.

This latter approach, which should prove to be much more effective than the stand-alone FVTD-UNST scheme on
locally refined hybrid meshes and then the hybrid FVTD-ST/UNST strategy on a “simple” hybrid mesh (only one

FIGURE 17 Cross section of a Hybrid ST/UNST mesh and cell hybridization interfaces between Cartesian and unstructured zones.
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ST-zone and one UNST-zone), is still under development. Our aim is for our hybrid method to surpass the efficiency of
the FDTD method, in particular by optimizing the number of iterations per operation in the FVTD-ST scheme.

5 | CONCLUSION

In this paper, we focused on simulating the RCS of buried objects illuminated by an airborne radar system. Due to the
geometry of the objects and the environments that could be considered, we have proposed a hybrid approach in terms
of meshes associated with a hybrid finite volume solution in terms of numerical schemes. In particular, we have dem-
onstrated the efficiency of this approach with simple examples, such as calculating the RCS of a PEC sphere in free
space. Additionally, we have shown that reducing the number of cells in the computational domain using refined
meshes, significantly decreases computation time, as illustrated in the case of computating SFs by a dielectric object
buried in a ground. The highlighted advantages include the precise consideration of geometries (curved surfaces), the
possibility of using locally refined meshes, and employing finite volume schemes adapted to both ST- and UNST-parts
in a stable hybrid solution. Our future work will revolve around improving the hybrid scheme, with a particular empha-
sis on enabling multiple Cartesian and unstructured areas with different local refinements, as well as optimizating the
number of operations per iteration in the FVTD-ST scheme.
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