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Abstract. We consider an analytic function from Rn to R and provide
some sufficient conditions involving homogeneous polynomials with re-
spect to some family of dilations ensuring that the function presents a
strict local minimum at some point. For a polynomial function, we show
how to use Tarski-Seidenberg theorem or Sturm theorem to investigate
the same issue.
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1 Introduction

Optimization in spaces of finite dimension is a classical part of a course in real
analysis, which is teached because of its importance in many applications, e.g. in
Engineering, Automatic Control, Neural Networks, etc. In Automatic Control,
a Lyapunov function has often to be searched for to ensure that a closed-loop
system is stabilized at the origin (see e.g. [1]). A given function is a Lyapunov
function for the system if and only if it is positive definite and its Lie derivative
is negative definite. Thus, there is a real need for having efficient tests to decide
whether a given nonlinear smooth function is positive definite. We shall restrict
our study to analytic functions, even if analytic Lyapunov functions may fail to
exist for asymptotically stable systems with analytic vector fields (see e.g. [1]).

Most of the attention is usually paid to the first order condition (null gradient
to select critical points) and to the second order condition (positive definite
Hessian matrix for the existence of a strict minimum) (see e.g. [15,20]). Of course,
those conditions do not cover all the situations, and it could happen that terms
of order greater than 2 play an important role in the positive definiteness of the
function.

The aim of this article is to revisit the classical issue of the search of extrema
for a smooth function of several variables by using high-order conditions based
upon homogeneous polynomials associated with a family of dilations. The use
of weighted homogeneity is now classical in Automatic Control (see e.g. [1]).
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Assuming that all the critical points are known, we want to find sufficient con-
ditions ensuring that a given critical point corresponds to a local extremum or a
saddle point. It is an easy exercise to prove that a function f : R → R which is
analytic in a neighborhood of 0 and vanishes at 0 presents a strict minimum at 0
if and only if it can be expanded as f(x) = a2kx

2k+· · · with k ∈ N∗ and a2k > 0.
The situation is much more delicate in dimension n ≥ 2. If f is a polynomial
function, then using Tarski-Seidenberg theorem (see e.g. [3,5,6,11,17,18]), it is
possible to decide whether the function is locally or globally positive definite.
We refer the reader to [2,9,16] and the references therein for a description of the
algorithms used to decide whether the polynomial function f is positive definite.

The paper is outlined as follows. In Section 2, we provide necessary conditions
and sufficient conditions for an analytic function to be positive definite by using
expansions with respect to certain families of dilations. We provide a lot of
examples suggesting that a necessary and sufficient condition is difficult to guess.
In Section 3, we restrict ourselves to polynomial functions and show how Tarski-
Seidenberg theorem can be used to decide whether a polynomial function is
positive definite. Rather than using a general (involved and costly) algorithm
to mimic Tarski-Seidenberg theorem, we describe a method based on Sturm
sequences and apply it on a few examples of functions f ∈ R[x1, x2]. The paper
ends with some concluding remarks.

2 High-order conditions for the positive definiteness of
an analytic function

To fix the framework, using translations if needed, we can assume that the
critical point under investigation is x = 0 and that the value of the function at
0 is merely 0. We consider a function f : Rn → R (n ∈ N∗) as above which is
analytic in a neighborhood of 0 and is expanded as

f(x) =
∑
e∈Nn

aex
e for |xi| ≤ bi, 1 ≤ i ≤ n. (1)

In (1), (b1, ..., bn) ∈ (0,+∞)n, xe =
∏n

i=1 x
ei
i for x = (x1, ..., xn) ∈ Rn, and

e = (e1, ..., en) ∈ Nn. From the above assumptions,

a(0,...,0) = a(1,0,...,0) = · · · = a(0,...,0,1) = 0.

If M := max|xi|=bi |f(x)|, then by [10, Chapter 5, Lemma 1.1],

|ae| ≤
M

be
∀e ∈ Nn. (2)

We shall say that the function f is (locally) positive definite, if there exists ε > 0
such that

∀x ∈ Rn (0 < ∥x∥ < ε ⇒ f(x) > 0). (3)
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We shall denote f > 0 locally, in short. We are mainly concerned with the issue of
providing conditions about the coefficients ae ensuring that f is locally positive
definite; that is, 0 is a strict local minimum of f .

We denote |x| = x1 + · · · + xn and ∥x∥ = (x2
1 + · · · + x2

n)
1
2 for x ∈ Rn, and

Pk(x) :=
∑

|e|=k aex
e the homogeneous polynomial of degree k in the expansion

of f , so that f(x) =
∑∞

k=0 Pk(x).

It is well-known that if f(0) = 0, and 0 is a critical point (i.e. ∂f
∂xi

(0) =

0 ∀i ∈ {1, ..., n}) at which the Hessian matrix H =
(

∂2f
∂xj∂xi

(0)
)
1≤i,j≤n

is

positive definite, then f is locally positive definite at 0. In other words,

(P0 = P1 = 0 and P2 > 0) ⇒ f > 0 locally. (4)

Of course, the converse is only partially true. If f is locally positive definite, then
P0 = P1 = 0 and P2(x) = 1

2x
tHx ≥ 0 for all x ∈ Rn, but H is not necessarily

positive definite. For instance the function f(x1, x2) = x2
1 + x4

2 is (locally or

globally) positive definite, but the matrix H =

(
2 0
0 0

)
is not positive definite.

When the quadratic form P2(x) = 1
2x

tHx is degenerate, we have to look at terms
of higher order (here x4

2) to decide whether the function f is definite positive
or not. That example shows also that the variables xi should be given different
weights, which amounts to expanding f as a series of polynomials homogeneous
with respect to certain families of dilations (see below).

Let us give first necessary conditions for f to be locally positive definite.

Proposition 1. Assume that f be analytic and locally positive definite. Then
we have the following properties.
1. There exists k ∈ N∗ such that P1 = · · · = P2k−1 = 0, P2k ≥ 0 and P2k ̸≡ 0.
2. For each i ∈ {1, ..., n}, there exists ki ∈ N∗ such that ∂l

xi
f(0) = 0 for 0 ≤ l <

2ki and ∂2ki
xi

f(0) > 0.
3. Let b := min(b1, ..., bn). Then there exists ρ0 ∈ (0, b) such that for any ρ ∈
(0, ρ0) there exists N0 ∈ N∗ such that for any x with ∥x∥ = ρ there is some
k ∈ {2, ..., N0} with P1(x) = · · · = Pk−1(x) = 0 and Pk(x) ̸= 0 (actually
Pk(x) > 0).

Proof.
1. We need the following lemma.

Lemma 1. Let δ ∈ (0, 1). Then there exists C > 0 such that

∀x ∈ R
(
|x| ≤ δb ⇒ ∀k ∈ N

∞∑
j=k+1

|Pj(x)| ≤ C

(
|x|
b

)k+1 )
. (5)

Proof of Lemma 1: By (2), for |x| ≤ δb

|Pj(x)| ≤ M
∑
|e|=j

n∏
i=1

(
|xi|
bi

)ei

≤ M(

n∑
i=1

|xi|
bi

)j ≤ M(
|x|
b

)j ,
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so that

∞∑
j=k+1

|Pj(x)| ≤ M

∞∑
j=k+1

(
|x|
b

)j =
M

1 − |x|
b

(
|x|
b

)k+1 ≤ C(
|x|
b

)k+1

with C = M
1−δ ·

Let l ∈ N∗ be the first index for which Pl ̸= 0. Note that Pl(tx) = tlPl(x) for
(t, x) ∈ R× Rn. By Lemma 1, for any x ∈ Sn−1 := {x ∈ Rn; ∥x∥ = 1},

f(tx) = tlPl(x) + O(tl+1) as t → 0. (6)

If l ∈ 1+2N, Pl is odd, so there exists x ∈ Sn−1 with Pl(x) < 0 and f(tx) < 0 for
0 < t ≪ 1, contradicting the fact that f be locally positive definite. We obtain
the same conclusion if l ∈ 2N∗ and Pl(x) < 0 for some x ∈ Sn−1.
2. Pick any i ∈ {1, ..., n}. The function xi → f(0, ..., xi, ..., 0) is analytic and
locally positive definite. Therefore, it may be expanded as f(0, ..., xi, ..., 0) =
c2ki

x2ki + · · · with c2ki
> 0. It follows that

∂l
xi
f(0) = 0 for 0 ≤ l < 2ki and ∂2ki

xi
f(0) > 0.

3. Pick ρ0 ∈ (0, b) such that

∀x ∈ Rn (0 < ∥x∥ < ρ0 ⇒ f(x) > 0).

If the conclusion is false, one may find some number ρ ∈ (0, ρ0), a sequence (xj)
in ρSn−1, and a sequence Nj ↗ +∞ such that

P1(xj) = · · · = PNj (xj) = 0. (7)

Extracting a subsequence if needed, we can assume that xj → x in ρSn−1. But
from (7) and the fact that Nj ↗ +∞, we infer that Pi(x) = 0 for all i ≥ 1, so
that f(x) = 0, which is a contradiction. The fact that Pk(x) > 0 comes from (6)
for l = k and t → 0+.

Remark 1. 1. The converse of the third item in Lemma 1 is not true. Consider

f(x1, x2) = x2
1 + x4

2 − 4x1x
2
2 = (x1 − 2x2

2)2 − 3x4
2.

Then for x = (x1, x2) ̸= (0, 0), P1(x) = 0 and P2(x) > 0 if x1 ̸= 0, while
P1(x) = P2(x) = P3(x) = 0 and P4(x) > 0 if x1 = 0. Thus 3. holds with
N0 = 4. However f is not locally positive definite, for f(x2

2, x2) = −2x4
2.

Note also that there does not exist any number δ > 0 such that

(0 < t < δ and ∥x− (0, 1)∥ < δ) ⇒ P1(tx) + P2(tx) + P3(tx) ≥ 0.

Indeed P1(s2, s) + P2(s2, s) + P3(s2, s) = −3s4 < 0 for 0 < s < 1.
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Let us recall the classical definition of weighted homogeneity (see e.g. [1]).
For a given sequence r = (r1, ..., rn) ∈ (0,+∞)n, we define the one-parameter
family of dilations (δrt )t>0 associated with r by

δrt (x) := (tr1x1, ..., t
rnxn) ∀x = (x1, ..., xn) ∈ Rn, ∀t > 0.

Note that the set {δrt (x); x ∈ Sn−1, 0 < t < t0} ∪ {0} is a neighborhood of
0 for each t0 > 0.

A function h : Rn → R is said to be δr-homogeneous of degree p ∈ R+ if

h(δrt (x)) = tph(x) ∀x ∈ Rn, ∀t > 0.

From now on, we assume that r = (r1, ..., rn) ∈ (N∗)n. Then, from f(x) =∑
e∈Nn aex

e, we obtain that

f(δrt (x)) =
∑
e∈Nn

ae

n∏
i=1

(trixi)
ei =

∞∑
p=0

tp
∑

e ∈ Nn
r · e = p

aex
e.

Thus

f(x) =

∞∑
p=0

∑
e ∈ Nn
r · e = p

aex
e =:

∞∑
p=0

Hp(x) (8)

where the polynomial Hp is δr- homogeneous of degree p. (Note that Hp = 0 if
{e ∈ Nn; r · e = p} = ∅.) We note also that the relation Hp(δrt (x)) = tpHp(x) is
valid for all (x, t) ∈ Rn+1.

The following lemma extends Lemma 1 to the framework of the weighted
homogeneity.

Lemma 2. Let f be an analytic function expanded as in (1), let r = (r1, ..., rn) ∈
(N∗)n, and let the sequence (Hp)p≥0 be as in (8).
1. For any p ∈ N, let mp := minx∈Sn−1 Hp(x) and Mp := maxx∈Sn−1 Hp(x).
Then

mpt
p ≤ Hp(δrt (x)) ≤ Mpt

p ∀x ∈ Sn−1, ∀t > 0. (9)

2. For any p ∈ N, there exist t0 > 0 and Cp > 0 such that∑
q≥p+1

|Hq(δrt (x))| ≤ Cpt
p+1 ∀x ∈ Sn−1,∀t ∈ (0, t0). (10)

Proof.
1. From mp ≤ Hp(x) ≤ Mp for x ∈ Sn−1, we infer that

mpt
p ≤ Hp(δrt (x)) = tpHp(x) ≤ Mpt

p ∀x ∈ Sn−1, ∀t > 0.

2. Note that H0 = 0. Pick any δ ∈ (0, 1) and let C > 0 be as in Lemma 1. Then
for p ∈ N∗ and x ∈ Rn with |x| ≤ δb, doing the same computations as in the
proof of Lemma 1, we obtain

|Hp(x)| ≤
∑

e ∈ Nn
r · e = p

|aexe| ≤
∑

e ∈ Nn
e ̸= 0

|aexe| ≤ C
|x|
b

≤ Cδ.
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Pick t0 > 0 such that
∀x ∈ Sn−1 |δr2t0(x)| ≤ δb.

Then for x ∈ Sn−1 and t ∈ (0, t0), noticing that δrt = δrt
2t0

◦ δr2t0 , we obtain for

any p ∈ N ∑
q≥p+1

|Hq(δrt (x))| =
∑

q≥p+1

(
t

2t0

)q

|Hq(δr2t0(x))|

≤ Cδ

(
t

2t0

)p+1

(1 − t

2t0
)−1

≤ Cpt
p+1

with Cp := 2Cδ(2t0)−(p+1).
The following result extends Proposition 1 to the framework of the weighted

homogeneity. Its proof, being similar to those of Proposition 1, is omitted.

Proposition 2. Let f be an analytic function expanded as in (1), let r =
(r1, ..., rn) ∈ (N∗)n, and let the sequence (Hp)p≥0 be as in (8). Then the fol-
lowing properties hold:
1. There exists k ∈ N∗ such that H1 = · · · = H2k−1 = 0, H2k ≥ 0 and H2k ̸≡ 0.
2. There exists ρ0 ∈ (0, b) such that for any ρ ∈ (0, ρ0) there exists N0 ∈ N∗ such
that for any x with ∥x∥ = ρ there is some k ∈ {2, ..., N0} with H1(x) = · · · =
Hk−1(x) = 0 and Hk(x) > 0.

Remark 2. Proposition 2 can be used to show that some given function is not
positive definite. For instance, consider

f(x1, x2) = x2
1x

3
2 + x4

1 + x10
2 .

Pick r = (r1, r2) = (5, 2). Then f(x) = H16(x) + H20(x) with H16(x) = x2
1x

3
2

and H20(x) = x4
1 + x10

2 . As for x1 ̸= 0 and x2 < 0 we have H16(x1, x2) < 0, the
conclusion of the first item in Proposition 2 fails, so that f is not positive definite.
Note that with the usual dilation r = (r1, r2) = (1, 1), we have P4(x) = x4

1 ≥ 0
for all x ∈ R2.

Theorem 1. Let f be analytic around 0 and expanded as in (1). Pick (r1, ..., rn) ∈
(N∗)n and p0 ∈ N∗, and let (Hp)p≥0 be the sequence of δr-homogeneous polyno-
mials Hp as in (8). Then the two following assertions are equivalent:

(i) ∃C > 0,∃t1 > 0 f(δrt (x)) ≥ Ctp0 ∀x ∈ Sn−1, ∀t ∈ (0, t1);

(ii) ∃C̃ > 0,∃t̃1 > 0
∑
p≤p0

Hp(δrt (x)) ≥ C̃tp0 ∀x ∈ Sn−1, ∀t ∈ (0, t̃1).

Proof. We infer from (10) applied with p = p0 that
∑

p≥p0+1 |Hp(δrt (x))| ≤
Cp0t

p0+1. The result follows at once, since

f(δrt (x)) =
∑
p≤p0

Hp(δrt (x)) +
∑

p≥p0+1

Hp(δrt (x)).



Locally positive definite analytic function 7

Corollary 1. Let f be analytic around 0 and expanded as f(x) =
∑

p∈N Pp(x),
where the polynomial Pp is homogeneous of degree p for each p ∈ N. Then the
following assertions are equivalent:
(i) the function f is locally positive definite;
(ii) ∃p0 ∈ N, ∃C > 0, ∃ϵ > 0 f(x) ≥ C∥x∥p0 ∀x ∈ Rn with ∥x∥ < ϵ;
(iii) ∃p0 ∈ N, ∃C > 0, ∃ϵ > 0

∑
p≤p0

Pp(x) ≥ C∥x∥p0 ∀x ∈ Rn with ∥x∥ < ϵ.

Proof. If f is positive definite, then by  Lojasiewicz inequality (see [4,8,12,13])
there are some strictly positive constants C, ϵ, α such that f(x) ≥ C∥x∥α for
all x ∈ Rn with ∥x∥ < ϵ. Picking any p0 ∈ N with p0 ≥ α and changing the
constants C, ϵ if needed, we see that (i) and (ii) are equivalent. The equivalence
of (ii) and (iii) follows from Theorem 1 with δrt (x) = tx.

Remark 3. 1. In practice, for any given p0 ∈ N, the condition in (iii) can be
tested by using Tarski-Seidenberg theorem (see below). Indeed, the set E :=
{(C, ϵ) ∈ R2; ∀x ∈ Rn, (x,C, ϵ) ∈ F} where

F := {(x,C, ϵ) ∈ Rn × R× R; C > 0 and ϵ > 0 and(
∥x∥2 ≥ ϵ2 or x = 0 or (

∑
p≤p0

Pp(x))2 ≥ C2∥x∥2p0
)
}

is semi-algebraic, so that we can know if it is empty or not. This yields an
algorithm to check whether the function f is positive definite, even if we
don’t know when to stop (there is no bound for p0).

2. The condition in (iii) cannot be relaxed into ∃p0, p1 ∈ N, ∃C > 0, ∃ϵ > 0∑
p≤p0

Pp(x) ≥ C∥x∥p1 ∀x ∈ Rn with ∥x∥ < ϵ. (11)

Note first that explicit  Lojasiewicz exponents for positive definite polynomial
functions may be found in [8,12]. If P ∈ R[z1, ..., xn] is positive definite, then
by [8, Theorem 1.5]

P (x) ≥ C∥x∥(degP−1)n+1 (12)

in a neighborhood of 0 for some constant C > 0. The example P (x1, x2) :=
x2k
1 + (x1 − xk

2)2 for k ∈ N∗ from [12] shows that the  Lojasiewicz exponent
(degP − 1)n + 1 is (almost) sharp. Indeed, setting y = δrt (x) := (tkx1, tx2)
for 0 < t < 1 and x ∈ S1, we have that t2k ≤ t2kx2

1 + t2x2
2 = ∥y∥2 ≤ t2 and

f(y) = f(δrt (x)) = t2k
2

x2k
1 + t2k(x1 − xk

2)2 ≥ Ct2k
2

≥ C∥y∥2k
2

.

The  Lojasiewicz exponent is then 2k2. If f(x) = P (x)+x2k+1
2 , then f(tk, t) =

t2k
2

+ t2k+1 < 0 for t ∈ (−1, 0) and k ≥ 2. Therefore f is not locally positive
definite, and Corollary 1 is not valid if we take in (11) p1 = 2k2 > p0 = 2k.

Theorem 1 also yields a high-order sufficient condition for the function f to
be locally positive definite.
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Corollary 2. Let f be an analytic function in a neighborhood of 0 expanded as
in (1) and such that f(0) = 0. Assume the existence of a sequence of weights
(r1, ..., rn) ∈ (N∗)n, of an integer p0 ∈ N∗ and of a number µ > 0 such that, with
the δr-homogeneous polynomials Hp as in (8), we have

Hp0
(x) > 0 ∀x ∈ Sn−1, (13)∑

1≤p<p0

Hp(x) ≥ 0 ∀x ∈ Rn with ∥x∥ < µ. (14)

Then f is locally positive definite. Furthermore, there exist t1 > 0 and C > 0
such that

f(δrt (x)) ≥ Ctp0 ∀x ∈ Sn−1, ∀t ∈ (0, t1). (15)

Let k ∈ N∗ be as in the first item of Proposition 2 (2k ≤ p0). Then there exist
C ′ > 0 and t2 ∈ (0, t1) such that

f(δrt (x)) ≤ C ′t2k ∀x ∈ Sn−1, ∀t ∈ (0, t2). (16)

Proof. Let mp0 := minx∈Sn−1 Hp0(x). Then mp0 > 0 by (13). Pick t0 > 0 such
that ∥δrt (x)∥ < µ for 0 < t < t0 and ∥x∥ = 1. We infer from (9) and (14) that∑

p≤p0

Hp(δrt (x)) ≥ Hp0
(δrt (x)) ≥ mp0

tp0 ∀x ∈ Sn−1,∀t ∈ (0, t0).

Then (15) follows from Theorem 1. On the other hand, (16) follows from Propo-
sition 2 and (10).

Example 1. Let

f(x1, x2) = x2
1x

2
2 − 5x3

1x
3
2 + x6

1 − x3
1x

4
2 − x5

1x
2
2 + x8

2. (17)

Looking at the monomials x6
1 and x8

2, we select r = (r1, r2) = (4, 3), so that

f(x) = H14(x) + H21(x) + H24(x) + H26(x)

with

H14(x) := x2
1x

2
2, H21(x) := −5x3

1x
3
2, H24(x) := x6

1−x3
1x

4
2+x8

2, and H26(x) := −x5
1x

2
2.

Pick p0 = 24. From |x3
1x

4
2| ≤ (x6

1 +x8
2)/2, we infer that H24(x) ≥ (x6

1 +x8
2)/2 > 0

for x ̸= 0. On the other hand

H14(x) + H21(x) = x2
1x

2
2(1 − 5x1x2) ≥ 0 for ∥x∥ ≪ 1.

It follows from Corollary 2 that f is locally positive definite.

Some remarks are in order.

Remark 4. 1. Corollary 2 provides a high-order extension of the classical test
for the existence of a strict minimum based upon the Hessian matrix.
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2. The conclusion of Corollary 2 is certainly valid with less regularity about
f (assuming merely that f ∈ Cp(Rn) for some p ∈ N∗) by using Taylor
expansion at some order, but we will not provide such a statement.

3. Since Hp0
cannot be odd by (13), p0 has to be taken in 2N∗.

4. By Proposition 1, some monomials x2k1
1 , ... , x2kn

n should appear with positive
coefficients in the expansion of f . A possible choice of the sequence of weights
r = (r1, ..., rn) is then ri = p/ki for 1 ≤ i ≤ n, where p is the lowest common
multiple of k1, ..., kn. However, doing such a choice with the least values of
k1, ..., kn and p0 = 2p may not work. Consider e.g.

f(x1, x2) := x2
1 − 2x1x2 + x2

2 + x4
1 + x4

2. (18)

The least value of k1 (resp. k2) is 1 (resp. 1). Picking r = (1, 1) and p0 = 2,
we see that H2(x1, x2) = P2(x1, x2) = (x1 − x2)2, and H2 is not positive
definite. One may nevertheless apply Corollary 2 with r = (1, 1) by taking
p0 = 4.

5. Condition (13) is not a necessary condition for f to be a locally positive
definite function. Consider

f(x1, x2) := x2
1x

2
2 + (x8

1 − 2x4
1x

4
2 +

1

2
x8
2) =: P4(x) + P8(x). (19)

Since f(x1, x2) = x2
1x

2
2(1 − 2x2

1x
2
2) + x8

1 + 1
2x

8
2 and 1 − 2x2

1x
2
2 > 0 for ∥x∥ ≪

1, f is locally positive definite. If we pick e.g. r = (r1, r2) = (1, 1), then
H4(0, x2) = P4(0, x2) = 0, H4 is not positive definite, while H8(x1, x1) =
P8(x1, x1) = −x8

1/2, and hence H8 is not positive definite. More generally,
it is easy to see that for any choice r = (r1, r2) ∈ (N∗)2, there is no p0 ∈ N∗

such that (13) holds. Thus (13) is never satisfied.
6. Condition (14) is not a necessary condition for f to be a locally positive

definite function. Consider

f(x1, x2) := x2
1x

2
2 − x1x

4
2 + x6

1 + x6
2. (20)

If we pick r = (r1, r2) ∈ (N∗)2 with r1 ̸= r2, then it is easy to see that
there is no p0 ∈ N∗ such that (13) holds. Take now r = (r1, r2) = (1, 1) and
p0 = 6. Then H6(x1, x2) = x6

1 + x6
2 is positive definite so that (13) holds.

From |x1x
4
2| ≤ (x2

1x
2
2 + x6

2)/2, we infer that

f(x1, x2) ≥ 1

2
x2
1x

2
2 + x6

1 +
1

2
x6
2 > 0 for x ̸= 0,

i.e. f is (globally) positive definite. However∑
n<6

Hn(x1, x
1
4
1 ) = x

5
2
1 − x2

1 < 0 for 0 < x1 < 1.

The above remarks show that the converse of Corollary 2, namely

“f locally positive definite ⇒ ∃(r1, ..., rn, p0) ∈ (N∗)n+1 such that (13) and (14) hold”
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is not true. It appears that
∑

n≤p0
Hn can be locally positive definite by com-

bining the strict positivity of Hp0
at some points, and the strict positivity of∑

n<p0
Hn at the other points.

The following result provides sufficient conditions for the existence of a high-
order saddle point.

Proposition 3. Let f be an analytic function around 0 expanded as in (1) with
f(0) = 0. Assume the existence of a sequence of weights (r1, ..., rn) ∈ (N∗)n and
of an integer p0 ∈ N∗ such that

Hn = 0 ∀n < p0 (21)

∃x1, x2 ∈ Sn−1 Hp0
(x1) > 0 and Hp0

(x2) < 0. (22)

Then there exists t0 > 0 such that

f(δrt (x1)) > 0 ∀t ∈ (0, t0), (23)

f(δrt (x2)) < 0 ∀t ∈ (0, t0). (24)

In particular, 0 is neither a local minimum nor a local maximum of f around
x = 0.

Proof. This is a direct consequence of

f(δrt (xj)) = tp0Hp0(xj) +
∑
n>p0

Hn(δrt (xj)) = tp0Hp0(xj) + O(tp0+1) as t → 0

for j = 1, 2.

3 Positive definiteness of a polynomial function

3.1 Tarski-Seidenberg theorem

In this section, we assume that f ∈ R[x1, ..., xn], n ≥ 1 and that f(0) = 0. We
can expand f as

f(x) =
∑

e∈Nn,0<|e|≤d

aex
e for x ∈ Rn,

where d denotes the degree of f . The polynomial function f is (locally) positive
definite around the origin if and only if

∃ε > 0 {x ∈ Rn; 0 < ∥x∥2 < ε2 and f(x) ≤ 0} = ∅.

It turns out that the set {x ∈ Rn; 0 < ∥x∥2 < ε2 and f(x) ≤ 0} is semi-
algebraic, so that the classical results in real algebraic geometry can be used to
decide whether it is empty for some ε > 0.

Let us give first a few definitions and results. (We follow closely [11].)
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A set in Rn is said to be semi-algebraic if it is a finite union of finite inter-
sections of sets defined by a polynomial equation (i.e. {x ∈ Rn;P (x) = 0}) or
inequality (i.e. {x ∈ Rn;P (x) > 0} or {x ∈ Rn;P (x) ≥ 0}).

It is easy to see that a finite union (resp. a finite intersection) of semi-algebraic
sets is also semi-algebraic, and that the complement of a semi-algebraic set
is also semi-algebraic. For n,m ∈ N∗, the linear map π : (x, y) ∈ Rn+m =
Rn × Rm → y ∈ Rm is a projection. It turns out that projections of semi-
algebraic sets are also semi-algebraic, according to Tarski-Seidenberg theorem
(see e.g. [5,6,11,17,18]):

Theorem 2. (Tarski-Seidenberg) If E is a semi-algebraic set in Rn+m and if
π denotes the projection π : (x, y) ∈ Rn+m → y ∈ Rm, then π(E) is a semi-
algebraic set in Rm.

We notice that the above result can be stated as follows: the set

{y ∈ Rm; ∃x ∈ Rn, (x, y) ∈ E}

is semi-algebraic. Furthermore, we can replace ∃ by ∀, for the complement of
a semi-algebraic set is semi-algebraic. Thus eliminating finitely many symbols
among ∃,∀ at the beginning of any formula involving a semi-algebraic set yields
a semi-algebraic set.

For our problem, we infer from Tarski-Seidenberg theorem that the set

F := {ε ∈ R; ∀x ∈ Rn, (x, ε) ∈ E}

is semi-algebraic, where we take

E := {(x, ε) ∈ Rn × R; ε > 0 and (∥x∥2 ≥ ε2 or x = 0 or f(x) > 0)}.

Using algorithms as those in [7,9,14,16], one can obtain the polynomial functions
of the variable ε ∈ R defining the set F . Note that, F being a semi-algebraic
set in R, it is a finite union of intervals. It remains to determine those intervals
using for instance Sturm theorem (see below) to localize roughly the roots of
the polynomial functions involved in the definition of F , and Newton’s method
to find the roots with more accuracy. This allows us to answer the question of
whether F is nonempty (i.e. the function f is locally positive definite).

Alternatively, one can avoid determining precisely the set F by replacing a
numerical coefficient in the expansion of f , say ae0 with 0 < |e0| ≤ d, by a
variable denoted by y ∈ R. Let fy(x) :=

∑
0<|e|≤d,e̸=e0

aex
e + yxe0 and

G := {(x, ε, y) ∈ Rn × R× R; ε > 0 and (∥x∥2 ≥ ε2 or x = 0 or fy(x) > 0)}.

The set G is clearly semi-algebraic. It follows that the set

H := {y ∈ R; ∃ε ∈ R, ∀x ∈ Rn, (x, ε, y) ∈ G}

is also semi-algebraic. After having determined the polynomial functions involved
in the definition of H, it remains to test whether ae0 ∈ H or not (which is easy).
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Example 2. Let us consider the quadratic function f(x) = ∥x∥2. Let us denote
x = (x′, xn), where x′ ∈ Rn−1 and xn ∈ R. Pick e0 = (0, ...., 2). Then one readily
sees that

E = {(x, ε) ∈ Rn × R; ε > 0 and (∥x∥2 ≥ ε2 or x = 0 or ∥x∥2 > 0)}
= {(x, ε) ∈ Rn × R; ε > 0},

F = (0,+∞),

G = {(x, ε, y) ∈ Rn × R× R; ε > 0 and (∥x∥2 ≥ ε2 or x = 0 or ∥x′∥2 + yx2
n > 0)},

H = (0,+∞).

We stress that the sets F and H are expected to be derived by using algorithms
inspired by Tarski-Seidenberg theorem, but here they can be obtained directly.
We notice that F is nonempty, and that 1 ∈ H, so that both approaches give
that f is locally positive definite.

3.2 Sturm theorem

The proofs of Tarski-Seidenberg theorem in [5,6,11] rest on the analysis of the
changes of signs of sequences of polynomial functions of one variable, which is
inspired by Sturm theorem. It turns out that we can use directly Sturm theo-
rem to test whether the polynomial function is positive definite, without using
algorithms to describe the projections of semi-algebraic sets.

The Sturm sequence associated with a polynomial function P ∈ R[x] is de-
fined inductively as follows. First, we take P0 := P and P1 := P ′. If Pi−2 and
Pi−1 are defined with Pi−1 ̸= 0, we pick Pi := −R, where R is obtained by doing
the Euclidean division of Pi−2 by Pi−1, namely

Pi−2 = Pi−1Q + R, Q,R ∈ R[x], deg(R) < deg(Pi−1).

Thus the Sturm sequence reads (P0, ..., Pk) with P0 = P , deg(P0) > deg(P1) >
· · · > deg(Pk), Pk ̸= 0, and Pk|Pk−1.

For a ∈ R with P (a) ̸= 0 we denote by N(a) the number of changes of signs
in the sequence (P0(a), ..., Pk(a)), i.e.

N(a) = #{i ∈ [[0, k − 1]];∃j ∈ [[i + 1, k]], Pi(a)Pj(a) < 0 and

∀l ∈ [[i + 1, j − 1]] Pl(x) = 0}.

Then Sturm theorem (see e.g. [5]) can be stated as follows.

Theorem 3. (Sturm) Let P ∈ R[x] with no multiple root and let a, b ∈ R with
P (a)P (b) ̸= 0. Then the number of real roots of P in [a, b] is N(a) −N(b).

Remark 5. 1. Saying that P has no multiple root is equivalent to saying that
P and P ′ are relatively prime, or that Pk ∈ R∗.

2. If P has multiple roots, then Pk ̸∈ R∗ is (up to the sign) the greatest common
divisor of P and P ′. It is then sufficient to apply Sturm theorem to P̃ :=
P/Pk. Indeed, the roots of P̃ are simple and are the same as those of P .
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The main advantage of that result is that, after computing formally the
Sturm sequence, one can compute easily the number of roots in some interval
[a, b] without having to compute the roots (which may be a hard task).

In our problem, one roughly has to check that there is no root in some interval
[a, b]. More precisely, for given ε > 0, we set Cε := [−ε, ε]n. We want to test
whether

∀x ∈ Cε \ {0} f(x) > 0. (25)

If f(x) > 0 for all x ∈ ∂Cε, then (25) is equivalent to

∀x′ ∈ (−ε, ε)n−1, #{xn ∈ [−ε, ε]; f(x′, xn) = 0} =

{
0 if x′ ̸= 0;
1 if x′ = 0.

(26)

The condition in (26) can be checked by using Sturm theorem for the variable
xn ∈ [−ε, ε].

In practice, we check that f(x) > 0 for any extremal point x ∈ {−ε, ε}n, next
for x in the segment between two extremal points by using Sturm theorem, etc.
until proving that f(x) > 0 for all x ∈ ∂Cε, or merely for x ∈ [−ε, ε]n−1×{−ε, ε}.
The last step is the verification of (26).

Let us consider two examples.

Example 3. Consider first the polynomial function

f(x1, x2) = x4
1 + x1x

3
2 + x2

2.

Pick ε = 1, so that Cε = [−1, 1]2. Then

f(1, 1) = 3, f(1,−1) = 1, f(−1, 1) = 1, f(−1,−1) = 3.

Let us compute the values of f on ∂Cε. We find

f(x1,±1) = x4
1 + (1 ± x1) > 0 ∀x1 ∈ [−1, 1],

f(±1, x2) = (1 ± x3
2) + x2

2 > 0 ∀x2 ∈ [−1, 1].

Thus f(x) > 0 for all x ∈ ∂Cε.
Let us compute the Sturm sequence for the variable x1. We pick P0(x1) =

x4
1 + x1x

3
2 + x2

2 and P1(x1) = ∂P0/∂x1 = 4x3
1 + x3

2. The Euclidean division of P0

by P1 reads

x4
1 + x1x

3
2 + x2

2 = (4x3
1 + x3

2)(
1

4
x1) +

3

4
x1x

3
2 + x2

2,

We obtain R(x1) = 3
4x1x

3
2 + x2

2. We have two cases to consider.
(i) if x2 = 0, then R = 0, so that P1|P0. We notice that the map x1 → f(x1, 0) =
x4
1 has one root in [−1, 1].

(ii) if x2 ̸= 0, then R ̸= 0 and P2(x1) = − 3
4x1x

3
2 − x2

2. The Euclidean division of
P1 by P2 reads

4x3
1 + x3

2 = (−3

4
x1x

3
2 − x2

2)(−16

3

x2
1

x3
2

+
64

9

x1

x4
2

− 256

27

1

x5
2

) + x3
2 −

256

27x3
2

·
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Note that x3
2 − 256

27x3
2
< 0 for all x2 ∈ [−1, 1].

Therefore P3(x1) = −x3
2 + 256

27x3
2
∈ R∗ and we do not have to compute P4. We

find

P0(−1) = 1 − x3
2 + x2

2 > 0, P1(−1) = −4 + x3
2 < 0, P2(−1) =

3

4
x3
2 − x2

2 < 0

and P3(−1) = −x3
2 + 256

27x3
2
> 0, so that N(−1) = 2. On the other hand,

P0(1) = 1+x3
2+x2

2 > 0, P1(1) = 4+x3
2 > 0, P2(1) = −3

4
x3
2−x2

2 < 0, P3(1) > 0,

so that N(1) = 2. Since N(−1) −N(1) = 0, the function x1 → f(x1, x2) has no
root in [−1, 1] for x2 ∈ [−1, 1] \ {0}. This shows that the function f is locally
positive definite.

Example 4. Consider again the polynomial function f(x1, x2) = x2
1−4x1x

2
2 +x4

2

from Remark 1. If 0 < ε ≪ 1 and x1 = ±ε, we have that |x4
2 − 4x1x

2
2| ≤ Cε3

and f(±ε, x2) > 0 for x2 ∈ [−ε, ε]. Pick P0(x1) = x2
1 − 4x1x

2
2 + x4

2, P1(x1) =
∂P0/∂x1 = 2x1 − 4x2

2. The Euclidean division of P0 by P1 reads

x2
1 − 4x1x

2
2 + x4

2 = (2x1 − 4x2
2)(

1

2
x1 − x2

2) − 3x4
2,

and hence P2(x1) = 3x4
2 ∈ R∗ if x2 ̸= 0.

If x2 = 0, the map x1 → f(x1, 0) = x2
1 has one root in [−ε, ε]. If x2 ∈

[−ε, ε] \ {0}, we have that

P0(−ε) = ε2 + 4εx2
2 + x4

2 > 0, P1(−ε) = −2ε− 4x2
2 < 0, P2(−ε) = 3x4

2 > 0

so that N(−ε) = 2, and that for ε ≪ 1,

P0(ε) = ε2 − 4εx2
2 + x4

2 > 0, P1(ε) = 2ε− 4x2
2 > 0, P2(ε) = 3x4

2 > 0

so that N(ε) = 0. It follows that the map x1 → f(x1, x2) has two roots in [−ε, ε],
and hence the function f is not positive definite.

4 Conclusion

In this paper, we provided high-order conditions for an analytic function to
be locally positive definite at the origin. We provided necessary conditions and
sufficient conditions for the local positive definiteness, but a necessary and suf-
ficient condition seems hard to find. Nevertheless, in the subclass of polynomial
functions, the theorem of Tarski-Seidenberg and those of Sturm can be used to
decide whether a given polynomial function is locally positive definite. However,
the corresponding computations using iterative projections on subspaces are in-
volved and they do not use the structure of the function. Furthermore, they do
not provide any bound from below of the function.
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