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ABSTRACT : This  research  builds  an integrated  chain  of  models  to  compute  the  economic  costs  of  population
exposure to air pollution from roads. The framework uses data with a high geographical resolution (1 km x 1 km), a
mobility  module  to  simulate  population  movements,  and  a  Gaussian  dispersion  model-based  exposure  model  to
evaluate population air pollution exposure and the related costs. This paper investigates the impact of two policies on
La Réunion,  a  French island.: replacing old vehicles  with electric  ones and allowing flexible departure times for
commuting trips.
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1. Introduction

Air pollution has important consequences on both environment and health. Through the greenhouse gases (GHG), air
pollution has an impact on global warming, which became one of the major problems for our civilizations. Other air
pollutants, emitted and formed in the atmosphere, have direct impacts on population well-being and health. According
to  the  World  Health  Organization,  over  99%  of  the  world’s  population  is  living  above  its  recommended  health
protection levels.  Air pollution leads each year to 4.2 million premature deaths worldwide in 20171.  According to
estimates made in Europe, air pollution causes 311,000 premature deaths annually2.  As reported by Maguire et al.
(2020), the top health risk in Europe in 2017 is air pollution. The French Ministry of Ecology and Social Cohesion
claims that air pollution causes 48,000 premature deaths annually which represents 9% of the total deaths3. In urban
areas, the air pollution exhibits the highest levels of air pollution with very diverse distribution over both time and space
(Dons et al., 2011; Hatzopoulou and Miller, 2010; Hao, Hatzopoulou, and Miller, 2010; Dhondt et al., 2012; Lefebvre et
al., 2013; Rowangould, 2015; Vallamsundar et al., 2016). Several studies detail the impacts of air pollution in several
cities on health.4 Garrett and Casimiro (2011) studied the air pollution in Lisbon, Portugal, focusing particulate matter
(PM) and on ozone (O3). They found that when PM levels increased by 10 µg.m−3, the risk of cardiovascular mortality
for individuals over 65 years old increased by 2.39%. They also found that O3 caused a 1.1% increase in all-cause
mortality and a 0.96% for the same age group. Bañeras et al. (2018) looked at the short-term correlation between air
pollution and cardiovascular disease and mortality in the Barcelona region in Spain. They found that when PM levels
increased by 10 µg.m−3, mortality increased by 1.06% and cardiovascular illnesses increased by 1.015%. In a sample of
74 cities in China, Fang et al. (2016) studied the impact of fine PM pollution on health. They found that in 2013, 20% of
reported deaths were due to cardiovascular, respiratory, and lung cancer causes, and 32% were related to PM 2.5. Studies
have  shown that  increased  levels  of  nitrogen  dioxide  (NO2)  are  associated  with  increased  rates  of  mortality  and
hospitalization for respiratory and cardiovascular illnesses. For example, a study conducted by Faustini et al. (2010)
found that an increase of 10 µg.m−3 in NO2 levels was associated with a 3% increase in all-cause mortality.
 
These health  consequences have very  significant  social  costs.  Many studies  in  the epidemiological  literature have
estimated  costs  for  various  pollutants  and  different  cities.  The  death  burden  of  PM and  NO x concentrations  was
computed by Walton et al. (2015). In 2010, they estimated that the economic expenses associated with the health effects
of PM and NO2 ranged from 1.4 to 3.7 billion pounds for the London area. Vlachokostas et al. (2012) conducted a study
on Thessaloniki great area (Greece), where they estimated the social costs of particulate matter (PM) and ozone (O3) to
be around 1,450 million euros, equivalent to 10% of the region's GDP.  Between 2005 and 2013, Martinez et al. (2018)
computed that Skopje’s (Macedonia) overall social cost was between 1,140 and 2,100 million euros annually. Using a
sample of 76 European cities, CE Delft (2020) concluded that the average cost of population exposure to pollution in
France was approximately 10,953 million euros, with an average cost per person of 943 euros, ranging from 467 euros
for Pau to 1,602 euros for Paris.  They also demonstrated that,  on average, PM are the most dangerous pollutants,
accounting for roughly 80% of total expenses, followed by NO2, which accounts for 15%. CO2 has a high societal cost
since it causes global warming even if it is not harmful to human health. The World Bank estimates that the social costs
of CO2 were roughly 300 dollars per resident worldwide and 100 in France in 20195. 

Indeed, road transportation is a significant contributor to air pollution and a major public health concern since people
are more likely to be exposed to it due to their proximity to roads or their reliance on cars for transportation (McCubbin
and Delucchi,  2003). In 2020, the European Environment  Agency estimates that  road transportation contributes  to
around 70% of the total European emissions from the transportation sector. It accounted also for 37% of NOx emissions,
18% of CO emissions, and 9% of PM2.5 emissions.  According to a report of the International Energy Agency, the
transportation sector is responsible for approximately one-quarter of total energy-related CO2 emissions globally6. In
Europe  in  2017,  27% of  total  GHG  came  from the  transport  sector  (22%  if  international  aviation  and  maritime
emissions are excluded)7.
 
Xie et al. (2017) proposed a recent review of urban air pollution monitoring and exposure assessment methods. Most
studies related to road traffic have been performed using road and traffic data collected from diverse modelling systems.
These traffic data are used to compute traffic air pollutant emissions and/or as external predictor variables to better

1 https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health 
2 https://www.eea.europa.eu/highlights/premature-deaths-due-to-air 
3 https://www.ecologie.gouv.fr/pollution-lair-origines-situation-et-impacts (in French)
4 For a more exhaustive summery ttps://www.eea.europa.eu/themes/air/health-impacts-of-air-pollution
5 https://data.worldbank.org/indicator/EN.ATM.CO2E.PP.GD.KD
6 https://www.iea.org/reports/transportation-sector-emissions
7 https://www.eea.europa.eu/publications/air-quality-in-europe-2022/sources-and-emissions-of-air
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predict the spatial and temporal variability of the air pollution. Only few other studies describe integrated chains of
models (Carslaw & Beevers, 2002; Lim et al., 2004, Gulliver & Briggs, 2004, Dons et al., 2011; Kickhöfer and Kern,
2015 ;  Dias et al., 2015; Cesaroni et al., 2015) that cross traffic, air pollution and population exposure. These integrated
chains of models have different types. Some systems are based on the use traffic count data (e.g. Carslaw & Beevers,
2002 ; Lim et al., 2004, and  Cesaroni et al., 2015), and others on traffic simulation models (e.g. Gulliver & Briggs,
2004; Dons et al., 2011 ; Kickhöfer and Kern, 2015 ; Dias et al., 2015). Contrary to the first ones, the seconds allow
dynamic simulations of the traffic and evaluation of transportation policies. Nevertheless, as theoretical representations
of the reality, they are uncertain and must be validated using observed data.  Some studies provide information on
pollutant concentrations (e.g. Carslaw & Beevers, 2002 ; Lim et al., 2004 ; Dias et al., 2015) while others include also a
population exposure model in their chain (e.g. Gulliver & Briggs, 2004 ; Dons et al., 2011 ; Kickhöfer and Kern, 2015 ;
Cesaroni et al., 2015).

This paper aims first to present a new integrated model enable to assess in a coherent way the traffic volume, speed, and
flow on roads, estimate the amount of pollutants emitted by vehicles, forecast the dispersion of pollutants in the air, and
estimate the exposure of the population to air pollution, and the associated economic costs. We decided to use a traffic
simulation model to assess the effectiveness of different transportation policies before they are put into place, such as
fleet restrictions, low-emission zones, toll roads, and traffic restrictions. A specific attention is brought to improve the
evaluation of population's spatial and temporal distributions. This evaluation is based using the results of our traffic
simulation model, and allow assessing changes in population exposure as a result of changes in concentrations and/or
population location. Economic costs of population exposure to pollutants are also computed. These both propositions
enable a  new evaluation of transportation policies,  associated with the a cost-benefits  analysis of the air pollution
reduction. 

Second, the paper aims to present an application of the  integrated model to evaluate several mechanisms of public
policies. An application of the proposed chain of models is focusing on the analysis of the road-traffic air pollution in
La Réunion, a French island. This case study was chosen due to its compact size, its isolation from other areas, and the
scarcity of studies conducted on this region. Our objective is to evaluate scenarios aimed at reducing carbon dioxide
(CO2) emissions and the population's exposure to traffic-related pollution in La Réunion. In this study, we focus on
three pollutants dangerous for health: nitrogen oxides (NOx), carbon monoxide (CO), and particulate matter (PM2.5). 

Among many possible measures, we decided to evaluate one technical and one non-technical measures. The technical
measure  concerns  the  replacement  of  thermal  vehicles  with  electric  vehicles  (EVs).  We  compute  elasticities  of
population exposure costs and emissions, which measure the response in emission when the fraction of EVs is increased
(formally,  elasticity  is  the  percentage  change  associated  to  a  1% switch  to  EVs).  For  extrapolating  the  potential
advantages of such actions in the future,  these elasticities  are useful.  Decision-makers  can use this information to
identify the most efficient methods for lowering emissions and advancing a cleaner, more sustainable transportation
system.  The  paper  also  examines  a  non-technical  measure  that  consists  in  allowing  employees  more  scheduling
flexibility.

The paper is organized as follows. Section 2 provided an overview of several technical and non-technical measures that
were previously studied. Our integrated chain of models is described in Section 3. The various data that were used in
our research are introduced and described in Section 4. The application of this framework on La Réunion (France) is
presented in Section 5. Section 6 examined various road traffic regulations. Section 7 concludes and presents future
research along with potential improvements. 

2. Technical and non-technical measures to reduce road-traffic air pollution

To successfully address the problem of road pollution, a complete strategy that incorporates both technical and non-
technical solutions is required, since this last handles the issue from multiple perspectives.

Technical measures refer to measures that aims reducing the emission factors using cleaner technologies, such as the
use of new lighter vehicles, improving fuel injections, filters, etc, in individual vehicles (D’Elia et al., 2009). They were
intensively studied and implemented and are now qualified as not sufficient to address the local and global air pollution
issue (D’Elia et al., 2009).  Introduction of EVs in the vehicle fleet is a new technical challenge and a significant step
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towards reducing the negative impacts of transportation on the environment and public health. Requia et al. (2018)
proposed a review in which they noted that most of studies are focusing on PM and conducted in China and the United
States. The shift to EVs could bring significant benefits in terms of reducing air pollution, especially in cities where air
quality is a major concern since EVs do not emit directly harmful gaseous pollutants in the atmosphere (linked to
exhaust and fuel evaporation emissions for thermal vehicles). Indeed, the air pollutant emissions are reduced to the PM
emissions due tyre, brake wear and road abrasion, and indirect emissions due to the production processes of the EVs
and the electricity generation. The electricity used to charge the batteries must be generated from low-carbon sources
for EVs to have the lowest carbon footprint compared to conventional vehicles. With different energy mix over the
world, the impacts of EVs on environment have notable regional variances.  In our study, we looked at the effects of
switching from conventional to EVs on GHG emissions as well as health-harming pollutants including PM 2.5 for France
and especially for La Réunion which has not been studied.
  
Non-technical  measures,  on the other  hand,  refer  to measures  that  reduce the activity  of  the source,  such as  road
rationing, reduced road capacity, increased public transportation options, reducing the speed or number of vehicles on
the road, or promoting alternative modes of transportation, etc (D’Elia et al., 2009). It is significant to note that non-
technical measures have been more recently investigated. Numerous public measures are being adopted in cities with
the goal  of reducing road pollution and population exposure to it.  Supply-side measures like increasing urban rail
transportation (Adler & van Ommeren, 2016; Gonzalez-Navarro & Turner, 2018; Gu et al., 2021), road rationing (de
Grange  & Troncose,  2011;  Gallego  et  al.,  2013;  Kornhauser  & Fehlig,  2003,  Holman  et  al.,  2015;  Wolff,  2014;
Margaryan, 2021; Bok et al., 2022), or reducing road capacity (Bou Sleiman, 2022; Kang & Cervero, 2009; Pool Jr &
Orski, 2000) have been adopted by policymakers. These investigations, nevertheless, are carried only after the measure
has  been  implemented  in  the  territory.  Road  pricing  appears  to  be  a  highly  powerful  technique  to  internalize
externalities according to the polluter pay principle (Kickhöfer & Kern, 2015; Liu and McDonald, 1999; Santos et al.,
2008; Tirachini & Hensher, 2012; Winston & Lander, 2006) (see Vosough et al. (2022) for a more thorough literature
analysis), and gasoline taxes (Raeissi et al., 2022), while there is still some social and legal resistance to these kinds of
regulations8. The demand-side perspective also calls for policies that allows early morning and later evening shopping
(Dons et al., 2011). In addition, studies about the impact of teleworking (Elefthrios, 2018; Mokhtarian & Varma, 1998;
Shafizadeh et al., 1998; Bamister & Marshall, 2000; Pflueger et al., 2016; Pérez et al., 2004) and carpooling (Delle Site
et al., 2022; Meyer, 1999; Xu et al., 2015; Bahat & Bekhor, 2016; Zhu et al., 2016; Li et al., 2017; Wang et al., 2018)
should be mentioned. Our study proposes to evaluate the effectiveness of providing employees with more flexibility
with respect to their work schedules. This approach has a very low social cost (Henrickson and Kocur 1981) —almost
none— which makes it potentially highly interesting and should be widely embraced by the general public. 

3. A new integrated chain of models to evaluate transportation policies based on their impact on air
pollution

An integrated chain of models brings together a range of data and models, each provides different types of information,
to form a complete picture of the problem. Our integrated chain of models is expected to give in a coherent way, traffic
flows, vehicle speeds, air pollutant emissions, population exposure to air pollution and costs related to this exposure. It
also provides information to guide decisions and policies designed to reduce emissions and improve air quality.

Our  integrated  chain  of  models  has  been  built  following  recommendations  of  Friedrich  &  Quinet  (2011).  It  is
represented in Figure 2 and each of its modules are described in the following sections. 
    

8 This red caps (bonnets rouges) and yellow vests (gilets jaunes) movements in France
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Figure 1 Graphics of structure of the integrated chain of model, METRO-TRACE (Traffic Related Air pollution
Costs Evaluation).

3.1. Road traffic model

Like in Kickhöfer & Kern (2015), Dons et al. (2011), Gulliver & Briggs (2004), and Dias et al. (2015), we chose to use
a traffic model in order to explore a wider range of scenarios and policies that could impact pollutant emissions and
population exposure to air pollution. 

METROPOLIS (de Palma et al., 1997; de Palma & Marchal, 2002) is used. METROPOLIS is a dynamic, mesoscopic9,
traffic simulation model that treats agent-level endogenous options for modes, departure times, and routes. 

Using Vickrey (1969) approach, METROPOLIS assumes that every traveller has a cost associated with their preferred
schedule for their trip. This cost considers the traveller's desired arrival time and the duration of the trip. The cost is
expressed as a function of two components: the deviation from the preferred arrival time and the deviation from the
preferred trip duration. Travellers generally prefer to arrive at their destination close to their preferred arrival time and
to have a quick trip. This preference can be summarized by the following formula: 

 

where CA (τ ) is the systematic cost of departing at time τ , T (τ ) is the travel time, α is the unit cost of travel time, t* is
the desired arrival time, ∆ is the half-width of an on-time arrival window, β is the unit costs of arriving early, and γ  is
the unit costs of arriving late. 

According to a genetic learning process that considers the situation seen over the previous days, agents review their
mode choice, departure time, and route decision each day (de Palma & Marchal, 2002). The system converges to a
stationary state as a result of this process. The congestion is modelled using a bottleneck congestion technology (Arnott
et al., 1993). This technology assumes that congestion occurs when the rate at which travellers arrive at the bottleneck
exceeds the maximum number of travellers that can be accommodated. In this case, travellers are forced to wait in line
until they can be processed, resulting in increased travel time and reduced efficiency. 

3.2. Emissions model

Since precise time variation of the speed profiles are not computed by METROPOLIS, we have adopted a mesoscopic
emission model (as defined by  Smit et al. 2010) that computes emissions by using emission factors considering the
average speed over a defined time period (here 2 minutes) on each link of the studied domain.  We used an updated
version of the EMISENS model (Ho et al., 2014). According to average speed, ambient outdoor temperature, and traffic
volume, EMISENS generates pollutant emissions for four types of air pollutants (in g): nitrogen oxide (NOx), carbon
monoxide (CO), particulate matter with diameter lower than 2.5 µm (PM2.5), and carbon dioxide (CO2). It allows the
computation of hot and cold (excess emissions from a cold engine) emissions from the exhaust pipe.  Non-exhaust
emissions, such as emissions from tire wear, brake wear, and road abrasions, are also taken into account. 

The methodology follows the European EMEP/EA approach. The hot emission factors, ek
hot [S (r i , t ) , v ] of pollutant k

(NOx, CO, PM2.5, or CO2) were collected for each type of vehicle v, from the 2019 COPERT database (Ntziachristos et

al., 2009) as a function of the vehicle speed S (r i , t ) of directed road r i during time step t . Average emissions factors

ēk [S(r i , t )] are based on the fleet composition. It is essential to consider the most updated fleet composition from the
area studied or at least from the country (here France). In this paper, we made use of CITEPA’s 2019 fleet composition
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data. At each time step t , the vehicle fluxes (in veh. km) on each directed road r i evaluated by METROPOLIS are used
to compute the activity on each directed road:

where L (r i) is the length (in km) of directed road r i and where N (r i , t ) represents the number of residents driving on

directed road r i during time step t . 

The quantity of pollutant emitted (in g) on directed road r i during time step t , considering that all vehicles have warms
engine, is given by the following equation:

where ēk
hot [S(r i , t )] denotes the average hot emissions factor according to speed on directed road r i at time step t .

The cold emissions (in g) are emissions to be added to the hot emissions in order to consider that percentage of the
driving vehicles have cold engines (just started). Cold emissions are derived from hot emissions using this equation:

where  ēk
cold [S(r i , t) ,T a ] is the average cold emission factor for pollutant  k  for temperature T a (in celsius degrees)

according to speed on directed road r i at time step t , and Βk is the fraction of vehicles kilometers driven with a cold

engine or the catalyst operated below the light-off temperature for pollutant k . 

The emissions (in g) from tyre wear, brake wear, and road abrasion for directed road r i during time step t  are computed
as follows:

where ek
bw is the emission factor for emissions from brake wear and where f k

bw is the size distribution of brake wear

particles for pollutant k , ek
rs is the emission factor for emissions from road surface wear and f k

rs is the size distribution

of road surface wear particles for pollutant k , and ek
tw is the emission factor for emissions from tyre wear and f k

tw is the

size distribution of tyre wear particles for pollutant k . 

Finally,  the  quantity  of  pollutant  released  during  one  second at  emitter  j during  period  h is  computed  using the
following formula:

where ϵ j (r i) is the proportion of the directed road r i included in the cell of the emitter j, where Δh is the duration of

the period h measures in seconds (here 3600), and Ι ( j ) is the set of directed road crossing cell j.

3.3. Dispersion model

Air quality models are numerous, characterized by their numerical approach, their spatial and time resolution linked to
the processes simulated and the extension of the domain, and associated computation durations. As in Kickhöfer & Kern
(2015), we choose to use a Gaussian model (Sutton, 1947) to mainly focus our study on primary pollutants. Such a
model does not compute the chemistry processes (and thus the production of secondary pollutants), and neither the air
flow. Nevertheless, it is capable of simulating the dispersion of the air pollution due to the advection of air pollution by
the wind considering the air mixing due to the air turbulence, in computationally efficient way. The emissions are given
as inputs to a Gaussian plume model to compute the pollutant concentrations. 
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A (r i , t )=L (r i)×N (r i , t ) ,

Ehot (r i , t )=A (r i , t )×ēk
hot [S (r i , t )] ,

Ek
cold (r i , t ,T a)=Βk×Ek

hot (r i , t )×[ ēk
cold [S(r i , t ),T a]
ēk

hot [S(r i , t )] ] ,

Ek
non −exhaust (t , r i )=A (r i , t )×[ek

bw f k
bw+ek

rs f k
rs+ek

tw f k
tw ] ,

Qk
j (h)=∑

t ∈ h [ ∑
r i∈ Ι ( j )

ϵ j (r i )×(Ehot (t , r i )+Ecold (t , ri )+Enon− exhaust (t , r i))]×10−6×Δh−1 ,



The emitted air pollutants are dispersed across space based on the distance between the emitter (i.e., the place where the
pollutant  is  discharged)  and  a  receptor,  which  represents  the  position  of  a  potential  resident.  The  resulting
concentrations is computing as follows:

where  C k
i (h ,(x , y , z)) (in µg.m-3) is the concentration of pollutant  k  at receptor  i during period  h with Cartesian

coordinates (x , y , z ) where x is the downwind distance (in m), y the cross wind distance (in m), z the receptor height

(in m). Qk
j (h) is the quantity of pollutant k  released at the emitter j (in µg.s-1) during period h, us is the mean wind

speed  (in  m.s-1)  at  the  pollutant  release  height  H  (in  m).  and,  σ y
2 (x ) and  σ z

2 (x ) are  the  standard  deviations  of

respectively  lateral  and  vertical  concentration  distribution,  also  referred  to  the  stability  atmospheric  parameters.
Concentrations are computed for each hour using a grid of receptors with a definition of 100 m.  The values of the
parameters are dependent of the meteorological conditions of the studied territory. They will be discussed for the case of
La Réunion in Section 4.4. 

3.4. Population exposure model

The population exposure is computed considering that the population is moving in a field of pollutant concentrations
greatly varying over space and time, following the proposition of Kickhöfer & Kern (2015), Gulliver & Briggs (2004),
and Dons et al. (2011). This exposure model is based on the outputs of the traffic model. Population data issued from
are spatialized on a grid domain with a resolution of roughly 1 km2.  The module assigns residents at their starting zone
based on the density of residential buildings, and at their destination zone based on the density of working buildings.
That is, the residents start their journey at their residential cell, and end their journey at their workplace cell. The
location of the residents is derived from the METROPOLIS traffic simulation's outputs with a time resolution of one
hour for each cell of the grid. In this version, we ignore variations of the exposition during the trip, that is kept to its
home value during the trip. 

The spatial and temporal distributions of the population are then crossed with the results of the dispersion model that
provide the spatial and temporal distributions of the pollutant concentrations to determine the population's exposure to
pollutants in each grid cell. According to both the population density in each cell and the average concentration of each
pollutant with a spatial resolution of around 1 km2 and a temporal resolution of 1 hour, the exposure to pollutant k  in
cell m during period h is computed as:

where C̄m(h ) is the hourly average concentrations (in µg.m-3) of pollutant k  observed in cell  m during period h and

Popm(h) is the population in cell m during period h.

3.5 Monetarization model

The estimation of the costs of air pollution exposure is a complex, multifaceted and interdisciplinary task that requires
considering a wide range of  parameters:  the air  pollution exposure,  the health  impacts  (that  are  depending on the
individual physical characteristics – sensitivity or not to air pollution influencing by socio-economic and environmental
context, such poverty, noise, etc.),  the impacts on environment (natural ecosystems, biodiversity, resources, buildings,
etc.), and the costs associated to these impacts. Both health or environmental impacts could have short and long-term
consequences.  Since these health impacts can range from respiratory problems with a graduate severity from allergies
(can affect  a  person's ability  to  work without  any use of  medicine),  asthma,   emphysema,  cardiovascular  diseases,
cancer, death (Almetwally et al., 2020). The costs associated with such health impacts can vary widely depending on the
financial resources needed to treat the health problems (medical expenses due to interview, analyses and treatments),
their consequences (lost workdays, reduced productivity, etc.), or the life cost.

One method used to estimate the costs of pollution-related illness and death is to assign a monetary value to these
impacts.  This  process,  known  as  "valuation"  involves  assessing  the  monetary  impact  of  pollution-related  health
conditions based on factors such as medical expenses,  lost  workdays,  and reduced productivity. Valuing premature
deaths  caused  by  air  pollution  can  be  particularly  challenging,  given  the  complex  ways  in  which  air  pollution
contributes to mortality rates and to the degradation of the quality of life. However, these costs can help policymakers
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Qk
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2 π us σ y (x )σ z (x )
exp( − y2
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2σ z
2( x) )+exp(− (z − H )2

2σ z
2( x) )] ,

Êk
m (h)=C̄k

m (h)×Popm (h) ,



understand the financial and economic impact of pollution exposure.  Short and long-term damages on ecosystems,
wildlife,  and  natural  resources  are  estimated  considering  factors  like  the  cost  of  environmental  remediation  and
restoration, the estimated value of ecosystems and biodiversity. By using approaches like valuation and cost-benefit
analysis,  policymakers  can  better  understand  the  monetary  and  economic  implications  of  air  pollution  and  make
informed decisions about how to mitigate its negative effects. 

In this paper, we adopt a conservative approach. Our costs of population exposure only depend on the expected lives
lost. Therefore, our estimates should be viewed as a lower bound of the total costs of pollution. These monetary cost (in
$) of population exposure to pollutant k  in cell m during time period h is calculated  as follows:

where ck  is the marginal exposure costs per hour (in  $/µg.m-3/inh.).

Since population exposure is computed at a spatial resolution of 1 km2 and a temporal resolution of one hour, our
economic model can compute the costs of population exposure with the same level of detail. This results in a highly
detailed map of population exposure to pollutants, which can be used by policymakers and public health professionals
to identify areas where individuals may be at risk of exposure to harmful pollutants. Such results are also usefull to take
appropriate measures to prevent the negative impacts of air pollution. 

Additionally, the model provides the opportunity to perform cost-benefit analyses of public policies designed to reduce
or  prevent  exposure  to  harmful  pollutants.  By using  the  information  provided  by  the  detailed  map of  population
exposure,  policymakers  can  evaluate  the  economic  benefits  of  different  policy  options  and  make  more  informed
decisions regarding environmental protection and public health. 

4. Data collection over La Réunion (France) and treatments

This section introduces La Réunion and the data used for analysis. Publicly available data is used for transparency and
reproducibility, allowing for collaboration and knowledge sharing. This leads to better policy decisions and outcomes
for communities and the environment. 

4.1. La Réunion 

The French island of La Réunion, located in the Indian Ocean, is the focus of this study (as shown in Figure 1). Despite
its size and lack of prior research, La Réunion provides a unique opportunity to study mobility driven solely by the local
population  due  to  its  isolated  geography.  The  transportation  network  in  La  Réunion  is  known  for  being  heavily
congested and a major contributor to air pollution. The INSEE (Coudrin and Mariotti, 2020) reported that from 2004 to
2017,  residents of  La Réunion produced 6 tons of  CO2eq (carbon dioxide equivalent)  per  year,  with transportation
accounting for 40% of the island's CO2 emissions in 2017 and 88% of that amount being due to road traffic. In 2019,
66% of commutes in La Réunion were made by car and this number increased to 79% for commutes to work. The
average travel distance in 2020 was 11 kilometers, which had increased by 10% over a ten-year period. Thus, while La
Réunion has already taken steps to improve its fleet, more work is needed to reduce its impact on the environment and
population. 
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At the southeast, the highest area represents the volcano called 
“le Piton de la Fournaise”. Source: Conseil regional de la 
Réunion.

Figure 2 Map of La Réunion, France. 

4.2. Input data for traffic simulation

The model is applied during the morning peak hour period from 6:00 a.m. to 12:00 a.m., with simulation statistics
provided at 20-minutes intervals. The average desired arrival time is set to 8:30 a.m., with a normal distribution of 70
minutes standard deviation. A list of all parameter values, including these, can be found in Table A1 of the appendix. 

We first built an Origin-Destination (OD) matrix using data from the INSEE (Daudin, Lieutier, and Besnard, 2014).
This  data  are  available  for  2011.  However,  those  data  are  only  available  at  the  municipality  level.  Because
METROPOLIS is unable to simulate intra-zone commuting, using the raw data will result in only taking 37.8% of
Réunionese commuters into account. In order to increase the number of commuters considered, we also built an OD
matrix with a higher resolution using IRIS zones9 and a probabilistic method. We account for 66.4% of La Réunion’s
commuters thanks to this transformation. However, due to the tiny sizes of IRIS zones, it is likely that a significant
proportion of the remaining commuters will not use a car for commuting. The revised OD matrix has 223 origins and
destinations. This OD matrix accounts for 140,121 commuters. The spatial distribution of commuter inflows, or the
number of commuters entering the zone, and outflows, or the number of residents leaving it, is shown in Figure 3. The
first  thing that stands out is the strong correlation between inflows and outflows. Additionally,  it  is  noted that  the
majority of inflows and outflows are located along the island’s coast. We may also see that zones in the South-East of
the island nearly never experience inflows or outflows.

9  The National Institute of Statistics'  (INSEE) IRIS zone is a French division of the space. They were created to
correspond to a population of 2000 indivudals per zone.  
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The left figure shows the number of commuters who leave each zone, while the right one shows the number of commuters who enter 
each zones.

Figure 3 Maps of inflows and outflows of commuters during the morning peak at La Réunion. 

METROPOLIS requires a structured network. Each area, referred to as a zone, is represented by a central point, known
as the barycenter of the zone. These points are linked to the rest of the network through connectors, with a maximum of
eight connectors (four for entering and four for exiting) connecting each barycenter. Note that the entering and exiting
connectors  can  be  asymmetrical.  The  network  consists  of  36,340  nodes,  which  represent  intersections  and  road
connections, and 79,824 links, which represent the roadways, with a total length of approximately 11,304 kilometers. In
this study, we utilized a simplified OpenStreetMap network that only includes non-residential roadways (as shown in
Figure 4). The maximum speed of the network is 130 km/h, with a minimum speed of 10 km/h. The majority of the
network has a restricted speed of 50 km/h, which is typical for French urban roads. The network's capacity ranges
between 700 and 10,000 vehicles per hour on average. The network is shaped like a ring along the coastline of the
island, with only one road crossing it from Southwest to Northeast. This can result in higher congestion and emissions
due to longer average travel distances and necessary detours for reaching destinations.

Sources: OpenStreetMap

Figure 4 Road network of La Réunion

Figure 5 provides the maximum speed of the network is 130 km/h, with a minimum speed of 10 km/h. The majority of
the network has a restricted speed of 50 km/h, which is typical for French urban roads. The network's capacity ranges
between 700 and 10,000 vehicles per hour on average which refers to the maximum number of vehicles that may drive
in a link without causing congestion.
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On the left : Total length of links per speed limit (in km/h), is shown on the 
left. On the right : total length of links per capacity (in thousands of vehicles
per hour). Sources: speed limitations are divided from OpenStreetMap 

Figure 5 Density distributions of the network

4.3. Input data for emission simulations

Figure  6  describes  the  French  fleet  composition.  The  majority  of  France's  fleet  is  composed  of  diesel-powered
passenger cars and that the majority of the vehicles comply with EURO 5 and EURO 6 European standard. There is still
a significant portion of the fleet that is over 20 years old and falls under EURO 1 and EURO 2, which are known to
have higher emissions levels, and should be a priority in the fight against pollution.

 (a) per motorization types, (b) vehicle size and (c) European norms. Source: Citepa, 2019.

Figure 6: French fleet composition

Figure 7 shows the air pollutant emissions emitted by a mean French passenger car. It is an average emission factor
computed considering the national fleet composition (Citepa, 2019), and the emission factors of each type of vehicle of
this fleet given by COPERT III database (2019). It is shown that this mean emission factor reachs a minimum emission
level at 65 km/h. The emissions from a vehicle's engine tend to follow a U-shaped and asymmetric curve with respect to
speed. Indeed, at  low speeds,  such as in a stop-and-go traffic,  the engines need to work harder to get  the vehicle
moving, which can lead to inefficient fuel combustion and higher emissions of pollutants. Conversely, at high speeds on
highways, the engine may not burn more fuel as efficiently, leading to higher emissions of pollutants. Additionally, the
increased aerodynamic drag at high speeds can also contribute to higher emissions. In contrast, at medium speeds, the
engine runs more efficiently, and the vehicle produces less aerodynamic drag, leading to lower emissions. Specifically,
the emissions of CO can vary by a factor of 3.5, while NOx and CO2 can vary by a factor of 2, and PM2.5 can vary by a
factor of 1.6. The emissions are computed on each link according to to the mean speed computed by METROPOLIS.
They are expected to be higher on low and high-speed links, and the resulting emissions.
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Computation are made using the national fleet composition (Citepa, 2019) and  the emission
factors of each type of vehicle of this fleet given by COPERT III database (2019).

Figure 7: Mean emission factor (in g/km) of a French passenger car as a function of the speed (in km/h)

4.4. Input data for air pollution concentrations simulations

Air pollution concentrations are computed on a spatial resolution of 100 m. The dispersion module first interpolates the
vehicle emissions on a 100 m grid domain. Meteorological  data are taken from meteoblue.com. Wind speeds and
directions are shown in Figures 8 in terms of wind roses. The predominant direction of the wind at La Réunion is from
the North-West to the South-East with an average speed of 7.4 m.s-1. 

Source : meteoblue.com.

Figure 8: Wind roses observed at the airport of La Réunion's in 2019. 

Figure 9 shows the occurrence of each type of atmospheric stability. It is shown the neutral stability class occurs in over
68% of cases.
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It is given in terms of frequencies (in percentage of days) per each 
Pasquill’s stabilitity class. Data source : meteoblue.com. 

Figure 9: Atmopsheric stability observed at the airport of  La Réunion in 2019

4.5. Input data for population exposure simulations

The French Geographical  Institute’s (IGN) BDTOPO for 2021 provides information on buildings that  described in
terms of usages : business operations, services, or industrial are categorised as working places; structures reported for
residential  purposes  are  categorised as  residential  places;  few buildings are classified in  both previous categories.
Buildings localisations are shown in Figure 11 according to their classification. Workplaces are mostly located near the
coastline.  while  residential  areas  are  more  dispersed.  We notice  that  the  island’s  southeast  and  center  are  largely
deserted, respectively, because of the volcano “Le piton de la Fournaise”, and few other mountains (see Figure 2).

This map of La Réunion for 2019 shows buildings categorized by their uses
as residences, workplaces, or both. Sources: BdTopo (IGN), 2021

Figure 11: Location of building according to their classification at La Réunion

The Landscan population distribution for 2019 (Bhaduri et al., 2002) is depicted throughout space in Figure 10. 
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Sources : Landscan, 2019 

Figure 10: Spatial population density at La Réunion

4.6. Input data for costs evaluations

Table 3 shows the marginal costs used in this study. Note that CO exposure is significantly lower than that of the others.
The marginal costs of exposition for NOx are by far the highest, followed by those for PM2.5. Since CO2 costs are
independent of exposure or concentration (CO2 only contributes to global warming and does not have a direct impact on
human health), costs are expressed for each ton of CO2 emitted. 

Table 3: Marginal costs of population exposure to several pollutants concentrations 

Pollutant Costs Authors

NOx 0.02634 $/µg.m−3/inh./h Bigazzi and Figliozzi (2013)

CO 0.00014 $/µg.m−3/inh./h Bigazzi and Figliozzi (2013)

PM2.5 0.01646 $/µg.m−3/inh./h Bigazzi and Figliozzi (2013)

CO2 100 $/ton CE Delft (2019)
The marginal costs for one person exposed for one hour to one microgram per cubic meter of  NOx,
CO, and PM2.5 are shown in this table in USD. Bigazzi and Figliozzi (2013) used the cost of human
life and the probability of death burden to compute these expenses. The costs for CO 2 are expressed
in USD per ton and are those set forth by CE Delft (2019).

The overall costs of population exposure to traffic harmful pollutants to health is computing in space and time from the
population density and the concentration levels. For areas with high population density and high concentration levels,
the overall costs of exposure will likely be higher, while in areas with low population density and low concentration
levels, the overall costs will be lower. Therefore, it is crucial to consider both the concentration levels and population
density when evaluating the costs of population exposure to pollutants. 

5. Results: Exposure evaluation of the Réunionese to the traffic air pollution

This section illustrates the outcomes of our chain of models, applied to La Réunion in order to evaluate the population
exposure to the traffic air pollution and its costs. The impact of transportation policies will then be assessed.

5.1 Traffic simulations

Table 4 provides a summary of the traffic simulations. A 45.7% congestion index suggests that, on average, travel times
are about 1.5 times longer than they would be without congestion. With a typical distance of 17.94 kilometers, the
average trip lasts 23 minutes and 8 seconds. With an average speed of 50.6 km/h, it can be inferred that most trips take
place on urban roads with a speed limit of 50 km/h. Nonetheless, as some residents also travel on national roads with
higher speed limit, the average speed is slightly larger than this value.
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Table 4: Summary of METROPOLIS traffic simulations on La Réunion

Index name 
(unity)

Index simulated 
value

Index observed value Definition of the index

Peak period 
duration

5h 16min Simulation duration time starting when 10% of the 
drivers have reached their destination, and ending 
when 90% have reached their destination

Mean speed (km/h) 50.6 km/h Mean travel speed

Trip duration 23’ 8’’ 41’ 35’’ – 45’4’’** Mean travel time

Trip distance
(km)

17.94 25.3* 22.56** Mean travel distance

Congestion Index
(%)

45.7 44-60** Congestion delay as percentage of free-flow travel 
time on same route

Total vehicle (km) 2.51x106 5.1x106* Total kilometers traveled
The outcomes of  the  METROPOLIS simulation  using the  baseline  parametrization are  shown in  this  table's  simulated value  column.  The
observed values from two separate data sources are presented in the Observed Value column. Sources: * Daudin et al. (2014) ** GoogleMaps.

Figure 12 displays the difference of the vehicle inflows and outflows (the net flow, i.e. the total number of residents
entering the network and those leaving it), and the activities per hour on the network (i.e. the road fluxes times the
length of the roads, so called the mileage, the number of vehicles kilometers). This activities strongly influence the
emissions, as well as the vehicle speed, which is affected by the traffic congestion.

 This figure shows the netflow on the network for each time period, which
is the total number of residents entering thenetwork and those leaving it.
The total activity, which is provided in thousands of kilometers driven by
all residents over a certain time period, is shown in the right graphics.
The  results  of  the  simulation  using  the  baseline  parametrization  were
used to generate those numbers.

Figure 12: Net traffic flows (in vehicles) and activity per hour (in veh.km)

On those graphs, we can see that the majority of the journey occurred between 7:00 a.m. and 10:00 a.m. Note that the
network experiences its highest activity between 7:00 a.m. and 9:00 a.m., with a peak between 8:00 a.m. and 9:00 am.
We can see that the largest netflows occurs between 6:00 a.m. and 8:00 a.m., which is consistent with the fact that at the
start of the simulation period, few residents are exiting the network while many are entering. The lowest netflows are
obtained between 9:00 a.m. and 11:00 a.m.

The weighted congestion percentage, mean travel time, and mean travel distance are computed on daily basis using
observations recorded using Google Maps for the 30 most popular trips, with weights allocated proportionally to the
number of trips. Computations are carried out for all hours between 6:00 a.m. and 12:00 p.m.. To account for the
presence of two peaks in a day, the reported values of total vehicule kilometers has to be multiplied by a factor of 2, and
it is noteworthy that the resulting values are remarkably similar. Since the majority of trips occur during peak hours of
7:00 a.m. to 9:00 a.m., additional calculations are made solely for those hours, yielding higher values. Table 4 shows
that the simulated value of the congestion index matches its lower bound as established by Google Maps. However, the
mean travel distance and time is overestimated. 
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5.2 Emission simulations

METROPOLIS traffic simulations (activities and mean speed on each link) coupled with EMISENS model allows to
compute the traffic air pollutant emissions. These emissions are described in Table 5.

Table 5: Total air pollutant emissions computed over La Réunion

Morning peak (6:00 a.m. - 12:00 p.m.)

Pollutants Total (kg) Per driver (g) Per inhabitant (g) Per km (g)
NOx 973 6.95 1.13 0.39
CO 732 5.23 0.85 0.29
PM2.5 187 1.34 0.22 0.07
CO2 393811 2812 458 157

Per year (All days)
Pollutants Total (T) Per driver (kg) Per inhabitant (kg)

NOx 710.8 5.1 0.83
CO 534.5 3.8 0.62
PM2.5 136.6 1 0.16
CO2 287482 2053 334
This table shows the amount of each sort of pollution that was released annually and during the
morning peak, which is the time frame from 6 a.m. to 12 p.m. Estimates for each year are created by
multiplying the  morning  peak  results  by  2x365.  The  parametrization  of  the  baseline  is  used to
estimate those values. Total is the total amount of emissions for each category of pollutant. Total
emissions are divided by the number of drivers in our baseline parametrization to get emissions per
driver.  The  total  emissions  are  divided  by  the  population  of  Réunion  to  get  the  emissions  per
inhabitant. The total emissions are divided by the amount of kilometers that are traveled in our
baseline parametrization.

We can observe that each driver emits around 2 tons of CO2 annually which is in line with the value of 2.46 tones
estimated by the Observatoire Energie Réunion (2020)10 for the whole transportation sector (including air and maritime
transport). Each driver also emits 5.1 kg of NOx per  year, which is slightly lower than the estimate of 8 kg/driver/year
for Strasbourg made by Ho et al. (2014). The discrepancy between those two numbers was explained by the great
evolution of the vehicle fleet between those two studies (less diesel cars). Finally, we can see that each driver annually
releases 3.8 kg of CO and 1 kg of PM2.5. 

Figure 13 displays the total amount of air pollutants released over the course of each hour. We can see that the four
curves exhibit the exact same profile as the activity profile. This shows that the results of the emission model were not
influenced  by the  significant  congestion seen  in  the  METROPOLIS results.  Additionally,  We note  that  the  scales
between each pollutant for each time period are consistent with those shown in Table 3.
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These charts display the quantity of each type of pollution that was released during
the morning peak, which is from 6:00 a.m. to 12 p.m. These values are estimated using
the baseline parametrization.

Figure 13: Total traffic air pollutant emissions per hour during the morning peak

Since fleet composition, congestion, and other network factors have a significant impact on the emissions of different
pollutants, it is important to note that these results are quite challenging to compare with other statistics in the literature.

5.3 Air pollution simulations

In order to evaluate the performances of our chain of models, we compared hourly observed PM2.5 from Atmo Réunion
for  the  year  2019 between  6:00 a.m.  and  12:00 a.m.  with data  estimated  using  our  framework  with the  baseline
parametrization. These data are available for four different air pollution control stations. Because our chain can only
estimate pollutant  emissions and concentrations attributable to road  traffic,  we must  first  identify stations that  are
affected by pollution connected to road traffic. To do this, we analysed the average hourly concentrations of NO, NO 2,
and PM2.5, three pollutants highly emitted by road transport. Map of the different air control stations and graphics are
available in Appendix A3. These graphics show that just two stations appear to be clearly impacted by road traffic
(stations “Route des Tamarins” and “Joinville”), with hourly concentration profiles showing two picks, one during the
typical morning commute and the other one during the evening commute. To allow a comparison, an average daily
observed concentration is first computed for hours where road traffic is assumed to be minimal, which are typically
before 3 a.m., between 12 p.m. and 4 p.m, and after 10 p.m.. This average is then subtracted from the hourly daily
average of concentrations measured during the simulation period (6 a.m. to 12 p.m.) in order to estimate the observed
maximum time variations of the traffic contribution. 

Figure 14 shows the comparisons of this computed maximum hourly traffic contribution with the simulations. 
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The  PM2.5 observed  concentrations  at  the  air  pollution  station  Route  des  Tamarins
during the morning peak, which is the time period from 6 a.m. to 12 p.m., are shown
using boxplots in the left figure. Our predicted concentrations at the station's location
are represented by the black dots. For our baseline parametrization, they are computed
using our Gaussian plume model, in which we integrated the outcomes of our emissions
model. The identical outcomes are shown in the right figure, but for the Joinville air
pollution station. Source: AtmoRéunion, 2019

Figure 14: Observed versus simulated concentration of PM2.5 during the morning peak at La Réunion. 

The  hourly  simulated  concentrations  are  underestimated  or  overestimated  the  hourly  average  traffic  contribution,
depending on the location of the station. While our simulated concentrations always keep between the second and third
quarters of the distribution of hourly traffic contribution, the model is not able to fully represent the hourly variation of
the daily maximum traffic contributions as observed (globally here seen as underestimated). This is especially noticed
on Joinville station (the simulated concentrations are estimated into the first quarter of the distribution of the traffic
contributions before 3 a.m., between to 12 a.m. and 4 p.m., and after 9 p.m.). One can note that constant and uniform
wind speed and directions are considered in the present version of the model, neglecting their hourly variations and their
impact on the local dispersion of the air pollution (the effect of buildings on the wind speed and the directions, very
complex to simulate, is not considered). 

5.4 Exposure evaluations

Table 6 describes the population costs exposure to air pollution. Note that NOx is the pollution with the highest marginal
population exposure costs, largely costlier than the CO2 and PM2.5 air pollution. Population exposure to pollutant
concentration is low in La Réunion due to the geographical correlation between road distribution and population, which
may account for the significant discrepancies between our findings and those reported in the literature.
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Table 6: Descriptive statistics for population costs exposure

Morning peak (6:00 a.m. - 12:00 p.m.)
Pollutants Total ($) Per driver ($) Per inhabitant ($) Per km ($)
NOx 71696 0.5119 0.0834 0.0286
CO 139 0.001 0.0002 0.0001
PM2.5 8589 0.0613 0.01 0.0034

CO2 38175 0.2726 0.0444 0.0152

All 118599 0.8468 0.1379 0.0473

Per year (All days)
Pollutants Total (k$) Per driver ($) Per inhabitants ($)

NOx 52338 373.7 60.9
CO 101 0.7 0.01
PM2.5 6269 44.7 7.3

CO2 27867 199 32.4

All 86577 617.5 100.7
The morning peak and annual expenditures for each type of pollution are displayed in this table. The
morning peak is the period from 6 a.m. to 12 p.m. The morning peak values are multiplied by 2x365
to obtain estimates for each year. These values are computed using the outputs of our population
movement module combined with the outputs of our dispersion model. These values are estimated
using the baseline parametrization. Total is the sum of the costs for each type of pollution. In our
baseline parametrization, all costs are divided by the number of drivers to obtain costs per driver.
The costs per inhabitant are determined by dividing the total costs by the population of La Réunion.
The costs per kilometers are obtained by dividing the total costs by the number of kilometers driven
in our baseline parametrization.  

Figure 15 shows the costs of exposure to pollutants as a function of time. We note that the time profiles mirror those of
activity and pollution, but not for  the initial  time period. The costs of exposure to NOx,  CO, and PM2.5 estimated
between 6 a.m. and 7 a.m. is large. This may be accounted for by the fact that individuals start their trips from their
homes. Therefore, population exposure and its related costs at the beginning of the simulation are higher. Similar to the
descriptive table, we can rank pollutants for each time period in the same order from least to most expensive.
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These  charts  display  the  costs  of  each  type  of  pollution  during  the
morning  peak,  which  is  from  6:00  a.m.  to  12  p.m.  These  values  are
computed  using  the  outputs  of  our  population  movement  module
combined  with  the  outputs  of  our  dispersion  model.  These  values  are
estimated using the baseline parametrization.

Figure 15: Pollutants exposition costs per time period

According to CE Delft (2020), the yearly cost of population exposure to PM10, PM2.5, NO2, and O3 in London and Paris
is  $1294  and  $1602 per  inhabitants,  respectively.  Note  that  our  results  are  also  quite  low compared  to  those  of
Vlachokostas et al. (2012) and Martinez et al. (2018) which find respectively values of $4500 and $3601. However,
these costs take in account cost of population exposure to pollutant from all sources. Since we find with our chain of
models on La Réunion that this cost is about $100.7. 

Several explanations of this low value could be discussed. First La Réunion is an island and that there is no transit
traffic,  which makes up around 50% of all traffic in Paris. In addition, our model is unable to model non-working
travels, intra-commuting, and estimate the exposure and related costs experienced during the commuting process. This
will therefore raise the overall cost of population exposure to traffic pollution in our model. 

Notably, population exposure is not expressly taken into account in the majority of the studies. Our study take into
account  the spatial  and temporal  distribution of both population and concentrations.  While in CE Delft  (2020) for
example, all residents are assumed to be exposed to the average concentrations observed in the studied area. Therefore,
this could made a significant differences.

However, more vehicles will create more pollution, but this might be due to two separate channels, the first being
mechanical. The second is more tricky; more traffic will always result in increased congestion, but congestion may have
a positive or negative effect on the levels of pollutants released. Finally, take notice that road traffic connected to public
transportation is  not  taken into consideration by our  models.  Additionally,  while  population exposure is  primarily
determined by the distribution of population and roads across space, differences in fleet composition, traffic flows, and
congestion have a significant impact on pollutant emissions. It is so challenging to compare population exposure to
vehicle traffic pollution statistics across various nations, regions, or municipalities.

6. Results: Exposure evaluation of the Réunionese to the traffic air pollution

The fleet composition and congestion in La Réunion were the main contributors to road traffic pollution, according to
the  prior  sections.  In  order  to  assess  proposed  laws  and  give  input  on  their  efficacy,  we  test  fleet  composition
restrictions in this area. In order to evaluate its performances, we also examine a policy that reduced congestion.
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6.1 Renewal of the oldest cars by electric vehicles

"What effect would replacing thermal automobiles with EVs have?" is what this scenario explores. Since many people
and authorities today wish to replace thermal vehicles with electric ones, this appraisal seems to be quite essential.
Following a vote in the European Union in June 2022, the sale of new thermal vehicles will cease in 2035. Therefore,
understanding how such measures could affect the well-being of populations is essential. 

We built five different scenarios which relies on European passenger cars standards (EURO I to EURO VI). Those
standards has been putted in place by the European Union to ensure that all passenger cars meet a minimum level of
safety, environmental protection, and energy efficiency. 
 
The least restrictive option is EURO II, where EVs are only used to replace the oldest, EURO I and EURO II passenger
cars. The All scenario is the most limiting one. In this scenario, we outlaw all thermal vehicles and substitute EVs. In all
other scenarios, EURO III, EURO IV, and EURO V, the goal is to prohibit any passenger automobiles with standards
that are older than the corresponding versions of these standards.  Figure 16 demonstrates that, in the All scenario,
emissions are reduced to zero, with the exception of PM2.5,  which only experiences a 20% reduction. This may be
accounted for by the fact that our model estimates PM2.5 non-exhaust emissions, which are unaffected by motorization.
Since the  fleet  mix includes varying  numbers  of  each  standard vehicle,  this  figure alone  might  be  challenging to
analyze. It is important to keep in mind that only 8% of the fleet is older than EURO II, compared to 20%, 53%, and
82% for EURO III, EURO IV, and EURO V, respectively.

Black: NOx; Light Grey : CO; Dark Grey: PM2.5; White: CO2

This graph shows the differences in emissions for each type of pollutant
between the emissions from our five scenarios and the emissions from
baseline parametrization. A scenario where all thermal vehicles with a
European norm of EURO II or older are replaced by electric vehicles is
referred to as "EURO II and older." Thermal cars that met an older or
equivalent standard to EURO III were replaced with those that did. The
reasoning behind EURO IV and EURO V is the same for each European
standard.  The  All  scenario  calls  for  the  replacement  of  all  thermal
vehicles with electric ones.
  

Figure 16: Comparison of emissions at La Réunion between the baseline and the different scenarios based on
European standard

Elasticity refers to the degree to which the quantity of pollutants change in response to fleet composition changes. The
elasticities of pollutant emission in response to a replacement of 1% of thermal cars are shown in Table 7 for each
European standard. 
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Table 7: Elasticities of pollutant emissions with respect to European standard for La Réunion

European Standard NOx CO PM2.5 CO2

EURO II 1.6 4.1 0.46 1.04
EURO III 1.29 1.02 0.34 1.02
EURO IV 1.06 0.6 0.26 1
EURO V 0.99 0.57 0.02 1
EURO VI 0.44 0.75 0.02 0.98
The  elasticities  of  pollutant  emission  in  response  to  a  one
percentage  point  reduction  in  thermal  cars  by  European
regulations are shown in this table. These figures were estimated
using the outcomes of our five scenarios, in which we sequentially
outlawed  thermal  vehicles  in  accordance  with  their  European
standard and compared the resulting emission to that determined
by our baseline parametrization. 

We see that, unlawful thermal vehicles that meet the EURO II or older criteria always result in a greater reduction of
pollutant release. This is consistent with the fact that older vehicles are subject to fewer strict emissions regulations. As
a result, this might also be used to explain why emissions are becoming less elastic according to the European standard.
With CO as an exception, which displays greater elasticity for the EURO VI standard. The composition of the EURO
VI fleet may be to blame for this. Diesel EURO VI vehicles are subject to stronger CO rules than gasoline vehicles.
Therefore, CO emissions for this standard are greater for the EURO IV fleet if there is a higher proportion of petrol
vehicles than in other fleets, which results in a higher elasticity. Therefore, a finer decompositon of the fleet needs to be
done in order to better assess the impact of prohibiting thermal cars. We should estimate elasticity for each vehicle
depending on its type, motorization, and standard. Using those elasticities it is possible to quantify in term of pollutant
release quantity the effect of those policies. Knowing that 1% of the fleet consists of 1,400 vehicles and that 1% of the
annual emissions consists of 7,108 kg of NOx, 5,345 kg of CO, 1,336 kg of PM2.5, and 2,874,821 kg of CO2. As a result,
those effects may be measured. For example, we can show that replacing one EURO III thermal car will reduce the
amount of NOx, CO, PM2.5, and CO2 emissions per year by 8.1 kg, 15.7 kg, 0.44 kg, and 2135.6 kg, respectively.
  

Table 8: Elasticities of costs with respect to European standard for La Réunion

European Standard NOx CO PM2.5 CO2

EURO II 1.54 7.29 0.44 1.04
EURO III 1.29 1.56 0.3 1.02
EURO IV 1.08 0.46 0.26 1
EURO V 1.01 0.27 0.03 1
EURO VI 0.42 0 0.02 0.98
The elasticities of total costs in response to a one percentage
point reduction in thermal cars by European regulations are
shown in this table. These figures were estimated using the
outcomes  of  our  five  scenarios,  in  which  we  sequentially
outlawed thermal vehicles in accordance with their European
standard and compared the resulting costs to that determined
by our baseline parametrization. 

For each European standard, Table 8 displays the elasticities of population costs exposure in response to a replacement
of 1% of thermal automobiles. When costs are taken into account instead of emissions, we see that this time, prohibiting
older or EURO II passenger cars always results in the biggest cost savings. Since the cost of CO2 does not rely on
population exposure, which is why elasticities with respect to emission or to population exposure for CO2 exhibit the
same values. However, this allows us to emphasize how critical it is to consider population distribution through time
and place in order to accurately estimate the cost of population exposure.

Additionally,  we  should  be  aware  that  the  elasticities  for  PM2.5 and  NOx with  regard  to  pollutant  emissions  and
population cost are relatively similar. Finally, we see that elasticities are fast falling for CO. We should be conscious
that for EURO IV, this elasticity essentially vanishes. As before, we also compute the population exposure costs savings
associated with switching from one type of vehicle to an EV. Remember that 1,400 vehicles make up 1% of the fleet.
Knowing that 1% of the population’s annual exposure costs equals $523,380 for NOx, $1,010 for CO, $62,690 for PM2.5,
and $278,670 for CO2. For instance, we determine how much money would be saved each year if one EURO III thermal
automobile was replaced with an EV. It turns out that these savings are, $482.26 for NOx, $1.1 for CO, $13.43 for PM2.5,
and $203.03 for CO2 which results in a total yearly saving of $699.82.
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We have demonstrated that switching from thermal to EVs will reduce both the population’s exposure to road traffic
pollution  and  pollutants  emissions.  Additionally,  switching  all  thermal  vehicles  to  electric  ones  will  completely
eliminate all NOx, CO, and CO2 emissions as well as the exposure costs linked to them. This conclusion does not apply
to PM2.5, as a significant portion of it is created by road abrasion, brake wear, and tyre wear rather than by the engine.
Additionally, this effect varies greatly amongst European standards. The greatest reduction in pollution emission and
population exposure costs will result from the outlawing of older automobiles.

It is important to highlight that our integrated chain of models only in-cluded costs related to vehicle motion. Because
both the production of power and the manufacture and recycling of batteries are famously bad for the en-vironment, we
do not take any of this pollution into account. Zheng et al. (2020) when comparing the difference in pollution emissions
between thermal and EVs for China, considering the entire lifecycle of the vehicle, as well as the pollution released
during the generation of power. They found that the average gasoline automobile emits 35% more greenhouse gases
than an EV. While PM2.5 emissions are unaltered, NOx emissions are reduced by 34%.  As a result, our findings must be
considered to be an upper limit on the amount that could be saved in population costs exposure, and emissions. A
Réunionese  EV is  predicted  to  generate  129.4  gCO2/km11.  It  is  therefore  possible  to  compute  the  well-to-wheels
emissions for each scenario using our findings. Table 9 enables us to moderate the results shown above. We should note
that considering well-to-wheels emissions of EVs will result in the scenario where we ban all thermal vehicles to only
reduce  CO2 emissions by about  44% against  100% while take only emitted  pollutants  into account.  Therefore,  to
account for this effect, the elasticities of both emission and population exposure costs for CO2 should be divided by two.

Table 9: Emissions of CO2 while considering well-to-wheels emissions of electric vehicles

Scenario Electric vehicle (T) Thermal vehicles (T) Total Emissions (T) Difference (%)
EURO II 26 361 387 -1.7
EURO III 64.7 313.1 377.8 -4.1
EURO IV 171.8 183.2 355 -9.9
EURO V 266.6 69.4 336 -14.7
All 324.8 0 324.8 -17.5
The amount of CO2 emitted by electric vehicles in each scenario is shown in the electric vehicle columns of the table.
These numbers were computed using a value of 129.4g CO2/km. The total CO2 emissions from our 5 scenarios are shown
in the thermal vehicles columns. The CO2 emissions from both thermal and electric vehicles are added to determine total
emissions. The difference column shows the variation in emissions between the total emissions columns for each scenario
and the baseline parametrization CO2 emissions.

Our study of strategies  to  switch from thermal  to EVs demonstrates  that  banning older  vehicles  results  in greater
reductions in pollutant emissions. According to our study, NOx and CO emissions could be fully eradicated if all thermal
vehicles were switched out for electric ones. Nevertheless, PM2.5 emissions are only reduced by 20%. However, when
the energy production process is taken into account, EVs only lower CO2 emissions by about 17.5%. The results of our
study, including the elasticity of population exposure costs and emissions in response to a replacement of thermal cars
with EVs, are valuable for extrapolating future benefits of such policies. This information can help decision-makers
determine the most effective strategies for reducing emissions and promoting a cleaner, more sustainable transportation
system. 

6.2 Flexibility in working hours

In this scenario, we test the following hypothesis: "What influence would giving employees more control over their
working hours have?". We change the desired arrival time distribution standard deviation from 1 h 10 min to 1 h 30 min
in order to analyse this policy. This policy permits employees to arrive at work sooner or later. Table 10 displays the
outcomes of our dynamic traffic model when residents are given more flexible work schedule options. The duration of
the peak period has slightly increased (1%). Additionally, we see that the network’s average speed is significantly higher
than the one produced using the baseline parametrization (50.6 km/h), at 54.82 km/h. As a result, the mean travel time is
decreased by 8% as a result  of this notable increase in average speed. Those outcomes are mostly the result of a
significant decrease in the congestion index (from 45.7% to 34.7%). Finally, note that this legislation has essentially no
impact on mean trip distance and total vehicle kilometers.

11  The above data is based on two pieces of information: first, the Observatoire Energie Réunion (2020) reports a number of
719gCO2.kWh-1 for 2019; second, Holdway et al. (2010) report that a French car consumes 0.18 kWh.km-1 of energy. 
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Table 10: Descriptive statistics of METROPOLIS simulation while adding flexibility in working hours

Statistic Simulated value Difference (%)
Peak period duration 5 h 19 min 1

Speed 54.82 km/h 8.3

Trip duration 21 min 16 sec -8

Trip distance 17.83 km -0.6

Congestion Index 34.66% -24.2

Total vehicle km 2.5x106 -0.3
The  outputs  of  the  METROPOLIS  simulation  adopting  the  flexible  hours  scenario
parametrization are shown in this table in the simulated value column. The difference column
displays  the  percentage  difference  between  results  obtained  using  the  baseline
parametrization and those obtained using the flexible hour scenarios. 

Table 11 displays the EMISENS findings for our novel situations in which flexible work schedules are permitted. We
might start off by noting that this policy decreased the total amount of pollutants that were emitted. Similar decreases
are seen for  NOx and CO, at  1.7%. With a reduction of roughly 2.4%, PM2.5 is  obviously more impacted by this
legislation than other pollutants.

Table 11: Descriptive statistics of pollutants emissions while adding flexibility in working hours

Pollutants Total (T) Per driver (kg) Per inhabitants (kg) Difference (%)
NOx 698.4 4.99 0.812 -1.7
CO 525.7 3.75 0.611 -1.7
PM2.5 133.3 0.95 0.155 -2.4
CO2 281695.1 2011.2 327.5 -2
This table displays emissions for each types of pollutants. They have been produced using the flexible hour
scenario parametrization. Total  is the total  amount  of emissions for  each category of pollutant.  Total
emissions are divided by the number of drivers in our flexible hour parametrization to get emissions per
driver. The total emissions are divided by the population of Réunion to get the emissions per inhabitant.
The  total  emissions  are  divided  by  the  amount  of  kilometers  that  are  traveled  in  our  flexible
parametrization.  The  emissions  differences  between  the  outcomes  achieved  using  the  flexible  hour
parametrization  and those  acquired using the  baseline  parametrization  is  indicated by  the  difference
columns. 

The population costs exposure related to our flexible work schedules scenario is shown in Table 12. When considering
population costs exposure, we may see that conclusions drawn from emissions results do not hold. We should be aware
that the population costs exposure for NOx, PM2.5, CO and are larger than those determined by baseline parametrization.
First, these results can be explained by the fact that more individuals would choose alternate routes because traffic on a
specific link is less congested than it was in the baseline scenario, raising emissions in locations with higher population
densities. The second rationale is that lessening congestion will lead to faster speeds, and because the emission curves
are convex, this could lead to higher or lower emissions depending on the initial speed. Therefore, if emissions are
significantly increased in less populated areas and lowered in more crowded areas. The overall emissions level may
drop as a result, but the cost of population exposure may rise. As for emissions, we should note that CO 2 costs fall by
2%, which is consistent  with the fact  that  CO2 costs  do not  account  for  population exposure.  The significance of
considering both population and concentration distribution for estimating the cost of population exposure to road traffic
pollution is once again highlighted by these results.
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Table 12: Descriptive statistics of costs while adding flexibility in working hours

Pollutants Total (k$) Per driver ($) Per inhabitant ($) Difference (%)
NOx 57213 408.5 66.5 +9.3
CO 107 0.8 0.1 +5.9
PM2.5 6430 45.9 7.5 +2.6
CO2 27310 195 31.8 -2
All 91061 650.2 105.9 +5.2
This table displays costs for each types of pollutants. They have been produced using the flexible hour
scenario parametrization. Total is the total cost for each category of pollutant. Total costs are divided
by the number of drivers in our flexible hour parametrization to get costs per driver. The total costs are
divided by the population of Réunion to get the costs per inhabitant. The total costs are divided by the
amount of kilometers that are traveled in our flexible parametrization. The costs differences between
the outcomes achieved using the flexible hour parametrization and those acquired using the baseline
parametrization is indicated by the difference columns. 

Our analysis emphasizes the critical importance of considering population exposure in both time and location when
assessing program effectiveness. Granting employees greater control over their work schedules may reduce congestion,
but it may also increase population exposure costs for pollutants such as NOx, CO, and PM2.5, while lowering CO2

emissions levels. Thus, it is important to note that policies that aim to reduce pollutant emissions may lead to increased
population  exposure  costs,  which  highlights  the  need  for  policymakers  to  carefully  weigh  the  potential  trade-off
between emission reduction and population exposure increase when evaluating policy options.

One reason for this trade-off could be the spatial distribution of emissions, where the policy may reduce emissions in
areas with lower population density but may increase emissions in areas with higher population density. This could be
due to higher transportation demand in areas with more people. Thus, if the policy does not address those specific areas,
it may not achieve the desired reduction in pollution levels across the entire population. As a result, some individuals
may experience a reduction in their exposure to pollutants, while others may experience an increase. 

Another reason is the temporal distribution of traffic. The policy leads to a more dispersed distribution of traffic 
throughout the day, with fewer vehicles on the road during some hours. However, this may also lead to more prolonged 
periods of higher pollutant concentrations, resulting in higher average pollutant concentrations. As a result, the policy 
may lead to lower emissions during specific times of the day, but it may also lead to higher population exposure costs. 

Therefore, policymakers need to carefully weigh the trade-off between reducing emissions and increasing population
exposure when evaluating policy options. It is essential to take a comprehensive approach that addresses both emission
reduction and population exposure reduction goals.  This could involve implementing measures to promote cleaner
transportation options, enhancing air quality monitoring systems, and educating the public about the health impacts of
air pollution. By adopting a comprehensive approach, policymakers can ensure that their policies have the greatest
overall benefit for public health and the environment.

7. Conclusions

In this paper, we developed an integrated chain of models (METRO-TRACE) to assess which fraction of the population
is exposed to air pollution from roads. We integrate a dynamic traffic simulation model, an emission model, a dispersion
model, and a population exposure model. In our model, time-discrete speed and flow distributions are coupled with
extremely high-resolution population density data. We estimate the cost of exposing people to pollutants like nitrogen
oxides (NOx), carbon monoxide (CO), and particulate matter with diameter lower than 2.5 µm (PM2.5) with the help of
this novel methodology. We also consider the cost of carbon dioxide (CO2).

We computed the pollution-related costs in La Réunion, France, using our METRO-TRACE model. According to our
estimate, the pollution cost of La Réunion is rather low at $100.7 per year per person. However, this figure solely
accounts for primary pollutants, and only considers working commutes between zones. As a result, our predictions do
not include all pollution contributions.

We also examined the potential effects of banning thermal vehicles and replacing them with electric ones. Our findings
indicate that  the reduction in population exposure to road pollution is greater  for  older vehicles.  We estimate that
prohibiting thermal vehicles would completely eliminate NOx, CO, and CO2 emissions, but only about 17% of PM2.5

emissions. Further research is needed to investigate the heterogeneous impact of outlawing thermal vehicles in terms of
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their fuel type, category, and specifications. Additionally, note that the reduction in CO 2 emissions when taking into
account  ones  resulting  from  the  electricity  production  process  is  only  around  17.5%,  highlighting  the  need  for
significant efforts to efficiently supply electricity for electric vehicles (EVs) in La Réunion.

According to our research, giving workers more flexibility with their work hours can reduce network-wide congestion,
resulting in higher speeds and shorter travel times. Moreover, all pollutants' emission levels drop as a result of this.
Notwithstanding this, our simulation revealed a divergent trend between population exposure costs and emissions, with
costs  for  CO, PM2.5,  and NOx rising and those for  CO2 falling.  These findings demonstrate  the complexity of  the
transportation  system's  effects  on  its  associated  costs  of  population  exposure.  These  conclusions  on  the  effect  of
employee work schedules on transportation would not have been feasible without METRO-TRACE. More investigation
is required to better comprehend these systems. 

This  chain  might  be  improved to  estimate  and  take  into account  population exposure  to  pollution  while  they  are
travelling, which should mechanically increase the population exposure cost. Moreover, our dispersion model consider
static parameters across time and space. Therefore, more effort to increase the heterogeneity level of this model could
be highly beneficial.  Additionally, we neglected to consider truck traffic,  and public transportation in our analysis.
However, there is still much work to be done on our chain of models to make it simple to utilize for future research and
to test different scenarios. Nevertheless, La Réunion is a rather small area, therefore it could be worthwhile to test our
chain's computing performance on a larger, more extended territory such as Île-de-France. 

In conclusion, our study has shown that there are several strategies to reduce the population’s exposure to road traffic
pollution. This could be achieved through implementing policy-based laws as well as societal changes. Nonetheless, it
is crucial to evaluate the various situations before putting them into action because doing so could sometimes lead to
harmful consequences.
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Appendix

A1: Travel demand parameter values

Parameter Value

Studied time period 6:00 a.m. - 12:00 p.m.
Length of time period (t) 20 min

Unit cost of travel time (α) N(10, 2)

Desired arrival time (t*
) N(510, 70)

Unit cost of early arrival (β) N(5, 1)
Unit cost of late arrival (γ ) N(8, 1)

Width of on-time-arrival window (δ) 30

Logit scale parameter for auto departure-time choice 2
This table summarizes the different parameters used for the baseline scenario simulation in METROPOLIS

A2: Dispersion parameter values

Parameter Value

Wind direction North-West to South East

Wind speed (us) 7.4 m.s-1

Emitter height (H) 0.5 m

Receptor height (z) 1.5 m 

Standard deviation of lateral concentration (σ y
2 (x ))

ax

(1+bx)e

Standard deviation of vertical concentration (σ z
2 (x ))

dx

(1+bx)e

a 0.0787

b 0.0014 

c 0.135 

d 0.0745

e 0.465 

This table summarizes the different parameters used in the dispersion model
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The hourly average concentrations for the various pollution stations are shown in this graph. The nitrogen monoxide time profile is shown in the top left
figure.  The temporal  profile  of  nitrogen dioxides  is  shown on the  right.  And  the  bottom figures  show the particulate  matter  time  profile.  Source:
AtmoRéunion

A3: NO, NO2 and PM2.5 average hourly concentrations at La Réunion
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This map displays the localisation of the different air control stations at La Réunion. Source: AtmoRéunion

A4: Map of the different air control stations at La Réunion


