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Nonequilibrium phase transitions are notably difficult to analyze because their mechanisms depend on the
system’s dynamics in a complex way due to the lack of time-reversal symmetry. To complicate matters, the
system’s steady-state distribution is unknown in general. Here, the phase diagram of the active Model B is
computed with a deep neural network implementation of the geometric minimum action method (gMAM). This
approach unveils the unconventional reaction paths and nucleation mechanism in dimensions 1, 2 and 3, by
which the system switches between the homogeneous and inhomogeneous phases in the binodal region. Our
main findings are: (i) the mean time to escape the phase-separated state is (exponentially) extensive in the system
size L, but it increases non-monotonically with L in dimension 1; (ii) the mean time to escape the homogeneous
state is always finite, in line with the recent work of Cates and Nardini [1]; (iii) at fixed L, the active term
increases the stability of the homogeneous phase, eventually destroying the phase separation in the binodal for
large but finite systems. Our results are particularly relevant for active matter systems in which the number of
constituents hardly goes beyond 107 and where finite-size effects matter.

Introduction– Activated processes, pervasive in nature, are
intrinsically difficult to probe in simulations since they re-
quire the sampling of rare events [2–5]. When a first-order
phase transition (FOPT) occurs, a nucleation event is usu-
ally required for the system to reach its stable phase [1, 6–8].
In equilibrium systems, we can exploit the property of time-
reversal symmetry (TRS) and the knowledge of their equilib-
rium distribution to derive a free energy from which we can
infer both the thermodynamic stability of each phase, and the
reaction paths that are followed by the system during activa-
tion [9–11]. However, TRS breakdown in nonequilibrium sys-
tems prevents access to the free energy, necessitating compre-
hension of activated process mechanisms through dynamics
rather than unknown steady-state distributions [12–19]. Map-
ping their phase diagram thus persists as a challenge.

In this letter, we tackle this issue within the active Model
B, a natural nonequilibrium extension of Cahn-Hilliard dy-
namics with a nonlinear growth term [20, 21] breaking TRS.
This widely studied model has attracted considerable atten-
tion in recent years [22–25], serving as an effective descrip-
tion, for instance, of active particles undergoing motility-
induced phase separation (MIPS) [26–28]. Here, we map
the phase diagram of the active Model B and analyze FOPT
pathways. Our findings reveal transitions involving nucleation
events markedly different from their equilibrium counterparts,
shaped by the interplay between noise and nongradient terms
in the stochastic system dynamics. Moreover, in large but fi-
nite systems, we demonstrate that the active term can reduce
the probability of observing phase-separated state nucleation
and facilitate the reverse transition from the phase-separated
phase to the homogeneous state. To obtain these results, we
compute reaction paths using a geometric Minimum Action
Method (gMAM) [29–31] implementation relying on Physics-
Informed Neural Networks (PINNs) [32, 33]. This neural im-

plementation, known as deep gMAM [34], is notable as it can
be transferred to study FOPTs in other nonequilibrium sys-
tems. It also gives access to higher dimensional problems
not accessible by traditional methods. Additionally, we cross-
check some results of the deep gMAM algorithm using the
traditional gMAM method as a benchmark.

Problem setting– The active Model B (AMB) characterizes
the stochastic dynamics of a conserved scalar field ϕ(x, t),
usually interpreted as the local (relative) density of particles
or the local composition of a mixture. It can be expressed as
the divergence of a noisy flux [1, 22, 23, 35]

∂tϕ = ∇ · (M∇µ+ ξ), (1)

µ([ϕ], x) =
δF [ϕ]

δϕ(x)
+ λ|∇ϕ(x)|2, (2)

In this context, F [ϕ] represents a Ginzburg-Landau free en-
ergy, M is the mobility operator, and ξ is a spatio-temporal
white noise, a Gaussian process with mean zero and covari-
ance ⟨ξ(x, t)ξ(x′, t′)⟩ = 2ϵMδ(x−x′)δ(t− t′), where ϵ con-
trols the amplitude of fluctuations. We investigate Eq. (1) in
d = 1 up to d = 3 dimensions, assuming periodic boundary
conditions of the domain Ω = [0, L]d with lateral size L. We
simplify by considering M = 1 and F [ϕ] =

∫
Ω
[ 12ν(∇ϕ)2 +

f(ϕ)]dx, where ν > 0 and f(ϕ) represents a double-well po-
tential. With this choice, there is a region of the phase dia-
gram where a homogeneous state, denoted ϕH , coexists with
a phase-separated state (or inhomogeneous state), denoted ϕI

(see Fig. 1(a)). These states correspond to the two locally sta-
ble fixed points of the noiseless version of Eq. (1), namely the
solution to ∇ · (M∇µ) = 0 with a prescribed value of the
spatial average ϕ0 of ϕ in the domain.

When λ = 0, µ is the functional derivative of the free
energy F [ϕ], and the dynamics is in detailed balance with
respect to the Gibbs-Boltzmann measure, and the station-
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ary probability of observing a configuration ϕ(x) is given by
Ps[ϕ] ∝ exp(−F [ϕ]/ϵ). In this case, the relative stability
of the phases ϕH and ϕI can be inferred from the values of
F [ϕH ] and F [ϕI ]. Transitions between these states involve a
reaction path passing through a saddle-point configuration on
F [ϕ].

In contrast, when λ ̸= 0, TRS is broken because µ does
not satisfy the Schwarz condition on its functional derivative
[25, 36, 37]. Consequently, the stationary distribution of the
system is no longer available. Therefore, F [ϕ] provides no
information on the relative stability of ϕH and ϕI . Instead,
characterizing their relative stability relies on dynamics.

Phase transitions and quasipotential– We use Freidlin-
Wentzell large-deviation theory (LDT) to compute transition
rates from ϕH to ϕI and vice versa, along with most likely
paths [12], in the limit as ϵ → 0 (when the system is either in
ϕH or ϕI with probability one, and proper phases can be de-
fined). Denoting kI,H as the rate to transition from ϕI to ϕH ,
it is given by kI,H ≍ exp (−VϕI

(ϕH)/ϵ), where VϕI
(ϕH) is

the quasipotential of ϕH relative to ϕI , akin to a potential bar-
rier in Arrhenius’ law. A similar expression holds for kH,I ,
the rate from ϕH to ϕI . Assessing the relative stability of the
phases relies on the difference in the logarithm of the escape
rates:

ϵ log kI,H − ϵ log kH,I ≍ −VϕI
(ϕH) + VϕH

(ϕI), (3)

This expression is positive when ϕH is preferred and negative
when ϕI is. The quasipotential values VϕI

(ϕH) and VϕH
(ϕI)

depend on system control parameters like λ and ϕ0, thus their
difference can switch sign, indicating a first-order phase tran-
sition (FOPT). This allows for analyzing these transitions by
computing these quasipotentials for various λ and ϕ0 values,
as suggested in [38]. These quasipotentials are obtained as
minima of the action functional ST [ϕ], defined as:

ST [ϕ] =

∫ T

0

∫
Ω

|∇−1(∂tϕ−∇2µ)|2dxdt (4)

where Ω denotes the domain. Minimizing action (4) with re-
spect to both T and ϕ, subject to ϕ(t = 0, x) = ϕH and ϕ(t =
T, x) = ϕI yields VϕH

(ϕI), and subject to ϕ(t = 0, x) = ϕI

and ϕ(t = T, x) = ϕH yields VϕI
(ϕH).

Deep gMAM– The key feature of the method, introduced
in [34], is to replace the field ϕ(x, t) with an ansatz satis-
fying the spatio-temporal boundary conditions and involving
deep neural networks. The minimization of (4) is achieved by
a stochastic gradient descent (SGD) algorithm where space-
time collocation points are randomly drawn at each SGD
step. Such procedure is very often used in problems involving
PINNs. The method is simple to implement, highly flexible,
and, importantly, able to tackle problems in higher dimensions
not accessible by classical approaches. Furthermore, it pro-
vides an analytical parametric approximation of the various
fields across the entire spatio-temporal domain.

In this study, results from the deep gMAM algorithm in
d = 1 were validated against those from classical gMAM

FIG. 1. (a) Three configurations in d = 1: The solid line repre-
sents the stable inhomogeneous state ϕI , the dashed line indicates
the unstable critical state ϕc,1, and the grey line depicts a field con-
figuration along the nonequilibrium reaction path from ϕI to the ho-
mogeneous state ϕH (not shown). Parameters: ϕ0 = 0.65, λ = 2,
and L = 120. (b) Phase diagram of active Model B in parameter
space (λ, ϕ0). It shows the binodal (black line) and the spinodal (red
line) previously computed in [22]. In finite-size systems, the bistable
region does not fully span between the spinodal and the binodal but
stops at the blue line (shown here for L = 60 and d = 1). Both states
ϕH and ϕI are stable in the shaded region. (c) In the bistable region,
the purple dashed line marks the FOPT between ϕH and ϕI . On
this line, VϕH (ϕI) = VϕI (ϕH). In region H, ϕH is thermodynam-
ically preferred, in regions I1, I2, I3, the inhomogeneous state ϕI

is preferred. The index q in Iq indicates the number of bumps along
the reaction path from ϕI to ϕH . Region I3 may display asymmetric
paths with slightly smaller actions than their symmetric counterparts.

implementation, which discretizes the field in space and
time and is somewhat more intricate. For further details on
both algorithms, especially regarding optimization on T via
reparametrization of the solution using arc-length s instead
of physical time t, we refer to the Supplemental Material
(SM) [39].

Phase diagram in 1d– We focus first on the one-
dimensional system, whose dynamics reads

∂tϕ = −∂2
x[∂

2
xϕ+ ϕ− ϕ3 − λ(∂xϕ)

2] + ∂xξ, (5)

with ⟨ξ(x, t)ξ(x′, t′)⟩ = 2ϵδ(t− t′)δ(x−x′). Space has been
rescaled such that all lengths are given in units of

√
ν. We

consider a system of size L and we take periodic boundary
conditions. The relevant parameters are thus L, the total mass
ϕ0 ≡ L−1

∫ L

0
ϕ dx, and the activity level λ. The constant
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density solution of Eq. (5) is the homogeneous state ϕH , and
since the mass ϕ0 is conserved, we have ϕH = ϕ0. We restrain
the study to the region ϕ0 > 0, since Eq. (5) is invariant under
(λ, ϕ) → (−λ,−ϕ). The homogeneous state ϕH is always
a stable fixed point of the noiseless dynamics for ϕ0 > ϕλ

sp+ ,
where ϕλ

sp+ = 1/
√
3 is the frontier of the spinodal in the space

(λ, ϕ0) for ϕ0 > 0. We are interested in the region where ϕH

competes with the inhomogeneous state ϕI . In the infinite
system size limit, this region lies between the spinodal ϕλ

sp+

(red line in Fig. 1(b)) and the binodal curve ϕλ
bi+ (black line in

Fig. 1(b-c)) that yields the bulk densities of each phase when
the system undergoes a phase separation [22, 27]. We will
denote by ϕλ

f.o. the transition density indicating the change
of thermodynamic stability of the two competing metastable
states, ϕI and ϕH . Naturally we have ϕλ

sp+ ≤ ϕλ
f.o. ≤ ϕλ

bi+ .
First, let us recall that for large but finite systems, the phase-

separated state cannot be the preferred phase if ϕ0 is taken too
close to the binodal density ϕλ

bi+ . For instance, in equilibrium,
(i.e. λ = 0) the binodal densities are ϕλ=0

bi± = ±1 but a free
energy argument that compares interfaces and bulk contribu-
tions shows that ϕλ=0

f.o. converges to 1 as ϕλ=0
f.o. ∼ 1−(1/L)1/2.

More than that, due to finite-size effects, ϕI may not exist at
all when there is not enough space in the domain to nucleate
the phase separation. Hence, one should keep in mind that in
a finite system, say of size L, bistability can only be observed
below some threshold density ϕλ=0

m+
L

≤ ϕλ=0
bi+ , represented as

the blue curve in Fig. 1. Nonetheless, we have ϕλ
m±

L

→ ϕλ
bi±

as L → ∞. To pinpoint the FOPT, we run the gMAM al-
gorithm for ϕ0 ∈ [ϕλ

sp, ϕ
λ
m+

L

] and λ ∈ [−10, 10]. Solving

VϕH
(ϕI) = VϕI

(ϕH) identifies the FOPT line ϕλ
f.o., the pur-

ple dashed line in Fig. 1(c), which splits the diagram into two
regions: for ϕ0 < ϕλ

f.o. the thermodynamically stable state
is the inhomogeneous one, ϕI , while for ϕ0 > ϕλ

f.o. the ho-
mogeneous state ϕH = ϕ0 is preferred. Interestingly, we also
find that the binodal and the FOPT have a reentrance direction
along λ that does not exist in the system of infinite size (see
Fig. 1(c)).

Reaction paths in 1d– We consider first the reaction path
starting from the homogeneous state ϕH and reaching ϕI , and
we compute VϕH

(ϕI) for different values of λ and system size
L. Interestingly this path is very close to the heteroclinic or-
bit joining ϕH to ϕI , and going through the critical (saddle)
state ϕc,1(x) that displays one density bump (see Fig. 1(a))
and possesses only one unstable direction. This behavior is
very similar to the equilibrium nucleation scenario occurring
in the Cahn-Hilliard dynamics, as already noted in [1]: to es-
cape ϕH , the system only needs to nucleate a finite size droplet
of the opposite phase. The cost for the action associated to
this event is always finite, and the value of the action does not
differ much from the one computed using the time-reversed
relaxational path (a few percent difference, not shown).

In contrast, the transition from ϕI to ϕH is more com-
plex, and its analysis had never been explored so far. For
ϕ0 > 0, as λ increases, the reaction path no longer fol-
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FIG. 2. (a) Minimum action path joining ϕI (at s = 0) to ϕH (at
s = 1) for λ = 2, ϕ0 = 0.65 and L = 44.7 in d = 1 dimension.
The vertical lines pinpoint the states where the norm of the flow is
minimal (and almost zero), corresponding to the states close to the
critical points. The corresponding critical points are displayed in
panel (b). The state at the dashed line lies in the basin of attraction of
the inhomogeneous state, while the state at the solid line lies on the
separatrix between the ϕI and ϕH . The action from the dashed line
to the solid line is strictly positive, while the action from the solid
line to ϕH is zero. (b) Pair of critical states displaying two bumps,
for same parameters as panel (a). If L = L⋆

2, these two states merge
in a saddle-node bifurcation. (c) Threshold lengths L⋆

q(λ) indicating
the apparition of critical states with a given number q of bumps as a
function of the system activity λ. Above the critical q-line, pairs of
critical states with q bumps are dynamically accessible.

lows the time-reverse relaxation path that goes through the
saddle ϕc,1, but rather passes close to critical points with a
large number of unstable directions, see Fig. 2(a) and 2(b),
as it may sometimes be observed in nonequilibrium sys-
tems [34, 38]. Any critical points ϕc can be obtained by solv-
ing the noiseless and stationary version of Eq. (5). It solves
∂2
xϕc = −ϕc + ϕ3

c + λ(∂xϕc)
2 + µ0, with µ0 a constant,

L−1
∫ L

0
ϕc(x)dx = ϕ0, and ϕc subject to the constraints of

periodicity. A Newton mapping similar to the one introduced
in [22] enables us to compute precisely the critical points us-
ing a symplectic scheme (see SM). For given λ and ϕ0, pairs
of critical points with q bumps (q ∈ N∗) appear at critical val-
ues of the system size denoted L⋆

q , reported in Fig. 2(c). The
saddle-node bifurcation at L⋆

q occurs when the system size L
is large enough to fit an additional bump on the density pro-
file. For L = L⋆

q , one degenerate critical state ϕ⋆
c,q becomes

accessible to the dynamics. As L > L⋆
q , the degeneracy is

lifted and two distinct critical states of q bumps appear. Any
of the states ϕc,q can be decomposed into q identical bumps
of size L/q. In particular, the state with bumps of largest am-
plitude strictly lies in the basin of attraction of ϕI , while the
other state lies on the separatrix between ϕI and ϕH . We dis-
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FIG. 3. Minimum action VϕI (ϕH) as a function of the system size
L (top panel), for paths starting at ϕI and reaching ϕH . Here λ = 2
and ϕ0 = 0.65. The action non-monotonically increases because in-
creasing the system size L allows for qualitatively different reaction
paths. The successive branches of the curve correspond to differ-
ent types of paths displaying an increasing number of bumps, see
bottom panels. The yellow dots indicate where branches cross each
other. The (∗) symbol indicates a branch on which the path is no
longer axisymmetric (see SM). The vertical dashed lines indicate the
critical lengths L⋆

q , also given in Fig. 2(c).

play an example of such a pair of critical states for q = 2 in
Fig. 2(b). For all q ≥ 2, the critical states are of Morse index
q ≥ 2. The case q = 1 is special as it corresponds to the
apparition of the inhomogeneous metastable state ϕI , jointly
with the critical state of Morse index 1, ϕc,1(x). A sketch of
the structure of the deterministic flow between critical points
is given in the SM. In summary, while the path from ϕH to ϕI

indeed resembles the equilibrium one, the path from ϕI to ϕH

displays spatial microstructures which are not present in equi-
librium. Notably, the number q of bumps along the instanton
changes with L, see Fig. 3, but also depends on ϕ0 and λ, as
indicated by the Iq-labeled regions in Fig. 1. In the SM, we
provide a more detailed discussion on the paths selection, and
we show that the number of bumps along the path cannot be
simply obtained from a spectral analysis.

Phase transitions in 2d and 3d– The reaction paths are also
computable in higher dimensions using the deep gMAM al-
gorithm. We specifically examine transitions from ϕI to ϕH ,
having also checked that transitions from ϕH to ϕI are in
line with classic nucleation theory [1] (results not shown). In
d = 2, we investigate the dependence on domain size L, as il-
lustrated in Fig. 4. These transitions display radial symmetry,
with microstructures increasing as L grows. The system ex-
hibits extensive action values VϕI

(ϕH), scaling as ∼ L2. Al-
though the action in Fig. 4 seems monotonic, rescaling it by
L2 reveals a very similar non-monotonic behavior as in one
dimension (not shown). Evidence suggests that instantons do
not traverse multi-spike profiles, which are numerically iden-
tified as critical states of the AMB (see SM and Ref. [40]), as

FIG. 4. Minimum action VϕI (ϕH) as a function of L obtained using
the deep gMAM method, in d = 2 dimensions. The bottom-right
panels shows the successive states along the Minimum Action Path
joining ϕI to ϕH for L = 44.7, λ = 2, ϕ0 = 0.65. The (⋆) panel is
the same solution in (s, r) coordinates where r is the radial coordi-
nate and s is the arclength coordinate. Other reaction paths in radial
coordinates are shown for different values of L = 32, 40, 57. They
exhibit additional microstructures as L increases.

their action values consistently exceed those of the radially
symmetric path. Additionally, we compute 3D transitions,
with one typical example shown in Fig. 5. These transitions
also exhibit radial symmetry. Notably, there is a significant di-
mensional effect: for same extension L, microstructures have
more room to span as dimension increases. This is anticipated
due to mass conservation, as the positive mass concentrate to-
wards the domain’s corners. It is noteworthy that in dimen-
sions d ≥ 2, characterizing critical states in Cahn-Hilliard is
more challenging [40] than in d = 1 [41], and this question re-
mains open for the AMB. Overall, comparing to the Arrhenius
law for λ = 0 reveals that the active term substantially reduces
the action required to escape the inhomogeneous state.

Conclusion– We have computed the phase diagram of the
AMB in d = 1, identified various nucleation scenarios in the
binodal, and demonstrated similar instanton phenomenology
in d = 2 and 3. By computing the reaction paths, we identified
regions where the homogeneous state is thermodynamically
preferred. The fact that the action VϕI

(ϕH) remains exten-
sive in system size, while VϕH

(ϕI) remains finite, confirms
that eventually, the system should phase-separate as L → ∞
when lying in the binodal region. Our results align with those
of Cates and Nardini [1], who showed that nucleation from
the homogeneous state in AMB for d ≥ 2 is qualitatively
similar to classical nucleation theory in equilibrium. More-
over, a common feature among all cases is the presence of
microstructures with more complex patterns as the dimen-
sion d increases. These patterns help decreasing significantly
the action required to escape the inhomogeneous state. Our
numerical results were obtained using the deep gMAM ap-
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(a)

(b) (c)

FIG. 5. (a) Isosurfaces ϕ(x, y, z) = 0 along the reaction path from
ϕI to ϕH , for d = 3. A slice is shown at y = 0.5L. (b) Isosurface
ϕ = 0 in space (s, x, y) and z = 0.5L. (c) Comparison of the
reaction paths in space (s, r) for L = 44.7 for d = 1, 2, and 3. For
all panels: λ = 2, ϕ0 = 0.65.

proach [34] and cross-checked in d = 1 by running the classi-
cal gMAM [30]. While the latter algorithm is more accurate,
the discretization scheme adopted for the Cahn-Hilliard equa-
tion becomes numerically prohibitive when d ≥ 2. The deep
gMAM approach does not suffer much from an increase in the
dimension d. Consequently, we were able to compute transi-
tions for d = 3. Overall, these features make the proposed
method relevant for numerous active matter systems that may
undergo phase separation, and for field theories displaying
metastable states in high dimension.
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